MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution

This paper focuses on yaw stability control of in-wheel-motored electric vehicle (EV), and a model predictive controller is designed based on holistic control structure via active front steering and motor torque distribution. By designing a suitable reference model, the controller stabilizes a vehic...

Full description

Saved in:
Bibliographic Details
Published inMechatronics (Oxford) Vol. 38; pp. 103 - 114
Main Authors Ren, Bingtao, Chen, Hong, Zhao, Haiyan, Yuan, Lei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focuses on yaw stability control of in-wheel-motored electric vehicle (EV), and a model predictive controller is designed based on holistic control structure via active front steering and motor torque distribution. By designing a suitable reference model, the controller stabilizes a vehicle along the desired states while rejecting skid and fulfilling its physical constraints, so this is described as a constrained tracking problem. To solve this, the holistic control scheme is built to simplify the hierarchical structure of the controller and directly optimize the control inputs of system. Based on holistic control structure and MPC method, an objective function with constraints is designed over a receding horizon to meet the control requirements. Finally, the proposed nonlinear model predictive controller is evaluated on eight degrees of freedom (8DOF) EV model offline simulation platform. Simulation results of different road maneuver on slippery surfaces show the benefits of the control methodology used.
AbstractList This paper focuses on yaw stability control of in-wheel-motored electric vehicle (EV), and a model predictive controller is designed based on holistic control structure via active front steering and motor torque distribution. By designing a suitable reference model, the controller stabilizes a vehicle along the desired states while rejecting skid and fulfilling its physical constraints, so this is described as a constrained tracking problem. To solve this, the holistic control scheme is built to simplify the hierarchical structure of the controller and directly optimize the control inputs of system. Based on holistic control structure and MPC method, an objective function with constraints is designed over a receding horizon to meet the control requirements. Finally, the proposed nonlinear model predictive controller is evaluated on eight degrees of freedom (8DOF) EV model offline simulation platform. Simulation results of different road maneuver on slippery surfaces show the benefits of the control methodology used.
Author Yuan, Lei
Zhao, Haiyan
Ren, Bingtao
Chen, Hong
Author_xml – sequence: 1
  givenname: Bingtao
  surname: Ren
  fullname: Ren, Bingtao
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, PR China
– sequence: 2
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  email: chenh@jlu.edu.cn, chenh98cn@hotmail.com
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, PR China
– sequence: 3
  givenname: Haiyan
  surname: Zhao
  fullname: Zhao, Haiyan
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, PR China
– sequence: 4
  givenname: Lei
  surname: Yuan
  fullname: Yuan, Lei
  organization: Department of Control Science and Engineering, Jilin University, PR China
BookMark eNqNkE1PAjEQhhuDiYD-h8b7Ygv76UmD-JFg9KBeN-10VoYsXW0LhH9vUQ_GE8lM5jDzPjPzDljPdhYZO5diJIXML5ajFcJCBddZAj8aC5nFxkiI8RHry7KYJKkQeY_1RZUVSSqz8oQNvF8KIQspiz6zj8_TRCuPhu_UlvugNLUUdhw6G6ktJxsj2S4Q22TVhc7Fydkb35DiCgJtkDdxeYhKREf2nStr-Pcgj_m5Rm7IB0d6Haizp-y4Ua3Hs986ZK-3s5fpfTJ_unuYXs8TmFQiJA2g0EYIkCVqbZoqw6LMRWUygCwH04xNkWrIMp2nsjQmHwOkqtJYlhMDWE6G7OqHC67z3mFTAwW1vyA4RW0tRb33r17Wf_2r9_7te9G_iLj8h_hwtFJud5j45keM8ckNoas9EFpAQw4h1KajQzBfL_OaJw
CitedBy_id crossref_primary_10_1109_TCSI_2023_3276945
crossref_primary_10_1109_TVT_2018_2816936
crossref_primary_10_1155_2019_8585670
crossref_primary_10_1016_j_mechatronics_2017_10_003
crossref_primary_10_1049_iet_its_2017_0407
crossref_primary_10_1049_iet_its_2019_0267
crossref_primary_10_1155_2020_6793821
crossref_primary_10_1007_s12239_020_0099_3
crossref_primary_10_1109_TVT_2019_2922452
crossref_primary_10_1080_00423114_2023_2180755
crossref_primary_10_1109_TVT_2018_2890228
crossref_primary_10_1109_TITS_2023_3246227
crossref_primary_10_1177_0954407020965782
crossref_primary_10_1109_ACCESS_2023_3266330
crossref_primary_10_3390_electronics11182930
crossref_primary_10_1109_TPEL_2020_3025718
crossref_primary_10_1177_09544070241287250
crossref_primary_10_3390_en11092293
crossref_primary_10_1007_s40430_019_1696_9
crossref_primary_10_1016_j_conengprac_2023_105720
crossref_primary_10_1109_TE_2021_3077278
crossref_primary_10_1016_j_ifacol_2018_10_068
crossref_primary_10_1109_TVT_2020_3012962
crossref_primary_10_1177_1077546320948656
crossref_primary_10_1177_0954407019884168
crossref_primary_10_1007_s12239_019_0069_9
crossref_primary_10_1016_j_mechatronics_2018_06_010
crossref_primary_10_1016_j_ifacol_2019_09_074
crossref_primary_10_1016_j_jfranklin_2022_08_035
crossref_primary_10_1177_09596518241263537
crossref_primary_10_3390_vehicles6020042
crossref_primary_10_3390_sym13030381
crossref_primary_10_7467_KSAE_2020_28_9_605
crossref_primary_10_3390_act10120334
crossref_primary_10_1016_j_ymssp_2019_02_057
crossref_primary_10_1109_TVT_2020_3030863
crossref_primary_10_3390_act13030103
crossref_primary_10_1109_TVT_2020_2978099
crossref_primary_10_1139_tcsme_2022_0053
crossref_primary_10_1016_j_isatra_2017_10_013
crossref_primary_10_1109_ACCESS_2021_3124216
crossref_primary_10_1109_ACCESS_2019_2915102
crossref_primary_10_1088_1757_899X_257_1_012078
crossref_primary_10_1007_s10846_024_02197_x
crossref_primary_10_1080_00423114_2017_1395465
crossref_primary_10_1109_TVT_2021_3056560
crossref_primary_10_1080_00207721_2018_1479005
crossref_primary_10_1016_j_ifacol_2018_10_140
crossref_primary_10_1080_00423114_2019_1645343
crossref_primary_10_1016_j_compag_2024_108985
crossref_primary_10_1063_5_0078950
crossref_primary_10_1109_ACCESS_2023_3292220
crossref_primary_10_1109_TIV_2024_3367815
crossref_primary_10_1177_09544070221116687
crossref_primary_10_1016_j_ifacol_2017_08_050
crossref_primary_10_1109_ACCESS_2019_2892746
crossref_primary_10_1109_TVT_2024_3476921
crossref_primary_10_1007_s11431_019_9672_5
crossref_primary_10_1177_09544070221115479
crossref_primary_10_1016_j_ifacol_2020_12_1805
crossref_primary_10_1109_TVT_2020_3032377
crossref_primary_10_1177_09544070231157134
crossref_primary_10_1155_2017_3035124
crossref_primary_10_1007_s12239_020_0034_7
crossref_primary_10_1177_1687814019892108
crossref_primary_10_3390_machines10110969
crossref_primary_10_1109_ACCESS_2021_3070066
crossref_primary_10_1088_1742_6596_2264_1_012030
crossref_primary_10_1049_iet_its_2018_5523
crossref_primary_10_1109_ACCESS_2018_2889997
crossref_primary_10_1007_s12239_020_0007_x
crossref_primary_10_1109_TVT_2023_3280980
crossref_primary_10_1155_2020_8086590
crossref_primary_10_1155_2020_4712327
crossref_primary_10_3389_frobt_2023_1078253
crossref_primary_10_1177_0954407018821527
crossref_primary_10_1109_TVT_2023_3269787
crossref_primary_10_1016_j_ymssp_2018_05_059
crossref_primary_10_1109_TMECH_2019_2942621
crossref_primary_10_1177_09544070221075508
crossref_primary_10_1177_09544070211066980
crossref_primary_10_1016_j_ifacol_2024_07_310
crossref_primary_10_1016_j_mechatronics_2018_11_006
crossref_primary_10_1016_j_jestch_2025_101950
crossref_primary_10_3390_app11146465
crossref_primary_10_1049_iet_its_2020_0184
crossref_primary_10_3390_wevj15030122
crossref_primary_10_1109_TTE_2024_3358566
crossref_primary_10_1109_ACCESS_2020_3005943
crossref_primary_10_1080_00423114_2020_1869273
crossref_primary_10_7467_KSAE_2022_30_7_547
crossref_primary_10_1080_00423114_2022_2052328
crossref_primary_10_1108_JICV_03_2021_0005
crossref_primary_10_3390_s20133689
crossref_primary_10_3390_electronics14030601
crossref_primary_10_1109_ACCESS_2020_2995520
crossref_primary_10_1080_00423114_2022_2057334
crossref_primary_10_1109_TVT_2020_3046052
crossref_primary_10_1109_TVT_2021_3114729
crossref_primary_10_1109_ACCESS_2017_2788941
crossref_primary_10_1177_0142331219892114
crossref_primary_10_1049_itr2_12159
crossref_primary_10_1109_TITS_2022_3193891
crossref_primary_10_1016_j_conengprac_2021_104958
crossref_primary_10_3390_en11092438
crossref_primary_10_1177_09544070221103633
crossref_primary_10_4271_2022_01_0376
crossref_primary_10_3390_app15063347
crossref_primary_10_1109_TITS_2020_2978948
crossref_primary_10_1016_j_mechatronics_2017_07_001
crossref_primary_10_1016_j_energy_2020_118911
crossref_primary_10_1155_2021_5399588
crossref_primary_10_3390_su141711072
crossref_primary_10_1002_rnc_4657
crossref_primary_10_1007_s40435_023_01248_9
crossref_primary_10_1080_00423114_2020_1817506
crossref_primary_10_1109_ACCESS_2024_3443869
crossref_primary_10_1109_TVT_2022_3205892
crossref_primary_10_3390_s22249597
crossref_primary_10_1109_ACCESS_2019_2917313
crossref_primary_10_1109_TIE_2019_2958308
crossref_primary_10_1016_j_ifacol_2021_11_245
crossref_primary_10_1109_TITS_2024_3494657
crossref_primary_10_1007_s12555_018_0694_5
crossref_primary_10_1080_00423114_2017_1376751
crossref_primary_10_1109_ACCESS_2020_2994530
crossref_primary_10_1109_TCST_2023_3257682
Cites_doi 10.1080/00423110801932670
10.1109/TCST.2003.815607
10.4271/2012-01-0248
10.1049/iet-cta.2010.0443
10.1109/TIE.2009.2013737
10.1007/s12239-012-0120-6
10.1109/TVT.2012.2191627
10.1016/j.mechatronics.2012.10.008
10.1080/00423114.2002.11666234
10.1002/rnc.824
10.1016/j.automatica.2006.03.001
10.1109/TCST.2010.2053370
10.1016/S0389-4304(02)00189-3
10.1080/00423110701882264
10.1016/S0005-1098(98)00073-9
10.1016/S0005-1098(99)00214-9
10.1016/j.automatica.2013.01.035
10.1515/nleng-2012-0006
10.1109/TCST.2007.894653
10.1109/TCST.2009.2023981
10.1109/TII.2013.2261304
10.1016/j.automatica.2003.11.005
10.1109/TCST.2013.2271791
10.1080/00423114.2012.663921
10.1080/00423114.2014.894198
10.1080/00423110802018297
10.1080/00423114.2010.527995
10.1109/TIE.2008.2009439
10.1109/TCST.2013.2278237
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
DOI 10.1016/j.mechatronics.2015.10.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4006
EndPage 114
ExternalDocumentID 10_1016_j_mechatronics_2015_10_002
S0957415815001622
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c390t-fce0bd00c18ebbdf95e78609d5cc56cdf2d74bc55b6418dd62cc4a9be883dce83
IEDL.DBID .~1
ISSN 0957-4158
IngestDate Thu Apr 24 23:08:50 EDT 2025
Tue Jul 01 03:54:02 EDT 2025
Fri Feb 23 02:28:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electric vehicle
Yaw stability
Nonlinear MPC
Holistic control structure
Constrained tracking problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-fce0bd00c18ebbdf95e78609d5cc56cdf2d74bc55b6418dd62cc4a9be883dce83
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_mechatronics_2015_10_002
crossref_primary_10_1016_j_mechatronics_2015_10_002
elsevier_sciencedirect_doi_10_1016_j_mechatronics_2015_10_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Mechatronics (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiong, Yu (bib0018) 2012; 50
Johansen, Fossen (bib0007) 2013; 49
Chen, Xu, Xi (bib0037) 2012; 6
Tjonnas, Johansen (bib0017) 2010; 18
Falcone, Borrelli, Asgari, Tseng, Hrovat (bib0012) 2007; 15
Seguchi, Ohtsuka (bib0035) 2003; 13
Maciejowski (bib0032) 2002
Damiano, Gatto, Marongiu, Perfetto, Serpi (bib0036) 2014; 10
Mayne, Rawlings, Rao, Scokaert (bib0021) 2000; 36
Chen, Scherer (bib0022) 2006; 42
He, Hori (bib0028) 2006
Poussot-Vassal, Sename, Dugard, Savaresi (bib0010) 2011; 49
Falcone, Tseng, Borrelli, Asgari, Hrovat (bib0014) 2008; 46
Gasbaoui, Nasri (bib0001) 2012; 3
Chen, Allgöwer (bib0019) 1998; 34
Heinzl, Lugner, Plochl (bib0008) 2002; 37
Cong, Mostefai, Denai, Hori (bib0009) 2009; 56
Vermillion, Sun, Butts (bib0023) 2011; 19
Wu, Yeh, Huang (bib0003) 2013; 23
Wang (bib0005) 2007
Koehn, Echrich (bib0011) 2004
Nam, Oh, Fujimoto, Hori (bib0013) 2012; 13
Yang, Wang, Peng (bib0015) 2009; 47
Nam, Fujimoto, Hori (bib0030) 2012; 61
Suzuki, Kano, Abe (bib0027) 2014; 52
Hartley, Jerez, Suardi (bib0038) 2014; 22
Ohtsuka (bib0034) 2004; 40
Nagai, Shino, Gao (bib0029) 2002; 23
Wang, Zhang, Wang (bib0006) 2014; 22
Pacejka (bib0025) 2005
Rajamani (bib0004) 2006
Fu, Hoseinnezhad, Bab-Hadiashar (bib0024) 2012; 1
Johansen, Petersen, Kalkkuhl, Ldemann (bib0026) 2003; 11
Acarman (bib0016) 2009; 47
Wang, Li, Chen, Su (bib0031) 2009; 56
Keller (bib0033) 1995
Jalali, Uchida, McPhee, Lambert (bib0002) 2012; 5
Chen (bib0020) 2013
Yang (10.1016/j.mechatronics.2015.10.002_bib0015) 2009; 47
Hartley (10.1016/j.mechatronics.2015.10.002_bib0038) 2014; 22
Chen (10.1016/j.mechatronics.2015.10.002_bib0019) 1998; 34
Poussot-Vassal (10.1016/j.mechatronics.2015.10.002_bib0010) 2011; 49
Jalali (10.1016/j.mechatronics.2015.10.002_bib0002) 2012; 5
Suzuki (10.1016/j.mechatronics.2015.10.002_sbref0027) 2014; 52
Vermillion (10.1016/j.mechatronics.2015.10.002_bib0023) 2011; 19
Pacejka (10.1016/j.mechatronics.2015.10.002_bib0025) 2005
Maciejowski (10.1016/j.mechatronics.2015.10.002_bib0032) 2002
Nagai (10.1016/j.mechatronics.2015.10.002_bib0029) 2002; 23
Johansen (10.1016/j.mechatronics.2015.10.002_bib0007) 2013; 49
Cong (10.1016/j.mechatronics.2015.10.002_bib0009) 2009; 56
He (10.1016/j.mechatronics.2015.10.002_bib0028) 2006
Wang (10.1016/j.mechatronics.2015.10.002_bib0005) 2007
Wang (10.1016/j.mechatronics.2015.10.002_bib0006) 2014; 22
Gasbaoui (10.1016/j.mechatronics.2015.10.002_bib0001) 2012; 3
Chen (10.1016/j.mechatronics.2015.10.002_bib0020) 2013
Seguchi (10.1016/j.mechatronics.2015.10.002_bib0035) 2003; 13
Chen (10.1016/j.mechatronics.2015.10.002_bib0022) 2006; 42
Tjonnas (10.1016/j.mechatronics.2015.10.002_bib0017) 2010; 18
Fu (10.1016/j.mechatronics.2015.10.002_bib0024) 2012; 1
Wang (10.1016/j.mechatronics.2015.10.002_bib0031) 2009; 56
Keller (10.1016/j.mechatronics.2015.10.002_bib0033) 1995
Koehn (10.1016/j.mechatronics.2015.10.002_sbref0011) 2004
Xiong (10.1016/j.mechatronics.2015.10.002_bib0018) 2012; 50
Acarman (10.1016/j.mechatronics.2015.10.002_bib0016) 2009; 47
Falcone (10.1016/j.mechatronics.2015.10.002_bib0012) 2007; 15
Ohtsuka (10.1016/j.mechatronics.2015.10.002_bib0034) 2004; 40
Rajamani (10.1016/j.mechatronics.2015.10.002_bib0004) 2006
Mayne (10.1016/j.mechatronics.2015.10.002_bib0021) 2000; 36
Johansen (10.1016/j.mechatronics.2015.10.002_bib0026) 2003; 11
Falcone (10.1016/j.mechatronics.2015.10.002_bib0014) 2008; 46
Damiano (10.1016/j.mechatronics.2015.10.002_bib0036) 2014; 10
Heinzl (10.1016/j.mechatronics.2015.10.002_bib0008) 2002; 37
Nam (10.1016/j.mechatronics.2015.10.002_bib0013) 2012; 13
Nam (10.1016/j.mechatronics.2015.10.002_bib0030) 2012; 61
Chen (10.1016/j.mechatronics.2015.10.002_bib0037) 2012; 6
Wu (10.1016/j.mechatronics.2015.10.002_bib0003) 2013; 23
References_xml – volume: 11
  start-page: 799
  year: 2003
  end-page: 811
  ident: bib0026
  article-title: Gain-scheduled wheel slip control in automotive brake systems
  publication-title: IEEE Trans Contr Syst Technol
– volume: 18
  start-page: 545
  year: 2010
  end-page: 558
  ident: bib0017
  article-title: Stabilization of automotive vehicles using active steering and adaptive brake control allocation
  publication-title: IEEE Trans Contr Syst Technol
– volume: 47
  start-page: 155
  year: 2009
  end-page: 177
  ident: bib0016
  article-title: Nonlinear optimal integrated vehicle control using individual braking torque and steering angle with on-line control allocation by using state-dependent riccati equation technique
  publication-title: Veh Syst Dyn
– volume: 1
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib0024
  article-title: Side-slip control for nonlinear vehicle dynamics by electronic differentials
  publication-title: Nonlinear Eng
– volume: 42
  start-page: 1033
  year: 2006
  end-page: 1040
  ident: bib0022
  article-title: Moving horizon
  publication-title: Automatica
– volume: 23
  start-page: 309
  year: 2002
  end-page: 315
  ident: bib0029
  article-title: Study on integrated control of active front steer angle and direct yaw moment
  publication-title: JSAE Rev
– year: 2004
  ident: bib0011
  article-title: Active steering - the bmw approach towards modern steering technology
  publication-title: Proceedings of the SAE world congress, Detroit,USA
– volume: 22
  start-page: 1281
  year: 2014
  end-page: 1296
  ident: bib0006
  article-title: Linear parameter-varying controller design for four wheel independently-actuated electric ground vehicles with active steering systems
  publication-title: IEEE Trans Contr Syst Technol
– volume: 15
  start-page: 566
  year: 2007
  end-page: 580
  ident: bib0012
  article-title: Predictive active steering control for autonomous vehicle systems
  publication-title: IEEE Trans Contr Syst Technol
– volume: 46
  start-page: 611
  year: 2008
  end-page: 628
  ident: bib0014
  article-title: MPC-based yaw and lateral stabilisation via active front steering and braking
  publication-title: Veh Syst Dyn
– volume: 47
  start-page: 57
  year: 2009
  end-page: 79
  ident: bib0015
  article-title: Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory
  publication-title: Veh Syst Dyn
– year: 1995
  ident: bib0033
  publication-title: Iterative methods for linear and nonlinear equations
– year: 2006
  ident: bib0004
  publication-title: Vehicle dynamics and control
– year: 2013
  ident: bib0020
  publication-title: Model predictive control
– volume: 50
  start-page: 831
  year: 2012
  end-page: 846
  ident: bib0018
  article-title: Vehicle dynamics control of four inwheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation
  publication-title: Veh Syst Dyn
– volume: 10
  start-page: 243
  year: 2014
  end-page: 255
  ident: bib0036
  article-title: Operating constraints management of a surface-mounted pm synchronous machine by means of an fpga-based model predictive control algorithm
  publication-title: IEEE Trans Ind Inform
– volume: 40
  start-page: 563
  year: 2004
  end-page: 574
  ident: bib0034
  article-title: A continuation/gmresmethod for fast computation of nonlinear receding horizon control
  publication-title: Automatica
– volume: 34
  start-page: 1205
  year: 1998
  end-page: 1217
  ident: bib0019
  article-title: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability
  publication-title: Automatica
– start-page: 596
  year: 2006
  end-page: 601
  ident: bib0028
  article-title: Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition
  publication-title: Proceedings of the 9th IEEE international workshop on advanced motion control, Istanbul
– year: 2005
  ident: bib0025
  publication-title: Tyre and vehicle dynamics
– volume: 49
  start-page: 1087
  year: 2013
  end-page: 1103
  ident: bib0007
  article-title: Control allocation - a survey
  publication-title: Automatica
– volume: 23
  start-page: 46
  year: 2013
  end-page: 60
  ident: bib0003
  article-title: Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors
  publication-title: Mechatronics
– volume: 49
  start-page: 1597
  year: 2011
  end-page: 1621
  ident: bib0010
  article-title: Vehicle dynamic stability improvements through gain-scheduled steering and braking control
  publication-title: Veh Syst Dyn
– volume: 61
  start-page: 1972
  year: 2012
  end-page: 1985
  ident: bib0030
  article-title: Lateral stability control of in-wheel-motor-driven electric vehicles based sideslip angle estimation using lateral tire force sensors
  publication-title: IEEE Trans Veh Technol
– volume: 36
  start-page: 789
  year: 2000
  end-page: 814
  ident: bib0021
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
– volume: 3
  start-page: 236
  year: 2012
  end-page: 242
  ident: bib0001
  article-title: A novel 4wd electric vehicle control strategy based on direct torque control space vector modulation technique
  publication-title: Nonlinear Eng
– volume: 5
  start-page: 46
  year: 2012
  end-page: 64
  ident: bib0002
  article-title: Development of a fuzzy slip control system for electric vehicles with in-wheel motors
  publication-title: SAE Int J Alt Power
– volume: 56
  start-page: 1411
  year: 2009
  end-page: 1419
  ident: bib0009
  article-title: Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer
  publication-title: IEEE Trans Ind Electron
– volume: 22
  start-page: 1006
  year: 2014
  end-page: 1017
  ident: bib0038
  article-title: Predictive control using an fpga with application to aircraft control
  publication-title: IEEE Trans Control Syst Technol
– volume: 13
  start-page: 1169
  year: 2012
  end-page: 1176
  ident: bib0013
  article-title: Robust yaw stability control for electric vehicles based on active front steering control through a steer-by-wire system
  publication-title: Int J Automot Technol
– year: 2007
  ident: bib0005
  publication-title: Coordinated and reconfigurable vehicle dynamics control
– volume: 19
  start-page: 772
  year: 2011
  end-page: 781
  ident: bib0023
  article-title: Predictive control allocation for a thermal management system based on an inner loop reference model--design, analysis, and experimental results
  publication-title: IEEE Trans Contr Syst Technol
– volume: 13
  start-page: 381
  year: 2003
  end-page: 398
  ident: bib0035
  article-title: Nonlinear receding horizon control of an underactuated hovercraft
  publication-title: Int J Robust Nonlinear Control
– volume: 52
  start-page: 235
  year: 2014
  end-page: 250
  ident: bib0027
  article-title: A study on tyre force distribution controls for full drive-by-wire electric vehicle
  publication-title: Vehicle Syst Dyn
– year: 2002
  ident: bib0032
  publication-title: Predictive control with constraints
– volume: 6
  start-page: 1055
  year: 2012
  end-page: 1063
  ident: bib0037
  article-title: Field programmable gate array/system on a programmable chip-based implementation of model predictive controller
  publication-title: IET Control Theory Appl
– volume: 37
  start-page: 221
  year: 2002
  end-page: 233
  ident: bib0008
  article-title: Stability control of a passenger car by combined additional steering and unilateral braking
  publication-title: Veh Syst Dyn
– volume: 56
  start-page: 1746
  year: 2009
  end-page: 1756
  ident: bib0031
  article-title: Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzycneural controller
  publication-title: IEEE Trans Ind Electron
– volume: 3
  start-page: 236
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0001
  article-title: A novel 4wd electric vehicle control strategy based on direct torque control space vector modulation technique
  publication-title: Nonlinear Eng
– volume: 47
  start-page: 155
  issue: 2
  year: 2009
  ident: 10.1016/j.mechatronics.2015.10.002_bib0016
  article-title: Nonlinear optimal integrated vehicle control using individual braking torque and steering angle with on-line control allocation by using state-dependent riccati equation technique
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423110801932670
– volume: 11
  start-page: 799
  issue: 6
  year: 2003
  ident: 10.1016/j.mechatronics.2015.10.002_bib0026
  article-title: Gain-scheduled wheel slip control in automotive brake systems
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2003.815607
– volume: 5
  start-page: 46
  issue: 1
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0002
  article-title: Development of a fuzzy slip control system for electric vehicles with in-wheel motors
  publication-title: SAE Int J Alt Power
  doi: 10.4271/2012-01-0248
– year: 2007
  ident: 10.1016/j.mechatronics.2015.10.002_bib0005
– volume: 6
  start-page: 1055
  issue: 8
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0037
  article-title: Field programmable gate array/system on a programmable chip-based implementation of model predictive controller
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2010.0443
– volume: 56
  start-page: 1411
  issue: 5
  year: 2009
  ident: 10.1016/j.mechatronics.2015.10.002_bib0009
  article-title: Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2009.2013737
– volume: 13
  start-page: 1169
  issue: 7
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0013
  article-title: Robust yaw stability control for electric vehicles based on active front steering control through a steer-by-wire system
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-012-0120-6
– volume: 61
  start-page: 1972
  issue: 5
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0030
  article-title: Lateral stability control of in-wheel-motor-driven electric vehicles based sideslip angle estimation using lateral tire force sensors
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2012.2191627
– volume: 23
  start-page: 46
  issue: 1
  year: 2013
  ident: 10.1016/j.mechatronics.2015.10.002_bib0003
  article-title: Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2012.10.008
– volume: 37
  start-page: 221
  year: 2002
  ident: 10.1016/j.mechatronics.2015.10.002_bib0008
  article-title: Stability control of a passenger car by combined additional steering and unilateral braking
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423114.2002.11666234
– volume: 13
  start-page: 381
  issue: 5-6
  year: 2003
  ident: 10.1016/j.mechatronics.2015.10.002_bib0035
  article-title: Nonlinear receding horizon control of an underactuated hovercraft
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.824
– volume: 42
  start-page: 1033
  issue: 6
  year: 2006
  ident: 10.1016/j.mechatronics.2015.10.002_bib0022
  article-title: Moving horizon H∞ control with performance adaptation for constrained linear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.03.001
– volume: 19
  start-page: 772
  issue: 4
  year: 2011
  ident: 10.1016/j.mechatronics.2015.10.002_bib0023
  article-title: Predictive control allocation for a thermal management system based on an inner loop reference model--design, analysis, and experimental results
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2010.2053370
– volume: 23
  start-page: 309
  issue: 3
  year: 2002
  ident: 10.1016/j.mechatronics.2015.10.002_bib0029
  article-title: Study on integrated control of active front steer angle and direct yaw moment
  publication-title: JSAE Rev
  doi: 10.1016/S0389-4304(02)00189-3
– year: 2002
  ident: 10.1016/j.mechatronics.2015.10.002_bib0032
– year: 2006
  ident: 10.1016/j.mechatronics.2015.10.002_bib0004
– volume: 47
  start-page: 57
  issue: 1
  year: 2009
  ident: 10.1016/j.mechatronics.2015.10.002_bib0015
  article-title: Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423110701882264
– volume: 34
  start-page: 1205
  issue: 10
  year: 1998
  ident: 10.1016/j.mechatronics.2015.10.002_bib0019
  article-title: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability
  publication-title: Automatica
  doi: 10.1016/S0005-1098(98)00073-9
– year: 2013
  ident: 10.1016/j.mechatronics.2015.10.002_bib0020
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  ident: 10.1016/j.mechatronics.2015.10.002_bib0021
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– volume: 49
  start-page: 1087
  issue: 5
  year: 2013
  ident: 10.1016/j.mechatronics.2015.10.002_bib0007
  article-title: Control allocation - a survey
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.01.035
– volume: 1
  start-page: 1
  issue: 1–2
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0024
  article-title: Side-slip control for nonlinear vehicle dynamics by electronic differentials
  publication-title: Nonlinear Eng
  doi: 10.1515/nleng-2012-0006
– volume: 15
  start-page: 566
  issue: 3
  year: 2007
  ident: 10.1016/j.mechatronics.2015.10.002_bib0012
  article-title: Predictive active steering control for autonomous vehicle systems
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2007.894653
– volume: 18
  start-page: 545
  issue: 3
  year: 2010
  ident: 10.1016/j.mechatronics.2015.10.002_bib0017
  article-title: Stabilization of automotive vehicles using active steering and adaptive brake control allocation
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2009.2023981
– volume: 10
  start-page: 243
  issue: 1
  year: 2014
  ident: 10.1016/j.mechatronics.2015.10.002_bib0036
  article-title: Operating constraints management of a surface-mounted pm synchronous machine by means of an fpga-based model predictive control algorithm
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2013.2261304
– volume: 40
  start-page: 563
  year: 2004
  ident: 10.1016/j.mechatronics.2015.10.002_bib0034
  article-title: A continuation/gmresmethod for fast computation of nonlinear receding horizon control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2003.11.005
– year: 2005
  ident: 10.1016/j.mechatronics.2015.10.002_bib0025
– volume: 22
  start-page: 1006
  issue: 3
  year: 2014
  ident: 10.1016/j.mechatronics.2015.10.002_bib0038
  article-title: Predictive control using an fpga with application to aircraft control
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2013.2271791
– year: 2004
  ident: 10.1016/j.mechatronics.2015.10.002_sbref0011
  article-title: Active steering - the bmw approach towards modern steering technology
– volume: 50
  start-page: 831
  issue: 6
  year: 2012
  ident: 10.1016/j.mechatronics.2015.10.002_bib0018
  article-title: Vehicle dynamics control of four inwheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423114.2012.663921
– volume: 52
  start-page: 235
  year: 2014
  ident: 10.1016/j.mechatronics.2015.10.002_sbref0027
  article-title: A study on tyre force distribution controls for full drive-by-wire electric vehicle
  publication-title: Vehicle Syst Dyn
  doi: 10.1080/00423114.2014.894198
– volume: 46
  start-page: 611
  issue: 1
  year: 2008
  ident: 10.1016/j.mechatronics.2015.10.002_bib0014
  article-title: MPC-based yaw and lateral stabilisation via active front steering and braking
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423110802018297
– volume: 49
  start-page: 1597
  issue: 10
  year: 2011
  ident: 10.1016/j.mechatronics.2015.10.002_bib0010
  article-title: Vehicle dynamic stability improvements through gain-scheduled steering and braking control
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423114.2010.527995
– start-page: 596
  year: 2006
  ident: 10.1016/j.mechatronics.2015.10.002_bib0028
  article-title: Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition
– year: 1995
  ident: 10.1016/j.mechatronics.2015.10.002_bib0033
– volume: 56
  start-page: 1746
  issue: 5
  year: 2009
  ident: 10.1016/j.mechatronics.2015.10.002_bib0031
  article-title: Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzycneural controller
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2008.2009439
– volume: 22
  start-page: 1281
  issue: 4
  year: 2014
  ident: 10.1016/j.mechatronics.2015.10.002_bib0006
  article-title: Linear parameter-varying controller design for four wheel independently-actuated electric ground vehicles with active steering systems
  publication-title: IEEE Trans Contr Syst Technol
  doi: 10.1109/TCST.2013.2278237
SSID ssj0017117
Score 2.5135617
Snippet This paper focuses on yaw stability control of in-wheel-motored electric vehicle (EV), and a model predictive controller is designed based on holistic control...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Constrained tracking problem
Electric vehicle
Holistic control structure
Nonlinear MPC
Yaw stability
Title MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution
URI https://dx.doi.org/10.1016/j.mechatronics.2015.10.002
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3yTg9e4fSRtevCwLCursougK95KM5liRbuLrIoXf7uTPmQFDwtCe2g7E8okzDeBL98wdpqrMPIwRwHS0AYlMKEwPioRW5p-k2eBzt3Z4eEoGozl1YN6WGK99iyMo1U2ub_O6VW2bt50mmh2pkXRuaXiwMGhppKG6pbA5WEpY7fKz75-aB5-7Fddd52xcNat8GjF8XpBeMzqXjNOuttXZxXTK_gbpOaA52KDrTcVI-_WP7XJlrDcYmtzOoLbrBze9ITDI8s_sw9OBV9Fef3kDRGdFyVd4uMR8VnQ3ExeybJ_z9-LjGdVwuO5EzIgz3pInpWWV4acboIObp3AbtMba4eNL_p3vYFoGikICBNvJnJAz1jPA1-jMTZPFMY68hKrAFQENg9sLA0oZSLpa2ujAEBmiUGtQwuow122XE5K3GMcPQXagm-Qag-0JgEgmI2NJ2VCe7d4nyVt5FJoVMZds4vntKWTPaXzUU9d1N03ivo-C398p7XWxkJe5-0Epb9WTkqgsID_wT_9D9kqPUU17-yILc9e3_CYCpWZOalW4glb6V5eD0bfdyDu0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yHtSD-MS3OXiN21fa9OBBll3Wxy6CD7yVZjLFlbUuy6r47520qazgQRDaS5MpZSbMfKFfvmHspJBh7GGBAiJNG5RAh0L7KEViKPy6yANV2LPDg2Hcv48uH-XjAus0Z2EsrdLl_jqnV9naPWk7b7Yno1H7lsCBLYeKIA3hloDy8KJVp5Ittnh-cdUffv9MSPyq8a6dL6xBoz1a0bxeEJ7yut2MVe_25WlF9gp-r1Nztae3xlYdaOTn9XetswUsN9jKnJTgJisHNx1hS5Lhn_kHJ8xXsV4_ueOi81FJl_h4QhwLCs_rlGZ2H_j7KOd5lfN4YbUMyLJ-Jc9Lw6uJnG6qHtxYjV3XHmuL3fe6d52-cL0UBISpNxMFoKeN54GvUGtTpBITFXupkQAyBlMEJok0SKnjyFfGxAFAlKcalQoNoAq3Wat8LXGHcfQkKAO-RoIfaHQKQJU20V4UpbR9S3ZZ2nguAyc0bvtdjLOGUfaczXs9s163Y-T1XRZ-205quY0_WZ01Acp-LJ6M6sIf7Pf-aX_Mlvp3g-vs-mJ4tc-WaSSuaWgHrDWbvuEh4ZaZPnLr8guaCvGB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MPC-based+yaw+stability+control+in+in-wheel-motored+EV+via+active+front+steering+and+motor+torque+distribution&rft.jtitle=Mechatronics+%28Oxford%29&rft.au=Ren%2C+Bingtao&rft.au=Chen%2C+Hong&rft.au=Zhao%2C+Haiyan&rft.au=Yuan%2C+Lei&rft.date=2016-09-01&rft.issn=0957-4158&rft.volume=38&rft.spage=103&rft.epage=114&rft_id=info:doi/10.1016%2Fj.mechatronics.2015.10.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechatronics_2015_10_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4158&client=summon