QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins
We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson, fermion and spin many-body systems, supporting the use of various (user-defined) symmetries in one and higher dimension and (imaginary) time evo...
Saved in:
Published in | SciPost physics Vol. 7; no. 2; p. 020 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Stichting SciPost
01.08.2019
SciPost |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for
exact diagonalization and quantum dynamics of arbitrary boson, fermion
and spin many-body systems, supporting the use of various (user-defined)
symmetries in one and higher dimension and (imaginary) time evolution
following a user-specified driving protocol. We explain how to use the
new features of QuSpin using seven detailed examples of various
complexity: (i) the transverse-field Ising chain and the Jordan-Wigner
transformation, (ii) free particle systems: the Su-Schrieffer-Heeger
(SSH) model, (iii) the many-body localized 1D Fermi-Hubbard model, (iv)
the Bose-Hubbard model in a ladder geometry, (v) nonlinear (imaginary)
time evolution and the Gross-Pitaevskii equation on a 1D lattice, (vi)
integrability breaking and thermalizing dynamics in the
translationally-invariant 2D transverse-field Ising model, and (vii)
out-of-equilibrium Bose-Fermi mixtures. This easily accessible and
user-friendly package can serve various purposes, including educational
and cutting-edge experimental and theoretical research. The complete
package documentation is available under
http://weinbe58.github.io/QuSpin/index.html. |
---|---|
AbstractList | We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for
exact diagonalization and quantum dynamics of arbitrary boson, fermion
and spin many-body systems, supporting the use of various (user-defined)
symmetries in one and higher dimension and (imaginary) time evolution
following a user-specified driving protocol. We explain how to use the
new features of QuSpin using seven detailed examples of various
complexity: (i) the transverse-field Ising chain and the Jordan-Wigner
transformation, (ii) free particle systems: the Su-Schrieffer-Heeger
(SSH) model, (iii) the many-body localized 1D Fermi-Hubbard model, (iv)
the Bose-Hubbard model in a ladder geometry, (v) nonlinear (imaginary)
time evolution and the Gross-Pitaevskii equation on a 1D lattice, (vi)
integrability breaking and thermalizing dynamics in the
translationally-invariant 2D transverse-field Ising model, and (vii)
out-of-equilibrium Bose-Fermi mixtures. This easily accessible and
user-friendly package can serve various purposes, including educational
and cutting-edge experimental and theoretical research. The complete
package documentation is available under
http://weinbe58.github.io/QuSpin/index.html. We present a major update to QuSpin, SciPostPhys.2.1.003 -- an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson, fermion and spin many-body systems, supporting the use of various (user-defined) symmetries in one and higher dimension and (imaginary) time evolution following a user-specified driving protocol. We explain how to use the new features of QuSpin using seven detailed examples of various complexity: (i) the transverse-field Ising chain and the Jordan-Wigner transformation, (ii) free particle systems: the Su-Schrieffer-Heeger (SSH) model, (iii) the many-body localized 1D Fermi-Hubbard model, (iv) the Bose-Hubbard model in a ladder geometry, (v) nonlinear (imaginary) time evolution and the Gross-Pitaevskii equation on a 1D lattice, (vi) integrability breaking and thermalizing dynamics in the translationally-invariant 2D transverse-field Ising model, and (vii) out-of-equilibrium Bose-Fermi mixtures. This easily accessible and user-friendly package can serve various purposes, including educational and cutting-edge experimental and theoretical research. The complete package documentation is available under http://weinbe58.github.io/QuSpin/index.html. |
ArticleNumber | 020 |
Author | Bukov, Marin Weinberg, Phillip |
Author_xml | – sequence: 1 givenname: Phillip surname: Weinberg fullname: Weinberg, Phillip organization: Boston University – sequence: 2 givenname: Marin surname: Bukov fullname: Bukov, Marin organization: University of California, Berkeley |
BackLink | https://www.osti.gov/biblio/1564395$$D View this record in Osti.gov |
BookMark | eNp9UcFu1DAUjFCRKKV_wMHizKa24zjO3lAFdKVKLCqcrZcXe-OysRfbKzV_wGdj7YJUceBd3tPTzGg087q68MGbqnrLaM2ZkOrmAd02pLydllR3Na8ppy-qS94KvhKybS6e3a-q65QeKaWcsZ7J9rL69fX4cHB-TYBslzwFTw6AP2BniA2RjIuH2WEi4EdingAzGR3sgoe9S5BdgQdLfh7B5-NMZvALGcK4kLSkbOZUky3ETDabdXmn4NN7Yk2cC-2sOLndZCJJxUB6U720sE_m-s--qr5_-vjt9m51_-Xz5vbD_QqbnuaV7fjQsrGHDjka2o8KhOjKyH5gwiIY2fVUDLwbJbVKNoZDi2pkqISkMDRX1easOwZ41IfoZoiLDuD06RHiThfPDvdGMy55i82AvFeiG8SgaM9tpxhrBbMKi9a7s1aJ3-mELhucMHhvMGvWStH0bQGtzyCMIaVorC64U3Y5gttrRvWpR_2sR91prkuPhSz-If91_F_ab-ZCqJE |
CitedBy_id | crossref_primary_10_1103_PhysRevB_109_214509 crossref_primary_10_1103_PhysRevB_101_224308 crossref_primary_10_1103_PhysRevResearch_4_L032026 crossref_primary_10_1016_j_jmmm_2021_167987 crossref_primary_10_1103_PhysRevB_110_L161111 crossref_primary_10_1088_1402_4896_ad3d9d crossref_primary_10_1103_PhysRevLett_124_043204 crossref_primary_10_1103_PhysRevD_106_L091502 crossref_primary_10_1103_PhysRevA_106_022618 crossref_primary_10_1103_PhysRevB_105_024303 crossref_primary_10_3367_UFNr_2022_09_039231 crossref_primary_10_1103_PhysRevE_108_044132 crossref_primary_10_1038_s41467_025_56305_y crossref_primary_10_1103_PhysRevLett_123_090602 crossref_primary_10_1103_PhysRevLett_126_200602 crossref_primary_10_1103_PhysRevResearch_5_043215 crossref_primary_10_1103_PhysRevB_110_024304 crossref_primary_10_1038_s42005_022_01015_w crossref_primary_10_1103_PhysRevResearch_4_033122 crossref_primary_10_1103_PhysRevLett_131_046501 crossref_primary_10_1103_PhysRevLett_127_036402 crossref_primary_10_1103_PhysRevA_108_043301 crossref_primary_10_1103_PhysRevResearch_6_043041 crossref_primary_10_1103_PhysRevB_103_144307 crossref_primary_10_1103_PhysRevB_109_125127 crossref_primary_10_1016_j_softx_2021_100937 crossref_primary_10_1103_PhysRevA_108_013319 crossref_primary_10_1103_PhysRevB_109_064410 crossref_primary_10_1103_PhysRevA_106_013110 crossref_primary_10_21468_SciPostPhys_12_4_117 crossref_primary_10_1103_PhysRevB_108_134201 crossref_primary_10_1103_PhysRevB_104_075142 crossref_primary_10_1103_PhysRevX_10_011030 crossref_primary_10_1103_PhysRevResearch_5_033178 crossref_primary_10_1103_PhysRevB_107_184312 crossref_primary_10_1103_PhysRevX_11_021008 crossref_primary_10_1016_j_aop_2021_168545 crossref_primary_10_1103_PhysRevB_106_235147 crossref_primary_10_1007_s40042_023_00722_z crossref_primary_10_1103_PhysRevLett_128_183602 crossref_primary_10_1103_PhysRevLett_131_080403 crossref_primary_10_1016_j_newton_2025_100011 crossref_primary_10_1103_PhysRevB_109_024206 crossref_primary_10_1103_PhysRevB_111_064514 crossref_primary_10_1103_PhysRevB_110_L100403 crossref_primary_10_1103_PhysRevB_103_L140302 crossref_primary_10_1103_PhysRevB_107_064105 crossref_primary_10_1103_PhysRevD_106_054510 crossref_primary_10_1140_epjp_s13360_024_05893_7 crossref_primary_10_1103_PhysRevB_110_144204 crossref_primary_10_7498_aps_74_20250061 crossref_primary_10_1103_PhysRevResearch_3_013017 crossref_primary_10_21468_SciPostPhys_14_5_125 crossref_primary_10_1103_PhysRevLett_131_146702 crossref_primary_10_1103_PhysRevB_105_054423 crossref_primary_10_1103_PhysRevA_106_033304 crossref_primary_10_1103_PhysRevB_105_054301 crossref_primary_10_1103_PhysRevResearch_4_043006 crossref_primary_10_1103_PhysRevB_104_094202 crossref_primary_10_1103_PhysRevB_104_134308 crossref_primary_10_1103_PhysRevResearch_2_043368 crossref_primary_10_1103_PhysRevB_105_075124 crossref_primary_10_1103_PhysRevB_105_094201 crossref_primary_10_1103_PhysRevLett_129_113201 crossref_primary_10_1103_PhysRevB_103_134427 crossref_primary_10_1103_PhysRevResearch_5_L042042 crossref_primary_10_21468_SciPostPhys_14_6_171 crossref_primary_10_1103_PRXQuantum_5_040311 crossref_primary_10_1140_epjb_s10051_024_00773_6 crossref_primary_10_1016_j_aop_2021_168486 crossref_primary_10_1103_PhysRevB_102_235124 crossref_primary_10_1103_PhysRevB_108_045150 crossref_primary_10_1038_s42005_024_01544_6 crossref_primary_10_1103_PhysRevA_107_013303 crossref_primary_10_1103_PhysRevA_109_032208 crossref_primary_10_1103_PhysRevB_102_241115 crossref_primary_10_1103_PhysRevB_103_195134 crossref_primary_10_1103_PhysRevB_111_064303 crossref_primary_10_1103_PhysRevA_106_022421 crossref_primary_10_1038_s42005_024_01851_y crossref_primary_10_21468_SciPostPhys_15_1_030 crossref_primary_10_1103_PhysRevB_103_L060301 crossref_primary_10_1103_PhysRevB_104_125146 crossref_primary_10_1038_s41598_024_74966_5 crossref_primary_10_1103_PRXQuantum_3_020319 crossref_primary_10_1103_PhysRevLett_125_030503 crossref_primary_10_1103_PhysRevLett_133_030401 crossref_primary_10_1103_PhysRevB_106_155106 crossref_primary_10_1103_PhysRevB_107_214203 crossref_primary_10_1103_PhysRevB_108_064211 crossref_primary_10_1103_PhysRevB_106_L041104 crossref_primary_10_1038_s41586_021_03842_3 crossref_primary_10_1103_PhysRevB_105_224205 crossref_primary_10_1103_PhysRevResearch_3_023137 crossref_primary_10_1038_s41535_025_00744_9 crossref_primary_10_1016_j_physleta_2024_129781 crossref_primary_10_1103_PhysRevB_106_L041110 crossref_primary_10_1103_PhysRevLett_128_196601 crossref_primary_10_1103_PhysRevResearch_5_023064 crossref_primary_10_1103_PhysRevLett_133_123402 crossref_primary_10_1103_PhysRevB_105_L121116 crossref_primary_10_1103_PhysRevB_103_184113 crossref_primary_10_1103_PhysRevB_102_081115 crossref_primary_10_1103_PhysRevA_102_063325 crossref_primary_10_1103_PhysRevB_109_134413 crossref_primary_10_1016_j_cpc_2022_108369 crossref_primary_10_1103_PhysRevResearch_5_043288 crossref_primary_10_21105_joss_04759 crossref_primary_10_1103_PhysRevB_104_045113 crossref_primary_10_1103_PhysRevB_106_224309 crossref_primary_10_1016_j_physrep_2023_10_004 crossref_primary_10_7566_JPSJ_93_124710 crossref_primary_10_1103_PhysRevResearch_6_L042024 crossref_primary_10_1103_PhysRevA_108_023301 crossref_primary_10_1103_PhysRevLett_129_123201 crossref_primary_10_1103_PhysRevB_105_L081116 crossref_primary_10_1103_PhysRevB_108_144434 crossref_primary_10_1103_PhysRevB_104_085130 crossref_primary_10_1103_PhysRevLett_133_056703 crossref_primary_10_1103_PhysRevResearch_7_013085 crossref_primary_10_1103_PhysRevB_104_245113 crossref_primary_10_1103_PhysRevB_108_205125 crossref_primary_10_1103_PhysRevD_103_L071502 crossref_primary_10_1103_PhysRevResearch_2_043315 crossref_primary_10_1103_PhysRevB_104_024408 crossref_primary_10_1103_PhysRevB_111_024204 crossref_primary_10_1103_PhysRevB_104_195115 crossref_primary_10_1103_PhysRevB_106_144203 crossref_primary_10_1103_PhysRevB_111_085143 crossref_primary_10_1002_andp_202100523 crossref_primary_10_1103_PhysRevLett_129_011601 crossref_primary_10_21468_SciPostPhysCore_8_1_029 crossref_primary_10_1103_PhysRevB_109_214206 crossref_primary_10_1103_PhysRevB_108_155102 crossref_primary_10_21468_SciPostPhys_10_6_147 crossref_primary_10_21468_SciPostPhys_9_1_004 crossref_primary_10_1103_PhysRevB_104_205130 crossref_primary_10_1093_ptep_ptac007 crossref_primary_10_1103_PhysRevB_108_L140503 crossref_primary_10_1103_PhysRevB_102_205122 crossref_primary_10_1103_PhysRevA_104_023323 crossref_primary_10_1103_PhysRevE_105_044125 crossref_primary_10_1103_PhysRevLett_130_106902 crossref_primary_10_21468_SciPostPhys_11_2_028 crossref_primary_10_1103_PhysRevA_104_L021301 crossref_primary_10_1103_PhysRevLett_128_223202 crossref_primary_10_1103_PhysRevA_102_033337 crossref_primary_10_3390_e23010051 crossref_primary_10_1103_PhysRevB_102_100401 crossref_primary_10_1103_PhysRevLett_133_216601 crossref_primary_10_1103_PhysRevB_109_214313 crossref_primary_10_1103_PhysRevB_106_104204 crossref_primary_10_1103_PhysRevB_107_014207 crossref_primary_10_1103_PhysRevB_106_144306 crossref_primary_10_1103_PhysRevA_107_L010202 crossref_primary_10_1103_PhysRevB_106_214304 crossref_primary_10_1103_PhysRevB_106_205150 crossref_primary_10_1103_PhysRevB_108_214308 crossref_primary_10_1038_s42005_023_01346_2 crossref_primary_10_1103_PhysRevB_108_134303 crossref_primary_10_1103_PhysRevA_107_033305 crossref_primary_10_1103_PhysRevLett_127_113201 crossref_primary_10_1103_PhysRevA_106_012206 crossref_primary_10_1103_PhysRevA_110_L061304 crossref_primary_10_1103_PhysRevLett_124_180604 crossref_primary_10_21468_SciPostPhys_11_2_040 crossref_primary_10_1103_PhysRevApplied_19_014068 crossref_primary_10_1103_PhysRevD_107_014505 crossref_primary_10_1103_PhysRevA_106_012435 crossref_primary_10_21468_SciPostPhys_15_6_251 crossref_primary_10_1103_PhysRevLett_129_150503 crossref_primary_10_1103_PhysRevX_11_031070 crossref_primary_10_1103_PhysRevD_107_116008 crossref_primary_10_1103_PhysRevB_106_035128 crossref_primary_10_1103_PhysRevResearch_6_023097 crossref_primary_10_1103_PhysRevB_110_014301 crossref_primary_10_1103_PhysRevResearch_6_013018 crossref_primary_10_1103_PhysRevB_106_214311 crossref_primary_10_1103_PhysRevResearch_5_L012009 crossref_primary_10_1103_PhysRevB_105_184307 crossref_primary_10_1103_PhysRevB_106_L121107 crossref_primary_10_1103_PhysRevB_108_155423 crossref_primary_10_1103_PhysRevA_107_033323 crossref_primary_10_1103_PhysRevResearch_6_023178 crossref_primary_10_1103_PhysRevB_109_L161103 crossref_primary_10_1038_s41467_021_25355_3 crossref_primary_10_1103_PhysRevB_109_L161104 crossref_primary_10_1038_s41524_023_01158_6 crossref_primary_10_1103_PhysRevX_10_041017 crossref_primary_10_1103_PhysRevX_12_031044 crossref_primary_10_1103_PhysRevB_104_L161118 crossref_primary_10_1103_PhysRevB_103_214206 crossref_primary_10_1103_PhysRevLett_124_140602 crossref_primary_10_1103_PhysRevLett_130_010401 crossref_primary_10_1103_PhysRevB_109_195162 crossref_primary_10_1103_PhysRevResearch_6_043212 crossref_primary_10_1016_j_cpc_2024_109093 crossref_primary_10_1038_s42005_022_00848_9 crossref_primary_10_1103_PhysRevB_105_L201113 crossref_primary_10_1103_PhysRevB_110_174303 crossref_primary_10_1103_PhysRevLett_127_150601 crossref_primary_10_3367_UFNe_2022_09_039231 crossref_primary_10_1103_PhysRevB_107_064302 crossref_primary_10_1103_PhysRevB_111_104202 crossref_primary_10_1103_PhysRevB_107_L180201 crossref_primary_10_21468_SciPostPhys_15_6_229 crossref_primary_10_1103_PhysRevA_105_022625 |
Cites_doi | 10.1038/nphys3783 10.1016/j.jmmm.2006.10.304 10.1103/RevModPhys.77.259 10.1103/PhysRevX.7.021013 10.1016/j.aop.2010.02.006 10.1103/PhysRevB.28.1138 10.1038/nature24654 10.1103/PhysRevLett.116.140401 10.1143/JPSJS.74S.30 10.1103/PhysRevX.7.011034 10.5488/CMP.18.43702 10.1088/1742-5468/aa7df3 10.1103/PhysRevX.8.031086 10.1016/j.physa.2018.11.062 10.1103/PhysRevB.92.184505 10.1103/PhysRevLett.42.1698 10.1080/00018732.2015.1055918 10.1103/PhysRevLett.122.020601 10.1103/RevModPhys.73.33 10.1126/science.aaf8834 10.1103/RevModPhys.71.463 10.1103/RevModPhys.68.13 10.1080/00018732.2010.514702 10.1109/MCSE.2011.37 10.1088/1742-5468/2011/05/P05001 10.1073/pnas.1619826114 10.1038/s41598-017-16178-8 10.1103/RevModPhys.83.863 10.1063/1.3518900 10.1007/978-3-319-25607-8 10.1103/PhysRevB.98.224305 10.1103/PhysRevX.9.011034 10.1103/PhysRevX.9.021037 10.1098/rsta.2016.0428 10.1080/00018732.2016.1198134 10.21468/SciPostPhys.7.1.004 10.1103/PhysRevB.86.054304 10.1016/j.aop.2010.09.012 10.1088/1361-6633/aab406 10.1146/annurev-conmatphys-031214-014726 10.1103/PhysRevLett.114.083002 10.1140/epjd/e2015-60464-1 10.1007/BF01341708 10.1103/PhysRevA.79.063612 10.1103/RevModPhys.80.885 10.21468/SciPostPhys.2.1.003 10.1393/ncr/i2008-10033-1 10.1103/PhysRevLett.111.100502 10.1103/PhysRevLett.116.247204 10.1103/PhysRevLett.122.050403 10.1103/PhysRevLett.71.1291 10.1016/S0166-1280(96)04821-X 10.1103/PhysRevB.97.060201 10.1088/1751-8121/aaf9be 10.1007/b98958 10.1140/epjd/e2016-70053-5 10.1109/MCSE.2010.118 10.1016/j.cpc.2012.02.021 10.1016/j.cpc.2012.11.019 10.1103/RevModPhys.86.779 10.1109/MCSE.2011.36 10.1103/PhysRevX.4.031027 10.1103/RevModPhys.89.011004 10.1103/PhysRevLett.122.010602 10.1016/0375-9601(79)90017-3 10.1103/PhysRevX.7.041047 10.1103/PhysRevX.7.021015 10.1016/j.physrep.2017.05.003 10.1103/PhysRevX.9.011047 10.1002/andp.201700169 10.1109/MCSE.2007.58 10.1016/j.cpc.2014.08.019 10.1103/PhysRevA.64.061603 10.1103/PhysRevB.22.2099 10.1103/PhysRevA.97.052114 10.1103/RevModPhys.78.865 10.1038/srep13503 10.1103/PhysRevLett.120.200607 10.1016/j.cpc.2018.02.004 10.1016/j.aop.2015.03.027 10.1103/PhysRevLett.121.080401 10.1016/j.physrep.2019.03.001 10.1126/science.aaa7432 10.1016/j.cpc.2017.07.013 10.1103/PhysRevLett.121.023601 10.1088/1742-5468/2004/04/P04005 10.1146/annurev-conmatphys-031214-014701 10.1088/0034-4885/75/9/094501 10.1103/PhysRevB.89.094502 10.1088/1361-6633/aaaf9a 10.1016/j.physrep.2017.07.001 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI DOA |
DOI | 10.21468/SciPostPhys.7.2.020 |
DatabaseName | CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_12625c3bc29847b4b8092f7811541f8c 1564395 10_21468_SciPostPhys_7_2_020 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 OTOTI |
ID | FETCH-LOGICAL-c390t-f72b51d9a7c2ce09d8a44777769b14fcae67904b27d60f863e2a5c8d1c8460ab3 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Mon Apr 01 04:54:27 EDT 2024 Tue Jul 01 03:56:31 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-f72b51d9a7c2ce09d8a44777769b14fcae67904b27d60f863e2a5c8d1c8460ab3 |
Notes | USDOE |
OpenAccessLink | https://doaj.org/article/12625c3bc29847b4b8092f7811541f8c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12625c3bc29847b4b8092f7811541f8c osti_scitechconnect_1564395 crossref_citationtrail_10_21468_SciPostPhys_7_2_020 crossref_primary_10_21468_SciPostPhys_7_2_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | SciPost physics |
PublicationYear | 2019 |
Publisher | Stichting SciPost SciPost |
Publisher_xml | – name: Stichting SciPost – name: SciPost |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref71 doi: 10.1038/nphys3783 – ident: ref3 doi: 10.1016/j.jmmm.2006.10.304 – ident: ref17 doi: 10.1103/RevModPhys.77.259 – ident: ref65 doi: 10.1103/PhysRevX.7.021013 – ident: ref81 doi: 10.1016/j.aop.2010.02.006 – ident: ref62 doi: 10.1103/PhysRevB.28.1138 – ident: ref76 doi: 10.1038/nature24654 – ident: ref70 doi: 10.1103/PhysRevLett.116.140401 – ident: ref2 doi: 10.1143/JPSJS.74S.30 – ident: ref74 doi: 10.1103/PhysRevX.7.011034 – ident: ref84 doi: 10.5488/CMP.18.43702 – ident: ref11 doi: 10.1088/1742-5468/aa7df3 – ident: ref41 doi: 10.1103/PhysRevX.8.031086 – ident: ref36 doi: 10.1016/j.physa.2018.11.062 – ident: ref85 doi: 10.1103/PhysRevB.92.184505 – ident: ref60 doi: 10.1103/PhysRevLett.42.1698 – ident: ref29 doi: 10.1080/00018732.2015.1055918 – ident: ref57 doi: 10.1103/PhysRevLett.122.020601 – ident: ref14 doi: 10.1103/RevModPhys.73.33 – ident: ref72 doi: 10.1126/science.aaf8834 – ident: ref79 doi: 10.1103/RevModPhys.71.463 – ident: ref19 doi: 10.1103/RevModPhys.68.13 – ident: ref58 doi: 10.1080/00018732.2010.514702 – ident: ref89 doi: 10.1109/MCSE.2011.37 – ident: ref4 doi: 10.1088/1742-5468/2011/05/P05001 – ident: ref46 doi: 10.1073/pnas.1619826114 – ident: ref9 doi: 10.1038/s41598-017-16178-8 – ident: ref27 doi: 10.1103/RevModPhys.83.863 – ident: ref78 doi: 10.1063/1.3518900 – ident: ref63 doi: 10.1007/978-3-319-25607-8 – ident: ref53 doi: 10.1103/PhysRevB.98.224305 – ident: ref47 doi: 10.1103/PhysRevX.9.011034 – ident: ref35 doi: 10.1103/PhysRevX.9.021037 – ident: ref66 doi: 10.1098/rsta.2016.0428 – ident: ref26 doi: 10.1080/00018732.2016.1198134 – ident: ref54 doi: 10.21468/SciPostPhys.7.1.004 – ident: ref39 doi: 10.1103/PhysRevB.86.054304 – ident: ref18 doi: 10.1016/j.aop.2010.09.012 – ident: ref52 doi: 10.1088/1361-6633/aab406 – ident: ref23 doi: 10.1146/annurev-conmatphys-031214-014726 – ident: ref67 doi: 10.1103/PhysRevLett.114.083002 – ident: ref55 doi: 10.1140/epjd/e2015-60464-1 – ident: ref1 doi: 10.1007/BF01341708 – ident: ref38 doi: 10.1103/PhysRevA.79.063612 – ident: ref77 doi: 10.1103/RevModPhys.80.885 – ident: ref12 doi: 10.21468/SciPostPhys.2.1.003 – ident: ref83 doi: 10.1393/ncr/i2008-10033-1 – ident: ref45 doi: 10.1103/PhysRevLett.111.100502 – ident: ref64 doi: 10.1103/PhysRevLett.116.247204 – ident: ref50 doi: 10.1103/PhysRevLett.122.050403 – ident: ref82 doi: 10.1103/PhysRevLett.71.1291 – ident: ref15 doi: 10.1016/S0166-1280(96)04821-X – ident: ref25 doi: 10.1103/PhysRevB.97.060201 – ident: ref49 doi: 10.1088/1751-8121/aaf9be – ident: ref80 doi: 10.1007/b98958 – ident: ref86 doi: 10.1140/epjd/e2016-70053-5 – ident: ref88 doi: 10.1109/MCSE.2010.118 – ident: ref6 doi: 10.1016/j.cpc.2012.02.021 – ident: ref7 doi: 10.1016/j.cpc.2012.11.019 – ident: ref21 doi: 10.1103/RevModPhys.86.779 – ident: ref91 doi: 10.1109/MCSE.2011.36 – ident: ref28 doi: 10.1103/PhysRevX.4.031027 – ident: ref30 doi: 10.1103/RevModPhys.89.011004 – ident: ref34 doi: 10.1103/PhysRevLett.122.010602 – ident: ref59 doi: 10.1016/0375-9601(79)90017-3 – ident: ref75 doi: 10.1103/PhysRevX.7.041047 – ident: ref42 doi: 10.1103/PhysRevX.7.021015 – ident: ref33 doi: 10.1016/j.physrep.2017.05.003 – ident: ref43 doi: 10.1103/PhysRevX.9.011047 – ident: ref24 doi: 10.1002/andp.201700169 – ident: ref90 doi: 10.1109/MCSE.2007.58 – ident: ref5 doi: 10.1016/j.cpc.2014.08.019 – ident: ref37 doi: 10.1103/PhysRevA.64.061603 – ident: ref61 doi: 10.1103/PhysRevB.22.2099 – ident: ref56 doi: 10.1103/PhysRevA.97.052114 – ident: ref20 doi: 10.1103/RevModPhys.78.865 – ident: ref69 doi: 10.1038/srep13503 – ident: ref32 doi: 10.1103/PhysRevLett.120.200607 – ident: ref8 doi: 10.1016/j.cpc.2018.02.004 – ident: ref40 doi: 10.1016/j.aop.2015.03.027 – ident: ref31 doi: 10.1103/PhysRevLett.121.080401 – ident: ref51 doi: 10.1016/j.physrep.2019.03.001 – ident: ref68 doi: 10.1126/science.aaa7432 – ident: ref10 doi: 10.1016/j.cpc.2017.07.013 – ident: ref73 doi: 10.1103/PhysRevLett.121.023601 – ident: ref16 doi: 10.1088/1742-5468/2004/04/P04005 – ident: ref22 doi: 10.1146/annurev-conmatphys-031214-014701 – ident: ref13 doi: 10.1088/0034-4885/75/9/094501 – ident: ref87 doi: 10.1103/PhysRevB.89.094502 – ident: ref48 doi: 10.1088/1361-6633/aaaf9a – ident: ref44 doi: 10.1016/j.physrep.2017.07.001 |
SSID | ssj0002119165 |
Score | 2.5965672 |
Snippet | We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for
exact diagonalization and quantum dynamics of arbitrary boson,... We present a major update to QuSpin, SciPostPhys.2.1.003 -- an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson,... |
SourceID | doaj osti crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 020 |
Title | QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins |
URI | https://www.osti.gov/biblio/1564395 https://doaj.org/article/12625c3bc29847b4b8092f7811541f8c |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kUPBFvOKxVubBR3Oa7C3ZvllpaQWlooW-LbuTrBZtTjU5YP9Bf7Yz2dOSt76Yl4Rlc2FmMvstfPONEG-NTUlZbAvjlC506OoiSGQGQGpqbEKlIlcjf_psj8_0x3NzPmv1xZywLA-cDbdXSULoqCJKR4k06tiUTiaujzSanoecfWnNm22mOAdPumXW5Fo57l3d7NG_wv1vmVi5rJdyWXKL79laNEn204nmXMyWmKPH4tEGG8L7_E1PxIOufyq2J44mDs_EzZf116uLfh8CnF5zyT_Qfvcn5QMg4Altbi0_QOhb6P4GHIFc_30C2pmxA6sEv9dkyfUlXFIOgLhqryFLOQ9LOCVbwMnJPg0TBh_eQWKeDF1NT_wx8UFg4E7Xz8XZ0eG3D8fFppFCgcqVY5FqGU3VulCjxK50bRO0rumwLlY6Yehs7UodZd3aMjVWdTIYbNoKCZ2UIaoXYqtf9d1LAdK6KhLmS1JH3UbrAm2YKEt0GIJTwSyEujWpx43KODe7-OVptzE5ws8c4WsvPTliIYq7u66yysY98w_YW3dzWSN7GqDI8ZvI8fdFzkLssK89QQ3Wy0UmFuHoWT1HOfPqf7xiRzwkgOUyYfC12Br_rLtdAjFjfDPF6z8isPBl |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QuSpin%3A+a+Python+package+for+dynamics+and+exact+diagonalisation+of+quantum+many+body+systems.+Part+II%3A+bosons%2C+fermions+and+higher+spins&rft.jtitle=SciPost+physics&rft.au=Weinberg%2C+Phillip&rft.au=Bukov%2C+Marin&rft.date=2019-08-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=7&rft.issue=2&rft_id=info:doi/10.21468%2FSciPostPhys.7.2.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_7_2_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |