QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins

We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson, fermion and spin many-body systems, supporting the use of various (user-defined) symmetries in one and higher dimension and (imaginary) time evo...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 7; no. 2; p. 020
Main Authors Weinberg, Phillip, Bukov, Marin
Format Journal Article
LanguageEnglish
Published Netherlands Stichting SciPost 01.08.2019
SciPost
Online AccessGet full text

Cover

Loading…
Abstract We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson, fermion and spin many-body systems, supporting the use of various (user-defined) symmetries in one and higher dimension and (imaginary) time evolution following a user-specified driving protocol. We explain how to use the new features of QuSpin using seven detailed examples of various complexity: (i) the transverse-field Ising chain and the Jordan-Wigner transformation, (ii) free particle systems: the Su-Schrieffer-Heeger (SSH) model, (iii) the many-body localized 1D Fermi-Hubbard model, (iv) the Bose-Hubbard model in a ladder geometry, (v) nonlinear (imaginary) time evolution and the Gross-Pitaevskii equation on a 1D lattice, (vi) integrability breaking and thermalizing dynamics in the translationally-invariant 2D transverse-field Ising model, and (vii) out-of-equilibrium Bose-Fermi mixtures. This easily accessible and user-friendly package can serve various purposes, including educational and cutting-edge experimental and theoretical research. The complete package documentation is available under http://weinbe58.github.io/QuSpin/index.html.
AbstractList We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson, fermion and spin many-body systems, supporting the use of various (user-defined) symmetries in one and higher dimension and (imaginary) time evolution following a user-specified driving protocol. We explain how to use the new features of QuSpin using seven detailed examples of various complexity: (i) the transverse-field Ising chain and the Jordan-Wigner transformation, (ii) free particle systems: the Su-Schrieffer-Heeger (SSH) model, (iii) the many-body localized 1D Fermi-Hubbard model, (iv) the Bose-Hubbard model in a ladder geometry, (v) nonlinear (imaginary) time evolution and the Gross-Pitaevskii equation on a 1D lattice, (vi) integrability breaking and thermalizing dynamics in the translationally-invariant 2D transverse-field Ising model, and (vii) out-of-equilibrium Bose-Fermi mixtures. This easily accessible and user-friendly package can serve various purposes, including educational and cutting-edge experimental and theoretical research. The complete package documentation is available under http://weinbe58.github.io/QuSpin/index.html.
We present a major update to QuSpin, SciPostPhys.2.1.003 -- an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson, fermion and spin many-body systems, supporting the use of various (user-defined) symmetries in one and higher dimension and (imaginary) time evolution following a user-specified driving protocol. We explain how to use the new features of QuSpin using seven detailed examples of various complexity: (i) the transverse-field Ising chain and the Jordan-Wigner transformation, (ii) free particle systems: the Su-Schrieffer-Heeger (SSH) model, (iii) the many-body localized 1D Fermi-Hubbard model, (iv) the Bose-Hubbard model in a ladder geometry, (v) nonlinear (imaginary) time evolution and the Gross-Pitaevskii equation on a 1D lattice, (vi) integrability breaking and thermalizing dynamics in the translationally-invariant 2D transverse-field Ising model, and (vii) out-of-equilibrium Bose-Fermi mixtures. This easily accessible and user-friendly package can serve various purposes, including educational and cutting-edge experimental and theoretical research. The complete package documentation is available under http://weinbe58.github.io/QuSpin/index.html.
ArticleNumber 020
Author Bukov, Marin
Weinberg, Phillip
Author_xml – sequence: 1
  givenname: Phillip
  surname: Weinberg
  fullname: Weinberg, Phillip
  organization: Boston University
– sequence: 2
  givenname: Marin
  surname: Bukov
  fullname: Bukov, Marin
  organization: University of California, Berkeley
BackLink https://www.osti.gov/biblio/1564395$$D View this record in Osti.gov
BookMark eNp9UcFu1DAUjFCRKKV_wMHizKa24zjO3lAFdKVKLCqcrZcXe-OysRfbKzV_wGdj7YJUceBd3tPTzGg087q68MGbqnrLaM2ZkOrmAd02pLydllR3Na8ppy-qS94KvhKybS6e3a-q65QeKaWcsZ7J9rL69fX4cHB-TYBslzwFTw6AP2BniA2RjIuH2WEi4EdingAzGR3sgoe9S5BdgQdLfh7B5-NMZvALGcK4kLSkbOZUky3ETDabdXmn4NN7Yk2cC-2sOLndZCJJxUB6U720sE_m-s--qr5_-vjt9m51_-Xz5vbD_QqbnuaV7fjQsrGHDjka2o8KhOjKyH5gwiIY2fVUDLwbJbVKNoZDi2pkqISkMDRX1easOwZ41IfoZoiLDuD06RHiThfPDvdGMy55i82AvFeiG8SgaM9tpxhrBbMKi9a7s1aJ3-mELhucMHhvMGvWStH0bQGtzyCMIaVorC64U3Y5gttrRvWpR_2sR91prkuPhSz-If91_F_ab-ZCqJE
CitedBy_id crossref_primary_10_1103_PhysRevB_109_214509
crossref_primary_10_1103_PhysRevB_101_224308
crossref_primary_10_1103_PhysRevResearch_4_L032026
crossref_primary_10_1016_j_jmmm_2021_167987
crossref_primary_10_1103_PhysRevB_110_L161111
crossref_primary_10_1088_1402_4896_ad3d9d
crossref_primary_10_1103_PhysRevLett_124_043204
crossref_primary_10_1103_PhysRevD_106_L091502
crossref_primary_10_1103_PhysRevA_106_022618
crossref_primary_10_1103_PhysRevB_105_024303
crossref_primary_10_3367_UFNr_2022_09_039231
crossref_primary_10_1103_PhysRevE_108_044132
crossref_primary_10_1038_s41467_025_56305_y
crossref_primary_10_1103_PhysRevLett_123_090602
crossref_primary_10_1103_PhysRevLett_126_200602
crossref_primary_10_1103_PhysRevResearch_5_043215
crossref_primary_10_1103_PhysRevB_110_024304
crossref_primary_10_1038_s42005_022_01015_w
crossref_primary_10_1103_PhysRevResearch_4_033122
crossref_primary_10_1103_PhysRevLett_131_046501
crossref_primary_10_1103_PhysRevLett_127_036402
crossref_primary_10_1103_PhysRevA_108_043301
crossref_primary_10_1103_PhysRevResearch_6_043041
crossref_primary_10_1103_PhysRevB_103_144307
crossref_primary_10_1103_PhysRevB_109_125127
crossref_primary_10_1016_j_softx_2021_100937
crossref_primary_10_1103_PhysRevA_108_013319
crossref_primary_10_1103_PhysRevB_109_064410
crossref_primary_10_1103_PhysRevA_106_013110
crossref_primary_10_21468_SciPostPhys_12_4_117
crossref_primary_10_1103_PhysRevB_108_134201
crossref_primary_10_1103_PhysRevB_104_075142
crossref_primary_10_1103_PhysRevX_10_011030
crossref_primary_10_1103_PhysRevResearch_5_033178
crossref_primary_10_1103_PhysRevB_107_184312
crossref_primary_10_1103_PhysRevX_11_021008
crossref_primary_10_1016_j_aop_2021_168545
crossref_primary_10_1103_PhysRevB_106_235147
crossref_primary_10_1007_s40042_023_00722_z
crossref_primary_10_1103_PhysRevLett_128_183602
crossref_primary_10_1103_PhysRevLett_131_080403
crossref_primary_10_1016_j_newton_2025_100011
crossref_primary_10_1103_PhysRevB_109_024206
crossref_primary_10_1103_PhysRevB_111_064514
crossref_primary_10_1103_PhysRevB_110_L100403
crossref_primary_10_1103_PhysRevB_103_L140302
crossref_primary_10_1103_PhysRevB_107_064105
crossref_primary_10_1103_PhysRevD_106_054510
crossref_primary_10_1140_epjp_s13360_024_05893_7
crossref_primary_10_1103_PhysRevB_110_144204
crossref_primary_10_7498_aps_74_20250061
crossref_primary_10_1103_PhysRevResearch_3_013017
crossref_primary_10_21468_SciPostPhys_14_5_125
crossref_primary_10_1103_PhysRevLett_131_146702
crossref_primary_10_1103_PhysRevB_105_054423
crossref_primary_10_1103_PhysRevA_106_033304
crossref_primary_10_1103_PhysRevB_105_054301
crossref_primary_10_1103_PhysRevResearch_4_043006
crossref_primary_10_1103_PhysRevB_104_094202
crossref_primary_10_1103_PhysRevB_104_134308
crossref_primary_10_1103_PhysRevResearch_2_043368
crossref_primary_10_1103_PhysRevB_105_075124
crossref_primary_10_1103_PhysRevB_105_094201
crossref_primary_10_1103_PhysRevLett_129_113201
crossref_primary_10_1103_PhysRevB_103_134427
crossref_primary_10_1103_PhysRevResearch_5_L042042
crossref_primary_10_21468_SciPostPhys_14_6_171
crossref_primary_10_1103_PRXQuantum_5_040311
crossref_primary_10_1140_epjb_s10051_024_00773_6
crossref_primary_10_1016_j_aop_2021_168486
crossref_primary_10_1103_PhysRevB_102_235124
crossref_primary_10_1103_PhysRevB_108_045150
crossref_primary_10_1038_s42005_024_01544_6
crossref_primary_10_1103_PhysRevA_107_013303
crossref_primary_10_1103_PhysRevA_109_032208
crossref_primary_10_1103_PhysRevB_102_241115
crossref_primary_10_1103_PhysRevB_103_195134
crossref_primary_10_1103_PhysRevB_111_064303
crossref_primary_10_1103_PhysRevA_106_022421
crossref_primary_10_1038_s42005_024_01851_y
crossref_primary_10_21468_SciPostPhys_15_1_030
crossref_primary_10_1103_PhysRevB_103_L060301
crossref_primary_10_1103_PhysRevB_104_125146
crossref_primary_10_1038_s41598_024_74966_5
crossref_primary_10_1103_PRXQuantum_3_020319
crossref_primary_10_1103_PhysRevLett_125_030503
crossref_primary_10_1103_PhysRevLett_133_030401
crossref_primary_10_1103_PhysRevB_106_155106
crossref_primary_10_1103_PhysRevB_107_214203
crossref_primary_10_1103_PhysRevB_108_064211
crossref_primary_10_1103_PhysRevB_106_L041104
crossref_primary_10_1038_s41586_021_03842_3
crossref_primary_10_1103_PhysRevB_105_224205
crossref_primary_10_1103_PhysRevResearch_3_023137
crossref_primary_10_1038_s41535_025_00744_9
crossref_primary_10_1016_j_physleta_2024_129781
crossref_primary_10_1103_PhysRevB_106_L041110
crossref_primary_10_1103_PhysRevLett_128_196601
crossref_primary_10_1103_PhysRevResearch_5_023064
crossref_primary_10_1103_PhysRevLett_133_123402
crossref_primary_10_1103_PhysRevB_105_L121116
crossref_primary_10_1103_PhysRevB_103_184113
crossref_primary_10_1103_PhysRevB_102_081115
crossref_primary_10_1103_PhysRevA_102_063325
crossref_primary_10_1103_PhysRevB_109_134413
crossref_primary_10_1016_j_cpc_2022_108369
crossref_primary_10_1103_PhysRevResearch_5_043288
crossref_primary_10_21105_joss_04759
crossref_primary_10_1103_PhysRevB_104_045113
crossref_primary_10_1103_PhysRevB_106_224309
crossref_primary_10_1016_j_physrep_2023_10_004
crossref_primary_10_7566_JPSJ_93_124710
crossref_primary_10_1103_PhysRevResearch_6_L042024
crossref_primary_10_1103_PhysRevA_108_023301
crossref_primary_10_1103_PhysRevLett_129_123201
crossref_primary_10_1103_PhysRevB_105_L081116
crossref_primary_10_1103_PhysRevB_108_144434
crossref_primary_10_1103_PhysRevB_104_085130
crossref_primary_10_1103_PhysRevLett_133_056703
crossref_primary_10_1103_PhysRevResearch_7_013085
crossref_primary_10_1103_PhysRevB_104_245113
crossref_primary_10_1103_PhysRevB_108_205125
crossref_primary_10_1103_PhysRevD_103_L071502
crossref_primary_10_1103_PhysRevResearch_2_043315
crossref_primary_10_1103_PhysRevB_104_024408
crossref_primary_10_1103_PhysRevB_111_024204
crossref_primary_10_1103_PhysRevB_104_195115
crossref_primary_10_1103_PhysRevB_106_144203
crossref_primary_10_1103_PhysRevB_111_085143
crossref_primary_10_1002_andp_202100523
crossref_primary_10_1103_PhysRevLett_129_011601
crossref_primary_10_21468_SciPostPhysCore_8_1_029
crossref_primary_10_1103_PhysRevB_109_214206
crossref_primary_10_1103_PhysRevB_108_155102
crossref_primary_10_21468_SciPostPhys_10_6_147
crossref_primary_10_21468_SciPostPhys_9_1_004
crossref_primary_10_1103_PhysRevB_104_205130
crossref_primary_10_1093_ptep_ptac007
crossref_primary_10_1103_PhysRevB_108_L140503
crossref_primary_10_1103_PhysRevB_102_205122
crossref_primary_10_1103_PhysRevA_104_023323
crossref_primary_10_1103_PhysRevE_105_044125
crossref_primary_10_1103_PhysRevLett_130_106902
crossref_primary_10_21468_SciPostPhys_11_2_028
crossref_primary_10_1103_PhysRevA_104_L021301
crossref_primary_10_1103_PhysRevLett_128_223202
crossref_primary_10_1103_PhysRevA_102_033337
crossref_primary_10_3390_e23010051
crossref_primary_10_1103_PhysRevB_102_100401
crossref_primary_10_1103_PhysRevLett_133_216601
crossref_primary_10_1103_PhysRevB_109_214313
crossref_primary_10_1103_PhysRevB_106_104204
crossref_primary_10_1103_PhysRevB_107_014207
crossref_primary_10_1103_PhysRevB_106_144306
crossref_primary_10_1103_PhysRevA_107_L010202
crossref_primary_10_1103_PhysRevB_106_214304
crossref_primary_10_1103_PhysRevB_106_205150
crossref_primary_10_1103_PhysRevB_108_214308
crossref_primary_10_1038_s42005_023_01346_2
crossref_primary_10_1103_PhysRevB_108_134303
crossref_primary_10_1103_PhysRevA_107_033305
crossref_primary_10_1103_PhysRevLett_127_113201
crossref_primary_10_1103_PhysRevA_106_012206
crossref_primary_10_1103_PhysRevA_110_L061304
crossref_primary_10_1103_PhysRevLett_124_180604
crossref_primary_10_21468_SciPostPhys_11_2_040
crossref_primary_10_1103_PhysRevApplied_19_014068
crossref_primary_10_1103_PhysRevD_107_014505
crossref_primary_10_1103_PhysRevA_106_012435
crossref_primary_10_21468_SciPostPhys_15_6_251
crossref_primary_10_1103_PhysRevLett_129_150503
crossref_primary_10_1103_PhysRevX_11_031070
crossref_primary_10_1103_PhysRevD_107_116008
crossref_primary_10_1103_PhysRevB_106_035128
crossref_primary_10_1103_PhysRevResearch_6_023097
crossref_primary_10_1103_PhysRevB_110_014301
crossref_primary_10_1103_PhysRevResearch_6_013018
crossref_primary_10_1103_PhysRevB_106_214311
crossref_primary_10_1103_PhysRevResearch_5_L012009
crossref_primary_10_1103_PhysRevB_105_184307
crossref_primary_10_1103_PhysRevB_106_L121107
crossref_primary_10_1103_PhysRevB_108_155423
crossref_primary_10_1103_PhysRevA_107_033323
crossref_primary_10_1103_PhysRevResearch_6_023178
crossref_primary_10_1103_PhysRevB_109_L161103
crossref_primary_10_1038_s41467_021_25355_3
crossref_primary_10_1103_PhysRevB_109_L161104
crossref_primary_10_1038_s41524_023_01158_6
crossref_primary_10_1103_PhysRevX_10_041017
crossref_primary_10_1103_PhysRevX_12_031044
crossref_primary_10_1103_PhysRevB_104_L161118
crossref_primary_10_1103_PhysRevB_103_214206
crossref_primary_10_1103_PhysRevLett_124_140602
crossref_primary_10_1103_PhysRevLett_130_010401
crossref_primary_10_1103_PhysRevB_109_195162
crossref_primary_10_1103_PhysRevResearch_6_043212
crossref_primary_10_1016_j_cpc_2024_109093
crossref_primary_10_1038_s42005_022_00848_9
crossref_primary_10_1103_PhysRevB_105_L201113
crossref_primary_10_1103_PhysRevB_110_174303
crossref_primary_10_1103_PhysRevLett_127_150601
crossref_primary_10_3367_UFNe_2022_09_039231
crossref_primary_10_1103_PhysRevB_107_064302
crossref_primary_10_1103_PhysRevB_111_104202
crossref_primary_10_1103_PhysRevB_107_L180201
crossref_primary_10_21468_SciPostPhys_15_6_229
crossref_primary_10_1103_PhysRevA_105_022625
Cites_doi 10.1038/nphys3783
10.1016/j.jmmm.2006.10.304
10.1103/RevModPhys.77.259
10.1103/PhysRevX.7.021013
10.1016/j.aop.2010.02.006
10.1103/PhysRevB.28.1138
10.1038/nature24654
10.1103/PhysRevLett.116.140401
10.1143/JPSJS.74S.30
10.1103/PhysRevX.7.011034
10.5488/CMP.18.43702
10.1088/1742-5468/aa7df3
10.1103/PhysRevX.8.031086
10.1016/j.physa.2018.11.062
10.1103/PhysRevB.92.184505
10.1103/PhysRevLett.42.1698
10.1080/00018732.2015.1055918
10.1103/PhysRevLett.122.020601
10.1103/RevModPhys.73.33
10.1126/science.aaf8834
10.1103/RevModPhys.71.463
10.1103/RevModPhys.68.13
10.1080/00018732.2010.514702
10.1109/MCSE.2011.37
10.1088/1742-5468/2011/05/P05001
10.1073/pnas.1619826114
10.1038/s41598-017-16178-8
10.1103/RevModPhys.83.863
10.1063/1.3518900
10.1007/978-3-319-25607-8
10.1103/PhysRevB.98.224305
10.1103/PhysRevX.9.011034
10.1103/PhysRevX.9.021037
10.1098/rsta.2016.0428
10.1080/00018732.2016.1198134
10.21468/SciPostPhys.7.1.004
10.1103/PhysRevB.86.054304
10.1016/j.aop.2010.09.012
10.1088/1361-6633/aab406
10.1146/annurev-conmatphys-031214-014726
10.1103/PhysRevLett.114.083002
10.1140/epjd/e2015-60464-1
10.1007/BF01341708
10.1103/PhysRevA.79.063612
10.1103/RevModPhys.80.885
10.21468/SciPostPhys.2.1.003
10.1393/ncr/i2008-10033-1
10.1103/PhysRevLett.111.100502
10.1103/PhysRevLett.116.247204
10.1103/PhysRevLett.122.050403
10.1103/PhysRevLett.71.1291
10.1016/S0166-1280(96)04821-X
10.1103/PhysRevB.97.060201
10.1088/1751-8121/aaf9be
10.1007/b98958
10.1140/epjd/e2016-70053-5
10.1109/MCSE.2010.118
10.1016/j.cpc.2012.02.021
10.1016/j.cpc.2012.11.019
10.1103/RevModPhys.86.779
10.1109/MCSE.2011.36
10.1103/PhysRevX.4.031027
10.1103/RevModPhys.89.011004
10.1103/PhysRevLett.122.010602
10.1016/0375-9601(79)90017-3
10.1103/PhysRevX.7.041047
10.1103/PhysRevX.7.021015
10.1016/j.physrep.2017.05.003
10.1103/PhysRevX.9.011047
10.1002/andp.201700169
10.1109/MCSE.2007.58
10.1016/j.cpc.2014.08.019
10.1103/PhysRevA.64.061603
10.1103/PhysRevB.22.2099
10.1103/PhysRevA.97.052114
10.1103/RevModPhys.78.865
10.1038/srep13503
10.1103/PhysRevLett.120.200607
10.1016/j.cpc.2018.02.004
10.1016/j.aop.2015.03.027
10.1103/PhysRevLett.121.080401
10.1016/j.physrep.2019.03.001
10.1126/science.aaa7432
10.1016/j.cpc.2017.07.013
10.1103/PhysRevLett.121.023601
10.1088/1742-5468/2004/04/P04005
10.1146/annurev-conmatphys-031214-014701
10.1088/0034-4885/75/9/094501
10.1103/PhysRevB.89.094502
10.1088/1361-6633/aaaf9a
10.1016/j.physrep.2017.07.001
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.21468/SciPostPhys.7.2.020
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_12625c3bc29847b4b8092f7811541f8c
1564395
10_21468_SciPostPhys_7_2_020
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
OTOTI
ID FETCH-LOGICAL-c390t-f72b51d9a7c2ce09d8a44777769b14fcae67904b27d60f863e2a5c8d1c8460ab3
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Wed Aug 27 01:30:55 EDT 2025
Mon Apr 01 04:54:27 EDT 2024
Tue Jul 01 03:56:31 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-f72b51d9a7c2ce09d8a44777769b14fcae67904b27d60f863e2a5c8d1c8460ab3
Notes USDOE
OpenAccessLink https://doaj.org/article/12625c3bc29847b4b8092f7811541f8c
ParticipantIDs doaj_primary_oai_doaj_org_article_12625c3bc29847b4b8092f7811541f8c
osti_scitechconnect_1564395
crossref_citationtrail_10_21468_SciPostPhys_7_2_020
crossref_primary_10_21468_SciPostPhys_7_2_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle SciPost physics
PublicationYear 2019
Publisher Stichting SciPost
SciPost
Publisher_xml – name: Stichting SciPost
– name: SciPost
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref71
  doi: 10.1038/nphys3783
– ident: ref3
  doi: 10.1016/j.jmmm.2006.10.304
– ident: ref17
  doi: 10.1103/RevModPhys.77.259
– ident: ref65
  doi: 10.1103/PhysRevX.7.021013
– ident: ref81
  doi: 10.1016/j.aop.2010.02.006
– ident: ref62
  doi: 10.1103/PhysRevB.28.1138
– ident: ref76
  doi: 10.1038/nature24654
– ident: ref70
  doi: 10.1103/PhysRevLett.116.140401
– ident: ref2
  doi: 10.1143/JPSJS.74S.30
– ident: ref74
  doi: 10.1103/PhysRevX.7.011034
– ident: ref84
  doi: 10.5488/CMP.18.43702
– ident: ref11
  doi: 10.1088/1742-5468/aa7df3
– ident: ref41
  doi: 10.1103/PhysRevX.8.031086
– ident: ref36
  doi: 10.1016/j.physa.2018.11.062
– ident: ref85
  doi: 10.1103/PhysRevB.92.184505
– ident: ref60
  doi: 10.1103/PhysRevLett.42.1698
– ident: ref29
  doi: 10.1080/00018732.2015.1055918
– ident: ref57
  doi: 10.1103/PhysRevLett.122.020601
– ident: ref14
  doi: 10.1103/RevModPhys.73.33
– ident: ref72
  doi: 10.1126/science.aaf8834
– ident: ref79
  doi: 10.1103/RevModPhys.71.463
– ident: ref19
  doi: 10.1103/RevModPhys.68.13
– ident: ref58
  doi: 10.1080/00018732.2010.514702
– ident: ref89
  doi: 10.1109/MCSE.2011.37
– ident: ref4
  doi: 10.1088/1742-5468/2011/05/P05001
– ident: ref46
  doi: 10.1073/pnas.1619826114
– ident: ref9
  doi: 10.1038/s41598-017-16178-8
– ident: ref27
  doi: 10.1103/RevModPhys.83.863
– ident: ref78
  doi: 10.1063/1.3518900
– ident: ref63
  doi: 10.1007/978-3-319-25607-8
– ident: ref53
  doi: 10.1103/PhysRevB.98.224305
– ident: ref47
  doi: 10.1103/PhysRevX.9.011034
– ident: ref35
  doi: 10.1103/PhysRevX.9.021037
– ident: ref66
  doi: 10.1098/rsta.2016.0428
– ident: ref26
  doi: 10.1080/00018732.2016.1198134
– ident: ref54
  doi: 10.21468/SciPostPhys.7.1.004
– ident: ref39
  doi: 10.1103/PhysRevB.86.054304
– ident: ref18
  doi: 10.1016/j.aop.2010.09.012
– ident: ref52
  doi: 10.1088/1361-6633/aab406
– ident: ref23
  doi: 10.1146/annurev-conmatphys-031214-014726
– ident: ref67
  doi: 10.1103/PhysRevLett.114.083002
– ident: ref55
  doi: 10.1140/epjd/e2015-60464-1
– ident: ref1
  doi: 10.1007/BF01341708
– ident: ref38
  doi: 10.1103/PhysRevA.79.063612
– ident: ref77
  doi: 10.1103/RevModPhys.80.885
– ident: ref12
  doi: 10.21468/SciPostPhys.2.1.003
– ident: ref83
  doi: 10.1393/ncr/i2008-10033-1
– ident: ref45
  doi: 10.1103/PhysRevLett.111.100502
– ident: ref64
  doi: 10.1103/PhysRevLett.116.247204
– ident: ref50
  doi: 10.1103/PhysRevLett.122.050403
– ident: ref82
  doi: 10.1103/PhysRevLett.71.1291
– ident: ref15
  doi: 10.1016/S0166-1280(96)04821-X
– ident: ref25
  doi: 10.1103/PhysRevB.97.060201
– ident: ref49
  doi: 10.1088/1751-8121/aaf9be
– ident: ref80
  doi: 10.1007/b98958
– ident: ref86
  doi: 10.1140/epjd/e2016-70053-5
– ident: ref88
  doi: 10.1109/MCSE.2010.118
– ident: ref6
  doi: 10.1016/j.cpc.2012.02.021
– ident: ref7
  doi: 10.1016/j.cpc.2012.11.019
– ident: ref21
  doi: 10.1103/RevModPhys.86.779
– ident: ref91
  doi: 10.1109/MCSE.2011.36
– ident: ref28
  doi: 10.1103/PhysRevX.4.031027
– ident: ref30
  doi: 10.1103/RevModPhys.89.011004
– ident: ref34
  doi: 10.1103/PhysRevLett.122.010602
– ident: ref59
  doi: 10.1016/0375-9601(79)90017-3
– ident: ref75
  doi: 10.1103/PhysRevX.7.041047
– ident: ref42
  doi: 10.1103/PhysRevX.7.021015
– ident: ref33
  doi: 10.1016/j.physrep.2017.05.003
– ident: ref43
  doi: 10.1103/PhysRevX.9.011047
– ident: ref24
  doi: 10.1002/andp.201700169
– ident: ref90
  doi: 10.1109/MCSE.2007.58
– ident: ref5
  doi: 10.1016/j.cpc.2014.08.019
– ident: ref37
  doi: 10.1103/PhysRevA.64.061603
– ident: ref61
  doi: 10.1103/PhysRevB.22.2099
– ident: ref56
  doi: 10.1103/PhysRevA.97.052114
– ident: ref20
  doi: 10.1103/RevModPhys.78.865
– ident: ref69
  doi: 10.1038/srep13503
– ident: ref32
  doi: 10.1103/PhysRevLett.120.200607
– ident: ref8
  doi: 10.1016/j.cpc.2018.02.004
– ident: ref40
  doi: 10.1016/j.aop.2015.03.027
– ident: ref31
  doi: 10.1103/PhysRevLett.121.080401
– ident: ref51
  doi: 10.1016/j.physrep.2019.03.001
– ident: ref68
  doi: 10.1126/science.aaa7432
– ident: ref10
  doi: 10.1016/j.cpc.2017.07.013
– ident: ref73
  doi: 10.1103/PhysRevLett.121.023601
– ident: ref16
  doi: 10.1088/1742-5468/2004/04/P04005
– ident: ref22
  doi: 10.1146/annurev-conmatphys-031214-014701
– ident: ref13
  doi: 10.1088/0034-4885/75/9/094501
– ident: ref87
  doi: 10.1103/PhysRevB.89.094502
– ident: ref48
  doi: 10.1088/1361-6633/aaaf9a
– ident: ref44
  doi: 10.1016/j.physrep.2017.07.001
SSID ssj0002119165
Score 2.5965672
Snippet We present a major update to QuSpin, SciPostPhys.2.1.003 – an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson,...
We present a major update to QuSpin, SciPostPhys.2.1.003 -- an open-source Python package for exact diagonalization and quantum dynamics of arbitrary boson,...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 020
Title QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins
URI https://www.osti.gov/biblio/1564395
https://doaj.org/article/12625c3bc29847b4b8092f7811541f8c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kUPBFvOKxVubBR3Oa7C3ZvllpaQWlooW-LbuTrBZtTjU5YP9Bf7Yz2dOSt76Yl4Rlc2FmMvstfPONEG-NTUlZbAvjlC506OoiSGQGQGpqbEKlIlcjf_psj8_0x3NzPmv1xZywLA-cDbdXSULoqCJKR4k06tiUTiaujzSanoecfWnNm22mOAdPumXW5Fo57l3d7NG_wv1vmVi5rJdyWXKL79laNEn204nmXMyWmKPH4tEGG8L7_E1PxIOufyq2J44mDs_EzZf116uLfh8CnF5zyT_Qfvcn5QMg4Altbi0_QOhb6P4GHIFc_30C2pmxA6sEv9dkyfUlXFIOgLhqryFLOQ9LOCVbwMnJPg0TBh_eQWKeDF1NT_wx8UFg4E7Xz8XZ0eG3D8fFppFCgcqVY5FqGU3VulCjxK50bRO0rumwLlY6Yehs7UodZd3aMjVWdTIYbNoKCZ2UIaoXYqtf9d1LAdK6KhLmS1JH3UbrAm2YKEt0GIJTwSyEujWpx43KODe7-OVptzE5ws8c4WsvPTliIYq7u66yysY98w_YW3dzWSN7GqDI8ZvI8fdFzkLssK89QQ3Wy0UmFuHoWT1HOfPqf7xiRzwkgOUyYfC12Br_rLtdAjFjfDPF6z8isPBl
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QuSpin%3A+a+Python+package+for+dynamics+and+exact+diagonalisation+of+quantum+many+body+systems.+Part+II%3A+bosons%2C+fermions+and+higher+spins&rft.jtitle=SciPost+physics&rft.au=Weinberg%2C+Phillip&rft.au=Bukov%2C+Marin&rft.date=2019-08-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=7&rft.issue=2&rft_id=info:doi/10.21468%2FSciPostPhys.7.2.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_7_2_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon