Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales

Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability o...

Full description

Saved in:
Bibliographic Details
Published inSoil systems Vol. 3; no. 1; p. 8
Main Authors Fidel, Rivka B., Laird, David A., Parkin, Timothy B.
Format Journal Article
LanguageEnglish
Published 11.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability of lab-scale observations to field conditions in diverse agroecosystems remains uncertain. Here we investigate the impact of a mixed wood gasification biochar on CO2 and N2O emissions from loess-derived soils using: (1) controlled laboratory incubations at three moisture (27, 31 and 35%) and three temperature (10, 20 and 30 °C) levels and (2) a field study with four cropping systems (continuous corn, switchgrass, low diversity grass mix and high diversity grass-forb mix). Biochar reduced N2O emissions under specific temperatures and moistures in the laboratory and in the continuous corn cropping system in the field. However, the effect of biochar on N2O emissions was only significant in the field and no effect on cumulative CO2 emissions was observed. Cropping system also had a significant effect in the field study, with soils in grass and grass-forb cropping systems emitting more CO2 and less N2O than corn cropping systems. Observed biochar effects were consistent with previous studies showing that biochar amendments can reduce soil N2O emissions under specific but not all, conditions. The disparity in N2O emission responses at the lab and field scales suggests that laboratory incubation experiments may not reliably predict the impact of biochar at the field scale.
AbstractList Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability of lab-scale observations to field conditions in diverse agroecosystems remains uncertain. Here we investigate the impact of a mixed wood gasification biochar on CO2 and N2O emissions from loess-derived soils using: (1) controlled laboratory incubations at three moisture (27, 31 and 35%) and three temperature (10, 20 and 30 °C) levels and (2) a field study with four cropping systems (continuous corn, switchgrass, low diversity grass mix and high diversity grass-forb mix). Biochar reduced N2O emissions under specific temperatures and moistures in the laboratory and in the continuous corn cropping system in the field. However, the effect of biochar on N2O emissions was only significant in the field and no effect on cumulative CO2 emissions was observed. Cropping system also had a significant effect in the field study, with soils in grass and grass-forb cropping systems emitting more CO2 and less N2O than corn cropping systems. Observed biochar effects were consistent with previous studies showing that biochar amendments can reduce soil N2O emissions under specific but not all, conditions. The disparity in N2O emission responses at the lab and field scales suggests that laboratory incubation experiments may not reliably predict the impact of biochar at the field scale.
Author Laird, David A.
Fidel, Rivka B.
Parkin, Timothy B.
Author_xml – sequence: 1
  givenname: Rivka B.
  orcidid: 0000-0002-4037-1557
  surname: Fidel
  fullname: Fidel, Rivka B.
– sequence: 2
  givenname: David A.
  surname: Laird
  fullname: Laird, David A.
– sequence: 3
  givenname: Timothy B.
  surname: Parkin
  fullname: Parkin, Timothy B.
BookMark eNp9kL1OAzEQhC0UJELIC1C5pAnYvh_flRCFgBSJIqQ-7fnWitHlHLxOkbfHUSgQSFQ7xXyj2blmo8EPyNitFPdZVosH8q6nI0XcUSakEKK6YGNVaDmrdFWPfugrNiX6SA4lc6Hzcsw2C2vRRO4tf3LebCFwP_B1SuTLgDhs_YGQL4H4YueInB-IQ-Rxi3wFrQ8QfThyGDr-7LDv-NpAj3TDLi30hNPvO2Gb58X7_GW2elu-zh9XM5N6xxmWnahVZSohwdoCRaVNoZQEXcpCSlNaW-eZVlDkpmxbqwvV2q7OZYJa0CqbsLtz7j74zwNSbFJJg30PA6bijcozWeU6q0_W6mw1wRMFtI1xEWJ6KAZwfSNFcxqz-TtmQtUvdB_cDsLxP-gLSXR9tw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_148461
crossref_primary_10_1002_jeq2_20475
crossref_primary_10_1016_j_jclepro_2020_122259
crossref_primary_10_1016_j_biortech_2019_121471
crossref_primary_10_1016_j_scitotenv_2021_150465
crossref_primary_10_1007_s42729_020_00242_w
crossref_primary_10_1016_j_enconman_2020_112701
crossref_primary_10_3390_app10248953
crossref_primary_10_1007_s42729_021_00514_z
crossref_primary_10_1139_cjss_2021_0160
crossref_primary_10_1016_j_soilbio_2021_108496
crossref_primary_10_1007_s42773_019_00021_6
crossref_primary_10_1007_s42773_023_00271_5
crossref_primary_10_3390_soilsystems6040073
crossref_primary_10_1007_s10098_020_01990_0
crossref_primary_10_1016_j_still_2023_105917
crossref_primary_10_3390_f10070594
crossref_primary_10_1016_j_envpol_2021_117565
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_1371_journal_pone_0284092
crossref_primary_10_1016_j_jenvman_2023_119324
crossref_primary_10_2174_0118743315362340241227050432
crossref_primary_10_1038_s43016_022_00657_x
crossref_primary_10_1016_j_cej_2020_125128
crossref_primary_10_1016_j_jclepro_2022_134173
crossref_primary_10_3390_app12084051
crossref_primary_10_1016_j_cej_2021_131189
crossref_primary_10_1016_j_scitotenv_2019_136432
crossref_primary_10_3390_environments9080095
crossref_primary_10_1016_j_rser_2023_113322
crossref_primary_10_3390_agronomy10060904
crossref_primary_10_1007_s42773_024_00381_8
crossref_primary_10_3390_su11113211
crossref_primary_10_3390_su13158147
crossref_primary_10_1007_s11356_022_22500_3
crossref_primary_10_1007_s11356_024_33807_8
crossref_primary_10_1007_s11356_023_29954_z
crossref_primary_10_1016_j_jece_2021_106869
crossref_primary_10_3390_w13070915
crossref_primary_10_1002_jpln_202100150
crossref_primary_10_7717_peerj_11937
crossref_primary_10_1007_s13399_020_00818_7
crossref_primary_10_1016_j_ese_2022_100167
crossref_primary_10_1007_s00128_020_03001_w
crossref_primary_10_1016_j_envres_2023_117245
crossref_primary_10_3390_agriculture11030219
crossref_primary_10_3390_ma16216950
crossref_primary_10_1088_1757_899X_1051_1_012075
crossref_primary_10_1007_s12665_023_10874_7
crossref_primary_10_1016_j_envres_2021_111789
crossref_primary_10_3390_soilsystems4020022
crossref_primary_10_1080_27658511_2023_2205731
crossref_primary_10_3390_atmos11050539
crossref_primary_10_1016_j_scitotenv_2023_164530
crossref_primary_10_1038_s41598_023_49919_z
crossref_primary_10_1111_sum_12760
crossref_primary_10_1002_ldr_4006
crossref_primary_10_7745_KJSSF_2024_57_3_164
crossref_primary_10_1016_j_psep_2023_10_048
crossref_primary_10_3390_agriculture11080793
crossref_primary_10_3390_agronomy11122474
crossref_primary_10_1016_j_indcrop_2021_113936
crossref_primary_10_1016_j_iswcr_2021_09_006
crossref_primary_10_3390_chemengineering3010015
crossref_primary_10_1016_j_scitotenv_2024_176960
crossref_primary_10_1016_j_jclepro_2020_121671
crossref_primary_10_1016_j_fuel_2022_126048
crossref_primary_10_1016_j_scitotenv_2023_164922
crossref_primary_10_1016_j_scitotenv_2020_138752
crossref_primary_10_3390_w15193387
crossref_primary_10_1007_s42729_021_00409_z
crossref_primary_10_3390_w13091216
crossref_primary_10_1515_opag_2021_0217
crossref_primary_10_3390_agronomy11040716
crossref_primary_10_1016_j_scitotenv_2023_165176
crossref_primary_10_1016_j_scitotenv_2021_151259
crossref_primary_10_3390_agronomy11071313
crossref_primary_10_1016_j_scitotenv_2020_136857
Cites_doi 10.2134/agronj2016.02.0074
10.1016/j.agee.2014.06.010
10.1007/s11104-011-0957-x
10.1007/s11104-011-0759-1
10.2134/agronj2007.0161
10.1016/j.soilbio.2014.02.009
10.1007/s11027-005-9006-5
10.1002/ehs2.1202
10.1016/j.jenvman.2014.05.032
10.2134/jeq2016.09.0369
10.1016/j.agee.2013.10.009
10.1111/ejss.12081
10.1016/j.biombioe.2014.01.049
10.1371/journal.pone.0125406
10.1111/gcbb.12376
10.1111/gcbb.12005
10.1016/j.agee.2015.04.012
10.1016/j.eja.2018.08.009
10.1111/ejss.12093
10.5194/bg-10-3205-2013
10.1016/j.soilbio.2011.04.018
10.1038/447143a
10.2136/sssaj2007.0215
10.1016/j.scitotenv.2016.01.143
10.1016/j.soilbio.2010.09.013
10.1111/ejss.12073
10.1016/j.soilbio.2010.05.004
10.1016/j.geoderma.2011.01.020
10.1088/1748-9326/8/4/044049
10.1007/s11368-017-1889-8
10.2134/jeq2011.0394
10.1021/es202186j
10.1111/gcb.12021
10.1016/j.agee.2010.09.003
10.1111/gcbb.12052
10.1016/S1352-2310(97)00492-5
10.1016/j.scitotenv.2013.03.090
10.1016/j.agee.2014.02.030
10.1016/j.soilbio.2014.04.029
10.1016/j.agee.2013.04.001
10.1016/j.ecoleng.2012.01.016
10.1038/ncomms1053
10.1016/j.agee.2014.03.002
10.1097/SS.0b013e31824e5593
10.1016/j.soilbio.2011.02.005
10.1007/s00374-005-0858-3
10.1111/gcbb.12037
10.1111/gcbb.12414
10.1111/gcbb.12314
10.1111/ejss.12100
10.1038/srep01732
10.2136/sssaspecpub63.2014.0045
10.1111/gcbb.12265
10.1111/ejss.12094
10.1021/es902266r
10.1111/j.1365-2486.2009.02116.x
10.1016/j.agee.2010.12.005
10.1111/ejss.12225
10.1016/j.soilbio.2011.06.016
10.1016/j.agee.2014.12.015
10.1023/A:1021259107244
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.3390/soilsystems3010008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2571-8789
ExternalDocumentID 10_3390_soilsystems3010008
GroupedDBID AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IAO
MODMG
M~E
OK1
OZF
7S9
L.6
ID FETCH-LOGICAL-c390t-e6d0928c801aff5e087c5221a761511c6ff94372a54c6bbf752bfd941928ba723
ISSN 2571-8789
IngestDate Thu Jul 10 17:42:07 EDT 2025
Tue Jul 01 02:33:34 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-e6d0928c801aff5e087c5221a761511c6ff94372a54c6bbf752bfd941928ba723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4037-1557
OpenAccessLink https://www.mdpi.com/2571-8789/3/1/8/pdf?version=1547187884
PQID 2431847392
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2431847392
crossref_citationtrail_10_3390_soilsystems3010008
crossref_primary_10_3390_soilsystems3010008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190111
PublicationDateYYYYMMDD 2019-01-11
PublicationDate_xml – month: 01
  year: 2019
  text: 20190111
  day: 11
PublicationDecade 2010
PublicationTitle Soil systems
PublicationYear 2019
References Luo (ref_45) 2013; 10
Lin (ref_23) 2015; 66
Farrell (ref_21) 2013; 465
ref_14
Zhang (ref_32) 2010; 139
ref_53
Felber (ref_39) 2014; 65
Lehmann (ref_1) 2006; 11
ref_17
Smith (ref_46) 1998; 32
Bonin (ref_52) 2018; 101
Bateman (ref_64) 2005; 41
Spokas (ref_10) 2009; 3
Stres (ref_56) 2010; 42
Bian (ref_38) 2014; 9
Novak (ref_61) 2012; 177
Velthof (ref_60) 2002; 62
Pandey (ref_40) 2014; 196
Scheer (ref_36) 2011; 345
Smith (ref_25) 2010; 42
Biederman (ref_8) 2013; 5
Liu (ref_16) 2016; 8
Iqbal (ref_55) 2013; 19
Kauffman (ref_5) 2014; 63
Song (ref_15) 2016; 2
Ulyett (ref_62) 2014; 65
ref_65
Rochette (ref_54) 2008; 72
Fidel (ref_59) 2017; 46
Whitman (ref_27) 2014; 73
Castellano (ref_47) 2011; 162
Parkin (ref_57) 2012; 41
Cross (ref_19) 2011; 43
Case (ref_34) 2014; 6
Jones (ref_18) 2011; 43
Shen (ref_41) 2014; 188
Zhang (ref_35) 2013; 173
Laird (ref_3) 2008; 100
Lehmann (ref_2) 2007; 447
Cayuela (ref_11) 2014; 191
Abiven (ref_7) 2013; 8
Fang (ref_22) 2014; 65
Cayuela (ref_12) 2013; 3
Bass (ref_50) 2016; 550
Zhang (ref_33) 2012; 351
Bruun (ref_20) 2014; 65
Watzinger (ref_29) 2014; 65
Lu (ref_24) 2014; 76
Liu (ref_37) 2012; 42
Zhang (ref_30) 2018; 18
Cayuela (ref_31) 2015; 202
Keith (ref_28) 2011; 45
Woolf (ref_9) 2010; 1
Spokas (ref_43) 2013; 5
Archontoulis (ref_13) 2016; 8
ref_44
Castellano (ref_48) 2010; 16
Singh (ref_42) 2014; 191
Karhu (ref_63) 2011; 140
Zimmerman (ref_26) 2011; 43
Roberts (ref_4) 2010; 44
Fidel (ref_51) 2017; 9
ref_6
Watanabe (ref_49) 2014; 144
Thomazini (ref_58) 2015; 207
References_xml – ident: ref_44
  doi: 10.2134/agronj2016.02.0074
– volume: 196
  start-page: 137
  year: 2014
  ident: ref_40
  article-title: Organic Matter and Water Management Strategies to Reduce Methane and Nitrous Oxide Emissions from Rice Paddies in Vietnam
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.06.010
– volume: 351
  start-page: 263
  year: 2012
  ident: ref_33
  article-title: Effect of Biochar Amendment on Maize Yield and Greenhouse Gas Emissions from a Soil Organic Carbon Poor Calcareous Loamy Soil from Central China Plain
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0957-x
– volume: 345
  start-page: 47
  year: 2011
  ident: ref_36
  article-title: Effect of Biochar Amendment on the Soil-Atmosphere Exchange of Greenhouse Gases from an Intensive Subtropical Pasture in Northern New South Wales, Australia
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0759-1
– volume: 100
  start-page: 178
  year: 2008
  ident: ref_3
  article-title: The Charcoal Vision: A Win–win–win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0161
– volume: 73
  start-page: 33
  year: 2014
  ident: ref_27
  article-title: Pyrogenic Carbon Additions to Soil Counteract Positive Priming of Soil Carbon Mineralization by Plants
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.02.009
– volume: 11
  start-page: 395
  year: 2006
  ident: ref_1
  article-title: Bio-Char Sequestration in Terrestrial Ecosystems—A Review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-005-9006-5
– volume: 2
  start-page: e01202
  year: 2016
  ident: ref_15
  article-title: Effects of Biochar Application on Fluxes of Three Biogenic Greenhouse Gases: A Meta-Analysis
  publication-title: Ecosyst. Heal. Sustain.
  doi: 10.1002/ehs2.1202
– volume: 144
  start-page: 168
  year: 2014
  ident: ref_49
  article-title: Five Crop Seasons’ Records of Greenhouse Gas Fluxes from Upland Fields with Repetitive Applications of Biochar and Cattle Manure
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.05.032
– volume: 46
  start-page: 505
  year: 2017
  ident: ref_59
  article-title: Impact of Biochar Organic and Inorganic C on Soil CO2 and N2O Emissions
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.09.0369
– volume: 191
  start-page: 5
  year: 2014
  ident: ref_11
  article-title: Biochar’s Role in Mitigating Soil Nitrous Oxide Emissions: A Review and Meta-Analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.10.009
– volume: 65
  start-page: 96
  year: 2014
  ident: ref_62
  article-title: Impact of Biochar Addition on Water Retention, Nitrification and Carbon Dioxide Evolution from Two Sandy Loam Soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12081
– volume: 63
  start-page: 167
  year: 2014
  ident: ref_5
  article-title: Producing Energy While Sequestering Carbon? The Relationship between Biochar and Agricultural Productivity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.01.049
– ident: ref_65
  doi: 10.1371/journal.pone.0125406
– ident: ref_17
  doi: 10.1111/gcbb.12376
– volume: 5
  start-page: 165
  year: 2013
  ident: ref_43
  article-title: Impact of Biochar Field Aging on Laboratory Greenhouse Gas Production Potentials
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12005
– volume: 207
  start-page: 183
  year: 2015
  ident: ref_58
  article-title: GHG Impacts of Biochar: Predictability for the Same Biochar
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.04.012
– volume: 101
  start-page: 121
  year: 2018
  ident: ref_52
  article-title: Perennial Biomass Crop Establishment, Community Characteristics, and Productivity in the Upper US Midwest: Effects of Cropping Systems Seed Mixtures and Biochar Applications
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.08.009
– volume: 65
  start-page: 128
  year: 2014
  ident: ref_39
  article-title: Nitrous Oxide Emission Reduction with Greenwaste Biochar: Comparison of Laboratory and Field Experiments
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12093
– volume: 10
  start-page: 3205
  year: 2013
  ident: ref_45
  article-title: Effects of Soil Temperature and Moisture on Methane Uptake and Nitrous Oxide Emissions across Three Different Ecosystem Types
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-3205-2013
– volume: 43
  start-page: 1723
  year: 2011
  ident: ref_18
  article-title: Short-Term Biochar-Induced Increase in Soil CO2 Release Is Both Biotically and Abiotically Mediated
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.018
– volume: 447
  start-page: 143
  year: 2007
  ident: ref_2
  article-title: A Handful of Carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 72
  start-page: 331
  year: 2008
  ident: ref_54
  article-title: Chamber measurements of soil nitrous oxide flux: Are absolute values reliable?
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0215
– volume: 550
  start-page: 459
  year: 2016
  ident: ref_50
  article-title: Soil Properties, Greenhouse Gas Emissions and Crop Yield under Compost, Biochar and Co-Composted Biochar in Two Tropical Agronomic Systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.143
– volume: 42
  start-page: 2345
  year: 2010
  ident: ref_25
  article-title: The Effect of Young Biochar on Soil Respiration
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.09.013
– volume: 65
  start-page: 52
  year: 2014
  ident: ref_20
  article-title: Carbon Dioxide Emissions from Biochar in Soil: Role of Clay, Microorganisms and Carbonates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12073
– volume: 42
  start-page: 1437
  year: 2010
  ident: ref_56
  article-title: Emissions of CO2, CH4 and N2O from Southern European peatlands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.05.004
– volume: 162
  start-page: 273
  year: 2011
  ident: ref_47
  article-title: Hydrological Controls on Heterotrophic Soil Respiration across an Agricultural Landscape
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.01.020
– ident: ref_53
– volume: 8
  start-page: 044049
  year: 2013
  ident: ref_7
  article-title: Heterogeneous Global Crop Yield Response to Biochar: A Meta-Regression Analysis
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/8/4/044049
– volume: 18
  start-page: 1590
  year: 2018
  ident: ref_30
  article-title: Response of surface albedo and soil carbon dioxide fluxes to biochar amendment in farmland
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1889-8
– volume: 41
  start-page: 705
  year: 2012
  ident: ref_57
  article-title: Calculating the Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0394
– volume: 45
  start-page: 9611
  year: 2011
  ident: ref_28
  article-title: Interactive Priming of Biochar and Labile Organic Matter Mineralization in a Smectite-Rich Soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202186j
– volume: 19
  start-page: 327
  year: 2013
  ident: ref_55
  article-title: Evaluation of Photoacoustic Infrared Spectroscopy for Simultaneous Measurement of N2O and CO2 Gas Concentrations and Fluxes at the Soil Surface
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12021
– volume: 139
  start-page: 469
  year: 2010
  ident: ref_32
  article-title: Effect of Biochar Amendment on Yield and Methane and Nitrous Oxide Emissions from a Rice Paddy from Tai Lake Plain, China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.09.003
– volume: 6
  start-page: 76
  year: 2014
  ident: ref_34
  article-title: Can Biochar Reduce Soil Greenhouse Gas Emissions from a Miscanthus Bioenergy Crop?
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12052
– volume: 32
  start-page: 3301
  year: 1998
  ident: ref_46
  article-title: Effects of Temperature, Water Content and Nitrogen Fertilisation on Emissions of Nitrous Oxide by Soils
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00492-5
– volume: 465
  start-page: 288
  year: 2013
  ident: ref_21
  article-title: Microbial Utilisation of Biochar-Derived Carbon
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.03.090
– volume: 9
  start-page: 685
  year: 2014
  ident: ref_38
  article-title: Effect of Municipal Biowaste Biochar on Greenhouse Gas Emissions and Metal Bioaccumulation in a Slightly Acidic Clay Rice Paddy
  publication-title: BioResources
– volume: 191
  start-page: 53
  year: 2014
  ident: ref_42
  article-title: An Incubation Study Investigating the Mechanisms That Impact N2O Flux from Soil Following Biochar Application
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.02.030
– volume: 76
  start-page: 12
  year: 2014
  ident: ref_24
  article-title: Biochar Suppressed the Decomposition of Organic Carbon in a Cultivated Sandy Loam Soil: A Negative Priming Effect
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.04.029
– volume: 173
  start-page: 37
  year: 2013
  ident: ref_35
  article-title: Change in Net Global Warming Potential of a Rice–wheat Cropping System with Biochar Soil Amendment in a Rice Paddy from China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.04.001
– volume: 42
  start-page: 168
  year: 2012
  ident: ref_37
  article-title: Can Biochar Amendment Be an Ecological Engineering Technology to Depress N2O Emission in Rice Paddies?—A Cross Site Field Experiment from South China
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2012.01.016
– volume: 1
  start-page: 1
  year: 2010
  ident: ref_9
  article-title: Sustainable Biochar to Mitigate Global Climate Change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 188
  start-page: 264
  year: 2014
  ident: ref_41
  article-title: Contrasting Effects of Straw and Straw-Derived Biochar Amendments on Greenhouse Gas Emissions within Double Rice Cropping Systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.03.002
– volume: 177
  start-page: 310
  year: 2012
  ident: ref_61
  article-title: Biochars Impact on Soil-Moisture Storage in an Ultisol and Two Aridisols
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31824e5593
– volume: 43
  start-page: 1169
  year: 2011
  ident: ref_26
  article-title: Positive and Negative Carbon Mineralization Priming Effects among a Variety of Biochar-Amended Soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 41
  start-page: 379
  year: 2005
  ident: ref_64
  article-title: Contributions of Nitrification and Denitrification to N2O Emissions from Soils at Different Water-Filled Pore Space
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-005-0858-3
– volume: 5
  start-page: 202
  year: 2013
  ident: ref_8
  article-title: Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 9
  start-page: 1279
  year: 2017
  ident: ref_51
  article-title: Impact of Six Lignocellulosic Biochars on C and N Dynamics of Two Contrasting Soils
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12414
– volume: 3
  start-page: 179
  year: 2009
  ident: ref_10
  article-title: Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production
  publication-title: Ann. Environ. Sci.
– volume: 8
  start-page: 1
  year: 2016
  ident: ref_13
  article-title: A Model for Mechanistic and System Assessments of Biochar Effects on Soils and Crops and Trade-Offs
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12314
– volume: 65
  start-page: 40
  year: 2014
  ident: ref_29
  article-title: Soil Microbial Communities Responded to Biochar Application in Temperate Soils and Slowly Metabolized 13C-Labelled Biochar as Revealed by 13C PLFA Analyses: Results from a Short-Term Incubation and Pot Experiment
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12100
– ident: ref_6
– volume: 3
  start-page: 1
  year: 2013
  ident: ref_12
  article-title: Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions?
  publication-title: Sci. Rep.
  doi: 10.1038/srep01732
– ident: ref_14
  doi: 10.2136/sssaspecpub63.2014.0045
– volume: 8
  start-page: 392
  year: 2016
  ident: ref_16
  article-title: Response of Soil Carbon Dioxide Fluxes, Soil Organic Carbon and Microbial Biomass Carbon to Biochar Amendment: A Meta-Analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12265
– volume: 65
  start-page: 60
  year: 2014
  ident: ref_22
  article-title: Biochar Carbon Stability in Four Contrasting Soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12094
– volume: 44
  start-page: 827
  year: 2010
  ident: ref_4
  article-title: Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902266r
– volume: 16
  start-page: 2711
  year: 2010
  ident: ref_48
  article-title: Hydrological and Biogeochemical Controls on the Timing and Magnitude of Nitrous Oxide Flux across an Agricultural Landscape
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.02116.x
– volume: 140
  start-page: 309
  year: 2011
  ident: ref_63
  article-title: Biochar Addition to Agricultural Soil Increased CH4 Uptake and Water Holding Capacity—Results from a Short-Term Pilot Field Study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– volume: 66
  start-page: 329
  year: 2015
  ident: ref_23
  article-title: Effects of Biochar Application on Greenhouse Gas Emissions, Carbon Sequestration and Crop Growth in Coastal Saline Soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12225
– volume: 43
  start-page: 2127
  year: 2011
  ident: ref_19
  article-title: The Priming Potential of Biochar Products in Relation to Labile Carbon Contents and Soil Organic Matter Status
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.06.016
– volume: 202
  start-page: 135
  year: 2015
  ident: ref_31
  article-title: The Molar H:Corg Ratio of Biochar Is a Key Factor in Mitigating N2O Emissions from Soil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.12.015
– volume: 62
  start-page: 249
  year: 2002
  ident: ref_60
  article-title: Nitrous Oxide Emission from Soils Amended with Crop Residues
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1021259107244
SSID ssj0002140746
Score 2.4067822
Snippet Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 8
SubjectTerms agroecosystems
biochar
carbon dioxide
climate change
corn
cropping systems
grasses
greenhouse gas emissions
nitrous oxide
Panicum virgatum
soil
soil treatment
temperature
wood gasification
Title Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales
URI https://www.proquest.com/docview/2431847392
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgucAB8RTLS0biVmVJ0iSNjwtqtULVcqCVeotsx4aKVbLaBA78er6x3Sb7EFq4RJWVOPV8zvgbex6Mvc9EbW2ssqhUIo4ypWQk6kREeWELC85vjXZevqfFyTr7vMk3u1rlIbqkV0f6941xJf-DKtqAK0XJ_gOy-07RgN_AF1cgjOutMA6ph8H3Pm5bip-irf-v7fZs4txpvsOqxySQ3WQONDvn8uZjFydLjz0dsNPO-YL82PCdY7XoxnTV9dWNkpoT0pQYy8fk__ohR1Wb5XbkJj_skVJctU9UEOZFeCRsNVB0UxIFVeg0Ej7vBOrT1_w5Mje0BZU6vTpzrirq6VSQZ2OHUYRBQNEQHxmWpd1R_OmXarFeLqvVfLO6y-6lMAfGpjOtuCmsxJmLydr_Gx8fRa_5cP0llznI5SXY8YrVI_YwGAT82KP7mN0xzRP24PjbRUiKYp6ytceZt5YHnHnbcMKGDzhz4Mz3OHPZc-DMB5w5cOYOZ-5xfsbWi_nq00kUymFEGsPoI1PUsUhLDU4hrc1NXM402HMiZ8RKE11YK-gUVuaZLpSyszxVthZ0zF8qCak9ZwdN25gXjCemsDX6MbGIs7qg-mWm1KmWqs61ycpDluwEVOmQK55KlpxVsBlJqNV1oR6yyf6Zc58p5a93v9vJvYJo6JRKNgbiqlJQWlAm8PaXt7jnFbs_zNTX7KC_-GnegCb26q2bI38AoPtr3g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Biochar+on+Soil+Greenhouse+Gas+Emissions+at+the+Laboratory+and+Field+Scales&rft.jtitle=Soil+systems&rft.au=Fidel%2C+Rivka+B&rft.au=Laird%2C+David+A&rft.au=Parkin%2C+Timothy+B&rft.date=2019-01-11&rft.issn=2571-8789&rft.eissn=2571-8789&rft.volume=3&rft.issue=1&rft_id=info:doi/10.3390%2Fsoilsystems3010008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon