Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales
Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability o...
Saved in:
Published in | Soil systems Vol. 3; no. 1; p. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
11.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability of lab-scale observations to field conditions in diverse agroecosystems remains uncertain. Here we investigate the impact of a mixed wood gasification biochar on CO2 and N2O emissions from loess-derived soils using: (1) controlled laboratory incubations at three moisture (27, 31 and 35%) and three temperature (10, 20 and 30 °C) levels and (2) a field study with four cropping systems (continuous corn, switchgrass, low diversity grass mix and high diversity grass-forb mix). Biochar reduced N2O emissions under specific temperatures and moistures in the laboratory and in the continuous corn cropping system in the field. However, the effect of biochar on N2O emissions was only significant in the field and no effect on cumulative CO2 emissions was observed. Cropping system also had a significant effect in the field study, with soils in grass and grass-forb cropping systems emitting more CO2 and less N2O than corn cropping systems. Observed biochar effects were consistent with previous studies showing that biochar amendments can reduce soil N2O emissions under specific but not all, conditions. The disparity in N2O emission responses at the lab and field scales suggests that laboratory incubation experiments may not reliably predict the impact of biochar at the field scale. |
---|---|
AbstractList | Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability of lab-scale observations to field conditions in diverse agroecosystems remains uncertain. Here we investigate the impact of a mixed wood gasification biochar on CO2 and N2O emissions from loess-derived soils using: (1) controlled laboratory incubations at three moisture (27, 31 and 35%) and three temperature (10, 20 and 30 °C) levels and (2) a field study with four cropping systems (continuous corn, switchgrass, low diversity grass mix and high diversity grass-forb mix). Biochar reduced N2O emissions under specific temperatures and moistures in the laboratory and in the continuous corn cropping system in the field. However, the effect of biochar on N2O emissions was only significant in the field and no effect on cumulative CO2 emissions was observed. Cropping system also had a significant effect in the field study, with soils in grass and grass-forb cropping systems emitting more CO2 and less N2O than corn cropping systems. Observed biochar effects were consistent with previous studies showing that biochar amendments can reduce soil N2O emissions under specific but not all, conditions. The disparity in N2O emission responses at the lab and field scales suggests that laboratory incubation experiments may not reliably predict the impact of biochar at the field scale. |
Author | Laird, David A. Fidel, Rivka B. Parkin, Timothy B. |
Author_xml | – sequence: 1 givenname: Rivka B. orcidid: 0000-0002-4037-1557 surname: Fidel fullname: Fidel, Rivka B. – sequence: 2 givenname: David A. surname: Laird fullname: Laird, David A. – sequence: 3 givenname: Timothy B. surname: Parkin fullname: Parkin, Timothy B. |
BookMark | eNp9kL1OAzEQhC0UJELIC1C5pAnYvh_flRCFgBSJIqQ-7fnWitHlHLxOkbfHUSgQSFQ7xXyj2blmo8EPyNitFPdZVosH8q6nI0XcUSakEKK6YGNVaDmrdFWPfugrNiX6SA4lc6Hzcsw2C2vRRO4tf3LebCFwP_B1SuTLgDhs_YGQL4H4YueInB-IQ-Rxi3wFrQ8QfThyGDr-7LDv-NpAj3TDLi30hNPvO2Gb58X7_GW2elu-zh9XM5N6xxmWnahVZSohwdoCRaVNoZQEXcpCSlNaW-eZVlDkpmxbqwvV2q7OZYJa0CqbsLtz7j74zwNSbFJJg30PA6bijcozWeU6q0_W6mw1wRMFtI1xEWJ6KAZwfSNFcxqz-TtmQtUvdB_cDsLxP-gLSXR9tw |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_148461 crossref_primary_10_1002_jeq2_20475 crossref_primary_10_1016_j_jclepro_2020_122259 crossref_primary_10_1016_j_biortech_2019_121471 crossref_primary_10_1016_j_scitotenv_2021_150465 crossref_primary_10_1007_s42729_020_00242_w crossref_primary_10_1016_j_enconman_2020_112701 crossref_primary_10_3390_app10248953 crossref_primary_10_1007_s42729_021_00514_z crossref_primary_10_1139_cjss_2021_0160 crossref_primary_10_1016_j_soilbio_2021_108496 crossref_primary_10_1007_s42773_019_00021_6 crossref_primary_10_1007_s42773_023_00271_5 crossref_primary_10_3390_soilsystems6040073 crossref_primary_10_1007_s10098_020_01990_0 crossref_primary_10_1016_j_still_2023_105917 crossref_primary_10_3390_f10070594 crossref_primary_10_1016_j_envpol_2021_117565 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1371_journal_pone_0284092 crossref_primary_10_1016_j_jenvman_2023_119324 crossref_primary_10_2174_0118743315362340241227050432 crossref_primary_10_1038_s43016_022_00657_x crossref_primary_10_1016_j_cej_2020_125128 crossref_primary_10_1016_j_jclepro_2022_134173 crossref_primary_10_3390_app12084051 crossref_primary_10_1016_j_cej_2021_131189 crossref_primary_10_1016_j_scitotenv_2019_136432 crossref_primary_10_3390_environments9080095 crossref_primary_10_1016_j_rser_2023_113322 crossref_primary_10_3390_agronomy10060904 crossref_primary_10_1007_s42773_024_00381_8 crossref_primary_10_3390_su11113211 crossref_primary_10_3390_su13158147 crossref_primary_10_1007_s11356_022_22500_3 crossref_primary_10_1007_s11356_024_33807_8 crossref_primary_10_1007_s11356_023_29954_z crossref_primary_10_1016_j_jece_2021_106869 crossref_primary_10_3390_w13070915 crossref_primary_10_1002_jpln_202100150 crossref_primary_10_7717_peerj_11937 crossref_primary_10_1007_s13399_020_00818_7 crossref_primary_10_1016_j_ese_2022_100167 crossref_primary_10_1007_s00128_020_03001_w crossref_primary_10_1016_j_envres_2023_117245 crossref_primary_10_3390_agriculture11030219 crossref_primary_10_3390_ma16216950 crossref_primary_10_1088_1757_899X_1051_1_012075 crossref_primary_10_1007_s12665_023_10874_7 crossref_primary_10_1016_j_envres_2021_111789 crossref_primary_10_3390_soilsystems4020022 crossref_primary_10_1080_27658511_2023_2205731 crossref_primary_10_3390_atmos11050539 crossref_primary_10_1016_j_scitotenv_2023_164530 crossref_primary_10_1038_s41598_023_49919_z crossref_primary_10_1111_sum_12760 crossref_primary_10_1002_ldr_4006 crossref_primary_10_7745_KJSSF_2024_57_3_164 crossref_primary_10_1016_j_psep_2023_10_048 crossref_primary_10_3390_agriculture11080793 crossref_primary_10_3390_agronomy11122474 crossref_primary_10_1016_j_indcrop_2021_113936 crossref_primary_10_1016_j_iswcr_2021_09_006 crossref_primary_10_3390_chemengineering3010015 crossref_primary_10_1016_j_scitotenv_2024_176960 crossref_primary_10_1016_j_jclepro_2020_121671 crossref_primary_10_1016_j_fuel_2022_126048 crossref_primary_10_1016_j_scitotenv_2023_164922 crossref_primary_10_1016_j_scitotenv_2020_138752 crossref_primary_10_3390_w15193387 crossref_primary_10_1007_s42729_021_00409_z crossref_primary_10_3390_w13091216 crossref_primary_10_1515_opag_2021_0217 crossref_primary_10_3390_agronomy11040716 crossref_primary_10_1016_j_scitotenv_2023_165176 crossref_primary_10_1016_j_scitotenv_2021_151259 crossref_primary_10_3390_agronomy11071313 crossref_primary_10_1016_j_scitotenv_2020_136857 |
Cites_doi | 10.2134/agronj2016.02.0074 10.1016/j.agee.2014.06.010 10.1007/s11104-011-0957-x 10.1007/s11104-011-0759-1 10.2134/agronj2007.0161 10.1016/j.soilbio.2014.02.009 10.1007/s11027-005-9006-5 10.1002/ehs2.1202 10.1016/j.jenvman.2014.05.032 10.2134/jeq2016.09.0369 10.1016/j.agee.2013.10.009 10.1111/ejss.12081 10.1016/j.biombioe.2014.01.049 10.1371/journal.pone.0125406 10.1111/gcbb.12376 10.1111/gcbb.12005 10.1016/j.agee.2015.04.012 10.1016/j.eja.2018.08.009 10.1111/ejss.12093 10.5194/bg-10-3205-2013 10.1016/j.soilbio.2011.04.018 10.1038/447143a 10.2136/sssaj2007.0215 10.1016/j.scitotenv.2016.01.143 10.1016/j.soilbio.2010.09.013 10.1111/ejss.12073 10.1016/j.soilbio.2010.05.004 10.1016/j.geoderma.2011.01.020 10.1088/1748-9326/8/4/044049 10.1007/s11368-017-1889-8 10.2134/jeq2011.0394 10.1021/es202186j 10.1111/gcb.12021 10.1016/j.agee.2010.09.003 10.1111/gcbb.12052 10.1016/S1352-2310(97)00492-5 10.1016/j.scitotenv.2013.03.090 10.1016/j.agee.2014.02.030 10.1016/j.soilbio.2014.04.029 10.1016/j.agee.2013.04.001 10.1016/j.ecoleng.2012.01.016 10.1038/ncomms1053 10.1016/j.agee.2014.03.002 10.1097/SS.0b013e31824e5593 10.1016/j.soilbio.2011.02.005 10.1007/s00374-005-0858-3 10.1111/gcbb.12037 10.1111/gcbb.12414 10.1111/gcbb.12314 10.1111/ejss.12100 10.1038/srep01732 10.2136/sssaspecpub63.2014.0045 10.1111/gcbb.12265 10.1111/ejss.12094 10.1021/es902266r 10.1111/j.1365-2486.2009.02116.x 10.1016/j.agee.2010.12.005 10.1111/ejss.12225 10.1016/j.soilbio.2011.06.016 10.1016/j.agee.2014.12.015 10.1023/A:1021259107244 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.3390/soilsystems3010008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2571-8789 |
ExternalDocumentID | 10_3390_soilsystems3010008 |
GroupedDBID | AADQD AAFWJ AAHBH AAYXX ADBBV AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ IAO MODMG M~E OK1 OZF 7S9 L.6 |
ID | FETCH-LOGICAL-c390t-e6d0928c801aff5e087c5221a761511c6ff94372a54c6bbf752bfd941928ba723 |
ISSN | 2571-8789 |
IngestDate | Thu Jul 10 17:42:07 EDT 2025 Tue Jul 01 02:33:34 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-e6d0928c801aff5e087c5221a761511c6ff94372a54c6bbf752bfd941928ba723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4037-1557 |
OpenAccessLink | https://www.mdpi.com/2571-8789/3/1/8/pdf?version=1547187884 |
PQID | 2431847392 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2431847392 crossref_citationtrail_10_3390_soilsystems3010008 crossref_primary_10_3390_soilsystems3010008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190111 |
PublicationDateYYYYMMDD | 2019-01-11 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190111 day: 11 |
PublicationDecade | 2010 |
PublicationTitle | Soil systems |
PublicationYear | 2019 |
References | Luo (ref_45) 2013; 10 Lin (ref_23) 2015; 66 Farrell (ref_21) 2013; 465 ref_14 Zhang (ref_32) 2010; 139 ref_53 Felber (ref_39) 2014; 65 Lehmann (ref_1) 2006; 11 ref_17 Smith (ref_46) 1998; 32 Bonin (ref_52) 2018; 101 Bateman (ref_64) 2005; 41 Spokas (ref_10) 2009; 3 Stres (ref_56) 2010; 42 Bian (ref_38) 2014; 9 Novak (ref_61) 2012; 177 Velthof (ref_60) 2002; 62 Pandey (ref_40) 2014; 196 Scheer (ref_36) 2011; 345 Smith (ref_25) 2010; 42 Biederman (ref_8) 2013; 5 Liu (ref_16) 2016; 8 Iqbal (ref_55) 2013; 19 Kauffman (ref_5) 2014; 63 Song (ref_15) 2016; 2 Ulyett (ref_62) 2014; 65 ref_65 Rochette (ref_54) 2008; 72 Fidel (ref_59) 2017; 46 Whitman (ref_27) 2014; 73 Castellano (ref_47) 2011; 162 Parkin (ref_57) 2012; 41 Cross (ref_19) 2011; 43 Case (ref_34) 2014; 6 Jones (ref_18) 2011; 43 Shen (ref_41) 2014; 188 Zhang (ref_35) 2013; 173 Laird (ref_3) 2008; 100 Lehmann (ref_2) 2007; 447 Cayuela (ref_11) 2014; 191 Abiven (ref_7) 2013; 8 Fang (ref_22) 2014; 65 Cayuela (ref_12) 2013; 3 Bass (ref_50) 2016; 550 Zhang (ref_33) 2012; 351 Bruun (ref_20) 2014; 65 Watzinger (ref_29) 2014; 65 Lu (ref_24) 2014; 76 Liu (ref_37) 2012; 42 Zhang (ref_30) 2018; 18 Cayuela (ref_31) 2015; 202 Keith (ref_28) 2011; 45 Woolf (ref_9) 2010; 1 Spokas (ref_43) 2013; 5 Archontoulis (ref_13) 2016; 8 ref_44 Castellano (ref_48) 2010; 16 Singh (ref_42) 2014; 191 Karhu (ref_63) 2011; 140 Zimmerman (ref_26) 2011; 43 Roberts (ref_4) 2010; 44 Fidel (ref_51) 2017; 9 ref_6 Watanabe (ref_49) 2014; 144 Thomazini (ref_58) 2015; 207 |
References_xml | – ident: ref_44 doi: 10.2134/agronj2016.02.0074 – volume: 196 start-page: 137 year: 2014 ident: ref_40 article-title: Organic Matter and Water Management Strategies to Reduce Methane and Nitrous Oxide Emissions from Rice Paddies in Vietnam publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.06.010 – volume: 351 start-page: 263 year: 2012 ident: ref_33 article-title: Effect of Biochar Amendment on Maize Yield and Greenhouse Gas Emissions from a Soil Organic Carbon Poor Calcareous Loamy Soil from Central China Plain publication-title: Plant Soil doi: 10.1007/s11104-011-0957-x – volume: 345 start-page: 47 year: 2011 ident: ref_36 article-title: Effect of Biochar Amendment on the Soil-Atmosphere Exchange of Greenhouse Gases from an Intensive Subtropical Pasture in Northern New South Wales, Australia publication-title: Plant Soil doi: 10.1007/s11104-011-0759-1 – volume: 100 start-page: 178 year: 2008 ident: ref_3 article-title: The Charcoal Vision: A Win–win–win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality publication-title: Agron. J. doi: 10.2134/agronj2007.0161 – volume: 73 start-page: 33 year: 2014 ident: ref_27 article-title: Pyrogenic Carbon Additions to Soil Counteract Positive Priming of Soil Carbon Mineralization by Plants publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.02.009 – volume: 11 start-page: 395 year: 2006 ident: ref_1 article-title: Bio-Char Sequestration in Terrestrial Ecosystems—A Review publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-005-9006-5 – volume: 2 start-page: e01202 year: 2016 ident: ref_15 article-title: Effects of Biochar Application on Fluxes of Three Biogenic Greenhouse Gases: A Meta-Analysis publication-title: Ecosyst. Heal. Sustain. doi: 10.1002/ehs2.1202 – volume: 144 start-page: 168 year: 2014 ident: ref_49 article-title: Five Crop Seasons’ Records of Greenhouse Gas Fluxes from Upland Fields with Repetitive Applications of Biochar and Cattle Manure publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.05.032 – volume: 46 start-page: 505 year: 2017 ident: ref_59 article-title: Impact of Biochar Organic and Inorganic C on Soil CO2 and N2O Emissions publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.09.0369 – volume: 191 start-page: 5 year: 2014 ident: ref_11 article-title: Biochar’s Role in Mitigating Soil Nitrous Oxide Emissions: A Review and Meta-Analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.10.009 – volume: 65 start-page: 96 year: 2014 ident: ref_62 article-title: Impact of Biochar Addition on Water Retention, Nitrification and Carbon Dioxide Evolution from Two Sandy Loam Soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12081 – volume: 63 start-page: 167 year: 2014 ident: ref_5 article-title: Producing Energy While Sequestering Carbon? The Relationship between Biochar and Agricultural Productivity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.01.049 – ident: ref_65 doi: 10.1371/journal.pone.0125406 – ident: ref_17 doi: 10.1111/gcbb.12376 – volume: 5 start-page: 165 year: 2013 ident: ref_43 article-title: Impact of Biochar Field Aging on Laboratory Greenhouse Gas Production Potentials publication-title: GCB Bioenergy doi: 10.1111/gcbb.12005 – volume: 207 start-page: 183 year: 2015 ident: ref_58 article-title: GHG Impacts of Biochar: Predictability for the Same Biochar publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.04.012 – volume: 101 start-page: 121 year: 2018 ident: ref_52 article-title: Perennial Biomass Crop Establishment, Community Characteristics, and Productivity in the Upper US Midwest: Effects of Cropping Systems Seed Mixtures and Biochar Applications publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.08.009 – volume: 65 start-page: 128 year: 2014 ident: ref_39 article-title: Nitrous Oxide Emission Reduction with Greenwaste Biochar: Comparison of Laboratory and Field Experiments publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12093 – volume: 10 start-page: 3205 year: 2013 ident: ref_45 article-title: Effects of Soil Temperature and Moisture on Methane Uptake and Nitrous Oxide Emissions across Three Different Ecosystem Types publication-title: Biogeosciences doi: 10.5194/bg-10-3205-2013 – volume: 43 start-page: 1723 year: 2011 ident: ref_18 article-title: Short-Term Biochar-Induced Increase in Soil CO2 Release Is Both Biotically and Abiotically Mediated publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.018 – volume: 447 start-page: 143 year: 2007 ident: ref_2 article-title: A Handful of Carbon publication-title: Nature doi: 10.1038/447143a – volume: 72 start-page: 331 year: 2008 ident: ref_54 article-title: Chamber measurements of soil nitrous oxide flux: Are absolute values reliable? publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0215 – volume: 550 start-page: 459 year: 2016 ident: ref_50 article-title: Soil Properties, Greenhouse Gas Emissions and Crop Yield under Compost, Biochar and Co-Composted Biochar in Two Tropical Agronomic Systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.143 – volume: 42 start-page: 2345 year: 2010 ident: ref_25 article-title: The Effect of Young Biochar on Soil Respiration publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.09.013 – volume: 65 start-page: 52 year: 2014 ident: ref_20 article-title: Carbon Dioxide Emissions from Biochar in Soil: Role of Clay, Microorganisms and Carbonates publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12073 – volume: 42 start-page: 1437 year: 2010 ident: ref_56 article-title: Emissions of CO2, CH4 and N2O from Southern European peatlands publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.05.004 – volume: 162 start-page: 273 year: 2011 ident: ref_47 article-title: Hydrological Controls on Heterotrophic Soil Respiration across an Agricultural Landscape publication-title: Geoderma doi: 10.1016/j.geoderma.2011.01.020 – ident: ref_53 – volume: 8 start-page: 044049 year: 2013 ident: ref_7 article-title: Heterogeneous Global Crop Yield Response to Biochar: A Meta-Regression Analysis publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/4/044049 – volume: 18 start-page: 1590 year: 2018 ident: ref_30 article-title: Response of surface albedo and soil carbon dioxide fluxes to biochar amendment in farmland publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1889-8 – volume: 41 start-page: 705 year: 2012 ident: ref_57 article-title: Calculating the Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0394 – volume: 45 start-page: 9611 year: 2011 ident: ref_28 article-title: Interactive Priming of Biochar and Labile Organic Matter Mineralization in a Smectite-Rich Soil publication-title: Environ. Sci. Technol. doi: 10.1021/es202186j – volume: 19 start-page: 327 year: 2013 ident: ref_55 article-title: Evaluation of Photoacoustic Infrared Spectroscopy for Simultaneous Measurement of N2O and CO2 Gas Concentrations and Fluxes at the Soil Surface publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12021 – volume: 139 start-page: 469 year: 2010 ident: ref_32 article-title: Effect of Biochar Amendment on Yield and Methane and Nitrous Oxide Emissions from a Rice Paddy from Tai Lake Plain, China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.09.003 – volume: 6 start-page: 76 year: 2014 ident: ref_34 article-title: Can Biochar Reduce Soil Greenhouse Gas Emissions from a Miscanthus Bioenergy Crop? publication-title: GCB Bioenergy doi: 10.1111/gcbb.12052 – volume: 32 start-page: 3301 year: 1998 ident: ref_46 article-title: Effects of Temperature, Water Content and Nitrogen Fertilisation on Emissions of Nitrous Oxide by Soils publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(97)00492-5 – volume: 465 start-page: 288 year: 2013 ident: ref_21 article-title: Microbial Utilisation of Biochar-Derived Carbon publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.03.090 – volume: 9 start-page: 685 year: 2014 ident: ref_38 article-title: Effect of Municipal Biowaste Biochar on Greenhouse Gas Emissions and Metal Bioaccumulation in a Slightly Acidic Clay Rice Paddy publication-title: BioResources – volume: 191 start-page: 53 year: 2014 ident: ref_42 article-title: An Incubation Study Investigating the Mechanisms That Impact N2O Flux from Soil Following Biochar Application publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.02.030 – volume: 76 start-page: 12 year: 2014 ident: ref_24 article-title: Biochar Suppressed the Decomposition of Organic Carbon in a Cultivated Sandy Loam Soil: A Negative Priming Effect publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.04.029 – volume: 173 start-page: 37 year: 2013 ident: ref_35 article-title: Change in Net Global Warming Potential of a Rice–wheat Cropping System with Biochar Soil Amendment in a Rice Paddy from China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.04.001 – volume: 42 start-page: 168 year: 2012 ident: ref_37 article-title: Can Biochar Amendment Be an Ecological Engineering Technology to Depress N2O Emission in Rice Paddies?—A Cross Site Field Experiment from South China publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2012.01.016 – volume: 1 start-page: 1 year: 2010 ident: ref_9 article-title: Sustainable Biochar to Mitigate Global Climate Change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 188 start-page: 264 year: 2014 ident: ref_41 article-title: Contrasting Effects of Straw and Straw-Derived Biochar Amendments on Greenhouse Gas Emissions within Double Rice Cropping Systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.03.002 – volume: 177 start-page: 310 year: 2012 ident: ref_61 article-title: Biochars Impact on Soil-Moisture Storage in an Ultisol and Two Aridisols publication-title: Soil Sci. doi: 10.1097/SS.0b013e31824e5593 – volume: 43 start-page: 1169 year: 2011 ident: ref_26 article-title: Positive and Negative Carbon Mineralization Priming Effects among a Variety of Biochar-Amended Soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 41 start-page: 379 year: 2005 ident: ref_64 article-title: Contributions of Nitrification and Denitrification to N2O Emissions from Soils at Different Water-Filled Pore Space publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-005-0858-3 – volume: 5 start-page: 202 year: 2013 ident: ref_8 article-title: Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – volume: 9 start-page: 1279 year: 2017 ident: ref_51 article-title: Impact of Six Lignocellulosic Biochars on C and N Dynamics of Two Contrasting Soils publication-title: GCB Bioenergy doi: 10.1111/gcbb.12414 – volume: 3 start-page: 179 year: 2009 ident: ref_10 article-title: Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production publication-title: Ann. Environ. Sci. – volume: 8 start-page: 1 year: 2016 ident: ref_13 article-title: A Model for Mechanistic and System Assessments of Biochar Effects on Soils and Crops and Trade-Offs publication-title: GCB Bioenergy doi: 10.1111/gcbb.12314 – volume: 65 start-page: 40 year: 2014 ident: ref_29 article-title: Soil Microbial Communities Responded to Biochar Application in Temperate Soils and Slowly Metabolized 13C-Labelled Biochar as Revealed by 13C PLFA Analyses: Results from a Short-Term Incubation and Pot Experiment publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12100 – ident: ref_6 – volume: 3 start-page: 1 year: 2013 ident: ref_12 article-title: Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? publication-title: Sci. Rep. doi: 10.1038/srep01732 – ident: ref_14 doi: 10.2136/sssaspecpub63.2014.0045 – volume: 8 start-page: 392 year: 2016 ident: ref_16 article-title: Response of Soil Carbon Dioxide Fluxes, Soil Organic Carbon and Microbial Biomass Carbon to Biochar Amendment: A Meta-Analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12265 – volume: 65 start-page: 60 year: 2014 ident: ref_22 article-title: Biochar Carbon Stability in Four Contrasting Soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12094 – volume: 44 start-page: 827 year: 2010 ident: ref_4 article-title: Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential publication-title: Environ. Sci. Technol. doi: 10.1021/es902266r – volume: 16 start-page: 2711 year: 2010 ident: ref_48 article-title: Hydrological and Biogeochemical Controls on the Timing and Magnitude of Nitrous Oxide Flux across an Agricultural Landscape publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.02116.x – volume: 140 start-page: 309 year: 2011 ident: ref_63 article-title: Biochar Addition to Agricultural Soil Increased CH4 Uptake and Water Holding Capacity—Results from a Short-Term Pilot Field Study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – volume: 66 start-page: 329 year: 2015 ident: ref_23 article-title: Effects of Biochar Application on Greenhouse Gas Emissions, Carbon Sequestration and Crop Growth in Coastal Saline Soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12225 – volume: 43 start-page: 2127 year: 2011 ident: ref_19 article-title: The Priming Potential of Biochar Products in Relation to Labile Carbon Contents and Soil Organic Matter Status publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.06.016 – volume: 202 start-page: 135 year: 2015 ident: ref_31 article-title: The Molar H:Corg Ratio of Biochar Is a Key Factor in Mitigating N2O Emissions from Soil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.12.015 – volume: 62 start-page: 249 year: 2002 ident: ref_60 article-title: Nitrous Oxide Emission from Soils Amended with Crop Residues publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1021259107244 |
SSID | ssj0002140746 |
Score | 2.4067822 |
Snippet | Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 8 |
SubjectTerms | agroecosystems biochar carbon dioxide climate change corn cropping systems grasses greenhouse gas emissions nitrous oxide Panicum virgatum soil soil treatment temperature wood gasification |
Title | Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales |
URI | https://www.proquest.com/docview/2431847392 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgucAB8RTLS0biVmVJ0iSNjwtqtULVcqCVeotsx4aKVbLaBA78er6x3Sb7EFq4RJWVOPV8zvgbex6Mvc9EbW2ssqhUIo4ypWQk6kREeWELC85vjXZevqfFyTr7vMk3u1rlIbqkV0f6941xJf-DKtqAK0XJ_gOy-07RgN_AF1cgjOutMA6ph8H3Pm5bip-irf-v7fZs4txpvsOqxySQ3WQONDvn8uZjFydLjz0dsNPO-YL82PCdY7XoxnTV9dWNkpoT0pQYy8fk__ohR1Wb5XbkJj_skVJctU9UEOZFeCRsNVB0UxIFVeg0Ej7vBOrT1_w5Mje0BZU6vTpzrirq6VSQZ2OHUYRBQNEQHxmWpd1R_OmXarFeLqvVfLO6y-6lMAfGpjOtuCmsxJmLydr_Gx8fRa_5cP0llznI5SXY8YrVI_YwGAT82KP7mN0xzRP24PjbRUiKYp6ytceZt5YHnHnbcMKGDzhz4Mz3OHPZc-DMB5w5cOYOZ-5xfsbWi_nq00kUymFEGsPoI1PUsUhLDU4hrc1NXM402HMiZ8RKE11YK-gUVuaZLpSyszxVthZ0zF8qCak9ZwdN25gXjCemsDX6MbGIs7qg-mWm1KmWqs61ycpDluwEVOmQK55KlpxVsBlJqNV1oR6yyf6Zc58p5a93v9vJvYJo6JRKNgbiqlJQWlAm8PaXt7jnFbs_zNTX7KC_-GnegCb26q2bI38AoPtr3g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Biochar+on+Soil+Greenhouse+Gas+Emissions+at+the+Laboratory+and+Field+Scales&rft.jtitle=Soil+systems&rft.au=Fidel%2C+Rivka+B&rft.au=Laird%2C+David+A&rft.au=Parkin%2C+Timothy+B&rft.date=2019-01-11&rft.issn=2571-8789&rft.eissn=2571-8789&rft.volume=3&rft.issue=1&rft_id=info:doi/10.3390%2Fsoilsystems3010008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon |