Influence of fluidity improver on metal-polymer direct joining via injection molding

Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer onto the surface via injection molding technology. IMDJ method is excellently suitable for a mass production environment for the injection m...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 72; pp. 620 - 626
Main Authors Wang, Shuohan, Kimura, Fuminobu, Zhao, Shuaijie, Yamaguchi, Eiji, Ito, Yuuka, Kajihara, Yusuke
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer onto the surface via injection molding technology. IMDJ method is excellently suitable for a mass production environment for the injection molding technology characteristics of high-speed production. However, one of the factors limiting the application of IMDJ is its low joining strength. In this study, we improved joining performance by mixing a flow modifier (flow modifier OSGOL MF-11) in the engineering polymer polyamide 6 (PA6). We studied the influence of the additive amount on the joining strength. It was found that mixing OSGOL MF-11 in PA6 is a feasible method to improve the joining strength, with maximum improvement by up to 75%. The mechanical interlocking improvement by higher fluidity was confirmed by cross-sectional analysis. FTIR spectra analysis results showed the possibility of chemical interaction occurrence, which causes the joint to be more robust. Materials modification by additives is much easier to apply compared to modification processing technology. The results provide new ideas for IMDJ development. •Polymer modification by additives in injection molding direct joining technology.•Flow modifier to PA6 greatly enhances the metal-polymer hybrid joining strength.•The joining strength was improved by better mechanical interlocking effect.•The possibility of chemical interaction at joint interface was found.
AbstractList Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer onto the surface via injection molding technology. IMDJ method is excellently suitable for a mass production environment for the injection molding technology characteristics of high-speed production. However, one of the factors limiting the application of IMDJ is its low joining strength. In this study, we improved joining performance by mixing a flow modifier (flow modifier OSGOL MF-11) in the engineering polymer polyamide 6 (PA6). We studied the influence of the additive amount on the joining strength. It was found that mixing OSGOL MF-11 in PA6 is a feasible method to improve the joining strength, with maximum improvement by up to 75%. The mechanical interlocking improvement by higher fluidity was confirmed by cross-sectional analysis. FTIR spectra analysis results showed the possibility of chemical interaction occurrence, which causes the joint to be more robust. Materials modification by additives is much easier to apply compared to modification processing technology. The results provide new ideas for IMDJ development. •Polymer modification by additives in injection molding direct joining technology.•Flow modifier to PA6 greatly enhances the metal-polymer hybrid joining strength.•The joining strength was improved by better mechanical interlocking effect.•The possibility of chemical interaction at joint interface was found.
Author Kajihara, Yusuke
Kimura, Fuminobu
Zhao, Shuaijie
Wang, Shuohan
Yamaguchi, Eiji
Ito, Yuuka
Author_xml – sequence: 1
  givenname: Shuohan
  orcidid: 0000-0002-8006-4295
  surname: Wang
  fullname: Wang, Shuohan
  email: wangsh@iis.u-tokyo.ac.jp
  organization: Precision Engineering Department, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
– sequence: 2
  givenname: Fuminobu
  orcidid: 0000-0001-7782-7581
  surname: Kimura
  fullname: Kimura, Fuminobu
  organization: Precision Engineering Department, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
– sequence: 3
  givenname: Shuaijie
  orcidid: 0000-0002-4549-8952
  surname: Zhao
  fullname: Zhao, Shuaijie
  organization: Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
– sequence: 4
  givenname: Eiji
  surname: Yamaguchi
  fullname: Yamaguchi, Eiji
  organization: SINTOKOGIO LTD, 3-1, Honohara, Toyokawa, Aichi, 442-0061, Japan
– sequence: 5
  givenname: Yuuka
  surname: Ito
  fullname: Ito, Yuuka
  organization: SINTOKOGIO LTD, 3-1, Honohara, Toyokawa, Aichi, 442-0061, Japan
– sequence: 6
  givenname: Yusuke
  surname: Kajihara
  fullname: Kajihara, Yusuke
  organization: Precision Engineering Department, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
BookMark eNqNkE9rwzAMxc3oYG237xB2TybHjRPvtNH9KxR26c7GsZ2ikNjFyQr99nPoDmOnooPEQ3ri_RZk5ryzhNxTyChQ_tBmh2A1Dhhlt89yyGkGZQZAr8icViVLc1bmMzIHuqIpZ4W4IYthaAGgrGA1J7uNa7pv67RNfJPEEQ2OpwT7Q_BHGxLvkt6OqksPvjv1UTAYH45J69Gh2ydHVAm6Nko4rfrORPWWXDeqG-zdb1-Sr7fX3foj3X6-b9bP21QzAWNqqS6Bx2oErQSvuRZNbbhSha01WG4M56asWV0JVikQihWFZgBNIeiqqClbksezrw5-GIJt5CFgr8JJUpATH9nKv3zkxEdCKSOfePz071jjqKYYY1DYXWbxcrawMeQRbZCDxonlGZI0Hi-x-QGkMY-V
CitedBy_id crossref_primary_10_1016_j_ijadhadh_2023_103617
crossref_primary_10_2139_ssrn_4105103
crossref_primary_10_1016_j_matchar_2024_114113
crossref_primary_10_1016_j_surfcoat_2021_127896
crossref_primary_10_1016_j_optlastec_2024_112049
crossref_primary_10_1016_j_surfcoat_2024_131285
crossref_primary_10_1002_pen_26244
crossref_primary_10_1007_s42114_025_01244_x
crossref_primary_10_1016_j_jmapro_2024_07_070
crossref_primary_10_1016_j_ijhydene_2023_09_106
crossref_primary_10_1016_j_jmapro_2023_04_020
crossref_primary_10_1002_pc_28688
crossref_primary_10_1016_j_mtcomm_2022_104291
crossref_primary_10_1016_j_compositesb_2025_112173
crossref_primary_10_5781_JWJ_2025_43_1_10
crossref_primary_10_1002_srin_202400686
crossref_primary_10_1007_s00170_024_13792_5
crossref_primary_10_3390_polym15010220
crossref_primary_10_1002_pen_26575
crossref_primary_10_1016_j_precisioneng_2022_06_013
crossref_primary_10_1016_j_matlet_2023_134655
crossref_primary_10_3390_coatings14091205
crossref_primary_10_1080_01694243_2023_2165230
crossref_primary_10_1002_adem_202401732
crossref_primary_10_1016_j_commatsci_2022_111981
Cites_doi 10.1007/s00542-015-2640-2
10.1016/j.precisioneng.2019.12.011
10.1016/j.precisioneng.2020.09.017
10.1016/j.precisioneng.2016.02.013
10.1016/j.matlet.2019.126963
10.1016/j.cirp.2011.03.073
10.1016/j.memsci.2019.117705
10.1002/adem.200800271
10.1039/C6RA09611E
10.1016/j.scriptamat.2008.08.026
10.1016/j.cirp.2018.04.112
10.1016/j.precisioneng.2019.10.009
10.1016/j.msea.2011.01.085
10.1007/s00170-020-05364-0
10.1016/j.precisioneng.2018.06.009
10.1038/s41598-017-07783-8
10.1016/j.jmapro.2017.09.022
10.1002/pen.10253
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2021.07.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 626
ExternalDocumentID 10_1016_j_precisioneng_2021_07_001
S0141635921001707
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c390t-e1c706060f91896b6c9fbd6aa5ebc0e6dd66d7b3b8938a09a355c300f59145b13
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:13:03 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Fri Feb 23 02:42:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polymer fluidity
Metal–polymer direct joining
Additives
Injection molded direct joining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-e1c706060f91896b6c9fbd6aa5ebc0e6dd66d7b3b8938a09a355c300f59145b13
ORCID 0000-0001-7782-7581
0000-0002-4549-8952
0000-0002-8006-4295
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_precisioneng_2021_07_001
crossref_citationtrail_10_1016_j_precisioneng_2021_07_001
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2021_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Precision engineering
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Taki, Nakamura, Takayama, Nemoto, Ito (bib6) 2016; 22
Zhao, Kimura, Yamaguchi, Horie, Kajihara (bib19) 2020; 107
Ramani, Moriarty (bib5) 1998; 38
Enami, Kimura, Yokoyama, Murakami, Kajihara (bib9) 2020; 62
International Organization for Standardization. Plastics-Evaluation of the adhesion interface performance in plastic-metal assemblies -Part 2: test specimens, ISO 19095-2:2015 2085.
(bib16) 2020
Ruan (bib23) 2005
Katayama, Kawahito (bib2) 2008; 59
Amancio-Filho, Bueno, dos Santos, Huber, Hage (bib3) 2011; 528
Kimura, Yamaguchi, Horie, Suzuki, Kajihara (bib11) 2020; 260
Zhao, Kimura, Kadoya, Kajihara (bib14) 2020; 61
Yeh, Hsu (bib12) 2016; 2
Kimura, Kadoya, Kajihara (bib8) 2016; 45
Kajihara, Tamura, Kimura, Suzuki, Nakura, Yamaguchi (bib10) 2018; 67
Smith, Spulber, Modi, Fiorelli (bib1) 2017
Balle, Wagner, Eifler (bib4) 2009; 11
Zhao, Kimura, Wang, Kajihara (bib22) 2021
Lucchetta, Marinello, Bariani (bib7) 2011; 60
Chemicals (bib15) 2017
Kadoya, Kimura, Kajihara (bib21) 2018; 54
Izadi, Mosaddegh, Silani, Dinari (bib13) 2017; 30
Saadi, Hassan, Karabacak (bib18) 2017; 7
Kadoya, Kimura, Yanagishita, Kajihara (bib20) 2021; 67
Ma, Zhou, Su, Li, Zhang (bib25) 2016; 6
Surblys, Yamada, Thomsen, Kawakami, Shigemoto, Okabe (bib24) 2020; 596
Zhao (10.1016/j.precisioneng.2021.07.001_bib14) 2020; 61
Surblys (10.1016/j.precisioneng.2021.07.001_bib24) 2020; 596
Katayama (10.1016/j.precisioneng.2021.07.001_bib2) 2008; 59
Zhao (10.1016/j.precisioneng.2021.07.001_bib19) 2020; 107
Lucchetta (10.1016/j.precisioneng.2021.07.001_bib7) 2011; 60
Enami (10.1016/j.precisioneng.2021.07.001_bib9) 2020; 62
Kadoya (10.1016/j.precisioneng.2021.07.001_bib21) 2018; 54
Amancio-Filho (10.1016/j.precisioneng.2021.07.001_bib3) 2011; 528
Ruan (10.1016/j.precisioneng.2021.07.001_bib23) 2005
Smith (10.1016/j.precisioneng.2021.07.001_bib1) 2017
Chemicals (10.1016/j.precisioneng.2021.07.001_bib15) 2017
Taki (10.1016/j.precisioneng.2021.07.001_bib6) 2016; 22
Zhao (10.1016/j.precisioneng.2021.07.001_bib22) 2021
Kimura (10.1016/j.precisioneng.2021.07.001_bib8) 2016; 45
Saadi (10.1016/j.precisioneng.2021.07.001_bib18) 2017; 7
Balle (10.1016/j.precisioneng.2021.07.001_bib4) 2009; 11
Izadi (10.1016/j.precisioneng.2021.07.001_bib13) 2017; 30
Kimura (10.1016/j.precisioneng.2021.07.001_bib11) 2020; 260
Yeh (10.1016/j.precisioneng.2021.07.001_bib12) 2016; 2
Ma (10.1016/j.precisioneng.2021.07.001_bib25) 2016; 6
Ramani (10.1016/j.precisioneng.2021.07.001_bib5) 1998; 38
Kajihara (10.1016/j.precisioneng.2021.07.001_bib10) 2018; 67
Kadoya (10.1016/j.precisioneng.2021.07.001_bib20) 2021; 67
10.1016/j.precisioneng.2021.07.001_bib17
References_xml – volume: 596
  start-page: 117705
  year: 2020
  ident: bib24
  article-title: Amide A band is a fingerprint for water dynamics in reverse osmosis polyamide membranes
  publication-title: J Membr Sci
– volume: 67
  start-page: 100
  year: 2021
  end-page: 109
  ident: bib20
  article-title: Structure size effect on polymer infiltration in injection molded direct joining
  publication-title: Precis Eng
– year: 2017
  ident: bib15
  article-title: Method for improving resin fluidity. (JP Patent No.6214465)
  publication-title: Japan Patent Office
– volume: 11
  start-page: 35
  year: 2009
  end-page: 39
  ident: bib4
  article-title: Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites
  publication-title: Adv Eng Mater
– volume: 30
  start-page: 217
  year: 2017
  end-page: 225
  ident: bib13
  article-title: An experimental study on mechanical properties of a novel hybrid metal–polymer joining technology based on a reaction between isocyanate and hydroxyl groups
  publication-title: J Manuf Process
– volume: 45
  start-page: 203
  year: 2016
  end-page: 208
  ident: bib8
  article-title: Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface
  publication-title: Precis Eng
– reference: International Organization for Standardization. Plastics-Evaluation of the adhesion interface performance in plastic-metal assemblies -Part 2: test specimens, ISO 19095-2:2015 2085.
– volume: 54
  start-page: 321
  year: 2018
  end-page: 326
  ident: bib21
  article-title: Tester for tensile shear evaluation of metal–polymer single lap joints
  publication-title: Precis Eng
– year: 2017
  ident: bib1
  article-title: Technology roadmaps: intelligent mobility technology, materials and manufacturing processes, and light duty vehicle propulsion
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib18
  article-title: Metal oxide nanostructures by a simple hot water treatment
  publication-title: Sci Rep
– volume: 61
  start-page: 120
  year: 2020
  end-page: 125
  ident: bib14
  article-title: Experimental analysis on mechanical interlocking of metal–polymer direct joining
  publication-title: Precis Eng
– volume: 38
  start-page: 870
  year: 1998
  end-page: 877
  ident: bib5
  article-title: Thermoplastic bonds to metals via injection molding for macro-composite manufacture
  publication-title: Polym Eng Sci
– volume: 528
  start-page: 3841
  year: 2011
  end-page: 3848
  ident: bib3
  article-title: On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures
  publication-title: Mater Sci Eng, A
– volume: 62
  start-page: 273
  year: 2020
  end-page: 281
  ident: bib9
  article-title: Experimental and simulative investigation of the effects of laser-structured metal surface on metal-polymer direct joining
  publication-title: Precis Eng
– volume: 59
  start-page: 1247
  year: 2008
  end-page: 1250
  ident: bib2
  article-title: Laser direct joining of metal and plastic
  publication-title: Scripta Mater
– year: 2005
  ident: bib23
  article-title: Spectroscopic studies of nano-structures of AI and Fe phases, bauxite and their thermally activated products
– volume: 2
  start-page: 21
  year: 2016
  end-page: 30
  ident: bib12
  article-title: Improving the adhesion of plastic/metal direct bonds by injection moulding using surface modifications
  publication-title: Adv Mater Process Technol
– volume: 67
  start-page: 591
  year: 2018
  end-page: 594
  ident: bib10
  article-title: Joining strength dependence on molding conditions and surface textures in blast-assisted metal-polymer direct joining
  publication-title: CIRP Ann
– volume: 260
  start-page: 126963
  year: 2020
  ident: bib11
  article-title: Formation of boehmite crystals on microblasted aluminum surface to enhance performance of metal–polymer direct joining
  publication-title: Mater Lett
– volume: 60
  start-page: 559
  year: 2011
  end-page: 562
  ident: bib7
  article-title: Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding
  publication-title: CIRP Ann - Manuf Technol
– year: 2020
  ident: bib16
  article-title: Working principle of additive FM-11
– volume: 6
  start-page: 87405
  year: 2016
  end-page: 87415
  ident: bib25
  article-title: Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy
  publication-title: RSC Adv
– start-page: 540
  year: 2021
  ident: bib22
  article-title: Chemical interaction at the interface of metal-plastic direct joints fabricated via injection molded direct joining
  publication-title: Appl Surf Sci
– volume: 22
  start-page: 31
  year: 2016
  end-page: 38
  ident: bib6
  article-title: Direct joining of a laser-ablated metal surface and polymers by precise injection molding
  publication-title: Microsyst Technol
– volume: 107
  start-page: 4637
  year: 2020
  end-page: 4644
  ident: bib19
  article-title: Manufacturing aluminum/polybutylene terephthalate direct joints by using hot water–treated aluminum via injection molding
  publication-title: Int J Adv Manuf Technol
– volume: 22
  start-page: 31
  year: 2016
  ident: 10.1016/j.precisioneng.2021.07.001_bib6
  article-title: Direct joining of a laser-ablated metal surface and polymers by precise injection molding
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-015-2640-2
– volume: 62
  start-page: 273
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.001_bib9
  article-title: Experimental and simulative investigation of the effects of laser-structured metal surface on metal-polymer direct joining
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2019.12.011
– volume: 2
  start-page: 21
  year: 2016
  ident: 10.1016/j.precisioneng.2021.07.001_bib12
  article-title: Improving the adhesion of plastic/metal direct bonds by injection moulding using surface modifications
  publication-title: Adv Mater Process Technol
– volume: 67
  start-page: 100
  year: 2021
  ident: 10.1016/j.precisioneng.2021.07.001_bib20
  article-title: Structure size effect on polymer infiltration in injection molded direct joining
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2020.09.017
– year: 2017
  ident: 10.1016/j.precisioneng.2021.07.001_bib1
– volume: 45
  start-page: 203
  year: 2016
  ident: 10.1016/j.precisioneng.2021.07.001_bib8
  article-title: Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2016.02.013
– volume: 260
  start-page: 126963
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.001_bib11
  article-title: Formation of boehmite crystals on microblasted aluminum surface to enhance performance of metal–polymer direct joining
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2019.126963
– volume: 60
  start-page: 559
  year: 2011
  ident: 10.1016/j.precisioneng.2021.07.001_bib7
  article-title: Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2011.03.073
– year: 2005
  ident: 10.1016/j.precisioneng.2021.07.001_bib23
– volume: 596
  start-page: 117705
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.001_bib24
  article-title: Amide A band is a fingerprint for water dynamics in reverse osmosis polyamide membranes
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2019.117705
– volume: 11
  start-page: 35
  year: 2009
  ident: 10.1016/j.precisioneng.2021.07.001_bib4
  article-title: Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200800271
– ident: 10.1016/j.precisioneng.2021.07.001_bib17
– volume: 6
  start-page: 87405
  year: 2016
  ident: 10.1016/j.precisioneng.2021.07.001_bib25
  article-title: Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy
  publication-title: RSC Adv
  doi: 10.1039/C6RA09611E
– volume: 59
  start-page: 1247
  year: 2008
  ident: 10.1016/j.precisioneng.2021.07.001_bib2
  article-title: Laser direct joining of metal and plastic
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2008.08.026
– volume: 67
  start-page: 591
  year: 2018
  ident: 10.1016/j.precisioneng.2021.07.001_bib10
  article-title: Joining strength dependence on molding conditions and surface textures in blast-assisted metal-polymer direct joining
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2018.04.112
– volume: 61
  start-page: 120
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.001_bib14
  article-title: Experimental analysis on mechanical interlocking of metal–polymer direct joining
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2019.10.009
– volume: 528
  start-page: 3841
  year: 2011
  ident: 10.1016/j.precisioneng.2021.07.001_bib3
  article-title: On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2011.01.085
– year: 2017
  ident: 10.1016/j.precisioneng.2021.07.001_bib15
  article-title: Method for improving resin fluidity. (JP Patent No.6214465)
  publication-title: Japan Patent Office
– volume: 107
  start-page: 4637
  year: 2020
  ident: 10.1016/j.precisioneng.2021.07.001_bib19
  article-title: Manufacturing aluminum/polybutylene terephthalate direct joints by using hot water–treated aluminum via injection molding
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05364-0
– volume: 54
  start-page: 321
  year: 2018
  ident: 10.1016/j.precisioneng.2021.07.001_bib21
  article-title: Tester for tensile shear evaluation of metal–polymer single lap joints
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.06.009
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.001_bib18
  article-title: Metal oxide nanostructures by a simple hot water treatment
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07783-8
– volume: 30
  start-page: 217
  year: 2017
  ident: 10.1016/j.precisioneng.2021.07.001_bib13
  article-title: An experimental study on mechanical properties of a novel hybrid metal–polymer joining technology based on a reaction between isocyanate and hydroxyl groups
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2017.09.022
– start-page: 540
  year: 2021
  ident: 10.1016/j.precisioneng.2021.07.001_bib22
  article-title: Chemical interaction at the interface of metal-plastic direct joints fabricated via injection molded direct joining
  publication-title: Appl Surf Sci
– volume: 38
  start-page: 870
  year: 1998
  ident: 10.1016/j.precisioneng.2021.07.001_bib5
  article-title: Thermoplastic bonds to metals via injection molding for macro-composite manufacture
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.10253
SSID ssj0007804
Score 2.429174
Snippet Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 620
SubjectTerms Additives
Injection molded direct joining
Metal–polymer direct joining
Polymer fluidity
Title Influence of fluidity improver on metal-polymer direct joining via injection molding
URI https://dx.doi.org/10.1016/j.precisioneng.2021.07.001
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl4rUvaNF0OHsZwTMWdNtit5FM6traMKXjxbzdJW514GXhrQx60r4-XX5Pf-z0AbhWXSCaRDvzOO3HsJx4SGjDSZ1wybkzoCpxfJnQ8I0_zeN4Cw6YWxtEq69xf5XSfreuRXu3NXpllPUdLsmAiZiH2IjCuopyQxEX53ecPzcMJ7FQ0Rhy42Y3wqOd4leumkU3-av8VQ-yFPOsGMX8Wqa2FZ3QEDmvECAfVQx2Dls5PwMGWjuApmD42rUZgYaC9zJQF1zDzGwZ6DYscrrRF2UFZLD9WdqB6abgofHsI-J5xmOULz8qyU6sDqTMwGz1Mh-OgbpcQyIihTaCxdFI4FBmG-4wKKpkRinIeayGRpkpRqhIRCQtR-hwxbqGGjBAyMcMkFjg6B-3cuuICQBZqgohmmhlFDEPWSEWUCGoUFSFJOoA1_kllrSXuWlos04Y0tki3fZs636bIHXXjDoi-bctKUWMnq_vmM6S_4iO1qX8H-8t_2l-BfXdXVSFeg_Zm_aZvLBzZiK6Pty7YGzw-jydf7KrjSg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27bsIwFL2iMLQdqj5V-vTQNcJJHIOHDggVQXlMILFFflZBEBCilfr3tfNAVF2QukVOjpRcW9cn9vG5AC-KSyybofaylXfi1E88INRjpMW4ZNyYwB1wHo1pb0reZ9GsAp3yLIyTVRa5P8_pWbYuWhpFNBvrJGk4WZIlExEL_MwEpnkENedOFVWh1u4PeuNdQnYeO7mS0fccoPQezWRe601Zyyb9sL-LgZ95eRY1Yv7MU3tzT_cczgrSiNr5e11ARaeXcLpnJXgFk35ZbQStDLKXibL8GiXZmoHeoFWKltoSbW-9WnwvbUP-3Wi-yipEoK-EoySdZ8Is-2i-J3UN0-7bpNPziooJngwZ3nral84Nh2LD_BajgkpmhKKcR1pIrKlSlKqmCIVlKS2OGbdsQ4YYm4j5JBJ-eAPV1IbiFhALNMFEM82MIoZhC1IhJYIaRUVAmnVgZXxiWdiJu6oWi7jUjc3j_djGLrYxdrvdfh3CHXadm2ochHotuyH-NURim_0PwN_9E_8Mx73JaBgP--PBPZy4O_mhxAeobjef-tGyk614KkbfD7U55fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+fluidity+improver+on+metal-polymer+direct+joining+via+injection+molding&rft.jtitle=Precision+engineering&rft.au=Wang%2C+Shuohan&rft.au=Kimura%2C+Fuminobu&rft.au=Zhao%2C+Shuaijie&rft.au=Yamaguchi%2C+Eiji&rft.date=2021-11-01&rft.issn=0141-6359&rft.volume=72&rft.spage=620&rft.epage=626&rft_id=info:doi/10.1016%2Fj.precisioneng.2021.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2021_07_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon