Influence of fluidity improver on metal-polymer direct joining via injection molding
Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer onto the surface via injection molding technology. IMDJ method is excellently suitable for a mass production environment for the injection m...
Saved in:
Published in | Precision engineering Vol. 72; pp. 620 - 626 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer onto the surface via injection molding technology. IMDJ method is excellently suitable for a mass production environment for the injection molding technology characteristics of high-speed production. However, one of the factors limiting the application of IMDJ is its low joining strength. In this study, we improved joining performance by mixing a flow modifier (flow modifier OSGOL MF-11) in the engineering polymer polyamide 6 (PA6). We studied the influence of the additive amount on the joining strength. It was found that mixing OSGOL MF-11 in PA6 is a feasible method to improve the joining strength, with maximum improvement by up to 75%. The mechanical interlocking improvement by higher fluidity was confirmed by cross-sectional analysis. FTIR spectra analysis results showed the possibility of chemical interaction occurrence, which causes the joint to be more robust. Materials modification by additives is much easier to apply compared to modification processing technology. The results provide new ideas for IMDJ development.
•Polymer modification by additives in injection molding direct joining technology.•Flow modifier to PA6 greatly enhances the metal-polymer hybrid joining strength.•The joining strength was improved by better mechanical interlocking effect.•The possibility of chemical interaction at joint interface was found. |
---|---|
AbstractList | Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer onto the surface via injection molding technology. IMDJ method is excellently suitable for a mass production environment for the injection molding technology characteristics of high-speed production. However, one of the factors limiting the application of IMDJ is its low joining strength. In this study, we improved joining performance by mixing a flow modifier (flow modifier OSGOL MF-11) in the engineering polymer polyamide 6 (PA6). We studied the influence of the additive amount on the joining strength. It was found that mixing OSGOL MF-11 in PA6 is a feasible method to improve the joining strength, with maximum improvement by up to 75%. The mechanical interlocking improvement by higher fluidity was confirmed by cross-sectional analysis. FTIR spectra analysis results showed the possibility of chemical interaction occurrence, which causes the joint to be more robust. Materials modification by additives is much easier to apply compared to modification processing technology. The results provide new ideas for IMDJ development.
•Polymer modification by additives in injection molding direct joining technology.•Flow modifier to PA6 greatly enhances the metal-polymer hybrid joining strength.•The joining strength was improved by better mechanical interlocking effect.•The possibility of chemical interaction at joint interface was found. |
Author | Kajihara, Yusuke Kimura, Fuminobu Zhao, Shuaijie Wang, Shuohan Yamaguchi, Eiji Ito, Yuuka |
Author_xml | – sequence: 1 givenname: Shuohan orcidid: 0000-0002-8006-4295 surname: Wang fullname: Wang, Shuohan email: wangsh@iis.u-tokyo.ac.jp organization: Precision Engineering Department, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan – sequence: 2 givenname: Fuminobu orcidid: 0000-0001-7782-7581 surname: Kimura fullname: Kimura, Fuminobu organization: Precision Engineering Department, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan – sequence: 3 givenname: Shuaijie orcidid: 0000-0002-4549-8952 surname: Zhao fullname: Zhao, Shuaijie organization: Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan – sequence: 4 givenname: Eiji surname: Yamaguchi fullname: Yamaguchi, Eiji organization: SINTOKOGIO LTD, 3-1, Honohara, Toyokawa, Aichi, 442-0061, Japan – sequence: 5 givenname: Yuuka surname: Ito fullname: Ito, Yuuka organization: SINTOKOGIO LTD, 3-1, Honohara, Toyokawa, Aichi, 442-0061, Japan – sequence: 6 givenname: Yusuke surname: Kajihara fullname: Kajihara, Yusuke organization: Precision Engineering Department, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan |
BookMark | eNqNkE9rwzAMxc3oYG237xB2TybHjRPvtNH9KxR26c7GsZ2ikNjFyQr99nPoDmOnooPEQ3ri_RZk5ryzhNxTyChQ_tBmh2A1Dhhlt89yyGkGZQZAr8icViVLc1bmMzIHuqIpZ4W4IYthaAGgrGA1J7uNa7pv67RNfJPEEQ2OpwT7Q_BHGxLvkt6OqksPvjv1UTAYH45J69Gh2ydHVAm6Nko4rfrORPWWXDeqG-zdb1-Sr7fX3foj3X6-b9bP21QzAWNqqS6Bx2oErQSvuRZNbbhSha01WG4M56asWV0JVikQihWFZgBNIeiqqClbksezrw5-GIJt5CFgr8JJUpATH9nKv3zkxEdCKSOfePz071jjqKYYY1DYXWbxcrawMeQRbZCDxonlGZI0Hi-x-QGkMY-V |
CitedBy_id | crossref_primary_10_1016_j_ijadhadh_2023_103617 crossref_primary_10_2139_ssrn_4105103 crossref_primary_10_1016_j_matchar_2024_114113 crossref_primary_10_1016_j_surfcoat_2021_127896 crossref_primary_10_1016_j_optlastec_2024_112049 crossref_primary_10_1016_j_surfcoat_2024_131285 crossref_primary_10_1002_pen_26244 crossref_primary_10_1007_s42114_025_01244_x crossref_primary_10_1016_j_jmapro_2024_07_070 crossref_primary_10_1016_j_ijhydene_2023_09_106 crossref_primary_10_1016_j_jmapro_2023_04_020 crossref_primary_10_1002_pc_28688 crossref_primary_10_1016_j_mtcomm_2022_104291 crossref_primary_10_1016_j_compositesb_2025_112173 crossref_primary_10_5781_JWJ_2025_43_1_10 crossref_primary_10_1002_srin_202400686 crossref_primary_10_1007_s00170_024_13792_5 crossref_primary_10_3390_polym15010220 crossref_primary_10_1002_pen_26575 crossref_primary_10_1016_j_precisioneng_2022_06_013 crossref_primary_10_1016_j_matlet_2023_134655 crossref_primary_10_3390_coatings14091205 crossref_primary_10_1080_01694243_2023_2165230 crossref_primary_10_1002_adem_202401732 crossref_primary_10_1016_j_commatsci_2022_111981 |
Cites_doi | 10.1007/s00542-015-2640-2 10.1016/j.precisioneng.2019.12.011 10.1016/j.precisioneng.2020.09.017 10.1016/j.precisioneng.2016.02.013 10.1016/j.matlet.2019.126963 10.1016/j.cirp.2011.03.073 10.1016/j.memsci.2019.117705 10.1002/adem.200800271 10.1039/C6RA09611E 10.1016/j.scriptamat.2008.08.026 10.1016/j.cirp.2018.04.112 10.1016/j.precisioneng.2019.10.009 10.1016/j.msea.2011.01.085 10.1007/s00170-020-05364-0 10.1016/j.precisioneng.2018.06.009 10.1038/s41598-017-07783-8 10.1016/j.jmapro.2017.09.022 10.1002/pen.10253 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2021.07.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 626 |
ExternalDocumentID | 10_1016_j_precisioneng_2021_07_001 S0141635921001707 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c390t-e1c706060f91896b6c9fbd6aa5ebc0e6dd66d7b3b8938a09a355c300f59145b13 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:13:03 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Fri Feb 23 02:42:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polymer fluidity Metal–polymer direct joining Additives Injection molded direct joining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-e1c706060f91896b6c9fbd6aa5ebc0e6dd66d7b3b8938a09a355c300f59145b13 |
ORCID | 0000-0001-7782-7581 0000-0002-4549-8952 0000-0002-8006-4295 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2021_07_001 crossref_citationtrail_10_1016_j_precisioneng_2021_07_001 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2021_07_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Taki, Nakamura, Takayama, Nemoto, Ito (bib6) 2016; 22 Zhao, Kimura, Yamaguchi, Horie, Kajihara (bib19) 2020; 107 Ramani, Moriarty (bib5) 1998; 38 Enami, Kimura, Yokoyama, Murakami, Kajihara (bib9) 2020; 62 International Organization for Standardization. Plastics-Evaluation of the adhesion interface performance in plastic-metal assemblies -Part 2: test specimens, ISO 19095-2:2015 2085. (bib16) 2020 Ruan (bib23) 2005 Katayama, Kawahito (bib2) 2008; 59 Amancio-Filho, Bueno, dos Santos, Huber, Hage (bib3) 2011; 528 Kimura, Yamaguchi, Horie, Suzuki, Kajihara (bib11) 2020; 260 Zhao, Kimura, Kadoya, Kajihara (bib14) 2020; 61 Yeh, Hsu (bib12) 2016; 2 Kimura, Kadoya, Kajihara (bib8) 2016; 45 Kajihara, Tamura, Kimura, Suzuki, Nakura, Yamaguchi (bib10) 2018; 67 Smith, Spulber, Modi, Fiorelli (bib1) 2017 Balle, Wagner, Eifler (bib4) 2009; 11 Zhao, Kimura, Wang, Kajihara (bib22) 2021 Lucchetta, Marinello, Bariani (bib7) 2011; 60 Chemicals (bib15) 2017 Kadoya, Kimura, Kajihara (bib21) 2018; 54 Izadi, Mosaddegh, Silani, Dinari (bib13) 2017; 30 Saadi, Hassan, Karabacak (bib18) 2017; 7 Kadoya, Kimura, Yanagishita, Kajihara (bib20) 2021; 67 Ma, Zhou, Su, Li, Zhang (bib25) 2016; 6 Surblys, Yamada, Thomsen, Kawakami, Shigemoto, Okabe (bib24) 2020; 596 Zhao (10.1016/j.precisioneng.2021.07.001_bib14) 2020; 61 Surblys (10.1016/j.precisioneng.2021.07.001_bib24) 2020; 596 Katayama (10.1016/j.precisioneng.2021.07.001_bib2) 2008; 59 Zhao (10.1016/j.precisioneng.2021.07.001_bib19) 2020; 107 Lucchetta (10.1016/j.precisioneng.2021.07.001_bib7) 2011; 60 Enami (10.1016/j.precisioneng.2021.07.001_bib9) 2020; 62 Kadoya (10.1016/j.precisioneng.2021.07.001_bib21) 2018; 54 Amancio-Filho (10.1016/j.precisioneng.2021.07.001_bib3) 2011; 528 Ruan (10.1016/j.precisioneng.2021.07.001_bib23) 2005 Smith (10.1016/j.precisioneng.2021.07.001_bib1) 2017 Chemicals (10.1016/j.precisioneng.2021.07.001_bib15) 2017 Taki (10.1016/j.precisioneng.2021.07.001_bib6) 2016; 22 Zhao (10.1016/j.precisioneng.2021.07.001_bib22) 2021 Kimura (10.1016/j.precisioneng.2021.07.001_bib8) 2016; 45 Saadi (10.1016/j.precisioneng.2021.07.001_bib18) 2017; 7 Balle (10.1016/j.precisioneng.2021.07.001_bib4) 2009; 11 Izadi (10.1016/j.precisioneng.2021.07.001_bib13) 2017; 30 Kimura (10.1016/j.precisioneng.2021.07.001_bib11) 2020; 260 Yeh (10.1016/j.precisioneng.2021.07.001_bib12) 2016; 2 Ma (10.1016/j.precisioneng.2021.07.001_bib25) 2016; 6 Ramani (10.1016/j.precisioneng.2021.07.001_bib5) 1998; 38 Kajihara (10.1016/j.precisioneng.2021.07.001_bib10) 2018; 67 Kadoya (10.1016/j.precisioneng.2021.07.001_bib20) 2021; 67 10.1016/j.precisioneng.2021.07.001_bib17 |
References_xml | – volume: 596 start-page: 117705 year: 2020 ident: bib24 article-title: Amide A band is a fingerprint for water dynamics in reverse osmosis polyamide membranes publication-title: J Membr Sci – volume: 67 start-page: 100 year: 2021 end-page: 109 ident: bib20 article-title: Structure size effect on polymer infiltration in injection molded direct joining publication-title: Precis Eng – year: 2017 ident: bib15 article-title: Method for improving resin fluidity. (JP Patent No.6214465) publication-title: Japan Patent Office – volume: 11 start-page: 35 year: 2009 end-page: 39 ident: bib4 article-title: Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites publication-title: Adv Eng Mater – volume: 30 start-page: 217 year: 2017 end-page: 225 ident: bib13 article-title: An experimental study on mechanical properties of a novel hybrid metal–polymer joining technology based on a reaction between isocyanate and hydroxyl groups publication-title: J Manuf Process – volume: 45 start-page: 203 year: 2016 end-page: 208 ident: bib8 article-title: Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface publication-title: Precis Eng – reference: International Organization for Standardization. Plastics-Evaluation of the adhesion interface performance in plastic-metal assemblies -Part 2: test specimens, ISO 19095-2:2015 2085. – volume: 54 start-page: 321 year: 2018 end-page: 326 ident: bib21 article-title: Tester for tensile shear evaluation of metal–polymer single lap joints publication-title: Precis Eng – year: 2017 ident: bib1 article-title: Technology roadmaps: intelligent mobility technology, materials and manufacturing processes, and light duty vehicle propulsion – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: bib18 article-title: Metal oxide nanostructures by a simple hot water treatment publication-title: Sci Rep – volume: 61 start-page: 120 year: 2020 end-page: 125 ident: bib14 article-title: Experimental analysis on mechanical interlocking of metal–polymer direct joining publication-title: Precis Eng – volume: 38 start-page: 870 year: 1998 end-page: 877 ident: bib5 article-title: Thermoplastic bonds to metals via injection molding for macro-composite manufacture publication-title: Polym Eng Sci – volume: 528 start-page: 3841 year: 2011 end-page: 3848 ident: bib3 article-title: On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures publication-title: Mater Sci Eng, A – volume: 62 start-page: 273 year: 2020 end-page: 281 ident: bib9 article-title: Experimental and simulative investigation of the effects of laser-structured metal surface on metal-polymer direct joining publication-title: Precis Eng – volume: 59 start-page: 1247 year: 2008 end-page: 1250 ident: bib2 article-title: Laser direct joining of metal and plastic publication-title: Scripta Mater – year: 2005 ident: bib23 article-title: Spectroscopic studies of nano-structures of AI and Fe phases, bauxite and their thermally activated products – volume: 2 start-page: 21 year: 2016 end-page: 30 ident: bib12 article-title: Improving the adhesion of plastic/metal direct bonds by injection moulding using surface modifications publication-title: Adv Mater Process Technol – volume: 67 start-page: 591 year: 2018 end-page: 594 ident: bib10 article-title: Joining strength dependence on molding conditions and surface textures in blast-assisted metal-polymer direct joining publication-title: CIRP Ann – volume: 260 start-page: 126963 year: 2020 ident: bib11 article-title: Formation of boehmite crystals on microblasted aluminum surface to enhance performance of metal–polymer direct joining publication-title: Mater Lett – volume: 60 start-page: 559 year: 2011 end-page: 562 ident: bib7 article-title: Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding publication-title: CIRP Ann - Manuf Technol – year: 2020 ident: bib16 article-title: Working principle of additive FM-11 – volume: 6 start-page: 87405 year: 2016 end-page: 87415 ident: bib25 article-title: Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy publication-title: RSC Adv – start-page: 540 year: 2021 ident: bib22 article-title: Chemical interaction at the interface of metal-plastic direct joints fabricated via injection molded direct joining publication-title: Appl Surf Sci – volume: 22 start-page: 31 year: 2016 end-page: 38 ident: bib6 article-title: Direct joining of a laser-ablated metal surface and polymers by precise injection molding publication-title: Microsyst Technol – volume: 107 start-page: 4637 year: 2020 end-page: 4644 ident: bib19 article-title: Manufacturing aluminum/polybutylene terephthalate direct joints by using hot water–treated aluminum via injection molding publication-title: Int J Adv Manuf Technol – volume: 22 start-page: 31 year: 2016 ident: 10.1016/j.precisioneng.2021.07.001_bib6 article-title: Direct joining of a laser-ablated metal surface and polymers by precise injection molding publication-title: Microsyst Technol doi: 10.1007/s00542-015-2640-2 – volume: 62 start-page: 273 year: 2020 ident: 10.1016/j.precisioneng.2021.07.001_bib9 article-title: Experimental and simulative investigation of the effects of laser-structured metal surface on metal-polymer direct joining publication-title: Precis Eng doi: 10.1016/j.precisioneng.2019.12.011 – volume: 2 start-page: 21 year: 2016 ident: 10.1016/j.precisioneng.2021.07.001_bib12 article-title: Improving the adhesion of plastic/metal direct bonds by injection moulding using surface modifications publication-title: Adv Mater Process Technol – volume: 67 start-page: 100 year: 2021 ident: 10.1016/j.precisioneng.2021.07.001_bib20 article-title: Structure size effect on polymer infiltration in injection molded direct joining publication-title: Precis Eng doi: 10.1016/j.precisioneng.2020.09.017 – year: 2017 ident: 10.1016/j.precisioneng.2021.07.001_bib1 – volume: 45 start-page: 203 year: 2016 ident: 10.1016/j.precisioneng.2021.07.001_bib8 article-title: Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface publication-title: Precis Eng doi: 10.1016/j.precisioneng.2016.02.013 – volume: 260 start-page: 126963 year: 2020 ident: 10.1016/j.precisioneng.2021.07.001_bib11 article-title: Formation of boehmite crystals on microblasted aluminum surface to enhance performance of metal–polymer direct joining publication-title: Mater Lett doi: 10.1016/j.matlet.2019.126963 – volume: 60 start-page: 559 year: 2011 ident: 10.1016/j.precisioneng.2021.07.001_bib7 article-title: Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2011.03.073 – year: 2005 ident: 10.1016/j.precisioneng.2021.07.001_bib23 – volume: 596 start-page: 117705 year: 2020 ident: 10.1016/j.precisioneng.2021.07.001_bib24 article-title: Amide A band is a fingerprint for water dynamics in reverse osmosis polyamide membranes publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.117705 – volume: 11 start-page: 35 year: 2009 ident: 10.1016/j.precisioneng.2021.07.001_bib4 article-title: Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites publication-title: Adv Eng Mater doi: 10.1002/adem.200800271 – ident: 10.1016/j.precisioneng.2021.07.001_bib17 – volume: 6 start-page: 87405 year: 2016 ident: 10.1016/j.precisioneng.2021.07.001_bib25 article-title: Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy publication-title: RSC Adv doi: 10.1039/C6RA09611E – volume: 59 start-page: 1247 year: 2008 ident: 10.1016/j.precisioneng.2021.07.001_bib2 article-title: Laser direct joining of metal and plastic publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2008.08.026 – volume: 67 start-page: 591 year: 2018 ident: 10.1016/j.precisioneng.2021.07.001_bib10 article-title: Joining strength dependence on molding conditions and surface textures in blast-assisted metal-polymer direct joining publication-title: CIRP Ann doi: 10.1016/j.cirp.2018.04.112 – volume: 61 start-page: 120 year: 2020 ident: 10.1016/j.precisioneng.2021.07.001_bib14 article-title: Experimental analysis on mechanical interlocking of metal–polymer direct joining publication-title: Precis Eng doi: 10.1016/j.precisioneng.2019.10.009 – volume: 528 start-page: 3841 year: 2011 ident: 10.1016/j.precisioneng.2021.07.001_bib3 article-title: On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2011.01.085 – year: 2017 ident: 10.1016/j.precisioneng.2021.07.001_bib15 article-title: Method for improving resin fluidity. (JP Patent No.6214465) publication-title: Japan Patent Office – volume: 107 start-page: 4637 year: 2020 ident: 10.1016/j.precisioneng.2021.07.001_bib19 article-title: Manufacturing aluminum/polybutylene terephthalate direct joints by using hot water–treated aluminum via injection molding publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05364-0 – volume: 54 start-page: 321 year: 2018 ident: 10.1016/j.precisioneng.2021.07.001_bib21 article-title: Tester for tensile shear evaluation of metal–polymer single lap joints publication-title: Precis Eng doi: 10.1016/j.precisioneng.2018.06.009 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.precisioneng.2021.07.001_bib18 article-title: Metal oxide nanostructures by a simple hot water treatment publication-title: Sci Rep doi: 10.1038/s41598-017-07783-8 – volume: 30 start-page: 217 year: 2017 ident: 10.1016/j.precisioneng.2021.07.001_bib13 article-title: An experimental study on mechanical properties of a novel hybrid metal–polymer joining technology based on a reaction between isocyanate and hydroxyl groups publication-title: J Manuf Process doi: 10.1016/j.jmapro.2017.09.022 – start-page: 540 year: 2021 ident: 10.1016/j.precisioneng.2021.07.001_bib22 article-title: Chemical interaction at the interface of metal-plastic direct joints fabricated via injection molded direct joining publication-title: Appl Surf Sci – volume: 38 start-page: 870 year: 1998 ident: 10.1016/j.precisioneng.2021.07.001_bib5 article-title: Thermoplastic bonds to metals via injection molding for macro-composite manufacture publication-title: Polym Eng Sci doi: 10.1002/pen.10253 |
SSID | ssj0007804 |
Score | 2.429174 |
Snippet | Injection molded direct joining (IMDJ) is one type of metal-plastic direct joining methods. IMDJ first treats the metal surface and then injects melted polymer... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 620 |
SubjectTerms | Additives Injection molded direct joining Metal–polymer direct joining Polymer fluidity |
Title | Influence of fluidity improver on metal-polymer direct joining via injection molding |
URI | https://dx.doi.org/10.1016/j.precisioneng.2021.07.001 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuL8GDl4rUvaNF0OHsZwTMWdNtit5FM6traMKXjxbzdJW514GXhrQx60r4-XX5Pf-z0AbhWXSCaRDvzOO3HsJx4SGjDSZ1wybkzoCpxfJnQ8I0_zeN4Cw6YWxtEq69xf5XSfreuRXu3NXpllPUdLsmAiZiH2IjCuopyQxEX53ecPzcMJ7FQ0Rhy42Y3wqOd4leumkU3-av8VQ-yFPOsGMX8Wqa2FZ3QEDmvECAfVQx2Dls5PwMGWjuApmD42rUZgYaC9zJQF1zDzGwZ6DYscrrRF2UFZLD9WdqB6abgofHsI-J5xmOULz8qyU6sDqTMwGz1Mh-OgbpcQyIihTaCxdFI4FBmG-4wKKpkRinIeayGRpkpRqhIRCQtR-hwxbqGGjBAyMcMkFjg6B-3cuuICQBZqgohmmhlFDEPWSEWUCGoUFSFJOoA1_kllrSXuWlos04Y0tki3fZs636bIHXXjDoi-bctKUWMnq_vmM6S_4iO1qX8H-8t_2l-BfXdXVSFeg_Zm_aZvLBzZiK6Pty7YGzw-jydf7KrjSg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27bsIwFL2iMLQdqj5V-vTQNcJJHIOHDggVQXlMILFFflZBEBCilfr3tfNAVF2QukVOjpRcW9cn9vG5AC-KSyybofaylXfi1E88INRjpMW4ZNyYwB1wHo1pb0reZ9GsAp3yLIyTVRa5P8_pWbYuWhpFNBvrJGk4WZIlExEL_MwEpnkENedOFVWh1u4PeuNdQnYeO7mS0fccoPQezWRe601Zyyb9sL-LgZ95eRY1Yv7MU3tzT_cczgrSiNr5e11ARaeXcLpnJXgFk35ZbQStDLKXibL8GiXZmoHeoFWKltoSbW-9WnwvbUP-3Wi-yipEoK-EoySdZ8Is-2i-J3UN0-7bpNPziooJngwZ3nral84Nh2LD_BajgkpmhKKcR1pIrKlSlKqmCIVlKS2OGbdsQ4YYm4j5JBJ-eAPV1IbiFhALNMFEM82MIoZhC1IhJYIaRUVAmnVgZXxiWdiJu6oWi7jUjc3j_djGLrYxdrvdfh3CHXadm2ochHotuyH-NURim_0PwN_9E_8Mx73JaBgP--PBPZy4O_mhxAeobjef-tGyk614KkbfD7U55fs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+fluidity+improver+on+metal-polymer+direct+joining+via+injection+molding&rft.jtitle=Precision+engineering&rft.au=Wang%2C+Shuohan&rft.au=Kimura%2C+Fuminobu&rft.au=Zhao%2C+Shuaijie&rft.au=Yamaguchi%2C+Eiji&rft.date=2021-11-01&rft.issn=0141-6359&rft.volume=72&rft.spage=620&rft.epage=626&rft_id=info:doi/10.1016%2Fj.precisioneng.2021.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2021_07_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |