Enhanced photocatalytic activity of Bi₂WO₆ with oxygen vacancies by zirconium doping
To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of c...
Saved in:
Published in | Journal of hazardous materials Vol. 196; pp. 255 - 262 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
30.11.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O₂ on the semiconductor surface, thus facilitating the reduction of O₂ by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi₂WO₆ exhibited much enhanced photoactivity than the Bi₂WO₆ photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts. |
---|---|
AbstractList | To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O(2) on the semiconductor surface, thus facilitating the reduction of O(2) by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi(2)WO(6) exhibited much enhanced photoactivity than the Bi(2)WO(6) photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O(2) on the semiconductor surface, thus facilitating the reduction of O(2) by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi(2)WO(6) exhibited much enhanced photoactivity than the Bi(2)WO(6) photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts. To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O₂ on the semiconductor surface, thus facilitating the reduction of O₂ by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi₂WO₆ exhibited much enhanced photoactivity than the Bi₂WO₆ photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts. To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi2WO6 photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O2 on the semiconductor surface, thus facilitating the reduction of O2 by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi2WO6 exhibited much enhanced photoactivity than the Bi2WO6 photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts. To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O(2) on the semiconductor surface, thus facilitating the reduction of O(2) by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi(2)WO(6) exhibited much enhanced photoactivity than the Bi(2)WO(6) photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts. |
Author | Xu, Jiehui Gao, Erping Shang, Meng Wang, Wenzhong Zhang, Zhijie |
Author_xml | – sequence: 1 fullname: Zhang, Zhijie – sequence: 2 fullname: Wang, Wenzhong – sequence: 3 fullname: Gao, Erping – sequence: 4 fullname: Shang, Meng – sequence: 5 fullname: Xu, Jiehui |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24791020$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21944838$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0stuEzEUBmALFdG08AjAbBBsJhzfxmOxgqpcpEpdQAU768TjSRxNxunYaZsus-BB-yQ4SgCJBVl58_1Hts9_Qo760DtCnlMYU6DV2_l4PsP7BaYxA0rHoMdA1SMyorXiJee8OiIj4CBKXmtxTE5inANkIsUTcsyoFqLm9Yj8OO9n2FvXFMtZSMFiwm6dvC3QJn_j07oIbfHBP2w23y8fNj-LW59mRbhbT11f3KDNUe9iMVkX936woferRdGEpe-nT8njFrvonu3PU3L18fzb2efy4vLTl7P3F6XlGlJpG6lBtNJSwZyldsI1igonAgGblgvOGqWsrKB2rKFa160UyEExodSkrjQ_Ja93c5dDuF65mMzCR-u6DnsXVtFoSqmUIMRhCaxSTMs6yzf_lVQpYEozqQ7TSgsJNL8j0xd7uposXGOWg1_gsDa_l5HBqz3AaLFrh-3vxr9OKE2BQXZy5-wQYhxc-4dQMNtymLnZl8Nsy2FAm7z5nHv3T876hMmHPg3ou4Ppl7t0i8HgdMg3u_qagcyt0kJn8Qs7Rcvz |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1039_c2nr12046a crossref_primary_10_1039_C4RA06419D crossref_primary_10_1088_2053_1591_aab6f5 crossref_primary_10_1016_j_apcatb_2017_06_041 crossref_primary_10_1039_D2NJ05600C crossref_primary_10_1016_j_jhazmat_2015_12_044 crossref_primary_10_1016_j_apsusc_2015_07_003 crossref_primary_10_1016_j_optmat_2023_114741 crossref_primary_10_1016_j_catcom_2016_07_001 crossref_primary_10_1016_j_ceramint_2015_10_105 crossref_primary_10_1039_C6TA08703E crossref_primary_10_15251_DJNB_2024_192_549 crossref_primary_10_7498_aps_68_20191010 crossref_primary_10_1007_s00339_021_05161_w crossref_primary_10_1016_j_powtec_2017_03_052 crossref_primary_10_1016_j_ceramint_2023_08_273 crossref_primary_10_1016_j_jece_2014_02_019 crossref_primary_10_4028_www_scientific_net_MSF_914_168 crossref_primary_10_7498_aps_67_20172287 crossref_primary_10_1007_s11051_015_2945_1 crossref_primary_10_1016_j_apcatb_2022_122265 crossref_primary_10_1016_j_jcis_2015_12_054 crossref_primary_10_1155_2013_517643 crossref_primary_10_1007_s10853_018_2479_x crossref_primary_10_1021_acs_jpcc_0c03539 crossref_primary_10_1007_s11783_024_1846_x crossref_primary_10_1016_j_colsurfa_2020_124496 crossref_primary_10_1016_j_jallcom_2020_158446 crossref_primary_10_1016_j_ceramint_2022_07_186 crossref_primary_10_1021_acs_iecr_9b01067 crossref_primary_10_3389_fchem_2020_601983 crossref_primary_10_1007_s11814_020_0687_y crossref_primary_10_1016_j_ceramint_2022_11_205 crossref_primary_10_5004_dwt_2017_21184 crossref_primary_10_1039_C6NR04859E crossref_primary_10_1007_s11164_022_04926_z crossref_primary_10_1039_C7CP02136D crossref_primary_10_1007_s10854_024_12577_6 crossref_primary_10_1016_j_jallcom_2018_12_374 crossref_primary_10_1016_j_materresbull_2014_07_050 crossref_primary_10_1016_j_apcatb_2014_11_057 crossref_primary_10_2139_ssrn_4194524 crossref_primary_10_4028_www_scientific_net_AMR_700_67 crossref_primary_10_1016_j_matlet_2015_03_096 crossref_primary_10_1039_D2CY00610C crossref_primary_10_1007_s12613_023_2656_z crossref_primary_10_1016_j_colsurfa_2024_133142 crossref_primary_10_1016_j_jtice_2021_08_002 crossref_primary_10_1016_j_jallcom_2013_04_009 crossref_primary_10_1016_j_mtcomm_2023_105575 crossref_primary_10_1021_acs_jpclett_3c02042 crossref_primary_10_1021_jp500645p crossref_primary_10_1088_2053_1591_ab2965 crossref_primary_10_1007_s10854_017_7731_7 crossref_primary_10_1016_j_cattod_2023_114413 crossref_primary_10_1002_cctc_201500714 crossref_primary_10_1039_D3RA01987J crossref_primary_10_1016_j_ceramint_2014_03_176 crossref_primary_10_1016_j_matchar_2015_01_016 crossref_primary_10_1016_j_cej_2019_123956 crossref_primary_10_1039_c3ra23347b crossref_primary_10_1016_j_jcis_2017_08_056 crossref_primary_10_1016_j_apsusc_2018_01_089 crossref_primary_10_1016_j_cej_2021_131550 crossref_primary_10_1016_j_ijhydene_2024_06_419 crossref_primary_10_1007_s40843_024_3199_9 crossref_primary_10_5004_dwt_2018_22461 crossref_primary_10_3762_bjnano_10_141 crossref_primary_10_1007_s11051_017_4101_6 crossref_primary_10_1016_j_cej_2021_132377 crossref_primary_10_1016_j_inoche_2021_108960 crossref_primary_10_1016_j_matchemphys_2020_122672 crossref_primary_10_1016_S1872_2067_19_63506_0 crossref_primary_10_1016_j_seppur_2023_123554 crossref_primary_10_1016_j_mcat_2017_02_042 crossref_primary_10_1016_j_jallcom_2024_175881 crossref_primary_10_1021_am2017199 crossref_primary_10_1016_j_jphotochem_2022_113774 crossref_primary_10_1007_s11581_016_1762_6 crossref_primary_10_1016_j_apsusc_2020_145309 crossref_primary_10_1002_jctb_7379 crossref_primary_10_1002_aenm_201600501 crossref_primary_10_1016_j_ceramint_2018_08_343 crossref_primary_10_1016_j_ceramint_2022_08_004 crossref_primary_10_1039_D1CY00739D crossref_primary_10_1016_j_catcom_2023_106760 crossref_primary_10_1007_s10854_018_9999_7 crossref_primary_10_1016_j_chemosphere_2022_135652 crossref_primary_10_1039_C9SC06325K crossref_primary_10_1002_ppsc_202100198 crossref_primary_10_1039_D4TA07579J crossref_primary_10_1088_0957_4484_26_36_364001 crossref_primary_10_1016_j_apsusc_2024_161064 crossref_primary_10_1002_aelm_202100301 crossref_primary_10_1016_j_jallcom_2020_157421 crossref_primary_10_1016_j_jcis_2022_05_056 crossref_primary_10_1016_j_materresbull_2014_04_001 crossref_primary_10_1007_s10854_015_3680_1 crossref_primary_10_1002_chem_201602168 crossref_primary_10_1186_s11671_016_1319_7 crossref_primary_10_1016_j_apsusc_2024_159867 crossref_primary_10_1039_C4RA14318C crossref_primary_10_5004_dwt_2018_21626 crossref_primary_10_1039_D0RA03094E crossref_primary_10_1016_j_cej_2019_123418 crossref_primary_10_1016_j_optmat_2023_114424 crossref_primary_10_1021_acs_langmuir_2c02903 crossref_primary_10_1039_C8NJ00394G crossref_primary_10_1016_j_fuel_2023_129440 crossref_primary_10_1039_C9NJ00170K crossref_primary_10_1007_s11144_015_0944_y crossref_primary_10_1016_j_ceramint_2016_10_153 crossref_primary_10_1016_j_apsusc_2020_146036 crossref_primary_10_1016_j_apsusc_2018_10_071 crossref_primary_10_1039_C8NJ04557G crossref_primary_10_1016_j_optmat_2024_116327 crossref_primary_10_1016_j_chemosphere_2020_126577 crossref_primary_10_1016_j_apcatb_2012_11_013 crossref_primary_10_1016_j_jhazmat_2021_128207 crossref_primary_10_1021_acssuschemeng_7b03847 crossref_primary_10_1039_C6CE00435K crossref_primary_10_1039_C6RA20473B crossref_primary_10_1016_j_apsusc_2019_04_065 crossref_primary_10_1039_c3dt52120f crossref_primary_10_1016_j_ultsonch_2019_01_035 crossref_primary_10_1039_D0RA05284A crossref_primary_10_1007_s10854_021_05399_3 crossref_primary_10_1016_j_mssp_2021_106441 crossref_primary_10_1016_j_materresbull_2015_09_024 crossref_primary_10_1007_s11051_022_05636_8 crossref_primary_10_1016_j_fuel_2023_129837 crossref_primary_10_1039_C5RA15629G crossref_primary_10_1007_s10854_024_12508_5 crossref_primary_10_1016_j_apcatb_2019_117874 crossref_primary_10_1016_j_arabjc_2023_104760 crossref_primary_10_1016_j_optmat_2024_115485 crossref_primary_10_1016_j_snb_2024_136283 crossref_primary_10_1039_C6RA07811G crossref_primary_10_1016_j_jallcom_2021_161757 crossref_primary_10_1007_s11705_023_2312_1 crossref_primary_10_1016_j_jhazmat_2013_03_046 crossref_primary_10_1016_j_nanoen_2020_105351 crossref_primary_10_1021_cs400889y crossref_primary_10_1002_cjoc_202400669 crossref_primary_10_1016_j_apcatb_2021_121026 crossref_primary_10_1016_j_cattod_2013_11_030 crossref_primary_10_1016_j_ceramint_2014_01_121 crossref_primary_10_1016_j_jlumin_2013_09_017 crossref_primary_10_1002_slct_202300137 crossref_primary_10_1016_j_jphotochem_2016_11_026 crossref_primary_10_1016_j_nanoso_2021_100762 crossref_primary_10_1016_j_ultsonch_2018_01_001 crossref_primary_10_1016_j_ccr_2022_214515 crossref_primary_10_1016_j_apsusc_2019_03_177 crossref_primary_10_1039_D3CC03436D crossref_primary_10_1016_j_jcat_2017_04_005 crossref_primary_10_1021_acsomega_3c01393 crossref_primary_10_4028_www_scientific_net_MSF_743_744_560 crossref_primary_10_1002_cctc_201701965 crossref_primary_10_1016_j_dyepig_2015_12_014 crossref_primary_10_1016_j_inoche_2019_107577 crossref_primary_10_1021_acssuschemeng_0c07011 crossref_primary_10_1016_j_solener_2019_01_021 crossref_primary_10_1016_j_ces_2018_12_011 crossref_primary_10_1021_acs_inorgchem_2c03860 crossref_primary_10_1016_j_apt_2021_10_022 crossref_primary_10_1016_j_materresbull_2014_05_006 crossref_primary_10_1016_j_optmat_2021_111840 crossref_primary_10_1039_C8NR03801E crossref_primary_10_1021_acsomega_9b04434 crossref_primary_10_1016_j_apsusc_2021_151370 crossref_primary_10_1039_D0RA07378D crossref_primary_10_1016_j_jallcom_2020_156935 crossref_primary_10_1007_s11595_020_2263_z crossref_primary_10_1016_j_apcata_2019_05_025 crossref_primary_10_1016_j_chemosphere_2022_135976 crossref_primary_10_1016_j_ijhydene_2023_01_372 crossref_primary_10_1016_j_ultsonch_2016_07_017 crossref_primary_10_1177_09544062231194832 crossref_primary_10_1016_j_jtice_2021_08_027 crossref_primary_10_1016_j_cej_2019_122397 crossref_primary_10_1016_j_nanoen_2016_12_054 |
Cites_doi | 10.1021/cr0500535 10.1021/ic700688f 10.1016/j.physe.2007.12.012 10.1021/jp071987v 10.1021/ja063453y 10.1016/j.catcom.2007.11.011 10.1021/cm0501517 10.1039/a707221j 10.1039/c0cp00540a 10.1021/es100084a 10.1016/j.apcata.2009.05.028 10.1021/jp052995j 10.1016/j.molcata.2011.03.012 10.1021/jp962700p 10.1016/j.apcatb.2009.07.022 10.1021/ar9002398 10.1021/ic062394m 10.1246/cl.1999.1103 10.1021/cr00035a013 10.1088/0957-4484/17/10/039 10.1021/ja909456f 10.1016/j.matchemphys.2009.10.039 10.1021/ja903781h 10.1021/ja807438z 10.1103/PhysRevLett.100.196102 10.1016/S1010-6030(00)00204-5 10.1021/ja00039a039 10.1021/cr00033a003 10.1002/anie.200500064 10.1021/la803370z 10.1021/cm071568a 10.1038/nmat1695 10.1021/jp9942670 10.1039/b924584g 10.1021/cr00033a004 10.1039/b008570g 10.1016/j.apcatb.2006.02.022 10.1021/ja8012402 10.1021/jp049789g 10.1021/j100166a063 10.1021/jp064591c |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7X8 7ST 7U7 C1K SOI |
DOI | 10.1016/j.jhazmat.2011.09.017 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts MEDLINE - Academic Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX MEDLINE - Academic Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database Toxicology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Chemistry Applied Sciences |
EISSN | 1873-3336 |
EndPage | 262 |
ExternalDocumentID | 21944838 24791020 10_1016_j_jhazmat_2011_09_017 US201500194917 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AI. AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLECG BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FBQ FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HMC HVGLF HZ~ IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SEN SES SEW SPC SPCBC SSG SSH SSJ SSZ T5K T9H TAE UAO VH1 WUQ XPP ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7X8 7ST 7U7 C1K SOI |
ID | FETCH-LOGICAL-c390t-cd5904f5c142ec1cb39a46ab4a0adf3432d77c5608e2d1998f54a3072477b8693 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 11:25:05 EDT 2025 Fri Jul 11 16:38:51 EDT 2025 Fri Jul 11 15:37:57 EDT 2025 Fri Jul 11 02:53:15 EDT 2025 Mon Jul 21 06:00:06 EDT 2025 Mon Jul 21 09:14:19 EDT 2025 Tue Jul 01 00:50:14 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 Thu Apr 03 09:44:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pollutant behavior Photocatalysis doped Bi Doping RhB Design Persistence Lifetime Phenol Adsorption Visible radiation Phenols Zr WO Oxidation Catalyst Photochemical degradation Oxygen vacancy |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-cd5904f5c142ec1cb39a46ab4a0adf3432d77c5608e2d1998f54a3072477b8693 |
Notes | http://dx.doi.org/10.1016/j.jhazmat.2011.09.017 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21944838 |
PQID | 1694501432 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_911155044 proquest_miscellaneous_902672958 proquest_miscellaneous_1770279257 proquest_miscellaneous_1694501432 pubmed_primary_21944838 pascalfrancis_primary_24791020 crossref_primary_10_1016_j_jhazmat_2011_09_017 crossref_citationtrail_10_1016_j_jhazmat_2011_09_017 fao_agris_US201500194917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-30 |
PublicationDateYYYYMMDD | 2011-11-30 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fu (10.1016/j.jhazmat.2011.09.017_bib0170) 2005; 109 Zhang (10.1016/j.jhazmat.2011.09.017_bib0100) 2009; 363 Wang (10.1016/j.jhazmat.2011.09.017_bib0040) 2009; 25 Wang (10.1016/j.jhazmat.2011.09.017_bib0150) 2008; 40 Wang (10.1016/j.jhazmat.2011.09.017_bib0135) 2009; 131 Kudo (10.1016/j.jhazmat.2011.09.017_bib0055) 1999; 28 Amano (10.1016/j.jhazmat.2011.09.017_bib0070) 2008; 130 Morales (10.1016/j.jhazmat.2011.09.017_bib0020) 2008; 130 Shang (10.1016/j.jhazmat.2011.09.017_bib0090) 2010; 120 Wu (10.1016/j.jhazmat.2011.09.017_bib0155) 2010; 132 Zheng (10.1016/j.jhazmat.2011.09.017_bib0045) 2007; 46 Linsebigler (10.1016/j.jhazmat.2011.09.017_bib0005) 1995; 95 Fujihara (10.1016/j.jhazmat.2011.09.017_bib0140) 2000; 132 Ishibashi (10.1016/j.jhazmat.2011.09.017_bib0160) 2000; 104 Youngblood (10.1016/j.jhazmat.2011.09.017_bib0025) 2009; 42 Zhou (10.1016/j.jhazmat.2011.09.017_bib0175) 2011; 340 Xiao (10.1016/j.jhazmat.2011.09.017_bib0095) 2008; 9 Lee (10.1016/j.jhazmat.2011.09.017_bib0105) 2001; 11 Chen (10.1016/j.jhazmat.2011.09.017_bib0015) 2007; 107 Li (10.1016/j.jhazmat.2011.09.017_bib0085) 2010; 39 Huang (10.1016/j.jhazmat.2011.09.017_bib0115) 2007; 111 Ren (10.1016/j.jhazmat.2011.09.017_bib0080) 2009; 92 Pillay (10.1016/j.jhazmat.2011.09.017_bib0200) 2006; 128 Hagfeldt (10.1016/j.jhazmat.2011.09.017_bib0010) 1995; 95 Zhang (10.1016/j.jhazmat.2011.09.017_bib0060) 2005; 17 Kuo (10.1016/j.jhazmat.2011.09.017_bib0035) 2007; 19 Gong (10.1016/j.jhazmat.2011.09.017_bib0050) 2006; 5 Atribak (10.1016/j.jhazmat.2011.09.017_bib0120) 2010; 12 Kim (10.1016/j.jhazmat.2011.09.017_bib0180) 2004; 108 Wang (10.1016/j.jhazmat.2011.09.017_bib0190) 1992; 114 Li (10.1016/j.jhazmat.2011.09.017_bib0075) 2010; 44 Naeem (10.1016/j.jhazmat.2011.09.017_bib0130) 2006; 17 Gerischer (10.1016/j.jhazmat.2011.09.017_bib0195) 1991; 95 Zheng (10.1016/j.jhazmat.2011.09.017_bib0125) 2007; 46 Kimmel (10.1016/j.jhazmat.2011.09.017_bib0205) 2008; 100 Hoffmann (10.1016/j.jhazmat.2011.09.017_bib0030) 1995; 95 Islam (10.1016/j.jhazmat.2011.09.017_bib0110) 1998; 8 Kim (10.1016/j.jhazmat.2011.09.017_bib0145) 2005; 44 Peiro (10.1016/j.jhazmat.2011.09.017_bib0165) 2006; 110 Cermenati (10.1016/j.jhazmat.2011.09.017_bib0185) 1997; 101 Fu (10.1016/j.jhazmat.2011.09.017_bib0065) 2006; 66 |
References_xml | – volume: 107 start-page: 2891 year: 2007 ident: 10.1016/j.jhazmat.2011.09.017_bib0015 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications publication-title: Chem. Rev. doi: 10.1021/cr0500535 – volume: 46 start-page: 6980 year: 2007 ident: 10.1016/j.jhazmat.2011.09.017_bib0125 article-title: Ag/ZnO heterostructure nanocrystals: synthesis characterization and photocatalysis publication-title: Inorg. Chem. doi: 10.1021/ic700688f – volume: 40 start-page: 2724 year: 2008 ident: 10.1016/j.jhazmat.2011.09.017_bib0150 article-title: The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles publication-title: Physica E doi: 10.1016/j.physe.2007.12.012 – volume: 111 start-page: 11952 year: 2007 ident: 10.1016/j.jhazmat.2011.09.017_bib0115 article-title: Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping publication-title: J. Phys. Chem. C doi: 10.1021/jp071987v – volume: 128 start-page: 14000 year: 2006 ident: 10.1016/j.jhazmat.2011.09.017_bib0200 article-title: Prediction of tetraoxygen formation on rutile TiO2 (110) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063453y – volume: 9 start-page: 1247 year: 2008 ident: 10.1016/j.jhazmat.2011.09.017_bib0095 article-title: Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation publication-title: Catal. Commun. doi: 10.1016/j.catcom.2007.11.011 – volume: 17 start-page: 3537 year: 2005 ident: 10.1016/j.jhazmat.2011.09.017_bib0060 article-title: Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts publication-title: Chem. Mater. doi: 10.1021/cm0501517 – volume: 8 start-page: 655 year: 1998 ident: 10.1016/j.jhazmat.2011.09.017_bib0110 article-title: Structural and computational studies of Bi2WO6 based oxygen ion conductors publication-title: J. Mater. Chem. doi: 10.1039/a707221j – volume: 12 start-page: 13770 year: 2010 ident: 10.1016/j.jhazmat.2011.09.017_bib0120 article-title: Contributions of surface and bulk heterogeneities to the NO oxidation activities of ceria–zirconia catalysts with composition Ce0.76Zr0.24O2 prepared by different methods publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00540a – volume: 44 start-page: 4276 year: 2010 ident: 10.1016/j.jhazmat.2011.09.017_bib0075 article-title: An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide publication-title: Environ. Sci. Technol. doi: 10.1021/es100084a – volume: 363 start-page: 221 year: 2009 ident: 10.1016/j.jhazmat.2011.09.017_bib0100 article-title: AgBr–Ag–Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2009.05.028 – volume: 109 start-page: 22432 year: 2005 ident: 10.1016/j.jhazmat.2011.09.017_bib0170 article-title: Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 publication-title: J. Phys. Chem. B doi: 10.1021/jp052995j – volume: 340 start-page: 77 year: 2011 ident: 10.1016/j.jhazmat.2011.09.017_bib0175 article-title: Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2011.03.012 – volume: 101 start-page: 2650 year: 1997 ident: 10.1016/j.jhazmat.2011.09.017_bib0185 article-title: Probing the TiO2 photocatalytic mechanism in water purification by use of quinoline, photo-fenton generated OH radicals and superoxide dismutase publication-title: J. Phys. Chem. B doi: 10.1021/jp962700p – volume: 92 start-page: 50 year: 2009 ident: 10.1016/j.jhazmat.2011.09.017_bib0080 article-title: Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2009.07.022 – volume: 42 start-page: 1966 year: 2009 ident: 10.1016/j.jhazmat.2011.09.017_bib0025 article-title: Visible light water splitting using dye-sensitized oxide semiconductors publication-title: Acc. Chem. Res. doi: 10.1021/ar9002398 – volume: 46 start-page: 6675 year: 2007 ident: 10.1016/j.jhazmat.2011.09.017_bib0045 article-title: Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property publication-title: Inorg. Chem. doi: 10.1021/ic062394m – volume: 28 start-page: 1103 year: 1999 ident: 10.1016/j.jhazmat.2011.09.017_bib0055 article-title: H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions publication-title: Chem. Lett. doi: 10.1246/cl.1999.1103 – volume: 95 start-page: 735 year: 1995 ident: 10.1016/j.jhazmat.2011.09.017_bib0005 article-title: Photocatalysis on TiO2 surfaces: principles mechanisms, and selected results publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – volume: 17 start-page: 2675 year: 2006 ident: 10.1016/j.jhazmat.2011.09.017_bib0130 article-title: Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0≤x≤0.10) nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/17/10/039 – volume: 132 start-page: 6679 year: 2010 ident: 10.1016/j.jhazmat.2011.09.017_bib0155 article-title: Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909456f – volume: 120 start-page: 155 year: 2010 ident: 10.1016/j.jhazmat.2011.09.017_bib0090 article-title: Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.10.039 – volume: 131 start-page: 12290 year: 2009 ident: 10.1016/j.jhazmat.2011.09.017_bib0135 article-title: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903781h – volume: 130 start-page: 17650 year: 2008 ident: 10.1016/j.jhazmat.2011.09.017_bib0070 article-title: Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807438z – volume: 100 start-page: 196102 year: 2008 ident: 10.1016/j.jhazmat.2011.09.017_bib0205 article-title: Tetraoxygen on reduced TiO2(110): oxygen adsorption and reactions with bridging oxygen vacancies publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.196102 – volume: 132 start-page: 99 year: 2000 ident: 10.1016/j.jhazmat.2011.09.017_bib0140 article-title: Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/S1010-6030(00)00204-5 – volume: 114 start-page: 5230 year: 1992 ident: 10.1016/j.jhazmat.2011.09.017_bib0190 article-title: Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a039 – volume: 95 start-page: 49 year: 1995 ident: 10.1016/j.jhazmat.2011.09.017_bib0010 article-title: Light-induced redox reactions in nanocrystalline systems publication-title: Chem. Rev. doi: 10.1021/cr00033a003 – volume: 44 start-page: 4585 year: 2005 ident: 10.1016/j.jhazmat.2011.09.017_bib0145 article-title: Photocatalytic nanodiodes for visible-light photocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200500064 – volume: 25 start-page: 1218 year: 2009 ident: 10.1016/j.jhazmat.2011.09.017_bib0040 article-title: Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes publication-title: Langmuir doi: 10.1021/la803370z – volume: 19 start-page: 5143 year: 2007 ident: 10.1016/j.jhazmat.2011.09.017_bib0035 article-title: Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts publication-title: Chem. Mater. doi: 10.1021/cm071568a – volume: 5 start-page: 665 year: 2006 ident: 10.1016/j.jhazmat.2011.09.017_bib0050 article-title: Steps on anatase TiO2 (101) publication-title: Nat. Mater. doi: 10.1038/nmat1695 – volume: 104 start-page: 4934 year: 2000 ident: 10.1016/j.jhazmat.2011.09.017_bib0160 article-title: Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water publication-title: J. Phys. Chem. B doi: 10.1021/jp9942670 – volume: 39 start-page: 3420 year: 2010 ident: 10.1016/j.jhazmat.2011.09.017_bib0085 article-title: Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light publication-title: Dalton Trans. doi: 10.1039/b924584g – volume: 95 start-page: 69 year: 1995 ident: 10.1016/j.jhazmat.2011.09.017_bib0030 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem. Rev. doi: 10.1021/cr00033a004 – volume: 11 start-page: 1096 year: 2001 ident: 10.1016/j.jhazmat.2011.09.017_bib0105 article-title: On possible Cu doping of Bi2WO6 publication-title: J. Mater. Chem. doi: 10.1039/b008570g – volume: 66 start-page: 100 year: 2006 ident: 10.1016/j.jhazmat.2011.09.017_bib0065 article-title: Nanosized Bi2WO6 catalysts prepared by hydrothermal synthesis and their photocatalytic properties publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2006.02.022 – volume: 130 start-page: 6318 year: 2008 ident: 10.1016/j.jhazmat.2011.09.017_bib0020 article-title: Combustion synthesis and characterization of nanocrystalline WO3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8012402 – volume: 108 start-page: 6402 year: 2004 ident: 10.1016/j.jhazmat.2011.09.017_bib0180 article-title: Comparative study of homogeneous and heterogeneous photocatalytic redox reactions: PW12O403− vs. TiO2 publication-title: J. Phys. Chem. B doi: 10.1021/jp049789g – volume: 95 start-page: 5261 year: 1991 ident: 10.1016/j.jhazmat.2011.09.017_bib0195 article-title: The role of oxygen in photooxidation of organic molecules on semiconductor particles publication-title: J. Phys. Chem. doi: 10.1021/j100166a063 – volume: 110 start-page: 23255 year: 2006 ident: 10.1016/j.jhazmat.2011.09.017_bib0165 article-title: Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: a transient absorption and oxygen scavenging study of different TiO2 preparations publication-title: J. Phys. Chem. B doi: 10.1021/jp064591c |
SSID | ssj0001754 |
Score | 2.4667726 |
Snippet | To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized... To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were... To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi2WO6 photocatalysts with oxygen vacancies were synthesized... |
SourceID | proquest pubmed pascalfrancis crossref fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 255 |
SubjectTerms | Adsorption Applied sciences Bismuth - chemistry Catalysis Catalytic reactions Charge Chemical engineering Chemistry Doping Electron Transport electrons Exact sciences and technology General and physical chemistry hypoxia Light Microscopy, Electron, Transmission oxidation oxygen Oxygen - chemistry phenol Phenol - isolation & purification Photocatalysis photocatalyst Photocatalysts Photochemical Processes Photoelectron Spectroscopy photolysis Pollution Reactors Rhodamines - isolation & purification Semiconductors Solutions superoxide anion Surface chemistry Surface Properties Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Time Factors Tungsten Compounds - chemistry Vacancies X-Ray Diffraction Zirconium Zirconium - chemistry |
Title | Enhanced photocatalytic activity of Bi₂WO₆ with oxygen vacancies by zirconium doping |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21944838 https://www.proquest.com/docview/1694501432 https://www.proquest.com/docview/1770279257 https://www.proquest.com/docview/902672958 https://www.proquest.com/docview/911155044 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfacYEDgvGx8jEZiduUkg87iY-AOk2obAdareJiOXaytoJk2lqgPfC3816cpK3WbsAlqlx_xH4_vzw_vw9C3gacZX6Klq1chKitShwVG-N4GoRXw6BN6Qvz-TQ8GbJPIz5qtfprVkvzWdLVy61-Jf9DVSgDuqKX7D9QtukUCuA30BeeQGF4_hWNe_nYXuBfjotZUWpiFmUAVl3lhABJ8MPEPz8Lrb61-LWAvo5-KF3m5L1G2XM5uYIj8WT-_ciUvlM7pNWxWgKW0F4WRFw7txs656_jyXSyuuupSs_TfDkuqo7R0kcVlgE3o5URIqvaaGW7rolAUzivvlSxzDOOAicIgiq09ZaymuOKDZ5p4_Te4OVWrTDtTmGGMLUq3KroutbZczN29umZPB72-3LQGw3a5J4Phwbket3fK4MfEJRKG4P6jVb-XO-2DrIhqbQzVaDdrLqGrZPZnCe7DyWlcDJ4RB5WdKLvLUQek1aa75MHa7Em90m7r34-IYMaMnQTMrSGDC0yaiFDETLUQoY2kKHJgjaQoRYyT8nwuDf4eOJUiTUcHQh35mjDhcsyrj3mp9rTSSAUC1XClKtMhq7GJoo0yMJx6ht0wsw4U_Ax8FkUJXEogmdkLy_y9IBQlehMGBMbLwhYEnGRxiqMUsUiplFZ3SGsXkSpq6jzmPzkm6zNC6eyWnuJay9dIWHtO6TbNLu0YVfuanAAFJLqAj6NcvjFR0UenF6YwL8ON8jWdAjTAWHZdzvkTU1HCcwVb8xUnsKOkl4oWBkB07-lThS5GIWTw0B0Rx2Bed58weNbqoDQwbnLWIc8t1BavSfMA7ho_OLu_l-S-6ud-Yrsza7m6WuQmmfJYbkZ_gBOIsGj |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photocatalytic+activity+of+Bi2WO6+with+oxygen+vacancies+by+zirconium+doping&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhang%2C+Zhijie&rft.au=Wang%2C+Wenzhong&rft.au=Gao%2C+Erping&rft.au=Shang%2C+Meng&rft.date=2011-11-30&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=196&rft.spage=255&rft_id=info:doi/10.1016%2Fj.jhazmat.2011.09.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |