Enhanced photocatalytic activity of Bi₂WO₆ with oxygen vacancies by zirconium doping

To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of c...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 196; pp. 255 - 262
Main Authors Zhang, Zhijie, Wang, Wenzhong, Gao, Erping, Shang, Meng, Xu, Jiehui
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 30.11.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O₂ on the semiconductor surface, thus facilitating the reduction of O₂ by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi₂WO₆ exhibited much enhanced photoactivity than the Bi₂WO₆ photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.
AbstractList To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O(2) on the semiconductor surface, thus facilitating the reduction of O(2) by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi(2)WO(6) exhibited much enhanced photoactivity than the Bi(2)WO(6) photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O(2) on the semiconductor surface, thus facilitating the reduction of O(2) by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi(2)WO(6) exhibited much enhanced photoactivity than the Bi(2)WO(6) photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.
To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O₂ on the semiconductor surface, thus facilitating the reduction of O₂ by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi₂WO₆ exhibited much enhanced photoactivity than the Bi₂WO₆ photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.
To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi2WO6 photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O2 on the semiconductor surface, thus facilitating the reduction of O2 by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi2WO6 exhibited much enhanced photoactivity than the Bi2WO6 photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.
To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were synthesized by zirconium doping. The oxygen vacancies as the positive charge centers can trap the electron easily, thus inhibiting the recombination of charge carriers and prolonging the lifetime of electron. Moreover, the formation of oxygen vacancies favors the adsorption of O(2) on the semiconductor surface, thus facilitating the reduction of O(2) by the trapped electrons to generate superoxide radicals, which play a key role in the oxidation of organics. Visible-light-induced photodegradation of rhodamine B (RhB) and phenol were carried out to evaluate the photoactivity of the products. The results showed that oxygen-deficient Bi(2)WO(6) exhibited much enhanced photoactivity than the Bi(2)WO(6) photocatalyst free of oxygen deficiency. This work provided a new concept for rational design and development of high-performance photocatalysts.
Author Xu, Jiehui
Gao, Erping
Shang, Meng
Wang, Wenzhong
Zhang, Zhijie
Author_xml – sequence: 1
  fullname: Zhang, Zhijie
– sequence: 2
  fullname: Wang, Wenzhong
– sequence: 3
  fullname: Gao, Erping
– sequence: 4
  fullname: Shang, Meng
– sequence: 5
  fullname: Xu, Jiehui
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24791020$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21944838$$D View this record in MEDLINE/PubMed
BookMark eNqF0stuEzEUBmALFdG08AjAbBBsJhzfxmOxgqpcpEpdQAU768TjSRxNxunYaZsus-BB-yQ4SgCJBVl58_1Hts9_Qo760DtCnlMYU6DV2_l4PsP7BaYxA0rHoMdA1SMyorXiJee8OiIj4CBKXmtxTE5inANkIsUTcsyoFqLm9Yj8OO9n2FvXFMtZSMFiwm6dvC3QJn_j07oIbfHBP2w23y8fNj-LW59mRbhbT11f3KDNUe9iMVkX936woferRdGEpe-nT8njFrvonu3PU3L18fzb2efy4vLTl7P3F6XlGlJpG6lBtNJSwZyldsI1igonAgGblgvOGqWsrKB2rKFa160UyEExodSkrjQ_Ja93c5dDuF65mMzCR-u6DnsXVtFoSqmUIMRhCaxSTMs6yzf_lVQpYEozqQ7TSgsJNL8j0xd7uposXGOWg1_gsDa_l5HBqz3AaLFrh-3vxr9OKE2BQXZy5-wQYhxc-4dQMNtymLnZl8Nsy2FAm7z5nHv3T876hMmHPg3ou4Ppl7t0i8HgdMg3u_qagcyt0kJn8Qs7Rcvz
CODEN JHMAD9
CitedBy_id crossref_primary_10_1039_c2nr12046a
crossref_primary_10_1039_C4RA06419D
crossref_primary_10_1088_2053_1591_aab6f5
crossref_primary_10_1016_j_apcatb_2017_06_041
crossref_primary_10_1039_D2NJ05600C
crossref_primary_10_1016_j_jhazmat_2015_12_044
crossref_primary_10_1016_j_apsusc_2015_07_003
crossref_primary_10_1016_j_optmat_2023_114741
crossref_primary_10_1016_j_catcom_2016_07_001
crossref_primary_10_1016_j_ceramint_2015_10_105
crossref_primary_10_1039_C6TA08703E
crossref_primary_10_15251_DJNB_2024_192_549
crossref_primary_10_7498_aps_68_20191010
crossref_primary_10_1007_s00339_021_05161_w
crossref_primary_10_1016_j_powtec_2017_03_052
crossref_primary_10_1016_j_ceramint_2023_08_273
crossref_primary_10_1016_j_jece_2014_02_019
crossref_primary_10_4028_www_scientific_net_MSF_914_168
crossref_primary_10_7498_aps_67_20172287
crossref_primary_10_1007_s11051_015_2945_1
crossref_primary_10_1016_j_apcatb_2022_122265
crossref_primary_10_1016_j_jcis_2015_12_054
crossref_primary_10_1155_2013_517643
crossref_primary_10_1007_s10853_018_2479_x
crossref_primary_10_1021_acs_jpcc_0c03539
crossref_primary_10_1007_s11783_024_1846_x
crossref_primary_10_1016_j_colsurfa_2020_124496
crossref_primary_10_1016_j_jallcom_2020_158446
crossref_primary_10_1016_j_ceramint_2022_07_186
crossref_primary_10_1021_acs_iecr_9b01067
crossref_primary_10_3389_fchem_2020_601983
crossref_primary_10_1007_s11814_020_0687_y
crossref_primary_10_1016_j_ceramint_2022_11_205
crossref_primary_10_5004_dwt_2017_21184
crossref_primary_10_1039_C6NR04859E
crossref_primary_10_1007_s11164_022_04926_z
crossref_primary_10_1039_C7CP02136D
crossref_primary_10_1007_s10854_024_12577_6
crossref_primary_10_1016_j_jallcom_2018_12_374
crossref_primary_10_1016_j_materresbull_2014_07_050
crossref_primary_10_1016_j_apcatb_2014_11_057
crossref_primary_10_2139_ssrn_4194524
crossref_primary_10_4028_www_scientific_net_AMR_700_67
crossref_primary_10_1016_j_matlet_2015_03_096
crossref_primary_10_1039_D2CY00610C
crossref_primary_10_1007_s12613_023_2656_z
crossref_primary_10_1016_j_colsurfa_2024_133142
crossref_primary_10_1016_j_jtice_2021_08_002
crossref_primary_10_1016_j_jallcom_2013_04_009
crossref_primary_10_1016_j_mtcomm_2023_105575
crossref_primary_10_1021_acs_jpclett_3c02042
crossref_primary_10_1021_jp500645p
crossref_primary_10_1088_2053_1591_ab2965
crossref_primary_10_1007_s10854_017_7731_7
crossref_primary_10_1016_j_cattod_2023_114413
crossref_primary_10_1002_cctc_201500714
crossref_primary_10_1039_D3RA01987J
crossref_primary_10_1016_j_ceramint_2014_03_176
crossref_primary_10_1016_j_matchar_2015_01_016
crossref_primary_10_1016_j_cej_2019_123956
crossref_primary_10_1039_c3ra23347b
crossref_primary_10_1016_j_jcis_2017_08_056
crossref_primary_10_1016_j_apsusc_2018_01_089
crossref_primary_10_1016_j_cej_2021_131550
crossref_primary_10_1016_j_ijhydene_2024_06_419
crossref_primary_10_1007_s40843_024_3199_9
crossref_primary_10_5004_dwt_2018_22461
crossref_primary_10_3762_bjnano_10_141
crossref_primary_10_1007_s11051_017_4101_6
crossref_primary_10_1016_j_cej_2021_132377
crossref_primary_10_1016_j_inoche_2021_108960
crossref_primary_10_1016_j_matchemphys_2020_122672
crossref_primary_10_1016_S1872_2067_19_63506_0
crossref_primary_10_1016_j_seppur_2023_123554
crossref_primary_10_1016_j_mcat_2017_02_042
crossref_primary_10_1016_j_jallcom_2024_175881
crossref_primary_10_1021_am2017199
crossref_primary_10_1016_j_jphotochem_2022_113774
crossref_primary_10_1007_s11581_016_1762_6
crossref_primary_10_1016_j_apsusc_2020_145309
crossref_primary_10_1002_jctb_7379
crossref_primary_10_1002_aenm_201600501
crossref_primary_10_1016_j_ceramint_2018_08_343
crossref_primary_10_1016_j_ceramint_2022_08_004
crossref_primary_10_1039_D1CY00739D
crossref_primary_10_1016_j_catcom_2023_106760
crossref_primary_10_1007_s10854_018_9999_7
crossref_primary_10_1016_j_chemosphere_2022_135652
crossref_primary_10_1039_C9SC06325K
crossref_primary_10_1002_ppsc_202100198
crossref_primary_10_1039_D4TA07579J
crossref_primary_10_1088_0957_4484_26_36_364001
crossref_primary_10_1016_j_apsusc_2024_161064
crossref_primary_10_1002_aelm_202100301
crossref_primary_10_1016_j_jallcom_2020_157421
crossref_primary_10_1016_j_jcis_2022_05_056
crossref_primary_10_1016_j_materresbull_2014_04_001
crossref_primary_10_1007_s10854_015_3680_1
crossref_primary_10_1002_chem_201602168
crossref_primary_10_1186_s11671_016_1319_7
crossref_primary_10_1016_j_apsusc_2024_159867
crossref_primary_10_1039_C4RA14318C
crossref_primary_10_5004_dwt_2018_21626
crossref_primary_10_1039_D0RA03094E
crossref_primary_10_1016_j_cej_2019_123418
crossref_primary_10_1016_j_optmat_2023_114424
crossref_primary_10_1021_acs_langmuir_2c02903
crossref_primary_10_1039_C8NJ00394G
crossref_primary_10_1016_j_fuel_2023_129440
crossref_primary_10_1039_C9NJ00170K
crossref_primary_10_1007_s11144_015_0944_y
crossref_primary_10_1016_j_ceramint_2016_10_153
crossref_primary_10_1016_j_apsusc_2020_146036
crossref_primary_10_1016_j_apsusc_2018_10_071
crossref_primary_10_1039_C8NJ04557G
crossref_primary_10_1016_j_optmat_2024_116327
crossref_primary_10_1016_j_chemosphere_2020_126577
crossref_primary_10_1016_j_apcatb_2012_11_013
crossref_primary_10_1016_j_jhazmat_2021_128207
crossref_primary_10_1021_acssuschemeng_7b03847
crossref_primary_10_1039_C6CE00435K
crossref_primary_10_1039_C6RA20473B
crossref_primary_10_1016_j_apsusc_2019_04_065
crossref_primary_10_1039_c3dt52120f
crossref_primary_10_1016_j_ultsonch_2019_01_035
crossref_primary_10_1039_D0RA05284A
crossref_primary_10_1007_s10854_021_05399_3
crossref_primary_10_1016_j_mssp_2021_106441
crossref_primary_10_1016_j_materresbull_2015_09_024
crossref_primary_10_1007_s11051_022_05636_8
crossref_primary_10_1016_j_fuel_2023_129837
crossref_primary_10_1039_C5RA15629G
crossref_primary_10_1007_s10854_024_12508_5
crossref_primary_10_1016_j_apcatb_2019_117874
crossref_primary_10_1016_j_arabjc_2023_104760
crossref_primary_10_1016_j_optmat_2024_115485
crossref_primary_10_1016_j_snb_2024_136283
crossref_primary_10_1039_C6RA07811G
crossref_primary_10_1016_j_jallcom_2021_161757
crossref_primary_10_1007_s11705_023_2312_1
crossref_primary_10_1016_j_jhazmat_2013_03_046
crossref_primary_10_1016_j_nanoen_2020_105351
crossref_primary_10_1021_cs400889y
crossref_primary_10_1002_cjoc_202400669
crossref_primary_10_1016_j_apcatb_2021_121026
crossref_primary_10_1016_j_cattod_2013_11_030
crossref_primary_10_1016_j_ceramint_2014_01_121
crossref_primary_10_1016_j_jlumin_2013_09_017
crossref_primary_10_1002_slct_202300137
crossref_primary_10_1016_j_jphotochem_2016_11_026
crossref_primary_10_1016_j_nanoso_2021_100762
crossref_primary_10_1016_j_ultsonch_2018_01_001
crossref_primary_10_1016_j_ccr_2022_214515
crossref_primary_10_1016_j_apsusc_2019_03_177
crossref_primary_10_1039_D3CC03436D
crossref_primary_10_1016_j_jcat_2017_04_005
crossref_primary_10_1021_acsomega_3c01393
crossref_primary_10_4028_www_scientific_net_MSF_743_744_560
crossref_primary_10_1002_cctc_201701965
crossref_primary_10_1016_j_dyepig_2015_12_014
crossref_primary_10_1016_j_inoche_2019_107577
crossref_primary_10_1021_acssuschemeng_0c07011
crossref_primary_10_1016_j_solener_2019_01_021
crossref_primary_10_1016_j_ces_2018_12_011
crossref_primary_10_1021_acs_inorgchem_2c03860
crossref_primary_10_1016_j_apt_2021_10_022
crossref_primary_10_1016_j_materresbull_2014_05_006
crossref_primary_10_1016_j_optmat_2021_111840
crossref_primary_10_1039_C8NR03801E
crossref_primary_10_1021_acsomega_9b04434
crossref_primary_10_1016_j_apsusc_2021_151370
crossref_primary_10_1039_D0RA07378D
crossref_primary_10_1016_j_jallcom_2020_156935
crossref_primary_10_1007_s11595_020_2263_z
crossref_primary_10_1016_j_apcata_2019_05_025
crossref_primary_10_1016_j_chemosphere_2022_135976
crossref_primary_10_1016_j_ijhydene_2023_01_372
crossref_primary_10_1016_j_ultsonch_2016_07_017
crossref_primary_10_1177_09544062231194832
crossref_primary_10_1016_j_jtice_2021_08_027
crossref_primary_10_1016_j_cej_2019_122397
crossref_primary_10_1016_j_nanoen_2016_12_054
Cites_doi 10.1021/cr0500535
10.1021/ic700688f
10.1016/j.physe.2007.12.012
10.1021/jp071987v
10.1021/ja063453y
10.1016/j.catcom.2007.11.011
10.1021/cm0501517
10.1039/a707221j
10.1039/c0cp00540a
10.1021/es100084a
10.1016/j.apcata.2009.05.028
10.1021/jp052995j
10.1016/j.molcata.2011.03.012
10.1021/jp962700p
10.1016/j.apcatb.2009.07.022
10.1021/ar9002398
10.1021/ic062394m
10.1246/cl.1999.1103
10.1021/cr00035a013
10.1088/0957-4484/17/10/039
10.1021/ja909456f
10.1016/j.matchemphys.2009.10.039
10.1021/ja903781h
10.1021/ja807438z
10.1103/PhysRevLett.100.196102
10.1016/S1010-6030(00)00204-5
10.1021/ja00039a039
10.1021/cr00033a003
10.1002/anie.200500064
10.1021/la803370z
10.1021/cm071568a
10.1038/nmat1695
10.1021/jp9942670
10.1039/b924584g
10.1021/cr00033a004
10.1039/b008570g
10.1016/j.apcatb.2006.02.022
10.1021/ja8012402
10.1021/jp049789g
10.1021/j100166a063
10.1021/jp064591c
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7X8
7ST
7U7
C1K
SOI
DOI 10.1016/j.jhazmat.2011.09.017
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
MEDLINE - Academic
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
MEDLINE - Academic
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Materials Research Database
Toxicology Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Chemistry
Applied Sciences
EISSN 1873-3336
EndPage 262
ExternalDocumentID 21944838
24791020
10_1016_j_jhazmat_2011_09_017
US201500194917
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLECG
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FBQ
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSG
SSH
SSJ
SSZ
T5K
T9H
TAE
UAO
VH1
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
7X8
7ST
7U7
C1K
SOI
ID FETCH-LOGICAL-c390t-cd5904f5c142ec1cb39a46ab4a0adf3432d77c5608e2d1998f54a3072477b8693
ISSN 0304-3894
1873-3336
IngestDate Tue Aug 05 11:25:05 EDT 2025
Fri Jul 11 16:38:51 EDT 2025
Fri Jul 11 15:37:57 EDT 2025
Fri Jul 11 02:53:15 EDT 2025
Mon Jul 21 06:00:06 EDT 2025
Mon Jul 21 09:14:19 EDT 2025
Tue Jul 01 00:50:14 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
Thu Apr 03 09:44:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Pollutant behavior
Photocatalysis
doped Bi
Doping
RhB
Design
Persistence
Lifetime
Phenol
Adsorption
Visible radiation
Phenols
Zr
WO
Oxidation
Catalyst
Photochemical degradation
Oxygen vacancy
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-cd5904f5c142ec1cb39a46ab4a0adf3432d77c5608e2d1998f54a3072477b8693
Notes http://dx.doi.org/10.1016/j.jhazmat.2011.09.017
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21944838
PQID 1694501432
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_911155044
proquest_miscellaneous_902672958
proquest_miscellaneous_1770279257
proquest_miscellaneous_1694501432
pubmed_primary_21944838
pascalfrancis_primary_24791020
crossref_primary_10_1016_j_jhazmat_2011_09_017
crossref_citationtrail_10_1016_j_jhazmat_2011_09_017
fao_agris_US201500194917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-30
PublicationDateYYYYMMDD 2011-11-30
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-30
  day: 30
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fu (10.1016/j.jhazmat.2011.09.017_bib0170) 2005; 109
Zhang (10.1016/j.jhazmat.2011.09.017_bib0100) 2009; 363
Wang (10.1016/j.jhazmat.2011.09.017_bib0040) 2009; 25
Wang (10.1016/j.jhazmat.2011.09.017_bib0150) 2008; 40
Wang (10.1016/j.jhazmat.2011.09.017_bib0135) 2009; 131
Kudo (10.1016/j.jhazmat.2011.09.017_bib0055) 1999; 28
Amano (10.1016/j.jhazmat.2011.09.017_bib0070) 2008; 130
Morales (10.1016/j.jhazmat.2011.09.017_bib0020) 2008; 130
Shang (10.1016/j.jhazmat.2011.09.017_bib0090) 2010; 120
Wu (10.1016/j.jhazmat.2011.09.017_bib0155) 2010; 132
Zheng (10.1016/j.jhazmat.2011.09.017_bib0045) 2007; 46
Linsebigler (10.1016/j.jhazmat.2011.09.017_bib0005) 1995; 95
Fujihara (10.1016/j.jhazmat.2011.09.017_bib0140) 2000; 132
Ishibashi (10.1016/j.jhazmat.2011.09.017_bib0160) 2000; 104
Youngblood (10.1016/j.jhazmat.2011.09.017_bib0025) 2009; 42
Zhou (10.1016/j.jhazmat.2011.09.017_bib0175) 2011; 340
Xiao (10.1016/j.jhazmat.2011.09.017_bib0095) 2008; 9
Lee (10.1016/j.jhazmat.2011.09.017_bib0105) 2001; 11
Chen (10.1016/j.jhazmat.2011.09.017_bib0015) 2007; 107
Li (10.1016/j.jhazmat.2011.09.017_bib0085) 2010; 39
Huang (10.1016/j.jhazmat.2011.09.017_bib0115) 2007; 111
Ren (10.1016/j.jhazmat.2011.09.017_bib0080) 2009; 92
Pillay (10.1016/j.jhazmat.2011.09.017_bib0200) 2006; 128
Hagfeldt (10.1016/j.jhazmat.2011.09.017_bib0010) 1995; 95
Zhang (10.1016/j.jhazmat.2011.09.017_bib0060) 2005; 17
Kuo (10.1016/j.jhazmat.2011.09.017_bib0035) 2007; 19
Gong (10.1016/j.jhazmat.2011.09.017_bib0050) 2006; 5
Atribak (10.1016/j.jhazmat.2011.09.017_bib0120) 2010; 12
Kim (10.1016/j.jhazmat.2011.09.017_bib0180) 2004; 108
Wang (10.1016/j.jhazmat.2011.09.017_bib0190) 1992; 114
Li (10.1016/j.jhazmat.2011.09.017_bib0075) 2010; 44
Naeem (10.1016/j.jhazmat.2011.09.017_bib0130) 2006; 17
Gerischer (10.1016/j.jhazmat.2011.09.017_bib0195) 1991; 95
Zheng (10.1016/j.jhazmat.2011.09.017_bib0125) 2007; 46
Kimmel (10.1016/j.jhazmat.2011.09.017_bib0205) 2008; 100
Hoffmann (10.1016/j.jhazmat.2011.09.017_bib0030) 1995; 95
Islam (10.1016/j.jhazmat.2011.09.017_bib0110) 1998; 8
Kim (10.1016/j.jhazmat.2011.09.017_bib0145) 2005; 44
Peiro (10.1016/j.jhazmat.2011.09.017_bib0165) 2006; 110
Cermenati (10.1016/j.jhazmat.2011.09.017_bib0185) 1997; 101
Fu (10.1016/j.jhazmat.2011.09.017_bib0065) 2006; 66
References_xml – volume: 107
  start-page: 2891
  year: 2007
  ident: 10.1016/j.jhazmat.2011.09.017_bib0015
  article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr0500535
– volume: 46
  start-page: 6980
  year: 2007
  ident: 10.1016/j.jhazmat.2011.09.017_bib0125
  article-title: Ag/ZnO heterostructure nanocrystals: synthesis characterization and photocatalysis
  publication-title: Inorg. Chem.
  doi: 10.1021/ic700688f
– volume: 40
  start-page: 2724
  year: 2008
  ident: 10.1016/j.jhazmat.2011.09.017_bib0150
  article-title: The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles
  publication-title: Physica E
  doi: 10.1016/j.physe.2007.12.012
– volume: 111
  start-page: 11952
  year: 2007
  ident: 10.1016/j.jhazmat.2011.09.017_bib0115
  article-title: Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp071987v
– volume: 128
  start-page: 14000
  year: 2006
  ident: 10.1016/j.jhazmat.2011.09.017_bib0200
  article-title: Prediction of tetraoxygen formation on rutile TiO2 (110)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063453y
– volume: 9
  start-page: 1247
  year: 2008
  ident: 10.1016/j.jhazmat.2011.09.017_bib0095
  article-title: Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2007.11.011
– volume: 17
  start-page: 3537
  year: 2005
  ident: 10.1016/j.jhazmat.2011.09.017_bib0060
  article-title: Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/cm0501517
– volume: 8
  start-page: 655
  year: 1998
  ident: 10.1016/j.jhazmat.2011.09.017_bib0110
  article-title: Structural and computational studies of Bi2WO6 based oxygen ion conductors
  publication-title: J. Mater. Chem.
  doi: 10.1039/a707221j
– volume: 12
  start-page: 13770
  year: 2010
  ident: 10.1016/j.jhazmat.2011.09.017_bib0120
  article-title: Contributions of surface and bulk heterogeneities to the NO oxidation activities of ceria–zirconia catalysts with composition Ce0.76Zr0.24O2 prepared by different methods
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00540a
– volume: 44
  start-page: 4276
  year: 2010
  ident: 10.1016/j.jhazmat.2011.09.017_bib0075
  article-title: An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100084a
– volume: 363
  start-page: 221
  year: 2009
  ident: 10.1016/j.jhazmat.2011.09.017_bib0100
  article-title: AgBr–Ag–Bi2WO6 nanojunction system: a novel and efficient photocatalyst with double visible-light active components
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2009.05.028
– volume: 109
  start-page: 22432
  year: 2005
  ident: 10.1016/j.jhazmat.2011.09.017_bib0170
  article-title: Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052995j
– volume: 340
  start-page: 77
  year: 2011
  ident: 10.1016/j.jhazmat.2011.09.017_bib0175
  article-title: Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2011.03.012
– volume: 101
  start-page: 2650
  year: 1997
  ident: 10.1016/j.jhazmat.2011.09.017_bib0185
  article-title: Probing the TiO2 photocatalytic mechanism in water purification by use of quinoline, photo-fenton generated OH radicals and superoxide dismutase
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp962700p
– volume: 92
  start-page: 50
  year: 2009
  ident: 10.1016/j.jhazmat.2011.09.017_bib0080
  article-title: Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2009.07.022
– volume: 42
  start-page: 1966
  year: 2009
  ident: 10.1016/j.jhazmat.2011.09.017_bib0025
  article-title: Visible light water splitting using dye-sensitized oxide semiconductors
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9002398
– volume: 46
  start-page: 6675
  year: 2007
  ident: 10.1016/j.jhazmat.2011.09.017_bib0045
  article-title: Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property
  publication-title: Inorg. Chem.
  doi: 10.1021/ic062394m
– volume: 28
  start-page: 1103
  year: 1999
  ident: 10.1016/j.jhazmat.2011.09.017_bib0055
  article-title: H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1999.1103
– volume: 95
  start-page: 735
  year: 1995
  ident: 10.1016/j.jhazmat.2011.09.017_bib0005
  article-title: Photocatalysis on TiO2 surfaces: principles mechanisms, and selected results
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a013
– volume: 17
  start-page: 2675
  year: 2006
  ident: 10.1016/j.jhazmat.2011.09.017_bib0130
  article-title: Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0≤x≤0.10) nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/10/039
– volume: 132
  start-page: 6679
  year: 2010
  ident: 10.1016/j.jhazmat.2011.09.017_bib0155
  article-title: Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909456f
– volume: 120
  start-page: 155
  year: 2010
  ident: 10.1016/j.jhazmat.2011.09.017_bib0090
  article-title: Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2009.10.039
– volume: 131
  start-page: 12290
  year: 2009
  ident: 10.1016/j.jhazmat.2011.09.017_bib0135
  article-title: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903781h
– volume: 130
  start-page: 17650
  year: 2008
  ident: 10.1016/j.jhazmat.2011.09.017_bib0070
  article-title: Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807438z
– volume: 100
  start-page: 196102
  year: 2008
  ident: 10.1016/j.jhazmat.2011.09.017_bib0205
  article-title: Tetraoxygen on reduced TiO2(110): oxygen adsorption and reactions with bridging oxygen vacancies
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.196102
– volume: 132
  start-page: 99
  year: 2000
  ident: 10.1016/j.jhazmat.2011.09.017_bib0140
  article-title: Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/S1010-6030(00)00204-5
– volume: 114
  start-page: 5230
  year: 1992
  ident: 10.1016/j.jhazmat.2011.09.017_bib0190
  article-title: Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00039a039
– volume: 95
  start-page: 49
  year: 1995
  ident: 10.1016/j.jhazmat.2011.09.017_bib0010
  article-title: Light-induced redox reactions in nanocrystalline systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a003
– volume: 44
  start-page: 4585
  year: 2005
  ident: 10.1016/j.jhazmat.2011.09.017_bib0145
  article-title: Photocatalytic nanodiodes for visible-light photocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200500064
– volume: 25
  start-page: 1218
  year: 2009
  ident: 10.1016/j.jhazmat.2011.09.017_bib0040
  article-title: Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes
  publication-title: Langmuir
  doi: 10.1021/la803370z
– volume: 19
  start-page: 5143
  year: 2007
  ident: 10.1016/j.jhazmat.2011.09.017_bib0035
  article-title: Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/cm071568a
– volume: 5
  start-page: 665
  year: 2006
  ident: 10.1016/j.jhazmat.2011.09.017_bib0050
  article-title: Steps on anatase TiO2 (101)
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1695
– volume: 104
  start-page: 4934
  year: 2000
  ident: 10.1016/j.jhazmat.2011.09.017_bib0160
  article-title: Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9942670
– volume: 39
  start-page: 3420
  year: 2010
  ident: 10.1016/j.jhazmat.2011.09.017_bib0085
  article-title: Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light
  publication-title: Dalton Trans.
  doi: 10.1039/b924584g
– volume: 95
  start-page: 69
  year: 1995
  ident: 10.1016/j.jhazmat.2011.09.017_bib0030
  article-title: Environmental applications of semiconductor photocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
– volume: 11
  start-page: 1096
  year: 2001
  ident: 10.1016/j.jhazmat.2011.09.017_bib0105
  article-title: On possible Cu doping of Bi2WO6
  publication-title: J. Mater. Chem.
  doi: 10.1039/b008570g
– volume: 66
  start-page: 100
  year: 2006
  ident: 10.1016/j.jhazmat.2011.09.017_bib0065
  article-title: Nanosized Bi2WO6 catalysts prepared by hydrothermal synthesis and their photocatalytic properties
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2006.02.022
– volume: 130
  start-page: 6318
  year: 2008
  ident: 10.1016/j.jhazmat.2011.09.017_bib0020
  article-title: Combustion synthesis and characterization of nanocrystalline WO3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8012402
– volume: 108
  start-page: 6402
  year: 2004
  ident: 10.1016/j.jhazmat.2011.09.017_bib0180
  article-title: Comparative study of homogeneous and heterogeneous photocatalytic redox reactions: PW12O403− vs. TiO2
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049789g
– volume: 95
  start-page: 5261
  year: 1991
  ident: 10.1016/j.jhazmat.2011.09.017_bib0195
  article-title: The role of oxygen in photooxidation of organic molecules on semiconductor particles
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100166a063
– volume: 110
  start-page: 23255
  year: 2006
  ident: 10.1016/j.jhazmat.2011.09.017_bib0165
  article-title: Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: a transient absorption and oxygen scavenging study of different TiO2 preparations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp064591c
SSID ssj0001754
Score 2.4667726
Snippet To overcome the drawback of low photocatalytic efficiency brought by electron–hole recombination, Bi₂WO₆ photocatalysts with oxygen vacancies were synthesized...
To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi(2)WO(6) photocatalysts with oxygen vacancies were...
To overcome the drawback of low photocatalytic efficiency brought by electron-hole recombination, Bi2WO6 photocatalysts with oxygen vacancies were synthesized...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 255
SubjectTerms Adsorption
Applied sciences
Bismuth - chemistry
Catalysis
Catalytic reactions
Charge
Chemical engineering
Chemistry
Doping
Electron Transport
electrons
Exact sciences and technology
General and physical chemistry
hypoxia
Light
Microscopy, Electron, Transmission
oxidation
oxygen
Oxygen - chemistry
phenol
Phenol - isolation & purification
Photocatalysis
photocatalyst
Photocatalysts
Photochemical Processes
Photoelectron Spectroscopy
photolysis
Pollution
Reactors
Rhodamines - isolation & purification
Semiconductors
Solutions
superoxide anion
Surface chemistry
Surface Properties
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Time Factors
Tungsten Compounds - chemistry
Vacancies
X-Ray Diffraction
Zirconium
Zirconium - chemistry
Title Enhanced photocatalytic activity of Bi₂WO₆ with oxygen vacancies by zirconium doping
URI https://www.ncbi.nlm.nih.gov/pubmed/21944838
https://www.proquest.com/docview/1694501432
https://www.proquest.com/docview/1770279257
https://www.proquest.com/docview/902672958
https://www.proquest.com/docview/911155044
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfacYEDgvGx8jEZiduUkg87iY-AOk2obAdareJiOXaytoJk2lqgPfC3816cpK3WbsAlqlx_xH4_vzw_vw9C3gacZX6Klq1chKitShwVG-N4GoRXw6BN6Qvz-TQ8GbJPIz5qtfprVkvzWdLVy61-Jf9DVSgDuqKX7D9QtukUCuA30BeeQGF4_hWNe_nYXuBfjotZUWpiFmUAVl3lhABJ8MPEPz8Lrb61-LWAvo5-KF3m5L1G2XM5uYIj8WT-_ciUvlM7pNWxWgKW0F4WRFw7txs656_jyXSyuuupSs_TfDkuqo7R0kcVlgE3o5URIqvaaGW7rolAUzivvlSxzDOOAicIgiq09ZaymuOKDZ5p4_Te4OVWrTDtTmGGMLUq3KroutbZczN29umZPB72-3LQGw3a5J4Phwbket3fK4MfEJRKG4P6jVb-XO-2DrIhqbQzVaDdrLqGrZPZnCe7DyWlcDJ4RB5WdKLvLUQek1aa75MHa7Em90m7r34-IYMaMnQTMrSGDC0yaiFDETLUQoY2kKHJgjaQoRYyT8nwuDf4eOJUiTUcHQh35mjDhcsyrj3mp9rTSSAUC1XClKtMhq7GJoo0yMJx6ht0wsw4U_Ax8FkUJXEogmdkLy_y9IBQlehMGBMbLwhYEnGRxiqMUsUiplFZ3SGsXkSpq6jzmPzkm6zNC6eyWnuJay9dIWHtO6TbNLu0YVfuanAAFJLqAj6NcvjFR0UenF6YwL8ON8jWdAjTAWHZdzvkTU1HCcwVb8xUnsKOkl4oWBkB07-lThS5GIWTw0B0Rx2Bed58weNbqoDQwbnLWIc8t1BavSfMA7ho_OLu_l-S-6ud-Yrsza7m6WuQmmfJYbkZ_gBOIsGj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photocatalytic+activity+of+Bi2WO6+with+oxygen+vacancies+by+zirconium+doping&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhang%2C+Zhijie&rft.au=Wang%2C+Wenzhong&rft.au=Gao%2C+Erping&rft.au=Shang%2C+Meng&rft.date=2011-11-30&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=196&rft.spage=255&rft_id=info:doi/10.1016%2Fj.jhazmat.2011.09.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon