Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain

Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 39; no. 3; pp. 2170 - 2182
Main Authors Medrano, Roberto Leo, Thomas, Gray Cortright, Keais, Connor G., Rouse, Elliott J., Gregg, Robert D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multiactivity database of ten able-bodied subjects. We demonstrate in live experiments with a new cohort of ten able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (<inline-formula><tex-math notation="LaTeX">N=10</tex-math></inline-formula>, phase root-mean-square error (RMSE): 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.4%) and a real-world stress test with extremely uneven terrain (<inline-formula><tex-math notation="LaTeX">N=1</tex-math></inline-formula>, phase RMSE: 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.7%).
AbstractList Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multiactivity database of ten able-bodied subjects. We demonstrate in live experiments with a new cohort of ten able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials ([Formula Omitted], phase root-mean-square error (RMSE): 4.8 [Formula Omitted] 2.4%) and a real-world stress test with extremely uneven terrain ([Formula Omitted], phase RMSE: 4.8 [Formula Omitted] 2.7%).
Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).
Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multiactivity database of ten able-bodied subjects. We demonstrate in live experiments with a new cohort of ten able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (<inline-formula><tex-math notation="LaTeX">N=10</tex-math></inline-formula>, phase root-mean-square error (RMSE): 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.4%) and a real-world stress test with extremely uneven terrain (<inline-formula><tex-math notation="LaTeX">N=1</tex-math></inline-formula>, phase RMSE: 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.7%).
Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).
Author Gregg, Robert D.
Medrano, Roberto Leo
Rouse, Elliott J.
Thomas, Gray Cortright
Keais, Connor G.
Author_xml – sequence: 1
  givenname: Roberto Leo
  orcidid: 0000-0002-8342-0494
  surname: Medrano
  fullname: Medrano, Roberto Leo
  email: leomed@umich.edu
  organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 2
  givenname: Gray Cortright
  orcidid: 0000-0003-4466-3466
  surname: Thomas
  fullname: Thomas, Gray Cortright
  email: gcthomas@umich.edu
  organization: Department of Robotics, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Connor G.
  orcidid: 0000-0003-2278-9906
  surname: Keais
  fullname: Keais, Connor G.
  email: ckeais@umich.edu
  organization: Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 4
  givenname: Elliott J.
  orcidid: 0000-0003-3880-1527
  surname: Rouse
  fullname: Rouse, Elliott J.
  email: ejrouse@umich.edu
  organization: Department of Mechanical Engineering and the Department of Robotics, University of Michigan, Ann Arbor, MI, USA
– sequence: 5
  givenname: Robert D.
  orcidid: 0000-0002-0729-2857
  surname: Gregg
  fullname: Gregg, Robert D.
  email: rdgregg@umich.edu
  organization: Department of Robotics, University of Michigan, Ann Arbor, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37304231$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rGzEQxUVJaT7aew-lCHrJZV19rOTVMRg3LQQSwuYsZO1sq1gruZKcJv995diBkkNhQAP6vWHmvVN0FGIAhD5SMqOUqK_97fWMEcZnnHEhuvYNOqGqpQ1pZXdUeyFYw4nqjtFpzveEsFYR_g4d8zknLeP0BG1uwfimdxPgS-MKvvllMmATBtybvMbLXNxkiosBjzHhRQwlRe9d-IkNvol_IMGAL8LaA14-xrwGD6WytZaPJcEE_gnfBXiAgHtIybjwHr0djc_w4fCeobtvy37xvbm6vvyxuLhqLFekNLZlINiozLgarZWCqrmSHJScq3qopNKyjhNrLCWroRN8aMUgqKwfIMeWGX6GzvdzNyn-3kIuenLZgvcmQNxmzTomqJBzxir65RV6H7cp1O12FKeK005W6vOB2q4mGPQmVWfSk37xsgJyD9gUc04wauvKs3elHu41JXoXmq6h6V1o-hBaFZJXwpfZ_5F82kscAPyD14QFZfwvKSagGg
CODEN ITREAE
CitedBy_id crossref_primary_10_1109_LRA_2025_3535186
crossref_primary_10_1109_LRA_2024_3414259
crossref_primary_10_1038_s42256_024_00894_8
crossref_primary_10_1109_TCST_2024_3429908
crossref_primary_10_3390_s24082390
crossref_primary_10_1115_1_4067842
crossref_primary_10_1115_1_4067401
crossref_primary_10_1109_TNSRE_2024_3435931
crossref_primary_10_1038_s41598_024_84253_y
crossref_primary_10_1109_TIM_2023_3343745
crossref_primary_10_1038_s41586_024_08157_7
crossref_primary_10_1126_scirobotics_adi8852
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1002_aisy_202400278
crossref_primary_10_1109_TNSRE_2023_3333685
crossref_primary_10_1016_j_eswa_2025_126862
crossref_primary_10_1109_LRA_2024_3354558
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1002_admt_202400857
crossref_primary_10_1109_LRA_2024_3430870
crossref_primary_10_1109_TMRB_2024_3517136
crossref_primary_10_1109_TIM_2023_3343771
crossref_primary_10_1126_scirobotics_adr8282
crossref_primary_10_1126_sciadv_adq0288
crossref_primary_10_1017_wtc_2024_11
crossref_primary_10_1109_TIM_2025_3545854
crossref_primary_10_3390_s24196318
Cites_doi 10.1109/BioRob49111.2020.9224413
10.1186/1743-0003-11-80
10.1109/EMBC.2014.6944270
10.1109/ROBOT.2009.5152565
10.1371/journal.pone.0056137
10.1109/LRA.2022.3173426
10.1109/LRA.2022.3147565
10.1109/ACCESS.2019.2933614
10.1109/LRA.2021.3062562
10.1109/ICRA.2017.7989397
10.1109/PHT.2013.6461326
10.1109/TBME.2011.2161671
10.1109/ICORR.2019.8779554
10.1016/j.robot.2021.103842
10.1016/j.jbiomech.2006.12.006
10.1109/TNSRE.2020.3045003
10.1126/science.aal5054
10.1038/s41598-019-45914-5
10.1109/TMRB.2019.2952148
10.1109/JPROC.2003.823141
10.3390/s17092020
10.1109/TNSRE.2015.2412461
10.1109/TMRB.2019.2961749
10.1109/NER.2013.6695934
10.1186/1743-0003-12-1
10.1109/TNSRE.2016.2569019
10.1186/s12984-020-00663-9
10.1109/LRA.2019.2924841
10.1109/TNSRE.2022.3162213
10.1109/TMECH.2021.3053226
10.1109/TRO.2018.2794536
10.1109/LRA.2022.3183790
10.1109/LRA.2021.3068907
10.1109/TNSRE.2013.2248749
10.1126/scirobotics.aar5438
10.1109/TBME.2021.3065809
10.1109/TNSRE.2018.2879570
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TRO.2023.3235584
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 2182
ExternalDocumentID 37304231
10_1109_TRO_2023_3235584
10024512
Genre orig-research
Journal Article
GrantInformation_xml – fundername: D. Dan and Betty Kahn Foundation
– fundername: National Institute of Child Health
– fundername: Human Development of the National Institutes of Health (NIH)
  grantid: R01HD094772
– fundername: NICHD NIH HHS
  grantid: R01 HD094772
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c390t-c42e52f9afbfcc65197963e9679558616c2830cac10bd853d45d516616e6f42a3
IEDL.DBID RIE
ISSN 1552-3098
IngestDate Fri Jul 11 04:31:39 EDT 2025
Mon Jun 30 05:07:24 EDT 2025
Mon Jul 21 05:28:42 EDT 2025
Tue Jul 01 00:42:38 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Wed Aug 27 01:57:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords phase
exoskeleton
control
Kalman filter
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-c42e52f9afbfcc65197963e9679558616c2830cac10bd853d45d516616e6f42a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3880-1527
0000-0003-2278-9906
0000-0002-0729-2857
0000-0002-8342-0494
0000-0003-4466-3466
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10249462
PMID 37304231
PQID 2823193186
PQPubID 27625
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TRO_2023_3235584
crossref_primary_10_1109_TRO_2023_3235584
proquest_miscellaneous_2825156722
ieee_primary_10024512
pubmed_primary_37304231
proquest_journals_2823193186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-June
2023-6-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationTitleAlternate IEEE Trans Robot
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
reznick (ref40) 2021; 8
ref12
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
medrano (ref34) 2022
ref21
ref28
ref27
ref29
ref8
ref7
(ref30) 2021
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref39
  doi: 10.1109/BioRob49111.2020.9224413
– ident: ref6
  doi: 10.1186/1743-0003-11-80
– ident: ref1
  doi: 10.1109/EMBC.2014.6944270
– ident: ref11
  doi: 10.1109/ROBOT.2009.5152565
– ident: ref33
  doi: 10.1371/journal.pone.0056137
– ident: ref38
  doi: 10.1109/LRA.2022.3173426
– ident: ref19
  doi: 10.1109/LRA.2022.3147565
– ident: ref13
  doi: 10.1109/ACCESS.2019.2933614
– ident: ref15
  doi: 10.1109/LRA.2021.3062562
– ident: ref36
  doi: 10.1109/ICRA.2017.7989397
– ident: ref23
  doi: 10.1109/PHT.2013.6461326
– ident: ref21
  doi: 10.1109/TBME.2011.2161671
– ident: ref16
  doi: 10.1109/ICORR.2019.8779554
– ident: ref18
  doi: 10.1016/j.robot.2021.103842
– ident: ref7
  doi: 10.1016/j.jbiomech.2006.12.006
– year: 2022
  ident: ref34
  article-title: Real-time phase and task estimation for controlling a powered ankle exoskeleton on extremely uneven terrain [Source Code]
– ident: ref28
  doi: 10.1109/TNSRE.2020.3045003
– ident: ref2
  doi: 10.1126/science.aal5054
– ident: ref4
  doi: 10.1038/s41598-019-45914-5
– ident: ref26
  doi: 10.1109/TMRB.2019.2952148
– ident: ref35
  doi: 10.1109/JPROC.2003.823141
– year: 2021
  ident: ref30
– ident: ref25
  doi: 10.3390/s17092020
– ident: ref24
  doi: 10.1109/TNSRE.2015.2412461
– ident: ref14
  doi: 10.1109/TMRB.2019.2961749
– ident: ref22
  doi: 10.1109/NER.2013.6695934
– ident: ref10
  doi: 10.1186/1743-0003-12-1
– ident: ref32
  doi: 10.1109/TNSRE.2016.2569019
– ident: ref5
  doi: 10.1186/s12984-020-00663-9
– ident: ref20
  doi: 10.1109/LRA.2019.2924841
– ident: ref37
  doi: 10.1109/TNSRE.2022.3162213
– ident: ref9
  doi: 10.1109/TMECH.2021.3053226
– ident: ref12
  doi: 10.1109/TRO.2018.2794536
– ident: ref31
  doi: 10.1109/LRA.2022.3183790
– volume: 8
  year: 2021
  ident: ref40
  article-title: Lower-limb kinematics and kinetics during continuously varying human locomotion
  publication-title: Data Science Journal
– ident: ref17
  doi: 10.1109/LRA.2021.3068907
– ident: ref8
  doi: 10.1109/TNSRE.2013.2248749
– ident: ref3
  doi: 10.1126/scirobotics.aar5438
– ident: ref29
  doi: 10.1109/TBME.2021.3065809
– ident: ref27
  doi: 10.1109/TNSRE.2018.2879570
SSID ssj0024903
Score 2.5604892
Snippet Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering...
Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2170
SubjectTerms Biomechanics
Control
Controllers
Estimation
exoskeleton
Exoskeletons
Foot
Gait
Kalman filter
Kinematics
Legged locomotion
Locomotion
Machine learning
Mathematical models
phase
Real time
Root-mean-square errors
Task analysis
Terrain
Torque
Title Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain
URI https://ieeexplore.ieee.org/document/10024512
https://www.ncbi.nlm.nih.gov/pubmed/37304231
https://www.proquest.com/docview/2823193186
https://www.proquest.com/docview/2825156722
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELZgT_AADAZ0bMhIvPCQNIkdp36cpo4JiTFNrbS3yLHPArVKpzWVtv363dlJGUhDSHmoFNd1eufcZ5_v-xj7LLTzOWibmImZJLIsRdhoSpQyzlTgMYRQcfL3M3U6l98uy8u-WD3UwgBAOHwGKX0MuXy3shvaKhvnIVFImsJPceUWi7V-E-vpIINMlGKJyPRkyElmejy7-JGSTHgqCmITJy0eUdE6XuR_hKOgr_I41Awh5-QlOxsGG0-aLNJN16T27i8ex_9-mlfsRQ8--VH0ll32BNrX7PkDSsI37OoCkWNChSH8q_nV8fOfGOa4aR2fmfWCT_GNEIsdOaJdfhwPulNJOzf8nBTXwPGjdrEEPr1ZrRcY1BBccrymNx1tRS5v-bwl1ig-g2uSp9hj85Pp7Pg06VUZEit01iVWFlAWXhvfeGsVFb7iJAatKo3_rcqVJU4xa2yeNQ7BgJOlK3OEAQqUl4URb9lOu2rhPeNNA42FsrJCTqSE3GAUAO2NL6T1jVMjNh6MU9uespyUM5Z1WLpkukbL1mTZurfsiH3ZfuMq0nX8o-0eGeVBu2iPETsYHKDuJ_S6LihdqvEFiIP6tL2NU5HyK6aF1Sa0QXSoqgK7eBcdZ9v54G_7j_zoB_aMxhYPoR2wne56A4cId7rmY3Dze57e-Nw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKOQAHfgtdKGAkOHBIduPETnzgUJUtW_pDVWWl3lLHmYhqV9mqmxUt78Kr8GzMOMlSkMqtElIOkeI4jv3ZM_bMfMPY21AXZQDaeiYxiRdJGbqDJk8pU5gYShQhFJy8f6BG4-jzsTxeYT-WsTAA4JzPwKdbZ8svZnZBR2X9wBkKA9H6UO7C5Tfcoc0_7HzE4XwnxPYw3Rp5bRIBz-J2vvZsJECKUpsyL61VFKeJmAOtYi1logJliQLLGhsM8gJlVxHJQgYotRSoMhImxHpvsduoaEjRhIf9pvLTLvEykZh54UAnnRV0oPvp0RefEpP7oSD-csr-E8Z0chAGfwhAl9HleuXWCbntB-xn1z2Nb8vEX9S5b7__xRz53_bfQ3a_Va_5ZjMfHrEVqB6ze1dIF5-wsyPUjT0KfeGfzGnND7-iIOemKnhq5hM-xDWvCefkqM_zrcaVn4L2ueGHlFMOCr5ZTabAhxez-QTFNqrPHK_hRU2HrdNLPq6IF4uncE4JONbY-EZ--SlbrWYVrDOe55BbkLENoySKIDAo50CXphSRLfNC9Vi_A0NmW1J2yg0yzdzmbKAzRFJGSMpaJPXY--UbZw0hyT_KrhEIrpRrxr_HNjrAZe2SNc8EGYQ1LvHYqDfLx7jYkAXJVDBbuDKo_6pYYBXPGqAuK-_w_fyaj75md0bp_l62t3Ow-4LdpXY2LncbbLU-X8BLVO7q_JWbYpyd3DQmfwHKGVSl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Gait+Phase+and+Task+Estimation+for+Controlling+a+Powered+Ankle+Exoskeleton+on+Extremely+Uneven+Terrain&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Medrano%2C+Roberto+Leo&rft.au=Thomas%2C+Gray+Cortright&rft.au=Keais%2C+Connor+G.&rft.au=Rouse%2C+Elliott+J.&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=39&rft.issue=3&rft.spage=2170&rft.epage=2182&rft_id=info:doi/10.1109%2FTRO.2023.3235584&rft_id=info%3Apmid%2F37304231&rft.externalDocID=10024512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon