Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain
Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a...
Saved in:
Published in | IEEE transactions on robotics Vol. 39; no. 3; pp. 2170 - 2182 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multiactivity database of ten able-bodied subjects. We demonstrate in live experiments with a new cohort of ten able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (<inline-formula><tex-math notation="LaTeX">N=10</tex-math></inline-formula>, phase root-mean-square error (RMSE): 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.4%) and a real-world stress test with extremely uneven terrain (<inline-formula><tex-math notation="LaTeX">N=1</tex-math></inline-formula>, phase RMSE: 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.7%). |
---|---|
AbstractList | Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multiactivity database of ten able-bodied subjects. We demonstrate in live experiments with a new cohort of ten able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials ([Formula Omitted], phase root-mean-square error (RMSE): 4.8 [Formula Omitted] 2.4%) and a real-world stress test with extremely uneven terrain ([Formula Omitted], phase RMSE: 4.8 [Formula Omitted] 2.7%). Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%). Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This article presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multiactivity database of ten able-bodied subjects. We demonstrate in live experiments with a new cohort of ten able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (<inline-formula><tex-math notation="LaTeX">N=10</tex-math></inline-formula>, phase root-mean-square error (RMSE): 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.4%) and a real-world stress test with extremely uneven terrain (<inline-formula><tex-math notation="LaTeX">N=1</tex-math></inline-formula>, phase RMSE: 4.8 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 2.7%). Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%). |
Author | Gregg, Robert D. Medrano, Roberto Leo Rouse, Elliott J. Thomas, Gray Cortright Keais, Connor G. |
Author_xml | – sequence: 1 givenname: Roberto Leo orcidid: 0000-0002-8342-0494 surname: Medrano fullname: Medrano, Roberto Leo email: leomed@umich.edu organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 2 givenname: Gray Cortright orcidid: 0000-0003-4466-3466 surname: Thomas fullname: Thomas, Gray Cortright email: gcthomas@umich.edu organization: Department of Robotics, University of Michigan, Ann Arbor, MI, USA – sequence: 3 givenname: Connor G. orcidid: 0000-0003-2278-9906 surname: Keais fullname: Keais, Connor G. email: ckeais@umich.edu organization: Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 4 givenname: Elliott J. orcidid: 0000-0003-3880-1527 surname: Rouse fullname: Rouse, Elliott J. email: ejrouse@umich.edu organization: Department of Mechanical Engineering and the Department of Robotics, University of Michigan, Ann Arbor, MI, USA – sequence: 5 givenname: Robert D. orcidid: 0000-0002-0729-2857 surname: Gregg fullname: Gregg, Robert D. email: rdgregg@umich.edu organization: Department of Robotics, University of Michigan, Ann Arbor, MI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37304231$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rGzEQxUVJaT7aew-lCHrJZV19rOTVMRg3LQQSwuYsZO1sq1gruZKcJv995diBkkNhQAP6vWHmvVN0FGIAhD5SMqOUqK_97fWMEcZnnHEhuvYNOqGqpQ1pZXdUeyFYw4nqjtFpzveEsFYR_g4d8zknLeP0BG1uwfimdxPgS-MKvvllMmATBtybvMbLXNxkiosBjzHhRQwlRe9d-IkNvol_IMGAL8LaA14-xrwGD6WytZaPJcEE_gnfBXiAgHtIybjwHr0djc_w4fCeobtvy37xvbm6vvyxuLhqLFekNLZlINiozLgarZWCqrmSHJScq3qopNKyjhNrLCWroRN8aMUgqKwfIMeWGX6GzvdzNyn-3kIuenLZgvcmQNxmzTomqJBzxir65RV6H7cp1O12FKeK005W6vOB2q4mGPQmVWfSk37xsgJyD9gUc04wauvKs3elHu41JXoXmq6h6V1o-hBaFZJXwpfZ_5F82kscAPyD14QFZfwvKSagGg |
CODEN | ITREAE |
CitedBy_id | crossref_primary_10_1109_LRA_2025_3535186 crossref_primary_10_1109_LRA_2024_3414259 crossref_primary_10_1038_s42256_024_00894_8 crossref_primary_10_1109_TCST_2024_3429908 crossref_primary_10_3390_s24082390 crossref_primary_10_1115_1_4067842 crossref_primary_10_1115_1_4067401 crossref_primary_10_1109_TNSRE_2024_3435931 crossref_primary_10_1038_s41598_024_84253_y crossref_primary_10_1109_TIM_2023_3343745 crossref_primary_10_1038_s41586_024_08157_7 crossref_primary_10_1126_scirobotics_adi8852 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_1002_aisy_202400278 crossref_primary_10_1109_TNSRE_2023_3333685 crossref_primary_10_1016_j_eswa_2025_126862 crossref_primary_10_1109_LRA_2024_3354558 crossref_primary_10_1109_JSEN_2024_3352005 crossref_primary_10_1002_admt_202400857 crossref_primary_10_1109_LRA_2024_3430870 crossref_primary_10_1109_TMRB_2024_3517136 crossref_primary_10_1109_TIM_2023_3343771 crossref_primary_10_1126_scirobotics_adr8282 crossref_primary_10_1126_sciadv_adq0288 crossref_primary_10_1017_wtc_2024_11 crossref_primary_10_1109_TIM_2025_3545854 crossref_primary_10_3390_s24196318 |
Cites_doi | 10.1109/BioRob49111.2020.9224413 10.1186/1743-0003-11-80 10.1109/EMBC.2014.6944270 10.1109/ROBOT.2009.5152565 10.1371/journal.pone.0056137 10.1109/LRA.2022.3173426 10.1109/LRA.2022.3147565 10.1109/ACCESS.2019.2933614 10.1109/LRA.2021.3062562 10.1109/ICRA.2017.7989397 10.1109/PHT.2013.6461326 10.1109/TBME.2011.2161671 10.1109/ICORR.2019.8779554 10.1016/j.robot.2021.103842 10.1016/j.jbiomech.2006.12.006 10.1109/TNSRE.2020.3045003 10.1126/science.aal5054 10.1038/s41598-019-45914-5 10.1109/TMRB.2019.2952148 10.1109/JPROC.2003.823141 10.3390/s17092020 10.1109/TNSRE.2015.2412461 10.1109/TMRB.2019.2961749 10.1109/NER.2013.6695934 10.1186/1743-0003-12-1 10.1109/TNSRE.2016.2569019 10.1186/s12984-020-00663-9 10.1109/LRA.2019.2924841 10.1109/TNSRE.2022.3162213 10.1109/TMECH.2021.3053226 10.1109/TRO.2018.2794536 10.1109/LRA.2022.3183790 10.1109/LRA.2021.3068907 10.1109/TNSRE.2013.2248749 10.1126/scirobotics.aar5438 10.1109/TBME.2021.3065809 10.1109/TNSRE.2018.2879570 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TRO.2023.3235584 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0468 |
EndPage | 2182 |
ExternalDocumentID | 37304231 10_1109_TRO_2023_3235584 10024512 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: D. Dan and Betty Kahn Foundation – fundername: National Institute of Child Health – fundername: Human Development of the National Institutes of Health (NIH) grantid: R01HD094772 – fundername: NICHD NIH HHS grantid: R01 HD094772 |
GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c390t-c42e52f9afbfcc65197963e9679558616c2830cac10bd853d45d516616e6f42a3 |
IEDL.DBID | RIE |
ISSN | 1552-3098 |
IngestDate | Fri Jul 11 04:31:39 EDT 2025 Mon Jun 30 05:07:24 EDT 2025 Mon Jul 21 05:28:42 EDT 2025 Tue Jul 01 00:42:38 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Wed Aug 27 01:57:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | phase exoskeleton control Kalman filter |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-c42e52f9afbfcc65197963e9679558616c2830cac10bd853d45d516616e6f42a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3880-1527 0000-0003-2278-9906 0000-0002-0729-2857 0000-0002-8342-0494 0000-0003-4466-3466 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10249462 |
PMID | 37304231 |
PQID | 2823193186 |
PQPubID | 27625 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TRO_2023_3235584 crossref_primary_10_1109_TRO_2023_3235584 proquest_miscellaneous_2825156722 ieee_primary_10024512 pubmed_primary_37304231 proquest_journals_2823193186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-June 2023-6-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on robotics |
PublicationTitleAbbrev | TRO |
PublicationTitleAlternate | IEEE Trans Robot |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 reznick (ref40) 2021; 8 ref12 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 medrano (ref34) 2022 ref21 ref28 ref27 ref29 ref8 ref7 (ref30) 2021 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref39 doi: 10.1109/BioRob49111.2020.9224413 – ident: ref6 doi: 10.1186/1743-0003-11-80 – ident: ref1 doi: 10.1109/EMBC.2014.6944270 – ident: ref11 doi: 10.1109/ROBOT.2009.5152565 – ident: ref33 doi: 10.1371/journal.pone.0056137 – ident: ref38 doi: 10.1109/LRA.2022.3173426 – ident: ref19 doi: 10.1109/LRA.2022.3147565 – ident: ref13 doi: 10.1109/ACCESS.2019.2933614 – ident: ref15 doi: 10.1109/LRA.2021.3062562 – ident: ref36 doi: 10.1109/ICRA.2017.7989397 – ident: ref23 doi: 10.1109/PHT.2013.6461326 – ident: ref21 doi: 10.1109/TBME.2011.2161671 – ident: ref16 doi: 10.1109/ICORR.2019.8779554 – ident: ref18 doi: 10.1016/j.robot.2021.103842 – ident: ref7 doi: 10.1016/j.jbiomech.2006.12.006 – year: 2022 ident: ref34 article-title: Real-time phase and task estimation for controlling a powered ankle exoskeleton on extremely uneven terrain [Source Code] – ident: ref28 doi: 10.1109/TNSRE.2020.3045003 – ident: ref2 doi: 10.1126/science.aal5054 – ident: ref4 doi: 10.1038/s41598-019-45914-5 – ident: ref26 doi: 10.1109/TMRB.2019.2952148 – ident: ref35 doi: 10.1109/JPROC.2003.823141 – year: 2021 ident: ref30 – ident: ref25 doi: 10.3390/s17092020 – ident: ref24 doi: 10.1109/TNSRE.2015.2412461 – ident: ref14 doi: 10.1109/TMRB.2019.2961749 – ident: ref22 doi: 10.1109/NER.2013.6695934 – ident: ref10 doi: 10.1186/1743-0003-12-1 – ident: ref32 doi: 10.1109/TNSRE.2016.2569019 – ident: ref5 doi: 10.1186/s12984-020-00663-9 – ident: ref20 doi: 10.1109/LRA.2019.2924841 – ident: ref37 doi: 10.1109/TNSRE.2022.3162213 – ident: ref9 doi: 10.1109/TMECH.2021.3053226 – ident: ref12 doi: 10.1109/TRO.2018.2794536 – ident: ref31 doi: 10.1109/LRA.2022.3183790 – volume: 8 year: 2021 ident: ref40 article-title: Lower-limb kinematics and kinetics during continuously varying human locomotion publication-title: Data Science Journal – ident: ref17 doi: 10.1109/LRA.2021.3068907 – ident: ref8 doi: 10.1109/TNSRE.2013.2248749 – ident: ref3 doi: 10.1126/scirobotics.aar5438 – ident: ref29 doi: 10.1109/TBME.2021.3065809 – ident: ref27 doi: 10.1109/TNSRE.2018.2879570 |
SSID | ssj0024903 |
Score | 2.5604892 |
Snippet | Positive biomechanical outcomes have been reported with lower limb exoskeletons in laboratory settings, but these devices have difficulty delivering... Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2170 |
SubjectTerms | Biomechanics Control Controllers Estimation exoskeleton Exoskeletons Foot Gait Kalman filter Kinematics Legged locomotion Locomotion Machine learning Mathematical models phase Real time Root-mean-square errors Task analysis Terrain Torque |
Title | Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain |
URI | https://ieeexplore.ieee.org/document/10024512 https://www.ncbi.nlm.nih.gov/pubmed/37304231 https://www.proquest.com/docview/2823193186 https://www.proquest.com/docview/2825156722 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELZgT_AADAZ0bMhIvPCQNIkdp36cpo4JiTFNrbS3yLHPArVKpzWVtv363dlJGUhDSHmoFNd1eufcZ5_v-xj7LLTzOWibmImZJLIsRdhoSpQyzlTgMYRQcfL3M3U6l98uy8u-WD3UwgBAOHwGKX0MuXy3shvaKhvnIVFImsJPceUWi7V-E-vpIINMlGKJyPRkyElmejy7-JGSTHgqCmITJy0eUdE6XuR_hKOgr_I41Awh5-QlOxsGG0-aLNJN16T27i8ex_9-mlfsRQ8--VH0ll32BNrX7PkDSsI37OoCkWNChSH8q_nV8fOfGOa4aR2fmfWCT_GNEIsdOaJdfhwPulNJOzf8nBTXwPGjdrEEPr1ZrRcY1BBccrymNx1tRS5v-bwl1ig-g2uSp9hj85Pp7Pg06VUZEit01iVWFlAWXhvfeGsVFb7iJAatKo3_rcqVJU4xa2yeNQ7BgJOlK3OEAQqUl4URb9lOu2rhPeNNA42FsrJCTqSE3GAUAO2NL6T1jVMjNh6MU9uespyUM5Z1WLpkukbL1mTZurfsiH3ZfuMq0nX8o-0eGeVBu2iPETsYHKDuJ_S6LihdqvEFiIP6tL2NU5HyK6aF1Sa0QXSoqgK7eBcdZ9v54G_7j_zoB_aMxhYPoR2wne56A4cId7rmY3Dze57e-Nw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKOQAHfgtdKGAkOHBIduPETnzgUJUtW_pDVWWl3lLHmYhqV9mqmxUt78Kr8GzMOMlSkMqtElIOkeI4jv3ZM_bMfMPY21AXZQDaeiYxiRdJGbqDJk8pU5gYShQhFJy8f6BG4-jzsTxeYT-WsTAA4JzPwKdbZ8svZnZBR2X9wBkKA9H6UO7C5Tfcoc0_7HzE4XwnxPYw3Rp5bRIBz-J2vvZsJECKUpsyL61VFKeJmAOtYi1logJliQLLGhsM8gJlVxHJQgYotRSoMhImxHpvsduoaEjRhIf9pvLTLvEykZh54UAnnRV0oPvp0RefEpP7oSD-csr-E8Z0chAGfwhAl9HleuXWCbntB-xn1z2Nb8vEX9S5b7__xRz53_bfQ3a_Va_5ZjMfHrEVqB6ze1dIF5-wsyPUjT0KfeGfzGnND7-iIOemKnhq5hM-xDWvCefkqM_zrcaVn4L2ueGHlFMOCr5ZTabAhxez-QTFNqrPHK_hRU2HrdNLPq6IF4uncE4JONbY-EZ--SlbrWYVrDOe55BbkLENoySKIDAo50CXphSRLfNC9Vi_A0NmW1J2yg0yzdzmbKAzRFJGSMpaJPXY--UbZw0hyT_KrhEIrpRrxr_HNjrAZe2SNc8EGYQ1LvHYqDfLx7jYkAXJVDBbuDKo_6pYYBXPGqAuK-_w_fyaj75md0bp_l62t3Ow-4LdpXY2LncbbLU-X8BLVO7q_JWbYpyd3DQmfwHKGVSl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Gait+Phase+and+Task+Estimation+for+Controlling+a+Powered+Ankle+Exoskeleton+on+Extremely+Uneven+Terrain&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Medrano%2C+Roberto+Leo&rft.au=Thomas%2C+Gray+Cortright&rft.au=Keais%2C+Connor+G.&rft.au=Rouse%2C+Elliott+J.&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=39&rft.issue=3&rft.spage=2170&rft.epage=2182&rft_id=info:doi/10.1109%2FTRO.2023.3235584&rft_id=info%3Apmid%2F37304231&rft.externalDocID=10024512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |