Caspase-1 interdomain linker cleavage is required for pyroptosis
Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied inflammasome-forming PRRs oligomerize with the adapter protein ASC (apoptosis-associated speck-...
Saved in:
Published in | Life science alliance Vol. 3; no. 3; p. e202000664 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Life Science Alliance LLC
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied inflammasome-forming PRRs oligomerize with the adapter protein ASC (apoptosis-associated speck-like protein containing a CARD) to generate a large structure in the cytosol, which induces the dimerization, autoproteolysis, and activation of the pro-caspase-1 zymogen. However, several PRRs can also directly interact with pro-caspase-1 without ASC, forming smaller "ASC-independent" inflammasomes. It is currently thought that little, if any, pro-caspase-1 autoproteolysis occurs during, and is not required for, ASC-independent inflammasome signaling. Here, we show that the related human PRRs NLRP1 and CARD8 exclusively form ASC-dependent and ASC-independent inflammasomes, respectively, identifying CARD8 as the first canonical inflammasome-forming PRR that does not form an ASC-containing signaling platform. Despite their different structures, we discovered that both the NLRP1 and CARD8 inflammasomes require pro-caspase-1 autoproteolysis between the small and large catalytic subunits to induce pyroptosis. Thus, pro-caspase-1 self-cleavage is a required regulatory step for pyroptosis induced by human canonical inflammasomes. |
---|---|
AbstractList | The related human NLRP1 and CARD8 form ASC-dependent and ASC-independent inflammasomes, respectively, both of which require pro-caspase-1 interdomain linker processing for the induction of pyroptosis.
Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied inflammasome-forming PRRs oligomerize with the adapter protein ASC (apoptosis-associated speck-like protein containing a CARD) to generate a large structure in the cytosol, which induces the dimerization, autoproteolysis, and activation of the pro-caspase-1 zymogen. However, several PRRs can also directly interact with pro-caspase-1 without ASC, forming smaller “ASC-independent” inflammasomes. It is currently thought that little, if any, pro-caspase-1 autoproteolysis occurs during, and is not required for, ASC-independent inflammasome signaling. Here, we show that the related human PRRs NLRP1 and CARD8 exclusively form ASC-dependent and ASC-independent inflammasomes, respectively, identifying CARD8 as the first canonical inflammasome-forming PRR that does not form an ASC-containing signaling platform. Despite their different structures, we discovered that both the NLRP1 and CARD8 inflammasomes require pro-caspase-1 autoproteolysis between the small and large catalytic subunits to induce pyroptosis. Thus, pro-caspase-1 self-cleavage is a required regulatory step for pyroptosis induced by human canonical inflammasomes. Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied inflammasome-forming PRRs oligomerize with the adapter protein ASC (apoptosis-associated speck-like protein containing a CARD) to generate a large structure in the cytosol, which induces the dimerization, autoproteolysis, and activation of the pro-caspase-1 zymogen. However, several PRRs can also directly interact with pro-caspase-1 without ASC, forming smaller “ASC-independent” inflammasomes. It is currently thought that little, if any, pro-caspase-1 autoproteolysis occurs during, and is not required for, ASC-independent inflammasome signaling. Here, we show that the related human PRRs NLRP1 and CARD8 exclusively form ASC-dependent and ASC-independent inflammasomes, respectively, identifying CARD8 as the first canonical inflammasome-forming PRR that does not form an ASC-containing signaling platform. Despite their different structures, we discovered that both the NLRP1 and CARD8 inflammasomes require pro-caspase-1 autoproteolysis between the small and large catalytic subunits to induce pyroptosis. Thus, pro-caspase-1 self-cleavage is a required regulatory step for pyroptosis induced by human canonical inflammasomes. |
Author | Kotliar, Ilana B Ball, Daniel P Vostal, Lauren E Bachovchin, Daniel A Taabazuing, Cornelius Y Griswold, Andrew R Orth, Elizabeth L Rao, Sahana D Johnson, Darren C |
AuthorAffiliation | 3 Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA 1 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 2 Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA 4 Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA |
AuthorAffiliation_xml | – name: 3 Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – name: 2 Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA – name: 4 Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA – name: 1 Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA |
Author_xml | – sequence: 1 givenname: Daniel P surname: Ball fullname: Ball, Daniel P organization: Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 2 givenname: Cornelius Y surname: Taabazuing fullname: Taabazuing, Cornelius Y organization: Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 3 givenname: Andrew R surname: Griswold fullname: Griswold, Andrew R organization: Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA – sequence: 4 givenname: Elizabeth L surname: Orth fullname: Orth, Elizabeth L organization: Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 5 givenname: Sahana D surname: Rao fullname: Rao, Sahana D organization: Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 6 givenname: Ilana B surname: Kotliar fullname: Kotliar, Ilana B organization: Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 7 givenname: Lauren E surname: Vostal fullname: Vostal, Lauren E organization: Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 8 givenname: Darren C surname: Johnson fullname: Johnson, Darren C organization: Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA – sequence: 9 givenname: Daniel A orcidid: 0000-0001-8210-1662 surname: Bachovchin fullname: Bachovchin, Daniel A email: bachovcd@mskcc.org organization: Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32051255$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkE1Lw0AQhhep2Fp79Sg5eknd72wuohS_oOBFz8smmdTVZDfdTQv99warpZ5mYJ55Z3jO0ch5BwhdEjynUmB100Qzp5hijKXkJ2hCRSZSgrNsdNSP0SzGz4EZOMoFP0NjRrEgVIgJuluY2JkIKUms6yFUvjXWJY11XxCSsgGzNStIbEwCrDc2QJXUPiTdLviu99HGC3RamybC7LdO0fvjw9viOV2-Pr0s7pdpyXLcp0VWMykEIbyQVBGgXBWkoFWuiMAlFIXJGReEK0kUZ6KocipqwVRVKglGGjZFt_vcblO0UJXg-mAa3QXbmrDT3lj9f-Lsh175rc4wFZixIeD6NyD49QZir1sbS2ga48BvoqZM8IxjTOiAzvdoGXyMAerDGYL1j3k9mNcH88PC1fFzB_zPM_sGIMOAbA |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2021_01_015 crossref_primary_10_1126_science_abe1707 crossref_primary_10_1016_j_jmb_2021_167183 crossref_primary_10_1007_s10565_023_09820_x crossref_primary_10_1128_mbio_02975_23 crossref_primary_10_1167_iovs_63_3_2 crossref_primary_10_1186_s12885_024_12067_2 crossref_primary_10_1016_j_apsb_2022_03_020 crossref_primary_10_1016_j_phymed_2021_153798 crossref_primary_10_1038_s41467_020_20319_5 crossref_primary_10_1186_s10194_022_01442_8 crossref_primary_10_1038_s41420_023_01438_6 crossref_primary_10_1038_s41419_020_02865_4 crossref_primary_10_3390_biomedicines10061448 crossref_primary_10_1016_j_abb_2021_108753 crossref_primary_10_3390_ijms21134788 crossref_primary_10_1038_s41419_020_03342_8 crossref_primary_10_1172_JCI138234 crossref_primary_10_3389_fimmu_2022_1047922 crossref_primary_10_1038_s42003_022_03806_x crossref_primary_10_3389_fcell_2021_638710 crossref_primary_10_1016_j_mam_2022_101085 crossref_primary_10_3390_cells13040346 crossref_primary_10_1146_annurev_immunol_101220_030653 crossref_primary_10_3390_ijms241914511 crossref_primary_10_1002_JLB_4COVHR0221_093RR crossref_primary_10_1016_j_mcp_2020_101596 crossref_primary_10_1016_j_celrep_2023_113581 crossref_primary_10_3389_fonc_2022_828303 crossref_primary_10_3892_etm_2022_11357 crossref_primary_10_1016_j_immuni_2022_10_014 crossref_primary_10_7554_eLife_83725 crossref_primary_10_3390_biom12070924 crossref_primary_10_1038_s41589_021_00964_7 crossref_primary_10_1126_sciimmunol_abm7200 crossref_primary_10_1016_j_immuni_2024_04_015 crossref_primary_10_1111_jfd_13746 crossref_primary_10_3389_fimmu_2021_668602 crossref_primary_10_3390_ijms24032129 crossref_primary_10_1084_jem_20212117 crossref_primary_10_1111_jop_13290 crossref_primary_10_1016_j_jid_2022_04_004 crossref_primary_10_1038_s41374_021_00722_2 crossref_primary_10_18632_aging_103669 crossref_primary_10_1111_imr_12884 crossref_primary_10_1016_j_jbc_2022_102032 crossref_primary_10_3390_cancers13225712 crossref_primary_10_1016_j_mam_2022_101100 crossref_primary_10_3390_life12050731 crossref_primary_10_1007_s12035_024_04225_1 crossref_primary_10_1002_1873_3468_14848 crossref_primary_10_1021_acs_jmedchem_2c01535 crossref_primary_10_3389_fimmu_2023_1128358 crossref_primary_10_7554_eLife_84108 crossref_primary_10_1038_s41467_020_20320_y crossref_primary_10_3389_fimmu_2024_1298275 crossref_primary_10_1016_j_scitotenv_2024_172240 crossref_primary_10_3390_ijms25105270 crossref_primary_10_1007_s00005_023_00678_9 crossref_primary_10_1016_j_micpath_2022_105933 crossref_primary_10_3390_ijerph18020511 crossref_primary_10_1093_bjd_ljad421 crossref_primary_10_1097_WNR_0000000000002041 crossref_primary_10_1038_s41577_024_00995_w crossref_primary_10_3390_ijms23094588 crossref_primary_10_1016_j_immuni_2021_04_024 crossref_primary_10_1016_j_celrep_2022_111966 crossref_primary_10_1016_j_celrep_2022_111965 crossref_primary_10_15252_embj_2020105071 crossref_primary_10_1016_j_coi_2023_102354 |
Cites_doi | 10.1126/science.1240988 10.1038/nature02664 10.1126/science.aar7607 10.1371/journal.ppat.1002659 10.1038/s41591-018-0082-y 10.1016/j.cell.2014.04.007 10.1371/journal.ppat.1006052 10.1038/ncomms4209 10.1074/jbc.M112.378323 10.1073/pnas.1415756111 10.1073/pnas.1003738107 10.1016/j.coi.2015.01.007 10.1016/j.immuni.2012.08.027 10.1084/jem.20180589 10.1074/jbc.RA118.004350 10.1126/science.aau1330 10.1021/acschembio.5b00753 10.1074/jbc.M806121200 10.1038/nri.2016.58 10.1038/cr.2015.139 10.1038/cdd.2012.51 10.1074/jbc.C100250200 10.1016/j.cell.2016.09.001 10.26508/lsa.201800237 10.1084/jem.20100257 10.1016/j.chom.2010.11.007 10.1016/j.chembiol.2017.03.009 10.1074/jbc.M109.095083 10.1038/nchembio.2229 10.1016/j.celrep.2017.11.088 10.1038/sj.cdd.4401734 10.1038/356768a0 10.1016/j.chembiol.2017.12.013 10.1038/s41467-019-09753-2 10.1126/scisignal.2004738 10.4049/jimmunol.181.4.2522 10.1038/nature15541 10.1371/journal.pone.0027396 10.1084/jem.20172222 10.1126/science.aau1208 10.1038/cdd.2013.37 10.1038/nature15514 10.1038/s41419-019-1817-5 |
ContentType | Journal Article |
Copyright | 2020 Ball et al. 2020 Ball et al. 2020 |
Copyright_xml | – notice: 2020 Ball et al. – notice: 2020 Ball et al. 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.26508/lsa.202000664 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Caspase-1 activation requires autoproteolysis |
EISSN | 2575-1077 |
ExternalDocumentID | 10_26508_lsa_202000664 32051255 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI137168 – fundername: NIGMS NIH HHS grantid: T32 GM115327 – fundername: NIGMS NIH HHS grantid: T32 GM136640 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: F30 CA243444 – fundername: NIGMS NIH HHS grantid: T32 GM007739 – fundername: ; – fundername: ; grantid: T32 GM007739-Andersen – fundername: ; grantid: SU2C-AACR-IRG11-17 – fundername: ; grantid: R01 AI137168 – fundername: ; grantid: F30 CA243444 – fundername: ; grantid: Memorial Sloan Kettering Cancer Center Core Grant P30 CA008748 – fundername: ; grantid: T32 GM115327-Tan |
GroupedDBID | 53G ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CGR CUY CVF EBS ECM EIF EMOBN FRP GROUPED_DOAJ HK~ HYE M~E NPM OK1 PGMZT RHF RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c390t-b7f3655114b6281e248b1b2d98150cebba9345148618435bd925f538dc86ea6a3 |
IEDL.DBID | RPM |
ISSN | 2575-1077 |
IngestDate | Tue Sep 17 21:19:06 EDT 2024 Fri Aug 16 01:14:36 EDT 2024 Fri Aug 23 01:12:51 EDT 2024 Sat Sep 28 08:24:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2020 Ball et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-b7f3655114b6281e248b1b2d98150cebba9345148618435bd925f538dc86ea6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Daniel P Ball and Cornelius Y Taabazuing contributed equally to this work |
ORCID | 0000-0001-8210-1662 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025033/ |
PMID | 32051255 |
PQID | 2354740012 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7025033 proquest_miscellaneous_2354740012 crossref_primary_10_26508_lsa_202000664 pubmed_primary_32051255 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Life science alliance |
PublicationTitleAlternate | Life Sci Alliance |
PublicationYear | 2020 |
Publisher | Life Science Alliance LLC |
Publisher_xml | – name: Life Science Alliance LLC |
References | 2020021217352484000_3.3.e202000664.14 2020021217352484000_3.3.e202000664.36 2020021217352484000_3.3.e202000664.15 2020021217352484000_3.3.e202000664.37 2020021217352484000_3.3.e202000664.16 2020021217352484000_3.3.e202000664.38 2020021217352484000_3.3.e202000664.17 2020021217352484000_3.3.e202000664.39 2020021217352484000_3.3.e202000664.10 2020021217352484000_3.3.e202000664.32 2020021217352484000_3.3.e202000664.11 2020021217352484000_3.3.e202000664.33 2020021217352484000_3.3.e202000664.12 2020021217352484000_3.3.e202000664.34 2020021217352484000_3.3.e202000664.13 2020021217352484000_3.3.e202000664.35 2020021217352484000_3.3.e202000664.18 2020021217352484000_3.3.e202000664.19 2020021217352484000_3.3.e202000664.30 2020021217352484000_3.3.e202000664.31 2020021217352484000_3.3.e202000664.3 2020021217352484000_3.3.e202000664.25 2020021217352484000_3.3.e202000664.4 2020021217352484000_3.3.e202000664.26 2020021217352484000_3.3.e202000664.1 2020021217352484000_3.3.e202000664.27 2020021217352484000_3.3.e202000664.2 2020021217352484000_3.3.e202000664.28 2020021217352484000_3.3.e202000664.7 2020021217352484000_3.3.e202000664.21 2020021217352484000_3.3.e202000664.43 2020021217352484000_3.3.e202000664.8 2020021217352484000_3.3.e202000664.22 2020021217352484000_3.3.e202000664.5 2020021217352484000_3.3.e202000664.23 2020021217352484000_3.3.e202000664.6 2020021217352484000_3.3.e202000664.24 2020021217352484000_3.3.e202000664.9 2020021217352484000_3.3.e202000664.29 2020021217352484000_3.3.e202000664.40 2020021217352484000_3.3.e202000664.41 2020021217352484000_3.3.e202000664.20 2020021217352484000_3.3.e202000664.42 |
References_xml | – ident: 2020021217352484000_3.3.e202000664.14 doi: 10.1126/science.1240988 – ident: 2020021217352484000_3.3.e202000664.23 doi: 10.1038/nature02664 – ident: 2020021217352484000_3.3.e202000664.31 doi: 10.1126/science.aar7607 – ident: 2020021217352484000_3.3.e202000664.11 doi: 10.1371/journal.ppat.1002659 – ident: 2020021217352484000_3.3.e202000664.16 doi: 10.1038/s41591-018-0082-y – ident: 2020021217352484000_3.3.e202000664.21 doi: 10.1016/j.cell.2014.04.007 – ident: 2020021217352484000_3.3.e202000664.5 doi: 10.1371/journal.ppat.1006052 – ident: 2020021217352484000_3.3.e202000664.38 doi: 10.1038/ncomms4209 – ident: 2020021217352484000_3.3.e202000664.10 doi: 10.1074/jbc.M112.378323 – ident: 2020021217352484000_3.3.e202000664.13 doi: 10.1073/pnas.1415756111 – ident: 2020021217352484000_3.3.e202000664.17 doi: 10.1073/pnas.1003738107 – ident: 2020021217352484000_3.3.e202000664.40 doi: 10.1016/j.coi.2015.01.007 – ident: 2020021217352484000_3.3.e202000664.24 doi: 10.1016/j.immuni.2012.08.027 – ident: 2020021217352484000_3.3.e202000664.22 doi: 10.1084/jem.20180589 – ident: 2020021217352484000_3.3.e202000664.43 doi: 10.1074/jbc.RA118.004350 – ident: 2020021217352484000_3.3.e202000664.33 doi: 10.1126/science.aau1330 – ident: 2020021217352484000_3.3.e202000664.8 doi: 10.1021/acschembio.5b00753 – ident: 2020021217352484000_3.3.e202000664.9 doi: 10.1074/jbc.M806121200 – ident: 2020021217352484000_3.3.e202000664.2 doi: 10.1038/nri.2016.58 – ident: 2020021217352484000_3.3.e202000664.15 doi: 10.1038/cr.2015.139 – ident: 2020021217352484000_3.3.e202000664.28 doi: 10.1038/cdd.2012.51 – ident: 2020021217352484000_3.3.e202000664.29 doi: 10.1074/jbc.C100250200 – ident: 2020021217352484000_3.3.e202000664.42 doi: 10.1016/j.cell.2016.09.001 – ident: 2020021217352484000_3.3.e202000664.30 doi: 10.26508/lsa.201800237 – ident: 2020021217352484000_3.3.e202000664.3 doi: 10.1084/jem.20100257 – ident: 2020021217352484000_3.3.e202000664.4 doi: 10.1016/j.chom.2010.11.007 – ident: 2020021217352484000_3.3.e202000664.35 doi: 10.1016/j.chembiol.2017.03.009 – ident: 2020021217352484000_3.3.e202000664.25 doi: 10.1074/jbc.M109.095083 – ident: 2020021217352484000_3.3.e202000664.26 doi: 10.1038/nchembio.2229 – ident: 2020021217352484000_3.3.e202000664.39 doi: 10.1016/j.celrep.2017.11.088 – ident: 2020021217352484000_3.3.e202000664.41 doi: 10.1038/sj.cdd.4401734 – ident: 2020021217352484000_3.3.e202000664.36 doi: 10.1038/356768a0 – ident: 2020021217352484000_3.3.e202000664.27 doi: 10.1016/j.chembiol.2017.12.013 – ident: 2020021217352484000_3.3.e202000664.37 doi: 10.1038/s41467-019-09753-2 – ident: 2020021217352484000_3.3.e202000664.18 doi: 10.1126/scisignal.2004738 – ident: 2020021217352484000_3.3.e202000664.19 doi: 10.4049/jimmunol.181.4.2522 – ident: 2020021217352484000_3.3.e202000664.20 doi: 10.1038/nature15541 – ident: 2020021217352484000_3.3.e202000664.7 doi: 10.1371/journal.pone.0027396 – ident: 2020021217352484000_3.3.e202000664.1 doi: 10.1084/jem.20172222 – ident: 2020021217352484000_3.3.e202000664.6 doi: 10.1126/science.aau1208 – ident: 2020021217352484000_3.3.e202000664.32 doi: 10.1038/cdd.2013.37 – ident: 2020021217352484000_3.3.e202000664.34 doi: 10.1038/nature15514 – ident: 2020021217352484000_3.3.e202000664.12 doi: 10.1038/s41419-019-1817-5 |
SSID | ssj0002002454 |
Score | 2.455049 |
Snippet | Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and... The related human NLRP1 and CARD8 form ASC-dependent and ASC-independent inflammasomes, respectively, both of which require pro-caspase-1 interdomain linker... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e202000664 |
SubjectTerms | Adaptor Proteins, Signal Transducing - metabolism Apoptosis Apoptosis Regulatory Proteins - metabolism CARD Signaling Adaptor Proteins - metabolism Carrier Proteins - metabolism Caspase 1 - metabolism HEK293 Cells Humans Inflammasomes - metabolism NLR Family, Pyrin Domain-Containing 3 Protein - metabolism Pyroptosis - physiology Signal Transduction THP-1 Cells |
Title | Caspase-1 interdomain linker cleavage is required for pyroptosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32051255 https://search.proquest.com/docview/2354740012 https://pubmed.ncbi.nlm.nih.gov/PMC7025033 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB3Ukxdx_Vy_iCCoh-7apE3Tm7K4LILiQWFvJWlTrLhtaXcF_72TtF1WvXluE4bXaeYNM_MCcCGDlCntSofFFBOUlAtHuUI6PAm0K9B0mZpp5McnPnn1Hqb-dA38bhbGNu3HKhvkH7NBnr3Z3spyFg-7PrHh8-MoMIGbseE6rKODrqTo77ayZqqJXiPQSA0BGX7URmHIDqVwcxEPo-iK1Ez3rcaiPwTzd5_kSuAZb8NWyxjJXWNZD9Z0vgO99p-syVUrHH29C7cjiedDrR2XGBWIKilmmPcTU6PVFcHF8hNPD5LVpNKmAVgnBCkrKb-qopwXdVbvwev4_mU0cdobEpyYhTdzRyHSHDmP6ylOhaupJ5SraBIK5HmxVkqGzENKJOy1Lr5KQuqneMQlseBacsn2YSMvcn0IRKUCd0tUEPo3ngriMJCp5DTBhAv3VroPlx1WUdkIYUSYQFiAIwQ4WgLch_MOygh91RQgZK6LRR1R5nuBZxhWHw4aaJd7dd-kD8EP0JcvGB3sn0_QPawedusOR_9eeQybxvqmtewENubVQp8i15irM5ujn1kP-wZRodZR |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH7q2IFdYAwGZbB50qTBIW1jO45zG6qGuo2iHQBxi-zEEdloUiUpEvvrec6PqmWn7ezEsvX5x_f0vvcZ4JPyE6aNqxwWUQxQEiEd7UrliNg3rsShq8RWI08vxeSaf7_1bnvgdbUwtWg_0ukgu58NsvSu1lbOZ9Gw04kNf07Hvr24GRu-gJe4X0d8JUj_VefWbD6RNxaN1FKQ4X1pPYbqshRhn-JhFBcjtfV9q7fRXxTzuVJy5eo534abbtCN4uT3YFHpQfTnmZ_jP8_qNWy1ZJScNc070DPZG9hpt3tJTlpP6tNd-DJWePSUxnGJNZgo4nym0ozY9K8pCP6sHvBgImlJCmO1xSYmyIbJ_LHI51VepuUeXJ9_vRpPnPbxBSdiwahyNIIokE65XAsqXUO51K6mcSCRQkZGaxUwjmxL1i_GeDoOqJcgGnEkhVFCsbewkeWZOQCiE4m9xdoPvBHXfhT4KlGCxhjLYd_a9OFzB0I4bzw2QoxNauRCRC5cIteHjx1GIW4Dm9tQmckXZUiZx31uyVsf9hvMln11YPfBX0Nz-YG12F5vQYxqq-0Wk8P__vMDbE6uphfhxbfLH-_glZ1Jo2A7go2qWJhjpDSVfl8v4CdDt_dG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAX2gItW1pqJCToIZuNnTjODbRl1QKteqBS1Utkx44I3U2iJFsJfj3jfKy27a3nOJat5483muc3AB9lmDJlPOmwhGKAknLhKE9Ih-vQeAKHLlP7GvnsnJ9c-t-vgqu1Ul-taD9R2TifL8Z59rvVVpaLxB10Yu7F2TS0FzdjbqlT9yk8wz074WuB-p82v2Zzin5n00gtDXHntfUZap-mcFuOh1FckNS-8Vu_kR7QzPtqybXrZ7YJ18PAO9XJzXjZqHHy756n46NmtgUve1JKvnZNtuGJyV_Bdr_ta_K596Y-eg1fphKPoNo4HrFGE5UuFjLLiU0Dm4rgz_IWDyiS1aQyVmNsNEFWTMq_VVE2RZ3Vb-By9u3X9MTpizA4CYsmjaMQTI60yvMVp8Iz1BfKU1RHAqlkYpSSEfORdYm2ckygdESDFBHRieBGcsl2YCMvcvMWiEoF9qZVGAUTX4VJFMpUcqoxpsO-lRnBpwGIuOy8NmKMUVr0YkQvXqE3gg8DTjFuB5vjkLkplnVMWeCHviVxI9jtcFv1NQA-gvAOoqsG1mr77hfEqbXc7nHZe_Sfh_D84ngW_zw9__EOXtiJdEK2fdhoqqU5QGbTqPftGv4PEZP5xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caspase-1+interdomain+linker+cleavage+is+required+for+pyroptosis&rft.jtitle=Life+science+alliance&rft.au=Ball%2C+Daniel+P&rft.au=Taabazuing%2C+Cornelius+Y&rft.au=Griswold%2C+Andrew+R&rft.au=Orth%2C+Elizabeth+L&rft.date=2020-03-01&rft.issn=2575-1077&rft.eissn=2575-1077&rft.volume=3&rft.issue=3&rft.spage=e202000664&rft_id=info:doi/10.26508%2Flsa.202000664&rft.externalDBID=n%2Fa&rft.externalDocID=10_26508_lsa_202000664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-1077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-1077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-1077&client=summon |