Spectral Properties of Induced and Evoked Gamma Oscillations in Human Early Visual Cortex to Moving and Stationary Stimuli

Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom Submitted 18 September 2008; accepted in final form 7 June 2009 In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 102; no. 2; pp. 1241 - 1253
Main Authors Swettenham, J. B, Muthukumaraswamy, S. D, Singh, K. D
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.08.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom Submitted 18 September 2008; accepted in final form 7 June 2009 In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in human early visual cortex. When presented centrally, but not peripherally, stationary and moving gratings elicited several evoked and induced response components in early visual cortex. Time-frequency analysis revealed two nonphase locked gamma power increases—an initial, rapidly adapting response and one sustained throughout stimulus presentation and varying in frequency across observers from 28 to 64 Hz. Stimulus motion raised the sustained gamma oscillation frequency by a mean of 10 Hz. The largest motion-induced frequency increases were in those observers with the lowest gamma response frequencies for stationary stimuli, suggesting a possible saturation mechanism. Moderate gamma amplitude increases to moving versus stationary stimuli were also observed but were not correlated with the magnitude of the frequency increase. At the same site in visual cortex, sustained alpha/beta power reductions and an onset evoked response were observed, but these effects did not change significantly with the presence of motion and did not correlate with the magnitude of gamma power changes. These findings suggest that early visual areas encode moving and stationary percepts via activity at higher and lower gamma frequencies, respectively. Address for reprint requests and other correspondence: K. D. Singh, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK (E-mail: singhkd{at}cardiff.ac.uk )
AbstractList In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in human early visual cortex. When presented centrally, but not peripherally, stationary and moving gratings elicited several evoked and induced response components in early visual cortex. Time-frequency analysis revealed two nonphase locked gamma power increases-an initial, rapidly adapting response and one sustained throughout stimulus presentation and varying in frequency across observers from 28 to 64 Hz. Stimulus motion raised the sustained gamma oscillation frequency by a mean of approximately 10 Hz. The largest motion-induced frequency increases were in those observers with the lowest gamma response frequencies for stationary stimuli, suggesting a possible saturation mechanism. Moderate gamma amplitude increases to moving versus stationary stimuli were also observed but were not correlated with the magnitude of the frequency increase. At the same site in visual cortex, sustained alpha/beta power reductions and an onset evoked response were observed, but these effects did not change significantly with the presence of motion and did not correlate with the magnitude of gamma power changes. These findings suggest that early visual areas encode moving and stationary percepts via activity at higher and lower gamma frequencies, respectively.
In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in human early visual cortex. When presented centrally, but not peripherally, stationary and moving gratings elicited several evoked and induced response components in early visual cortex. Time-frequency analysis revealed two nonphase locked gamma power increases—an initial, rapidly adapting response and one sustained throughout stimulus presentation and varying in frequency across observers from 28 to 64 Hz. Stimulus motion raised the sustained gamma oscillation frequency by a mean of ∼10 Hz. The largest motion-induced frequency increases were in those observers with the lowest gamma response frequencies for stationary stimuli, suggesting a possible saturation mechanism. Moderate gamma amplitude increases to moving versus stationary stimuli were also observed but were not correlated with the magnitude of the frequency increase. At the same site in visual cortex, sustained alpha/beta power reductions and an onset evoked response were observed, but these effects did not change significantly with the presence of motion and did not correlate with the magnitude of gamma power changes. These findings suggest that early visual areas encode moving and stationary percepts via activity at higher and lower gamma frequencies, respectively.
Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom Submitted 18 September 2008; accepted in final form 7 June 2009 In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in human early visual cortex. When presented centrally, but not peripherally, stationary and moving gratings elicited several evoked and induced response components in early visual cortex. Time-frequency analysis revealed two nonphase locked gamma power increases—an initial, rapidly adapting response and one sustained throughout stimulus presentation and varying in frequency across observers from 28 to 64 Hz. Stimulus motion raised the sustained gamma oscillation frequency by a mean of 10 Hz. The largest motion-induced frequency increases were in those observers with the lowest gamma response frequencies for stationary stimuli, suggesting a possible saturation mechanism. Moderate gamma amplitude increases to moving versus stationary stimuli were also observed but were not correlated with the magnitude of the frequency increase. At the same site in visual cortex, sustained alpha/beta power reductions and an onset evoked response were observed, but these effects did not change significantly with the presence of motion and did not correlate with the magnitude of gamma power changes. These findings suggest that early visual areas encode moving and stationary percepts via activity at higher and lower gamma frequencies, respectively. Address for reprint requests and other correspondence: K. D. Singh, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK (E-mail: singhkd{at}cardiff.ac.uk )
Author Swettenham, J. B
Singh, K. D
Muthukumaraswamy, S. D
Author_xml – sequence: 1
  fullname: Swettenham, J. B
– sequence: 2
  fullname: Muthukumaraswamy, S. D
– sequence: 3
  fullname: Singh, K. D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19515947$$D View this record in MEDLINE/PubMed
BookMark eNpFkM9r2zAYhsVIWZOux12HTqUXp59kq7KPI6RNICODbr0Kxf6cKLMlV7K7ZX_9lB-wk17Eowe974SMrLNIyGcGU8YEf9jbacEgy6YcIP9AxvGOJ0wU-YiMAWJOQcprMglhDwBSAP9IrlkhIpLJMfn70mHZe93Q79516HuDgbqaLm01lFhRbSs6f3e_YnzWbavpOpSmaXRvnA3UWLoYWm3pXPvmQF9NGKJp5nyPf2jv6Df3buz2JHnpT2-0P8Ro2qExn8hVrZuAt5fzhvx8mv-YLZLV-nk5-7pKyrSAPtlIrPNCYuzBIec6B1FxUZUIsWRRQi4Y41Uey22gfky1kCLlmktRbwossjq9IXdnb-fd24ChV60JJcYSFt0Q1KMUWZSzCCZnsPQuBI-16rxp448VA3UcW-2tOo2tjmNH_stFPGxarP7Tl3UjcH8Gdma7-208qm53CMY1bns4uhhwxRXjGUv_Aa6yiiU
CitedBy_id crossref_primary_10_1016_j_neuroimage_2019_116313
crossref_primary_10_1016_j_brainres_2011_05_051
crossref_primary_10_1016_j_brainresbull_2017_03_006
crossref_primary_10_1523_JNEUROSCI_1021_16_2016
crossref_primary_10_1523_JNEUROSCI_5592_11_2012
crossref_primary_10_1002_hbm_24069
crossref_primary_10_1016_j_neuroimage_2013_04_108
crossref_primary_10_1016_j_neuroimage_2009_11_045
crossref_primary_10_1016_j_neuroimage_2015_12_021
crossref_primary_10_1002_hbm_23331
crossref_primary_10_1016_j_cortex_2016_03_004
crossref_primary_10_1016_j_neuroimage_2018_11_029
crossref_primary_10_1016_j_neuroimage_2020_116927
crossref_primary_10_1016_j_neuron_2015_09_034
crossref_primary_10_1093_cercor_bhx055
crossref_primary_10_1016_j_neuroimage_2010_11_053
crossref_primary_10_1016_j_neuron_2013_03_003
crossref_primary_10_1186_s11689_015_9121_x
crossref_primary_10_1016_j_jphysparis_2011_07_014
crossref_primary_10_1016_j_neuroimage_2020_117189
crossref_primary_10_1038_s41398_021_01678_z
crossref_primary_10_3389_fnsys_2022_908665
crossref_primary_10_1007_s11055_014_9889_2
crossref_primary_10_1016_j_neuroimage_2010_12_029
crossref_primary_10_1523_ENEURO_0106_21_2021
crossref_primary_10_1016_j_conb_2014_11_001
crossref_primary_10_1111_j_1460_9568_2011_07777_x
crossref_primary_10_1016_j_neuroimage_2024_120548
crossref_primary_10_1002_hbm_23283
crossref_primary_10_1371_journal_pcbi_1005938
crossref_primary_10_1016_j_neuroimage_2018_06_005
crossref_primary_10_1523_JNEUROSCI_4771_11_2012
crossref_primary_10_1093_cercor_bht121
crossref_primary_10_1093_cercor_bhv027
crossref_primary_10_1126_sciadv_1500163
crossref_primary_10_1016_j_neuroimage_2021_117748
crossref_primary_10_1371_journal_pbio_2004132
crossref_primary_10_1016_j_neuroimage_2010_11_045
crossref_primary_10_1038_s41598_020_61961_9
crossref_primary_10_1371_journal_pcbi_1007566
crossref_primary_10_1371_journal_pone_0281531
crossref_primary_10_1016_j_neuroimage_2012_11_043
crossref_primary_10_3390_brainsci13050792
crossref_primary_10_1038_npp_2014_58
crossref_primary_10_1002_hbm_21016
crossref_primary_10_1016_j_neuroimage_2012_01_028
crossref_primary_10_1016_j_neuroimage_2012_12_038
crossref_primary_10_1152_jn_00607_2010
crossref_primary_10_1371_journal_pone_0095541
crossref_primary_10_1038_npp_2013_9
crossref_primary_10_1016_j_neuroimage_2017_10_069
crossref_primary_10_1002_hbm_21339
crossref_primary_10_1371_journal_pone_0157374
crossref_primary_10_1038_s41598_018_26779_6
crossref_primary_10_1093_cercor_bhaa372
crossref_primary_10_1371_journal_pone_0228937
crossref_primary_10_1111_ejn_12900
crossref_primary_10_1523_JNEUROSCI_2063_13_2013
crossref_primary_10_3389_fnsys_2017_00022
crossref_primary_10_1073_pnas_1321072111
crossref_primary_10_3390_brainsci6030027
crossref_primary_10_1016_j_neuroimage_2017_11_002
crossref_primary_10_1016_j_tics_2014_12_002
crossref_primary_10_1016_j_neuroimage_2018_05_054
crossref_primary_10_1016_j_neuroimage_2012_05_054
crossref_primary_10_1016_j_neuroimage_2017_07_022
crossref_primary_10_1016_j_neuron_2012_06_037
crossref_primary_10_1152_jn_00380_2021
crossref_primary_10_1038_npp_2014_166
crossref_primary_10_1177_1073858420958629
crossref_primary_10_1016_j_neuroimage_2013_04_040
crossref_primary_10_1016_j_mehy_2017_11_005
crossref_primary_10_1093_schbul_sbz066
crossref_primary_10_1152_jn_00232_2015
crossref_primary_10_1016_j_neuroimage_2011_02_072
crossref_primary_10_1523_JNEUROSCI_2270_17_2017
crossref_primary_10_1038_s41598_021_91381_2
crossref_primary_10_1111_ejn_13126
crossref_primary_10_1016_j_neuroimage_2012_09_014
crossref_primary_10_1016_j_neuron_2009_11_024
crossref_primary_10_1371_journal_pcbi_1009046
crossref_primary_10_1162_jocn_a_01511
crossref_primary_10_1016_j_ijpsycho_2010_12_007
crossref_primary_10_1016_j_neuroimage_2014_02_004
crossref_primary_10_1016_j_neuroimage_2021_118024
crossref_primary_10_2139_ssrn_4077802
crossref_primary_10_1016_j_neuroimage_2015_02_062
crossref_primary_10_1016_j_neuroimage_2020_117192
crossref_primary_10_1371_journal_pone_0243237
crossref_primary_10_1371_journal_pone_0057685
Cites_doi 10.1016/j.cub.2004.12.061
10.1002/hbm.1058
10.1073/pnas.0502366102
10.1523/JNEUROSCI.4623-06.2007
10.1017/S0952523801182118
10.1002/hbm.10033
10.1371/journal.pone.0005163
10.1093/cercor/bhk025
10.1523/JNEUROSCI.0009-08.2008
10.1002/hbm.20102
10.1371/journal.pbio.0040163
10.1016/j.neuroimage.2003.10.045
10.1073/pnas.93.12.6112
10.1212/WNL.49.2.416
10.1016/j.clinph.2008.01.024
10.1073/pnas.95.10.5807
10.1016/j.ijpsycho.2004.07.009
10.1016/j.neuron.2008.03.027
10.1093/cercor/10.11.1117
10.1016/S1388-2457(99)00141-8
10.1017/S0952523801184038
10.1016/j.jneumeth.2006.10.008
10.1007/BF00202899
10.1007/s002210050577
10.1016/j.jphysparis.2005.09.002
10.1093/brain/awg109
10.1111/j.1460-9568.1990.tb00450.x
10.1371/journal.pcbi.0030236
10.1016/S1364-6613(99)01299-1
10.1016/S0074-7742(05)68006-3
10.1523/JNEUROSCI.23-10-04251.2003
10.1093/cercor/10.11.1105
10.1016/j.tics.2008.09.002
10.1097/01.wco.0000162857.52520.68
10.1111/j.1460-9568.2004.03495.x
10.1113/jphysiol.1985.sp015776
10.1016/j.neuroimage.2007.09.050
10.1016/j.brainres.2008.07.108
10.1007/s10633-006-9043-8
10.1113/jphysiol.1968.sp008574
10.1038/72961
10.1006/meth.2001.1238
10.1038/35094565
10.1146/annurev.ne.18.030195.003011
10.1016/S0926-6410(03)00173-3
10.1016/j.neuroimage.2005.01.009
10.1088/0031-9155/44/2/010
10.1093/cercor/bhg129
10.1016/j.neuroimage.2007.01.002
10.1016/j.jphysparis.2007.01.005
10.1007/s10072-004-0235-2
10.1016/S1388-2457(99)00176-5
10.1016/j.tins.2007.05.001
10.1097/00001756-200504250-00022
10.1016/j.neuroimage.2008.01.052
10.1016/j.neuroimage.2007.10.033
10.1126/science.1055465
10.1038/338334a0
10.1152/jn.00919.2004
10.1152/jn.00195.2003
10.1046/j.1460-9568.2000.00025.x
10.1523/JNEUROSCI.17-08-02914.1997
10.1167/8.1.14
10.1016/j.neuroimage.2005.08.043
10.1038/35084005
10.1167/8.10.5
10.1016/S1053-8119(03)00249-0
10.1073/pnas.0400433101
10.1093/schbul/sbn070
10.1006/nimg.2000.0642
10.1016/j.clinph.2006.01.021
10.1523/JNEUROSCI.15-04-03215.1995
10.1073/pnas.0437896100
10.1016/S0896-6273(03)00332-5
10.1098/rspb.1996.0064
10.1016/j.neuron.2008.04.020
10.1016/0166-2236(92)90039-B
10.1016/j.tins.2007.05.005
10.1152/jn.01095.2002
10.1016/0042-6989(87)90182-9
10.1016/j.neuroimage.2005.06.008
10.1016/j.tins.2007.02.001
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1152/jn.91044.2008
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1253
ExternalDocumentID 10_1152_jn_91044_2008
19515947
jn_102_2_1241
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0VX
29L
2WC
39C
3O-
4.4
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H~9
KQ8
L7B
O0-
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
---
-DZ
-~X
.55
.GJ
18M
1CY
1Z7
41~
476
8M5
ABCQX
ABJNI
ABKWE
ABTAH
ACGFO
ADFNX
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
H13
ITBOX
MVM
NEJ
NPM
OHT
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c390t-b7ef897e3072082a805d25dce05989c085112d8000b0f63a57532a275fb9e94f3
ISSN 0022-3077
IngestDate Fri Aug 16 06:24:49 EDT 2024
Thu Sep 26 15:45:55 EDT 2024
Sat Sep 28 07:53:57 EDT 2024
Tue Jan 05 17:53:06 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-b7ef897e3072082a805d25dce05989c085112d8000b0f63a57532a275fb9e94f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19515947
PQID 67543071
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_19515947
proquest_miscellaneous_67543071
highwire_physiology_jn_102_2_1241
crossref_primary_10_1152_jn_91044_2008
PublicationCentury 2000
PublicationDate 20090801
2009-Aug
2009-08-00
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 20090801
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2009
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R69
R24
R68
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R70
R72
R71
R30
R74
R73
R32
R76
R31
R75
R34
R78
R33
R77
R36
R35
R79
R38
R37
R39
R81
R80
R83
R82
R41
R85
R40
R84
R43
R87
R42
R86
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R78
  doi: 10.1016/j.cub.2004.12.061
– ident: R60
  doi: 10.1002/hbm.1058
– ident: R10
  doi: 10.1073/pnas.0502366102
– ident: R57
  doi: 10.1523/JNEUROSCI.4623-06.2007
– ident: R76
  doi: 10.1017/S0952523801182118
– ident: R45
  doi: 10.1002/hbm.10033
– ident: R40
  doi: 10.1371/journal.pone.0005163
– ident: R71
  doi: 10.1093/cercor/bhk025
– ident: R5
  doi: 10.1523/JNEUROSCI.0009-08.2008
– ident: R36
  doi: 10.1002/hbm.20102
– ident: R69
  doi: 10.1371/journal.pbio.0040163
– ident: R17
  doi: 10.1016/j.neuroimage.2003.10.045
– ident: R49
  doi: 10.1073/pnas.93.12.6112
– ident: R6
  doi: 10.1212/WNL.49.2.416
– ident: R84
  doi: 10.1016/j.clinph.2008.01.024
– ident: R85
  doi: 10.1073/pnas.95.10.5807
– ident: R38
  doi: 10.1016/j.ijpsycho.2004.07.009
– ident: R87
  doi: 10.1016/j.neuron.2008.03.027
– ident: R52
  doi: 10.1093/cercor/10.11.1117
– ident: R65
  doi: 10.1016/S1388-2457(99)00141-8
– ident: R68
  doi: 10.1017/S0952523801184038
– ident: R42
  doi: 10.1016/j.jneumeth.2006.10.008
– ident: R13
  doi: 10.1007/BF00202899
– ident: R50
  doi: 10.1007/s002210050577
– ident: R80
  doi: 10.1016/j.jphysparis.2005.09.002
– ident: R63
  doi: 10.1093/brain/awg109
– ident: R26
  doi: 10.1111/j.1460-9568.1990.tb00450.x
– ident: R55
  doi: 10.1371/journal.pcbi.0030236
– ident: R79
  doi: 10.1016/S1364-6613(99)01299-1
– ident: R35
  doi: 10.1016/S0074-7742(05)68006-3
– ident: R72
  doi: 10.1523/JNEUROSCI.23-10-04251.2003
– ident: R19
  doi: 10.1093/cercor/10.11.1105
– ident: R56
  doi: 10.1016/j.tics.2008.09.002
– ident: R64
  doi: 10.1097/01.wco.0000162857.52520.68
– ident: R1
  doi: 10.1111/j.1460-9568.2004.03495.x
– ident: R18
  doi: 10.1113/jphysiol.1985.sp015776
– ident: R7
  doi: 10.1016/j.neuroimage.2007.09.050
– ident: R66
  doi: 10.1016/j.brainres.2008.07.108
– ident: R32
  doi: 10.1007/s10633-006-9043-8
– ident: R11
  doi: 10.1113/jphysiol.1968.sp008574
– ident: R54
  doi: 10.1038/72961
– ident: R82
  doi: 10.1006/meth.2001.1238
– ident: R15
  doi: 10.1038/35094565
– ident: R73
  doi: 10.1146/annurev.ne.18.030195.003011
– ident: R53
– ident: R12
  doi: 10.1016/S0926-6410(03)00173-3
– ident: R31
  doi: 10.1016/j.neuroimage.2005.01.009
– ident: R41
  doi: 10.1088/0031-9155/44/2/010
– ident: R24
  doi: 10.1093/cercor/bhg129
– ident: R30
  doi: 10.1016/j.neuroimage.2007.01.002
– ident: R86
  doi: 10.1016/j.jphysparis.2007.01.005
– ident: R62
  doi: 10.1007/s10072-004-0235-2
– ident: R28
  doi: 10.1016/S1388-2457(99)00176-5
– ident: R43
  doi: 10.1016/j.tins.2007.05.001
– ident: R67
– ident: R48
  doi: 10.1097/00001756-200504250-00022
– ident: R59
  doi: 10.1016/j.neuroimage.2008.01.052
– ident: R37
  doi: 10.1016/j.neuroimage.2007.10.033
– ident: R22
  doi: 10.1126/science.1055465
– ident: R27
  doi: 10.1038/338334a0
– ident: R34
  doi: 10.1152/jn.00919.2004
– ident: R46
  doi: 10.1152/jn.00195.2003
– ident: R20
  doi: 10.1046/j.1460-9568.2000.00025.x
– ident: R29
  doi: 10.1523/JNEUROSCI.17-08-02914.1997
– ident: R44
  doi: 10.1167/8.1.14
– ident: R14
– ident: R39
  doi: 10.1016/j.neuroimage.2005.08.043
– ident: R51
  doi: 10.1038/35084005
– ident: R33
  doi: 10.1167/8.10.5
– ident: R74
  doi: 10.1016/S1053-8119(03)00249-0
– ident: R77
  doi: 10.1073/pnas.0400433101
– ident: R25
  doi: 10.1093/schbul/sbn070
– ident: R75
  doi: 10.1006/nimg.2000.0642
– ident: R3
  doi: 10.1016/j.clinph.2006.01.021
– ident: R81
  doi: 10.1523/JNEUROSCI.15-04-03215.1995
– ident: R83
  doi: 10.1073/pnas.0437896100
– ident: R70
  doi: 10.1016/S0896-6273(03)00332-5
– ident: R2
  doi: 10.1098/rspb.1996.0064
– ident: R23
  doi: 10.1016/j.neuron.2008.04.020
– ident: R16
  doi: 10.1016/0166-2236(92)90039-B
– ident: R21
  doi: 10.1016/j.tins.2007.05.005
– ident: R8
  doi: 10.1152/jn.01095.2002
– ident: R9
  doi: 10.1016/0042-6989(87)90182-9
– ident: R4
– ident: R47
  doi: 10.1016/j.neuroimage.2005.06.008
– ident: R61
  doi: 10.1016/j.tins.2007.02.001
SSID ssj0007502
Score 2.338147
Snippet Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom Submitted 18 September 2008; accepted in...
In two experiments, magnetoencephalography (MEG) was used to investigate the effects of motion on gamma oscillations in human early visual cortex. When...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 1241
SubjectTerms Adult
Brain Mapping
Evoked Potentials, Visual
Female
Humans
Magnetoencephalography
Male
Motion Perception - physiology
Periodicity
Photic Stimulation
Time Factors
Visual Cortex - physiology
Visual Perception - physiology
Young Adult
Title Spectral Properties of Induced and Evoked Gamma Oscillations in Human Early Visual Cortex to Moving and Stationary Stimuli
URI http://jn.physiology.org/cgi/content/abstract/102/2/1241
https://www.ncbi.nlm.nih.gov/pubmed/19515947
https://search.proquest.com/docview/67543071
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXLggoHws5cNIqBeUknXiJD5WCFRRFYFopd4i27GBtklW3aQt_fWMx8l6F3Ul4BJFieVk895aM-OZN4S8yWyRKJvIyIhcRqnKdCS0AS_FqNT1F7EGC4UPPmd7R-mnY34ctmKwuqRTO_r6xrqS_0EVrgGurkr2H5BdTAoX4BzwhSMgDMe_wtg1j3eRCpdlNXMJ0oOCbFP1blvfxcTNRXsKp99lXcu3Trjy7Cykj_sGfQY1ji9-znvUCjnvzJWzSGsfa8DAut-vdwl2sCK4hKo1Ni2qY2KwZCVa_-3SJRQ1Y0l26PR80Hc_-lOX5S3nl7L2eWdLScjwAhj22R-ujeEJsUiOWykXiIdeLeOSG7MlbrGlBRTMjenNKzt3SrEnzQ7YNykGw4rlcQDMrEaYp8KZaF7G8w8p7fHWbXKH5YI7X33_axCXB-MpiMvDG4-SrJy9W3kuCs36mVatmVFher23glbL4X1yb4CG7nruPCC3TPOQbO42smvrX3SbfllgtUmuRzrRQCfaWjrQiQITqKcTRTrRZTrBKIp0okgn6ulEPZ1o11JPJ5wk0IkOdHpEjj5-OHy_Fw2tOSKdiLiLVG5sIXIDn4mBESmLmFeMV_Av56IQ2tvxFTgjsYptlkhwChImWc6tEkakNnlMNpq2MU8J5SZP9NRWSnGb2qwqNCsqnXGjCzW1Op6Q7fETlzOvwFKi58pZedKUCAs2U52Q1yMAZWC6GwN0K1npqDUhr0ZkSlhH3eaYbEzbz0twnFP4NTDiiQcsPGzA-tnaO1vkbqD-c7LRnffmBdiqnXqJDPsNOECYTQ
link.rule.ids 315,786,790,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+properties+of+induced+and+evoked+gamma+oscillations+in+human+early+visual+cortex+to+moving+and+stationary+stimuli&rft.jtitle=Journal+of+neurophysiology&rft.au=Swettenham%2C+J+B&rft.au=Muthukumaraswamy%2C+S+D&rft.au=Singh%2C+K+D&rft.date=2009-08-01&rft.issn=0022-3077&rft.volume=102&rft.issue=2&rft.spage=1241&rft_id=info:doi/10.1152%2Fjn.91044.2008&rft_id=info%3Apmid%2F19515947&rft.externalDocID=19515947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon