Endoplasmic reticulum-targeting activatable nanophotosensitizers for hypoxia relief and enhanced photodynamic therapy
Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y...
Saved in:
Published in | Chemical science (Cambridge) Vol. 16; no. 24; pp. 199 - 1917 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
18.06.2025
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H
2
O
2
)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both
in vitro
and
in vivo
studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.
This work developed endoplasmic reticulum (ER)-targeting activatable nanophotosensitizers, which can selectively release ER-targeting photosensitizers and YC-1 within tumor cells for enhanced photodynamic therapy and hypoxia relief, respectively. |
---|---|
AbstractList | Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H
O
)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both
and
studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H2O2)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H 2 O 2 )-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. This work developed endoplasmic reticulum (ER)-targeting activatable nanophotosensitizers, which can selectively release ER-targeting photosensitizers and YC-1 within tumor cells for enhanced photodynamic therapy and hypoxia relief, respectively. Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H 2 O 2 )-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H2O2)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H2O2)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. |
Author | He, Xiaowen Diao, Shanchao Zhou, Wen Xie, Chen Wu, Ying Huang, Yuxin Fan, Quli Yin, Likun |
AuthorAffiliation | State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications |
AuthorAffiliation_xml | – name: State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM) – name: Nanjing University of Posts & Telecommunications |
Author_xml | – sequence: 1 givenname: Shanchao surname: Diao fullname: Diao, Shanchao – sequence: 2 givenname: Xiaowen surname: He fullname: He, Xiaowen – sequence: 3 givenname: Ying surname: Wu fullname: Wu, Ying – sequence: 4 givenname: Likun surname: Yin fullname: Yin, Likun – sequence: 5 givenname: Yuxin surname: Huang fullname: Huang, Yuxin – sequence: 6 givenname: Wen surname: Zhou fullname: Zhou, Wen – sequence: 7 givenname: Chen surname: Xie fullname: Xie, Chen – sequence: 8 givenname: Quli surname: Fan fullname: Fan, Quli |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40395379$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstv1DAQxi1UREvphTsoEheEFPAjTuJThZblIVXiAJyjsTPZuErsYDsVy1-P2y3Lwxd7NL_5ZkafH5MT5x0S8pTR14wK9aaX0VAqRYUPyBmnFStrKdTJ8c3pKbmI8ZrmIwSTvHlETqtcKUWjzsi6db1fJoizNUXAZM06rXOZIOxy4HYFmGRvIIGesHDg_DL65CO6aJP9iSEWgw_FuF_8DwtZYLI4FOD6At0IzmBf3BX0ewe3HdKIAZb9E_JwgCnixf19Tr69337dfCyvPn_4tHl7VRqhaCo1G2SvdaPbCho6yKbmNQpkrdIVCg6qMr3girO-Fi1CpVqtJLCB122jpdTinFwedJdVz9gbdCnA1C3BzhD2nQfb_Ztxdux2_qZjnLa1bKus8PJeIfjvK8bUzTYanCZw6NfYCU5rLtrcMaMv_kOv_Rpc3i9TTDWyrhqVqed_j3Sc5bclGXh1AEzwMQYcjgij3a3l3Tv5ZXNn-TbDzw5wiObI_fkS4heMVqq8 |
Cites_doi | 10.1021/acsami.1c23121 10.1021/acsnano.1c07205 10.1002/anie.202307288 10.1002/advs.202002504 10.1021/acs.analchem.4c04157 10.1002/advs.202201819 10.1021/acs.chemrev.1c00381 10.1039/D0SC01721C 10.1002/adma.202307454 10.1002/adma.202305243 10.1038/s41467-024-49311-z 10.1021/acs.nanolett.9b05210 10.1016/j.ccr.2024.216056 10.1002/adfm.202307175 10.1038/s41467-018-06289-9 10.1002/anie.201801984 10.1002/cnma.202300384 10.1002/adma.202309711 10.1016/j.biomaterials.2022.121801 10.1038/s12276-021-00560-8 10.1021/cbmi.3c00005 10.1038/s41467-019-11269-8 10.1021/jacs.2c13189 10.1002/smll.202200152 10.1038/ncb3579 10.1021/acsnano.0c01350 10.1016/j.mattod.2024.07.012 10.1039/D0CS01370F 10.1002/adma.202310298 10.1002/adma.202209529 10.1002/anie.202316487 10.1039/C8CS00081F 10.1002/adhm.202301732 10.1016/j.biomaterials.2020.120532 10.1038/s43018-022-00389-8 10.1021/cbmi.4c00042 10.1021/jacs.3c13501 10.1038/s41467-018-06574-7 10.1073/pnas.2203994119 10.1039/D0CS00173B |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2025 This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2025 – notice: This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d5sc00534e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 1917 |
ExternalDocumentID | PMC12086584 40395379 10_1039_D5SC00534E d5sc00534e |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: BK20230060 – fundername: ; grantid: 22174070; 22205115; 52373142 – fundername: ; grantid: GZR2022010012; GZR2023010022 – fundername: ; grantid: BK20243057 |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH AAYXX ABIQK CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c390t-b1f5dbb7b84a70f57626e3e189b4e32a94cd32921d638ea498b95a1f2687b55b3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:30:59 EDT 2025 Wed Jul 02 03:01:07 EDT 2025 Fri Jul 25 09:21:30 EDT 2025 Fri Jun 20 01:35:21 EDT 2025 Thu Jul 03 08:36:31 EDT 2025 Wed Jun 18 15:20:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-b1f5dbb7b84a70f57626e3e189b4e32a94cd32921d638ea498b95a1f2687b55b3 |
Notes | https://doi.org/10.1039/d5sc00534e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. |
ORCID | 0000-0003-0292-1260 0000-0002-1068-4691 0000-0002-9387-0165 |
OpenAccessLink | http://dx.doi.org/10.1039/d5sc00534e |
PMID | 40395379 |
PQID | 3219756479 |
PQPubID | 2047492 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_40395379 proquest_miscellaneous_3206238268 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12086584 crossref_primary_10_1039_D5SC00534E proquest_journals_3219756479 rsc_primary_d5sc00534e |
PublicationCentury | 2000 |
PublicationDate | 2025-06-18 |
PublicationDateYYYYMMDD | 2025-06-18 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Zhang (D5SC00534E/cit23/1) 2022; 9 Tian (D5SC00534E/cit30/1) 2023; 62 Lai (D5SC00534E/cit18/1) 2018; 9 Zhang (D5SC00534E/cit12/1) 2018; 57 Pan (D5SC00534E/cit16/1) 2018; 47 Joshi (D5SC00534E/cit17/1) 2017; 19 Wei (D5SC00534E/cit25/1) 2023; 33 Xie (D5SC00534E/cit6/1) 2020; 11 Deng (D5SC00534E/cit43/1) 2020; 20 Zhang (D5SC00534E/cit3/1) 2024; 36 Zhao (D5SC00534E/cit5/1) 2021; 50 Zhuang (D5SC00534E/cit32/1) 2024; 15 Yao (D5SC00534E/cit33/1) 2022; 289 Huang (D5SC00534E/cit27/1) 2024; 146 Wang (D5SC00534E/cit37/1) 2022; 14 Song (D5SC00534E/cit39/1) 2024; 96 Qian (D5SC00534E/cit10/1) 2024; 2 Yin (D5SC00534E/cit41/1) 2024; 10 Li (D5SC00534E/cit7/1) 2021; 269 Li (D5SC00534E/cit26/1) 2022; 291 Li (D5SC00534E/cit15/1) 2023; 35 Zhang (D5SC00534E/cit24/1) 2023; 33 Huang (D5SC00534E/cit20/1) 2022; 16 Lin (D5SC00534E/cit8/1) 2022; 119 Ni (D5SC00534E/cit4/1) 2022; 18 Deng (D5SC00534E/cit35/1) 2021; 8 Chen (D5SC00534E/cit28/1) 2024; 36 Yu (D5SC00534E/cit13/1) 2018; 9 Liu (D5SC00534E/cit9/1) 2023; 145 Liu (D5SC00534E/cit21/1) 2022; 3 Xiong (D5SC00534E/cit31/1) 2024; 36 Yang (D5SC00534E/cit34/1) 2024; 80 Zhao (D5SC00534E/cit29/1) 2024; 36 Zeng (D5SC00534E/cit38/1) 2024; 63 Diao (D5SC00534E/cit40/1) 2023; 12 Li (D5SC00534E/cit42/1) 2019; 10 Xie (D5SC00534E/cit2/1) 2021; 50 Bhattarai (D5SC00534E/cit19/1) 2021; 53 Li (D5SC00534E/cit22/1) 2019; 10 Walsh (D5SC00534E/cit11/1) 2023; 1 Yu (D5SC00534E/cit14/1) 2024; 518 Pham (D5SC00534E/cit1/1) 2021; 121 Deng (D5SC00534E/cit36/1) 2020; 14 |
References_xml | – volume: 14 start-page: 10092 year: 2022 ident: D5SC00534E/cit37/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23121 – volume: 16 start-page: 431 year: 2022 ident: D5SC00534E/cit20/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c07205 – volume: 62 start-page: e202307288 year: 2023 ident: D5SC00534E/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202307288 – volume: 8 start-page: 2002504 year: 2021 ident: D5SC00534E/cit35/1 publication-title: Adv. Sci. doi: 10.1002/advs.202002504 – volume: 96 start-page: 18132 year: 2024 ident: D5SC00534E/cit39/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c04157 – volume: 9 start-page: 2201819 year: 2022 ident: D5SC00534E/cit23/1 publication-title: Adv. Sci. doi: 10.1002/advs.202201819 – volume: 121 start-page: 13454 year: 2021 ident: D5SC00534E/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00381 – volume: 11 start-page: 10553 year: 2020 ident: D5SC00534E/cit6/1 publication-title: Chem. Sci. doi: 10.1039/D0SC01721C – volume: 36 start-page: 2307454 year: 2024 ident: D5SC00534E/cit28/1 publication-title: Adv. Mater. doi: 10.1002/adma.202307454 – volume: 36 start-page: 2305243 year: 2024 ident: D5SC00534E/cit29/1 publication-title: Adv. Mater. doi: 10.1002/adma.202305243 – volume: 15 start-page: 4943 year: 2024 ident: D5SC00534E/cit32/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-49311-z – volume: 20 start-page: 1928 year: 2020 ident: D5SC00534E/cit43/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05210 – volume: 518 start-page: 216056 year: 2024 ident: D5SC00534E/cit14/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.216056 – volume: 33 start-page: 2307175 year: 2023 ident: D5SC00534E/cit24/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202307175 – volume: 9 start-page: 3918 year: 2018 ident: D5SC00534E/cit18/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06289-9 – volume: 57 start-page: 7066 year: 2018 ident: D5SC00534E/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801984 – volume: 10 start-page: e202300384 year: 2024 ident: D5SC00534E/cit41/1 publication-title: ChemNanoMat doi: 10.1002/cnma.202300384 – volume: 36 start-page: 2309711 year: 2024 ident: D5SC00534E/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.202309711 – volume: 289 start-page: 121801 year: 2022 ident: D5SC00534E/cit33/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121801 – volume: 53 start-page: 151 year: 2021 ident: D5SC00534E/cit19/1 publication-title: Exp. Mol. Med. doi: 10.1038/s12276-021-00560-8 – volume: 1 start-page: 66 year: 2023 ident: D5SC00534E/cit11/1 publication-title: Chem. Biomed. Imaging doi: 10.1021/cbmi.3c00005 – volume: 10 start-page: 3349 year: 2019 ident: D5SC00534E/cit22/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11269-8 – volume: 145 start-page: 7918 year: 2023 ident: D5SC00534E/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13189 – volume: 18 start-page: 2200152 year: 2022 ident: D5SC00534E/cit4/1 publication-title: Small doi: 10.1002/smll.202200152 – volume: 19 start-page: 876 year: 2017 ident: D5SC00534E/cit17/1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3579 – volume: 10 start-page: 3349 year: 2019 ident: D5SC00534E/cit42/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11269-8 – volume: 14 start-page: 9711 year: 2020 ident: D5SC00534E/cit36/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c01350 – volume: 80 start-page: 1 year: 2024 ident: D5SC00534E/cit34/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2024.07.012 – volume: 50 start-page: 9152 year: 2021 ident: D5SC00534E/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01370F – volume: 36 start-page: 2310298 year: 2024 ident: D5SC00534E/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.202310298 – volume: 35 start-page: 2209529 year: 2023 ident: D5SC00534E/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.202209529 – volume: 63 start-page: e202316487 year: 2024 ident: D5SC00534E/cit38/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202316487 – volume: 47 start-page: 6930 year: 2018 ident: D5SC00534E/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00081F – volume: 12 start-page: 2301732 year: 2023 ident: D5SC00534E/cit40/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202301732 – volume: 33 start-page: 2307175 year: 2023 ident: D5SC00534E/cit25/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202307175 – volume: 269 start-page: 120532 year: 2021 ident: D5SC00534E/cit7/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120532 – volume: 3 start-page: 866 year: 2022 ident: D5SC00534E/cit21/1 publication-title: Nat. Cancer doi: 10.1038/s43018-022-00389-8 – volume: 2 start-page: 808 year: 2024 ident: D5SC00534E/cit10/1 publication-title: Chem. Biomed. Imaging doi: 10.1021/cbmi.4c00042 – volume: 146 start-page: 7543 year: 2024 ident: D5SC00534E/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13501 – volume: 9 start-page: 4335 year: 2018 ident: D5SC00534E/cit13/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06574-7 – volume: 291 start-page: 2305187 year: 2022 ident: D5SC00534E/cit26/1 publication-title: Biomaterials – volume: 119 start-page: e2203994119 year: 2022 ident: D5SC00534E/cit8/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2203994119 – volume: 50 start-page: 4185 year: 2021 ident: D5SC00534E/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00173B |
SSID | ssj0000331527 |
Score | 2.4503026 |
Snippet | Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 199 |
SubjectTerms | Chemistry Copolymers Effectiveness Endoplasmic reticulum Hydrogen peroxide Hypoxia In vivo methods and tests Nanoparticles Photodynamic therapy Tumors |
Title | Endoplasmic reticulum-targeting activatable nanophotosensitizers for hypoxia relief and enhanced photodynamic therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40395379 https://www.proquest.com/docview/3219756479 https://www.proquest.com/docview/3206238268 https://pubmed.ncbi.nlm.nih.gov/PMC12086584 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4AL4mtQGJMR3FAgtuMkPqKuaEIMIbZCOVV24qgRIqnWVMD-ep7tOEnVHmCXqLJjp_L7-fm95_eB0CsqcpZopgMpCh1EILIGkiV5kJMYxH_F8kyYAOfzT_HZLPow5_PeoG-jSxr1JrveG1dyE6pCG9DVRMn-B2W7SaEBfgN94QkUhuc_0Xha5fUKxN-fNg9z40x5gXPutsGHmS1eZqOjKlnVq2Xd1Gvjst6U1yZy1_gYLv-s6t-lNFEtpS7sZYKuls4xwA7IXdH6180gAYHPbeDTDfjoIHMn7KPABkaG01Jak-yFmXcp694Ca1rn0PurD0n7trHngj9TDUtyiQ4-lj821dBMQblxp2o5qw90cwYR741qvU3amnY906NhRIKYU3dXo4dtLunRDssPmcmYmvN1ZhhKpPuDrXM3_Hw-IRR0NxC2DtAhBYWCjtDhl6-z-ffOHhcy1lb47f6Cz2bLxNt--m35ZUcp2fWtPbjypWSsyHJ5D91tdQ38zgHnPrqlqwfodrccD9FmACC8B0B4ACC8D0AYAIRbAGEHIAwAwh5AeAgg3ALoEZq9n15OzoK2DkeQMRE2gSIFz5VKVBrJJCxAQ6UxbG-SChVpRqWIspxRQUkOzFzLSKRKcEkKGqeJ4lyxIzSq6ko_QbjINGgoREUxjCrSApiBJnFGkkISFWfxGL30q7tYuXQrC-smwcTilF9MLA2mY3TsF37Rbsf1gsHZm_A4SsQYvei6YUHNDZisdL0x74Qg7oNGnY7RY0en7jMRfIMzMzrdomD3gknEvt1TlUubkN2Da4yOgNjdgB40T28-5zN0p99Ox2jUXG30c5CDG3Vi7UcnLZD_AsdKwM8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoplasmic+reticulum-targeting+activatable+nanophotosensitizers+for+hypoxia+relief+and+enhanced+photodynamic+therapy&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Diao%2C+Shanchao&rft.au=He%2C+Xiaowen&rft.au=Wu%2C+Ying&rft.au=Yin%2C+Likun&rft.date=2025-06-18&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039%2Fd5sc00534e&rft.externalDocID=PMC12086584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |