Endoplasmic reticulum-targeting activatable nanophotosensitizers for hypoxia relief and enhanced photodynamic therapy

Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 16; no. 24; pp. 199 - 1917
Main Authors Diao, Shanchao, He, Xiaowen, Wu, Ying, Yin, Likun, Huang, Yuxin, Zhou, Wen, Xie, Chen, Fan, Quli
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.06.2025
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H 2 O 2 )-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. This work developed endoplasmic reticulum (ER)-targeting activatable nanophotosensitizers, which can selectively release ER-targeting photosensitizers and YC-1 within tumor cells for enhanced photodynamic therapy and hypoxia relief, respectively.
AbstractList Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H O )-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both and studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.
Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H2O2)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.
Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H 2 O 2 )-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement. This work developed endoplasmic reticulum (ER)-targeting activatable nanophotosensitizers, which can selectively release ER-targeting photosensitizers and YC-1 within tumor cells for enhanced photodynamic therapy and hypoxia relief, respectively.
Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H 2 O 2 )-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.
Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H2O2)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is relatively low, which significantly suppresses the efficacy of PDT. In this study, an endoplasmic reticulum (ER)-targeting nanophotosensitizer (TPPa-Y NP) was designed and prepared for enhanced PDT. TPPa-Y NPs are prepared by encapsulating an ER-targeting pheophorbide-a (TPPa) and a hypoxia inducible factor 1α (HIF-1α) inhibitor (YC-1) with a hydrogen peroxide (H2O2)-responsive amphiphilic copolymer (PEG-PMPAP). After internalization into tumor cells, TPPa-Y NPs may rapidly dissociate and release both TPPa and YC-1. TPPa can target ER, which leads to an enhancement in its fluorescence signal and PDT efficacy. On the other hand, YC-1 may effectively inhibit the overexpressed HIF-1α and alleviate tumor hypoxia, which can further enhance the PDT efficacy of TPPa. Both in vitro and in vivo studies demonstrate that TPPa-Y NPs have a better anticancer effect than the nanoparticles without YC-1 (TPPa NPs). Therefore, this study provides a smart nanophotosensitizer, which is able to target ER and alleviate hypoxia for PDT efficacy enhancement.
Author He, Xiaowen
Diao, Shanchao
Zhou, Wen
Xie, Chen
Wu, Ying
Huang, Yuxin
Fan, Quli
Yin, Likun
AuthorAffiliation State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM)
Nanjing University of Posts & Telecommunications
AuthorAffiliation_xml – name: State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM)
– name: Nanjing University of Posts & Telecommunications
Author_xml – sequence: 1
  givenname: Shanchao
  surname: Diao
  fullname: Diao, Shanchao
– sequence: 2
  givenname: Xiaowen
  surname: He
  fullname: He, Xiaowen
– sequence: 3
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
– sequence: 4
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
– sequence: 5
  givenname: Yuxin
  surname: Huang
  fullname: Huang, Yuxin
– sequence: 6
  givenname: Wen
  surname: Zhou
  fullname: Zhou, Wen
– sequence: 7
  givenname: Chen
  surname: Xie
  fullname: Xie, Chen
– sequence: 8
  givenname: Quli
  surname: Fan
  fullname: Fan, Quli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40395379$$D View this record in MEDLINE/PubMed
BookMark eNpdkstv1DAQxi1UREvphTsoEheEFPAjTuJThZblIVXiAJyjsTPZuErsYDsVy1-P2y3Lwxd7NL_5ZkafH5MT5x0S8pTR14wK9aaX0VAqRYUPyBmnFStrKdTJ8c3pKbmI8ZrmIwSTvHlETqtcKUWjzsi6db1fJoizNUXAZM06rXOZIOxy4HYFmGRvIIGesHDg_DL65CO6aJP9iSEWgw_FuF_8DwtZYLI4FOD6At0IzmBf3BX0ewe3HdKIAZb9E_JwgCnixf19Tr69337dfCyvPn_4tHl7VRqhaCo1G2SvdaPbCho6yKbmNQpkrdIVCg6qMr3girO-Fi1CpVqtJLCB122jpdTinFwedJdVz9gbdCnA1C3BzhD2nQfb_Ztxdux2_qZjnLa1bKus8PJeIfjvK8bUzTYanCZw6NfYCU5rLtrcMaMv_kOv_Rpc3i9TTDWyrhqVqed_j3Sc5bclGXh1AEzwMQYcjgij3a3l3Tv5ZXNn-TbDzw5wiObI_fkS4heMVqq8
Cites_doi 10.1021/acsami.1c23121
10.1021/acsnano.1c07205
10.1002/anie.202307288
10.1002/advs.202002504
10.1021/acs.analchem.4c04157
10.1002/advs.202201819
10.1021/acs.chemrev.1c00381
10.1039/D0SC01721C
10.1002/adma.202307454
10.1002/adma.202305243
10.1038/s41467-024-49311-z
10.1021/acs.nanolett.9b05210
10.1016/j.ccr.2024.216056
10.1002/adfm.202307175
10.1038/s41467-018-06289-9
10.1002/anie.201801984
10.1002/cnma.202300384
10.1002/adma.202309711
10.1016/j.biomaterials.2022.121801
10.1038/s12276-021-00560-8
10.1021/cbmi.3c00005
10.1038/s41467-019-11269-8
10.1021/jacs.2c13189
10.1002/smll.202200152
10.1038/ncb3579
10.1021/acsnano.0c01350
10.1016/j.mattod.2024.07.012
10.1039/D0CS01370F
10.1002/adma.202310298
10.1002/adma.202209529
10.1002/anie.202316487
10.1039/C8CS00081F
10.1002/adhm.202301732
10.1016/j.biomaterials.2020.120532
10.1038/s43018-022-00389-8
10.1021/cbmi.4c00042
10.1021/jacs.3c13501
10.1038/s41467-018-06574-7
10.1073/pnas.2203994119
10.1039/D0CS00173B
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2025
This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2025
– notice: This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d5sc00534e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 1917
ExternalDocumentID PMC12086584
40395379
10_1039_D5SC00534E
d5sc00534e
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: BK20230060
– fundername: ;
  grantid: 22174070; 22205115; 52373142
– fundername: ;
  grantid: GZR2022010012; GZR2023010022
– fundername: ;
  grantid: BK20243057
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
AAYXX
ABIQK
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c390t-b1f5dbb7b84a70f57626e3e189b4e32a94cd32921d638ea498b95a1f2687b55b3
ISSN 2041-6520
IngestDate Thu Aug 21 18:30:59 EDT 2025
Wed Jul 02 03:01:07 EDT 2025
Fri Jul 25 09:21:30 EDT 2025
Fri Jun 20 01:35:21 EDT 2025
Thu Jul 03 08:36:31 EDT 2025
Wed Jun 18 15:20:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-b1f5dbb7b84a70f57626e3e189b4e32a94cd32921d638ea498b95a1f2687b55b3
Notes https://doi.org/10.1039/d5sc00534e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
ORCID 0000-0003-0292-1260
0000-0002-1068-4691
0000-0002-9387-0165
OpenAccessLink http://dx.doi.org/10.1039/d5sc00534e
PMID 40395379
PQID 3219756479
PQPubID 2047492
PageCount 9
ParticipantIDs pubmed_primary_40395379
proquest_miscellaneous_3206238268
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12086584
crossref_primary_10_1039_D5SC00534E
proquest_journals_3219756479
rsc_primary_d5sc00534e
PublicationCentury 2000
PublicationDate 2025-06-18
PublicationDateYYYYMMDD 2025-06-18
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2025
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Zhang (D5SC00534E/cit23/1) 2022; 9
Tian (D5SC00534E/cit30/1) 2023; 62
Lai (D5SC00534E/cit18/1) 2018; 9
Zhang (D5SC00534E/cit12/1) 2018; 57
Pan (D5SC00534E/cit16/1) 2018; 47
Joshi (D5SC00534E/cit17/1) 2017; 19
Wei (D5SC00534E/cit25/1) 2023; 33
Xie (D5SC00534E/cit6/1) 2020; 11
Deng (D5SC00534E/cit43/1) 2020; 20
Zhang (D5SC00534E/cit3/1) 2024; 36
Zhao (D5SC00534E/cit5/1) 2021; 50
Zhuang (D5SC00534E/cit32/1) 2024; 15
Yao (D5SC00534E/cit33/1) 2022; 289
Huang (D5SC00534E/cit27/1) 2024; 146
Wang (D5SC00534E/cit37/1) 2022; 14
Song (D5SC00534E/cit39/1) 2024; 96
Qian (D5SC00534E/cit10/1) 2024; 2
Yin (D5SC00534E/cit41/1) 2024; 10
Li (D5SC00534E/cit7/1) 2021; 269
Li (D5SC00534E/cit26/1) 2022; 291
Li (D5SC00534E/cit15/1) 2023; 35
Zhang (D5SC00534E/cit24/1) 2023; 33
Huang (D5SC00534E/cit20/1) 2022; 16
Lin (D5SC00534E/cit8/1) 2022; 119
Ni (D5SC00534E/cit4/1) 2022; 18
Deng (D5SC00534E/cit35/1) 2021; 8
Chen (D5SC00534E/cit28/1) 2024; 36
Yu (D5SC00534E/cit13/1) 2018; 9
Liu (D5SC00534E/cit9/1) 2023; 145
Liu (D5SC00534E/cit21/1) 2022; 3
Xiong (D5SC00534E/cit31/1) 2024; 36
Yang (D5SC00534E/cit34/1) 2024; 80
Zhao (D5SC00534E/cit29/1) 2024; 36
Zeng (D5SC00534E/cit38/1) 2024; 63
Diao (D5SC00534E/cit40/1) 2023; 12
Li (D5SC00534E/cit42/1) 2019; 10
Xie (D5SC00534E/cit2/1) 2021; 50
Bhattarai (D5SC00534E/cit19/1) 2021; 53
Li (D5SC00534E/cit22/1) 2019; 10
Walsh (D5SC00534E/cit11/1) 2023; 1
Yu (D5SC00534E/cit14/1) 2024; 518
Pham (D5SC00534E/cit1/1) 2021; 121
Deng (D5SC00534E/cit36/1) 2020; 14
References_xml – volume: 14
  start-page: 10092
  year: 2022
  ident: D5SC00534E/cit37/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23121
– volume: 16
  start-page: 431
  year: 2022
  ident: D5SC00534E/cit20/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c07205
– volume: 62
  start-page: e202307288
  year: 2023
  ident: D5SC00534E/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202307288
– volume: 8
  start-page: 2002504
  year: 2021
  ident: D5SC00534E/cit35/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002504
– volume: 96
  start-page: 18132
  year: 2024
  ident: D5SC00534E/cit39/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c04157
– volume: 9
  start-page: 2201819
  year: 2022
  ident: D5SC00534E/cit23/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201819
– volume: 121
  start-page: 13454
  year: 2021
  ident: D5SC00534E/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00381
– volume: 11
  start-page: 10553
  year: 2020
  ident: D5SC00534E/cit6/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01721C
– volume: 36
  start-page: 2307454
  year: 2024
  ident: D5SC00534E/cit28/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202307454
– volume: 36
  start-page: 2305243
  year: 2024
  ident: D5SC00534E/cit29/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305243
– volume: 15
  start-page: 4943
  year: 2024
  ident: D5SC00534E/cit32/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49311-z
– volume: 20
  start-page: 1928
  year: 2020
  ident: D5SC00534E/cit43/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05210
– volume: 518
  start-page: 216056
  year: 2024
  ident: D5SC00534E/cit14/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.216056
– volume: 33
  start-page: 2307175
  year: 2023
  ident: D5SC00534E/cit24/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202307175
– volume: 9
  start-page: 3918
  year: 2018
  ident: D5SC00534E/cit18/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06289-9
– volume: 57
  start-page: 7066
  year: 2018
  ident: D5SC00534E/cit12/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801984
– volume: 10
  start-page: e202300384
  year: 2024
  ident: D5SC00534E/cit41/1
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202300384
– volume: 36
  start-page: 2309711
  year: 2024
  ident: D5SC00534E/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202309711
– volume: 289
  start-page: 121801
  year: 2022
  ident: D5SC00534E/cit33/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121801
– volume: 53
  start-page: 151
  year: 2021
  ident: D5SC00534E/cit19/1
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-021-00560-8
– volume: 1
  start-page: 66
  year: 2023
  ident: D5SC00534E/cit11/1
  publication-title: Chem. Biomed. Imaging
  doi: 10.1021/cbmi.3c00005
– volume: 10
  start-page: 3349
  year: 2019
  ident: D5SC00534E/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11269-8
– volume: 145
  start-page: 7918
  year: 2023
  ident: D5SC00534E/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13189
– volume: 18
  start-page: 2200152
  year: 2022
  ident: D5SC00534E/cit4/1
  publication-title: Small
  doi: 10.1002/smll.202200152
– volume: 19
  start-page: 876
  year: 2017
  ident: D5SC00534E/cit17/1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3579
– volume: 10
  start-page: 3349
  year: 2019
  ident: D5SC00534E/cit42/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11269-8
– volume: 14
  start-page: 9711
  year: 2020
  ident: D5SC00534E/cit36/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01350
– volume: 80
  start-page: 1
  year: 2024
  ident: D5SC00534E/cit34/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2024.07.012
– volume: 50
  start-page: 9152
  year: 2021
  ident: D5SC00534E/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01370F
– volume: 36
  start-page: 2310298
  year: 2024
  ident: D5SC00534E/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202310298
– volume: 35
  start-page: 2209529
  year: 2023
  ident: D5SC00534E/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209529
– volume: 63
  start-page: e202316487
  year: 2024
  ident: D5SC00534E/cit38/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202316487
– volume: 47
  start-page: 6930
  year: 2018
  ident: D5SC00534E/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00081F
– volume: 12
  start-page: 2301732
  year: 2023
  ident: D5SC00534E/cit40/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202301732
– volume: 33
  start-page: 2307175
  year: 2023
  ident: D5SC00534E/cit25/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202307175
– volume: 269
  start-page: 120532
  year: 2021
  ident: D5SC00534E/cit7/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120532
– volume: 3
  start-page: 866
  year: 2022
  ident: D5SC00534E/cit21/1
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-022-00389-8
– volume: 2
  start-page: 808
  year: 2024
  ident: D5SC00534E/cit10/1
  publication-title: Chem. Biomed. Imaging
  doi: 10.1021/cbmi.4c00042
– volume: 146
  start-page: 7543
  year: 2024
  ident: D5SC00534E/cit27/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13501
– volume: 9
  start-page: 4335
  year: 2018
  ident: D5SC00534E/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06574-7
– volume: 291
  start-page: 2305187
  year: 2022
  ident: D5SC00534E/cit26/1
  publication-title: Biomaterials
– volume: 119
  start-page: e2203994119
  year: 2022
  ident: D5SC00534E/cit8/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2203994119
– volume: 50
  start-page: 4185
  year: 2021
  ident: D5SC00534E/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00173B
SSID ssj0000331527
Score 2.4503026
Snippet Photodynamic therapy (PDT) is a promising cancer therapeutic modality. However, the specific targeting capability of conventional photosensitizers is...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 199
SubjectTerms Chemistry
Copolymers
Effectiveness
Endoplasmic reticulum
Hydrogen peroxide
Hypoxia
In vivo methods and tests
Nanoparticles
Photodynamic therapy
Tumors
Title Endoplasmic reticulum-targeting activatable nanophotosensitizers for hypoxia relief and enhanced photodynamic therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/40395379
https://www.proquest.com/docview/3219756479
https://www.proquest.com/docview/3206238268
https://pubmed.ncbi.nlm.nih.gov/PMC12086584
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4AL4mtQGJMR3FAgtuMkPqKuaEIMIbZCOVV24qgRIqnWVMD-ep7tOEnVHmCXqLJjp_L7-fm95_eB0CsqcpZopgMpCh1EILIGkiV5kJMYxH_F8kyYAOfzT_HZLPow5_PeoG-jSxr1JrveG1dyE6pCG9DVRMn-B2W7SaEBfgN94QkUhuc_0Xha5fUKxN-fNg9z40x5gXPutsGHmS1eZqOjKlnVq2Xd1Gvjst6U1yZy1_gYLv-s6t-lNFEtpS7sZYKuls4xwA7IXdH6180gAYHPbeDTDfjoIHMn7KPABkaG01Jak-yFmXcp694Ca1rn0PurD0n7trHngj9TDUtyiQ4-lj821dBMQblxp2o5qw90cwYR741qvU3amnY906NhRIKYU3dXo4dtLunRDssPmcmYmvN1ZhhKpPuDrXM3_Hw-IRR0NxC2DtAhBYWCjtDhl6-z-ffOHhcy1lb47f6Cz2bLxNt--m35ZUcp2fWtPbjypWSsyHJ5D91tdQ38zgHnPrqlqwfodrccD9FmACC8B0B4ACC8D0AYAIRbAGEHIAwAwh5AeAgg3ALoEZq9n15OzoK2DkeQMRE2gSIFz5VKVBrJJCxAQ6UxbG-SChVpRqWIspxRQUkOzFzLSKRKcEkKGqeJ4lyxIzSq6ko_QbjINGgoREUxjCrSApiBJnFGkkISFWfxGL30q7tYuXQrC-smwcTilF9MLA2mY3TsF37Rbsf1gsHZm_A4SsQYvei6YUHNDZisdL0x74Qg7oNGnY7RY0en7jMRfIMzMzrdomD3gknEvt1TlUubkN2Da4yOgNjdgB40T28-5zN0p99Ox2jUXG30c5CDG3Vi7UcnLZD_AsdKwM8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoplasmic+reticulum-targeting+activatable+nanophotosensitizers+for+hypoxia+relief+and+enhanced+photodynamic+therapy&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Diao%2C+Shanchao&rft.au=He%2C+Xiaowen&rft.au=Wu%2C+Ying&rft.au=Yin%2C+Likun&rft.date=2025-06-18&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039%2Fd5sc00534e&rft.externalDocID=PMC12086584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon