A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining

•End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall milling.•No division of blocks in the feed direction avoids cutter marks and severe vibration.•Sub-division of blocks in the tool’s axial direction...

Full description

Saved in:
Bibliographic Details
Published inPrecision engineering Vol. 50; pp. 506 - 514
Main Authors Wang, Jun, Ibaraki, Soichi, Matsubara, Atsushi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall milling.•No division of blocks in the feed direction avoids cutter marks and severe vibration.•Sub-division of blocks in the tool’s axial direction reduces deformation further. A thin-wall part of lower stiffness can be subject to significant deformation during its cutting process. This study proposes a cutting process optimization algorithm to reduce the workpiece deformation. First, the volume to be removed is divided into a set of blocks. The proposed algorithm starts from the finished workpiece shape, with all the blocks removed. The objective of the proposed algorithm is to find a sequence of adding the blocks, such that the workpiece deformation is always smaller than the given threshold value when the cutting forces is imposed at each step. The workpiece deformation at each step is simulated by using the FEM (finite element method) simulation. By inverting the sequence of adding the blocks, the optimized sequence to remove the blocks can be obtained. Additionally, the block size can be modified to reduce the axial depth of cut to further reduce the workpiece deformation, or to increase the radial depth of cut to enhance the efficiency. Experiments are conducted to confirm the effectiveness of the algorithm to reduce the maximum workpiece deformation during the entire cutting process.
AbstractList •End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall milling.•No division of blocks in the feed direction avoids cutter marks and severe vibration.•Sub-division of blocks in the tool’s axial direction reduces deformation further. A thin-wall part of lower stiffness can be subject to significant deformation during its cutting process. This study proposes a cutting process optimization algorithm to reduce the workpiece deformation. First, the volume to be removed is divided into a set of blocks. The proposed algorithm starts from the finished workpiece shape, with all the blocks removed. The objective of the proposed algorithm is to find a sequence of adding the blocks, such that the workpiece deformation is always smaller than the given threshold value when the cutting forces is imposed at each step. The workpiece deformation at each step is simulated by using the FEM (finite element method) simulation. By inverting the sequence of adding the blocks, the optimized sequence to remove the blocks can be obtained. Additionally, the block size can be modified to reduce the axial depth of cut to further reduce the workpiece deformation, or to increase the radial depth of cut to enhance the efficiency. Experiments are conducted to confirm the effectiveness of the algorithm to reduce the maximum workpiece deformation during the entire cutting process.
Author Matsubara, Atsushi
Wang, Jun
Ibaraki, Soichi
Author_xml – sequence: 1
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Department of Micro Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto, 615-8540, Japan
– sequence: 2
  givenname: Soichi
  surname: Ibaraki
  fullname: Ibaraki, Soichi
  email: ibaraki@hiroshima-u.ac.jp
  organization: Department of Mechanical Systems Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8511, Japan
– sequence: 3
  givenname: Atsushi
  surname: Matsubara
  fullname: Matsubara, Atsushi
  organization: Department of Micro Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto, 615-8540, Japan
BookMark eNqNkFtLAzEQhYNUsK3-h-D71slmrz5Z6hUKvuhzyGZn26l7M5ta9NebWh_Ep8JAMidzPiZnwkZt1yJjlwJmAkRytZn1Fg0N5OV2NQtBpDPwBckJG4sslUEo03DExiAiESQyzs_YZBg2AJBmEI1ZOedm6xy1Kz7g-xZbg7zrHTX0pZ2ncl2vOktu3XDXcYvl1g-4NfJdZ996Qt-VWHW2OUxT6x-pDXa6rnmjjb979Dk7rXQ94MXvOWWv93cvi8dg-fzwtJgvAyNzcIHOpUhlmcQIOkatq7LIQwMYFWGSQwFoBFYpxlFVQKVTGSaZySPt1UxDmURyym4OXGO7YbBYKUPuZzFnNdVKgNqnpjbqb2pqn5oCX5B4xPU_RG-p0fbzOPPtwYz-kx-EVg2G9pGW5C1OlR0dg_kGQLKWvA
CitedBy_id crossref_primary_10_3390_ma16237272
crossref_primary_10_1007_s40430_023_04230_w
crossref_primary_10_1016_j_ymssp_2021_108727
crossref_primary_10_3390_app14073034
crossref_primary_10_1016_j_precisioneng_2019_08_015
crossref_primary_10_3390_app13010208
crossref_primary_10_1007_s00170_025_15053_5
crossref_primary_10_1115_1_4067741
crossref_primary_10_1016_j_promfg_2020_05_074
crossref_primary_10_3390_ma15249049
crossref_primary_10_12677_MET_2019_85046
crossref_primary_10_1007_s42417_023_01227_6
crossref_primary_10_1139_tcsme_2019_0038
crossref_primary_10_1142_S0217979220502720
crossref_primary_10_1007_s00170_018_2248_7
crossref_primary_10_1016_j_precisioneng_2018_08_010
crossref_primary_10_3390_ma14237242
crossref_primary_10_1038_s41598_024_51883_1
crossref_primary_10_1089_3dp_2021_0268
crossref_primary_10_1016_j_matpr_2020_10_336
crossref_primary_10_1016_j_precisioneng_2020_09_003
crossref_primary_10_1080_10910344_2021_1971710
crossref_primary_10_1038_s41598_024_80052_7
crossref_primary_10_5937_fme2401029K
crossref_primary_10_1088_1742_6596_1167_1_012002
crossref_primary_10_1016_j_promfg_2020_05_122
crossref_primary_10_3390_met13050987
crossref_primary_10_4018_IJMFMP_2018070102
crossref_primary_10_3390_ma13214723
crossref_primary_10_1016_j_precisioneng_2020_07_007
crossref_primary_10_1016_j_jmsy_2021_03_015
crossref_primary_10_3390_jmmp6040070
crossref_primary_10_1299_jamdsm_2024jamdsm0089
crossref_primary_10_1007_s00170_021_07731_x
crossref_primary_10_1080_01495739_2018_1482807
crossref_primary_10_1007_s00170_020_05050_1
crossref_primary_10_1115_1_4056073
crossref_primary_10_3390_ma17020295
crossref_primary_10_1007_s00170_023_12627_z
crossref_primary_10_1007_s00170_020_05975_7
crossref_primary_10_1016_j_jmapro_2020_11_007
crossref_primary_10_1016_j_jmapro_2021_05_055
crossref_primary_10_1007_s00170_017_1365_z
crossref_primary_10_1007_s00170_025_15304_5
crossref_primary_10_1007_s00170_020_06472_7
crossref_primary_10_1016_j_cad_2022_103401
crossref_primary_10_1016_j_procir_2018_05_078
crossref_primary_10_1007_s00170_021_07243_8
crossref_primary_10_1007_s00170_021_08291_w
crossref_primary_10_1007_s00170_021_07397_5
crossref_primary_10_1007_s00170_024_14490_y
crossref_primary_10_1016_j_mfglet_2024_09_034
crossref_primary_10_1007_s00170_022_10480_0
crossref_primary_10_1088_1757_899X_393_1_012100
crossref_primary_10_1115_1_4051008
crossref_primary_10_1016_j_precisioneng_2021_05_013
crossref_primary_10_1007_s11465_022_0711_5
crossref_primary_10_1016_j_precisioneng_2020_03_002
Cites_doi 10.1016/S0957-4158(97)00058-5
10.1016/j.jmatprotec.2007.12.089
10.1016/0166-3615(90)90037-P
10.1016/j.cirp.2013.03.136
10.1016/j.cirp.2012.03.142
10.1016/0890-6955(94)P2628-S
10.1016/S0924-0136(99)00109-0
10.1016/j.cirp.2013.03.141
10.1016/j.ijmachtools.2007.11.004
10.20965/ijat.2015.p0122
10.20965/ijat.2012.p0638
10.1016/j.ijmachtools.2005.06.003
10.1016/j.cirp.2013.03.144
10.1007/s00170-004-2425-8
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.precisioneng.2017.07.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2372
EndPage 514
ExternalDocumentID 10_1016_j_precisioneng_2017_07_006
S0141635917303793
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c390t-a93173d65e0a5eaafdb92c0e4b2690b0ec1ef7e54fb0fa73268c94ac1e8a0d643
IEDL.DBID .~1
ISSN 0141-6359
IngestDate Tue Jul 01 02:12:57 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Fri Feb 23 02:23:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cutting process
Tool path
CAM (computer-aided manufacturing)
Thin wall
Displacement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-a93173d65e0a5eaafdb92c0e4b2690b0ec1ef7e54fb0fa73268c94ac1e8a0d643
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_precisioneng_2017_07_006
crossref_primary_10_1016_j_precisioneng_2017_07_006
elsevier_sciencedirect_doi_10_1016_j_precisioneng_2017_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle Precision engineering
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sagherian, Elbestawi (bib0060) 1990; 14
Koike, Matsubara, Nishiwaki, Izui, Yamaji (bib0020) 2012; 6
Budak, Altintas (bib0075) 1995; 35
Koike, Matsubara, Yamaji (bib0025) 2013; 62
Budak, Comak, Ozturk (bib0045) 2013; 62
Wang, Ibaraki, Matsubara, Shida, Yamada (bib0080) 2015; 9
Liu, Zheng, Zhang, Wen (bib0040) 2006; 28
.
Aijun, Zhanqiang (bib0050) 2008; 206
Smith, Wilhelm, Dutterer, Cherukuri, Goel (bib0070) 2012; 61
Smith, Dvorak (bib0015) 1998; 8
Ratchev, Liu, Huang, Becker (bib0005) 2006; 46
Kolluru, Axinte, Becker (bib0035) 2013; 62
Rai, Finite (bib0030) 2008; 48
Toride, Yamada, Araki (bib0010) 2008; 52
Tsai, Liao (bib0055) 1999; 94
Aijun (10.1016/j.precisioneng.2017.07.006_bib0050) 2008; 206
Smith (10.1016/j.precisioneng.2017.07.006_bib0015) 1998; 8
Budak (10.1016/j.precisioneng.2017.07.006_bib0075) 1995; 35
Kolluru (10.1016/j.precisioneng.2017.07.006_bib0035) 2013; 62
Ratchev (10.1016/j.precisioneng.2017.07.006_bib0005) 2006; 46
Wang (10.1016/j.precisioneng.2017.07.006_bib0080) 2015; 9
Toride (10.1016/j.precisioneng.2017.07.006_bib0010) 2008; 52
Koike (10.1016/j.precisioneng.2017.07.006_bib0020) 2012; 6
Budak (10.1016/j.precisioneng.2017.07.006_bib0045) 2013; 62
Sagherian (10.1016/j.precisioneng.2017.07.006_bib0060) 1990; 14
Koike (10.1016/j.precisioneng.2017.07.006_bib0025) 2013; 62
Tsai (10.1016/j.precisioneng.2017.07.006_bib0055) 1999; 94
Liu (10.1016/j.precisioneng.2017.07.006_bib0040) 2006; 28
Smith (10.1016/j.precisioneng.2017.07.006_bib0070) 2012; 61
Rai (10.1016/j.precisioneng.2017.07.006_bib0030) 2008; 48
10.1016/j.precisioneng.2017.07.006_bib0065
References_xml – volume: 28
  start-page: 653
  year: 2006
  end-page: 658
  ident: bib0040
  article-title: Optimal fixture design in peripheral milling of thin-walled workpiece
  publication-title: Int J Adv Manuf Technol
– volume: 61
  start-page: 379
  year: 2012
  end-page: 382
  ident: bib0070
  article-title: Sacrificial structure preforms for thin part machining
  publication-title: CIRP Ann—Manuf Technol
– volume: 46
  start-page: 542
  year: 2006
  end-page: 551
  ident: bib0005
  article-title: An advanced FEA based force induced error compensation strategy in milling
  publication-title: Int J Mach Tools Manuf
– volume: 62
  start-page: 415
  year: 2013
  end-page: 418
  ident: bib0035
  article-title: A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface
  publication-title: CIRP Ann—Manuf Technol
– volume: 8
  start-page: 291
  year: 1998
  end-page: 300
  ident: bib0015
  article-title: Tool path strategies for high speed milling aluminum workpieces with thin webs
  publication-title: Mechatronics
– volume: 62
  start-page: 403
  year: 2013
  end-page: 406
  ident: bib0045
  article-title: Stability and high performance machining conditions in simultaneous milling
  publication-title: CIRP Ann—Manuf Technol
– reference: .
– volume: 9
  start-page: 122
  year: 2015
  end-page: 128
  ident: bib0080
  article-title: FEM-based simulation for workpiece deformation in thin-wall milling
  publication-title: Int J Autom Technol
– volume: 62
  start-page: 419
  year: 2013
  end-page: 422
  ident: bib0025
  article-title: Design method of material removal process for minimizing workpiece displacement at cutting point
  publication-title: CIRP Ann—Manuf Technol
– volume: 52
  start-page: 466
  year: 2008
  end-page: 471
  ident: bib0010
  article-title: Study on the generation of micro shafts by turning operation (2nd report) Discussion on the geometrical shapes of cutting edges
  publication-title: J Jpn Soc Abras Technol
– volume: 6
  start-page: 638
  year: 2012
  end-page: 647
  ident: bib0020
  article-title: Cutting path design to minimize workpiece displacement at cutting point: milling of thin-walled parts
  publication-title: Int J Autom Technol
– volume: 206
  start-page: 345
  year: 2008
  end-page: 351
  ident: bib0050
  article-title: Deformations of thin-walled plate due to static end milling force
  publication-title: J Mater Process Technol
– volume: 14
  start-page: 293
  year: 1990
  end-page: 305
  ident: bib0060
  article-title: A simulation system for improving machining accuracy in milling
  publication-title: Comput Ind
– volume: 48
  start-page: 629
  year: 2008
  end-page: 643
  ident: bib0030
  article-title: element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components
  publication-title: Int J Mach Tools Manuf
– volume: 35
  start-page: 459
  year: 1995
  end-page: 476
  ident: bib0075
  article-title: Modeling and avoidance of static form errors in peripheral milling of plates
  publication-title: Int J Mach Tools Manuf
– volume: 94
  start-page: 235
  year: 1999
  end-page: 246
  ident: bib0055
  article-title: Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces
  publication-title: J Mater Process Technol
– volume: 8
  start-page: 291
  year: 1998
  ident: 10.1016/j.precisioneng.2017.07.006_bib0015
  article-title: Tool path strategies for high speed milling aluminum workpieces with thin webs
  publication-title: Mechatronics
  doi: 10.1016/S0957-4158(97)00058-5
– volume: 206
  start-page: 345
  year: 2008
  ident: 10.1016/j.precisioneng.2017.07.006_bib0050
  article-title: Deformations of thin-walled plate due to static end milling force
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.12.089
– volume: 14
  start-page: 293
  year: 1990
  ident: 10.1016/j.precisioneng.2017.07.006_bib0060
  article-title: A simulation system for improving machining accuracy in milling
  publication-title: Comput Ind
  doi: 10.1016/0166-3615(90)90037-P
– ident: 10.1016/j.precisioneng.2017.07.006_bib0065
– volume: 62
  start-page: 415
  year: 2013
  ident: 10.1016/j.precisioneng.2017.07.006_bib0035
  article-title: A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface
  publication-title: CIRP Ann—Manuf Technol
  doi: 10.1016/j.cirp.2013.03.136
– volume: 61
  start-page: 379
  year: 2012
  ident: 10.1016/j.precisioneng.2017.07.006_bib0070
  article-title: Sacrificial structure preforms for thin part machining
  publication-title: CIRP Ann—Manuf Technol
  doi: 10.1016/j.cirp.2012.03.142
– volume: 35
  start-page: 459
  year: 1995
  ident: 10.1016/j.precisioneng.2017.07.006_bib0075
  article-title: Modeling and avoidance of static form errors in peripheral milling of plates
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/0890-6955(94)P2628-S
– volume: 94
  start-page: 235
  year: 1999
  ident: 10.1016/j.precisioneng.2017.07.006_bib0055
  article-title: Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(99)00109-0
– volume: 62
  start-page: 403
  year: 2013
  ident: 10.1016/j.precisioneng.2017.07.006_bib0045
  article-title: Stability and high performance machining conditions in simultaneous milling
  publication-title: CIRP Ann—Manuf Technol
  doi: 10.1016/j.cirp.2013.03.141
– volume: 48
  start-page: 629
  year: 2008
  ident: 10.1016/j.precisioneng.2017.07.006_bib0030
  article-title: element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2007.11.004
– volume: 9
  start-page: 122
  year: 2015
  ident: 10.1016/j.precisioneng.2017.07.006_bib0080
  article-title: FEM-based simulation for workpiece deformation in thin-wall milling
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2015.p0122
– volume: 6
  start-page: 638
  year: 2012
  ident: 10.1016/j.precisioneng.2017.07.006_bib0020
  article-title: Cutting path design to minimize workpiece displacement at cutting point: milling of thin-walled parts
  publication-title: Int J Autom Technol
  doi: 10.20965/ijat.2012.p0638
– volume: 52
  start-page: 466
  year: 2008
  ident: 10.1016/j.precisioneng.2017.07.006_bib0010
  article-title: Study on the generation of micro shafts by turning operation (2nd report) Discussion on the geometrical shapes of cutting edges
  publication-title: J Jpn Soc Abras Technol
– volume: 46
  start-page: 542
  year: 2006
  ident: 10.1016/j.precisioneng.2017.07.006_bib0005
  article-title: An advanced FEA based force induced error compensation strategy in milling
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2005.06.003
– volume: 62
  start-page: 419
  year: 2013
  ident: 10.1016/j.precisioneng.2017.07.006_bib0025
  article-title: Design method of material removal process for minimizing workpiece displacement at cutting point
  publication-title: CIRP Ann—Manuf Technol
  doi: 10.1016/j.cirp.2013.03.144
– volume: 28
  start-page: 653
  year: 2006
  ident: 10.1016/j.precisioneng.2017.07.006_bib0040
  article-title: Optimal fixture design in peripheral milling of thin-walled workpiece
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2425-8
SSID ssj0007804
Score 2.4105048
Snippet •End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 506
SubjectTerms CAM (computer-aided manufacturing)
Cutting process
Displacement
Thin wall
Tool path
Title A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining
URI https://dx.doi.org/10.1016/j.precisioneng.2017.07.006
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVY0sy6-hQwgNaQuZGshmJFlKXRwnGIdu_e09-ZGm0CFQ8CLbZ8z5uPuEv_sOoXuA3EJIjxHXZZLwwPNJ5EeKcMOUdhijSlZsi6k_mfGXuTfvoFHbC2NplU3ur3N6la2bM4PGm4N1mg4sLQnAhAf7DUjDEGa2g50HNsofvn5oHlZgp6YxOsTe3QqPVhyvddEOsskXluYVVEKedvrRX0Vqp_CMT9BxgxjxsH6pU9TR-Rk62tERPEfJEKtNRWDGLTUaryAXLJsmSyyyxapIy_clLle4sGqtGgPywxUrK9WwSvS2jRGnOVxMc_IpsgwvK7YlPPoCzcZPb6MJacYnEOVGtCQiAmzgJr6nqfC0ECaREVNUc8lgSyypVo42gfa4kdSIAHBcqCIu4GwoaAJI5RJ1c3DNFcIydAzU9chhwuc0USEcrqYmMQFTAec9FLX-ilWjLW5HXGRxSyL7iHd9HVtfx9T--vZ7yN3armuFjb2sHtvPEv-KlxhKwR721_-0v0GHdlXT-m5Rtyw2-g7gSSn7Vfz10cHw-XUy_QaPN-n2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MT63IPXpZvNJmkOHkpRWh89KfQWdjcbjaRpCSn-fWfzKBU8FIRcssuEMBlmviXffANwh5BbSuVx6rpcURF4Pg39UFORcG0czplWFdti4o_exdPUm27BsO2FsbTKJvfXOb3K1s1Kr_Fmb5GmPUtLQjDh4XkD0zCG2TbsWHUqrwM7g_HzaLJKyFZjp2YyOtQatNqjFc1rUbSzbPIPy_QKKi1POwDprzq1VnseD-GgAY1kUL_XEWyZ_Bj216QETyAeEL2sOMykZUeTOaaDWdNnSWT2MS_S8nNGyjkprGCrIQj-SEXMSg3exWbVyUjSHDfTnH7LLCOzinCJjz6F98eHt-GINhMUqHZDVlIZIjxwY98zTHpGyiRWIdfMCMXxVKyY0Y5JAuOJRLFEBgjl-joUElf7ksUIVs6gk6NrzoGovpNgaQ8dLn3BYt3HyzUsiZOA60CILoStvyLdyIvbKRdZ1PLIvqJ1X0fW1xGzf7_9Lrgr20UtsrGR1X37WaJfIRNhNdjA_uKf9rewO3p7fYlexpPnS9izOzXL7wo6ZbE014hWSnXTROMPivjspw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cutting+sequence+optimization+algorithm+to+reduce+the+workpiece+deformation+in+thin-wall+machining&rft.jtitle=Precision+engineering&rft.au=Wang%2C+Jun&rft.au=Ibaraki%2C+Soichi&rft.au=Matsubara%2C+Atsushi&rft.date=2017-10-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=50&rft.spage=506&rft.epage=514&rft_id=info:doi/10.1016%2Fj.precisioneng.2017.07.006&rft.externalDocID=S0141635917303793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon