A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining
•End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall milling.•No division of blocks in the feed direction avoids cutter marks and severe vibration.•Sub-division of blocks in the tool’s axial direction...
Saved in:
Published in | Precision engineering Vol. 50; pp. 506 - 514 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall milling.•No division of blocks in the feed direction avoids cutter marks and severe vibration.•Sub-division of blocks in the tool’s axial direction reduces deformation further.
A thin-wall part of lower stiffness can be subject to significant deformation during its cutting process. This study proposes a cutting process optimization algorithm to reduce the workpiece deformation. First, the volume to be removed is divided into a set of blocks. The proposed algorithm starts from the finished workpiece shape, with all the blocks removed. The objective of the proposed algorithm is to find a sequence of adding the blocks, such that the workpiece deformation is always smaller than the given threshold value when the cutting forces is imposed at each step. The workpiece deformation at each step is simulated by using the FEM (finite element method) simulation. By inverting the sequence of adding the blocks, the optimized sequence to remove the blocks can be obtained. Additionally, the block size can be modified to reduce the axial depth of cut to further reduce the workpiece deformation, or to increase the radial depth of cut to enhance the efficiency. Experiments are conducted to confirm the effectiveness of the algorithm to reduce the maximum workpiece deformation during the entire cutting process. |
---|---|
AbstractList | •End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall milling.•No division of blocks in the feed direction avoids cutter marks and severe vibration.•Sub-division of blocks in the tool’s axial direction reduces deformation further.
A thin-wall part of lower stiffness can be subject to significant deformation during its cutting process. This study proposes a cutting process optimization algorithm to reduce the workpiece deformation. First, the volume to be removed is divided into a set of blocks. The proposed algorithm starts from the finished workpiece shape, with all the blocks removed. The objective of the proposed algorithm is to find a sequence of adding the blocks, such that the workpiece deformation is always smaller than the given threshold value when the cutting forces is imposed at each step. The workpiece deformation at each step is simulated by using the FEM (finite element method) simulation. By inverting the sequence of adding the blocks, the optimized sequence to remove the blocks can be obtained. Additionally, the block size can be modified to reduce the axial depth of cut to further reduce the workpiece deformation, or to increase the radial depth of cut to enhance the efficiency. Experiments are conducted to confirm the effectiveness of the algorithm to reduce the maximum workpiece deformation during the entire cutting process. |
Author | Matsubara, Atsushi Wang, Jun Ibaraki, Soichi |
Author_xml | – sequence: 1 givenname: Jun surname: Wang fullname: Wang, Jun organization: Department of Micro Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto, 615-8540, Japan – sequence: 2 givenname: Soichi surname: Ibaraki fullname: Ibaraki, Soichi email: ibaraki@hiroshima-u.ac.jp organization: Department of Mechanical Systems Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8511, Japan – sequence: 3 givenname: Atsushi surname: Matsubara fullname: Matsubara, Atsushi organization: Department of Micro Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto, 615-8540, Japan |
BookMark | eNqNkFtLAzEQhYNUsK3-h-D71slmrz5Z6hUKvuhzyGZn26l7M5ta9NebWh_Ep8JAMidzPiZnwkZt1yJjlwJmAkRytZn1Fg0N5OV2NQtBpDPwBckJG4sslUEo03DExiAiESQyzs_YZBg2AJBmEI1ZOedm6xy1Kz7g-xZbg7zrHTX0pZ2ncl2vOktu3XDXcYvl1g-4NfJdZ996Qt-VWHW2OUxT6x-pDXa6rnmjjb979Dk7rXQ94MXvOWWv93cvi8dg-fzwtJgvAyNzcIHOpUhlmcQIOkatq7LIQwMYFWGSQwFoBFYpxlFVQKVTGSaZySPt1UxDmURyym4OXGO7YbBYKUPuZzFnNdVKgNqnpjbqb2pqn5oCX5B4xPU_RG-p0fbzOPPtwYz-kx-EVg2G9pGW5C1OlR0dg_kGQLKWvA |
CitedBy_id | crossref_primary_10_3390_ma16237272 crossref_primary_10_1007_s40430_023_04230_w crossref_primary_10_1016_j_ymssp_2021_108727 crossref_primary_10_3390_app14073034 crossref_primary_10_1016_j_precisioneng_2019_08_015 crossref_primary_10_3390_app13010208 crossref_primary_10_1007_s00170_025_15053_5 crossref_primary_10_1115_1_4067741 crossref_primary_10_1016_j_promfg_2020_05_074 crossref_primary_10_3390_ma15249049 crossref_primary_10_12677_MET_2019_85046 crossref_primary_10_1007_s42417_023_01227_6 crossref_primary_10_1139_tcsme_2019_0038 crossref_primary_10_1142_S0217979220502720 crossref_primary_10_1007_s00170_018_2248_7 crossref_primary_10_1016_j_precisioneng_2018_08_010 crossref_primary_10_3390_ma14237242 crossref_primary_10_1038_s41598_024_51883_1 crossref_primary_10_1089_3dp_2021_0268 crossref_primary_10_1016_j_matpr_2020_10_336 crossref_primary_10_1016_j_precisioneng_2020_09_003 crossref_primary_10_1080_10910344_2021_1971710 crossref_primary_10_1038_s41598_024_80052_7 crossref_primary_10_5937_fme2401029K crossref_primary_10_1088_1742_6596_1167_1_012002 crossref_primary_10_1016_j_promfg_2020_05_122 crossref_primary_10_3390_met13050987 crossref_primary_10_4018_IJMFMP_2018070102 crossref_primary_10_3390_ma13214723 crossref_primary_10_1016_j_precisioneng_2020_07_007 crossref_primary_10_1016_j_jmsy_2021_03_015 crossref_primary_10_3390_jmmp6040070 crossref_primary_10_1299_jamdsm_2024jamdsm0089 crossref_primary_10_1007_s00170_021_07731_x crossref_primary_10_1080_01495739_2018_1482807 crossref_primary_10_1007_s00170_020_05050_1 crossref_primary_10_1115_1_4056073 crossref_primary_10_3390_ma17020295 crossref_primary_10_1007_s00170_023_12627_z crossref_primary_10_1007_s00170_020_05975_7 crossref_primary_10_1016_j_jmapro_2020_11_007 crossref_primary_10_1016_j_jmapro_2021_05_055 crossref_primary_10_1007_s00170_017_1365_z crossref_primary_10_1007_s00170_025_15304_5 crossref_primary_10_1007_s00170_020_06472_7 crossref_primary_10_1016_j_cad_2022_103401 crossref_primary_10_1016_j_procir_2018_05_078 crossref_primary_10_1007_s00170_021_07243_8 crossref_primary_10_1007_s00170_021_08291_w crossref_primary_10_1007_s00170_021_07397_5 crossref_primary_10_1007_s00170_024_14490_y crossref_primary_10_1016_j_mfglet_2024_09_034 crossref_primary_10_1007_s00170_022_10480_0 crossref_primary_10_1088_1757_899X_393_1_012100 crossref_primary_10_1115_1_4051008 crossref_primary_10_1016_j_precisioneng_2021_05_013 crossref_primary_10_1007_s11465_022_0711_5 crossref_primary_10_1016_j_precisioneng_2020_03_002 |
Cites_doi | 10.1016/S0957-4158(97)00058-5 10.1016/j.jmatprotec.2007.12.089 10.1016/0166-3615(90)90037-P 10.1016/j.cirp.2013.03.136 10.1016/j.cirp.2012.03.142 10.1016/0890-6955(94)P2628-S 10.1016/S0924-0136(99)00109-0 10.1016/j.cirp.2013.03.141 10.1016/j.ijmachtools.2007.11.004 10.20965/ijat.2015.p0122 10.20965/ijat.2012.p0638 10.1016/j.ijmachtools.2005.06.003 10.1016/j.cirp.2013.03.144 10.1007/s00170-004-2425-8 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. |
Copyright_xml | – notice: 2017 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2017.07.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2372 |
EndPage | 514 |
ExternalDocumentID | 10_1016_j_precisioneng_2017_07_006 S0141635917303793 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c390t-a93173d65e0a5eaafdb92c0e4b2690b0ec1ef7e54fb0fa73268c94ac1e8a0d643 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Tue Jul 01 02:12:57 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Fri Feb 23 02:23:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cutting process Tool path CAM (computer-aided manufacturing) Thin wall Displacement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-a93173d65e0a5eaafdb92c0e4b2690b0ec1ef7e54fb0fa73268c94ac1e8a0d643 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_precisioneng_2017_07_006 crossref_primary_10_1016_j_precisioneng_2017_07_006 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2017_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationTitle | Precision engineering |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sagherian, Elbestawi (bib0060) 1990; 14 Koike, Matsubara, Nishiwaki, Izui, Yamaji (bib0020) 2012; 6 Budak, Altintas (bib0075) 1995; 35 Koike, Matsubara, Yamaji (bib0025) 2013; 62 Budak, Comak, Ozturk (bib0045) 2013; 62 Wang, Ibaraki, Matsubara, Shida, Yamada (bib0080) 2015; 9 Liu, Zheng, Zhang, Wen (bib0040) 2006; 28 . Aijun, Zhanqiang (bib0050) 2008; 206 Smith, Wilhelm, Dutterer, Cherukuri, Goel (bib0070) 2012; 61 Smith, Dvorak (bib0015) 1998; 8 Ratchev, Liu, Huang, Becker (bib0005) 2006; 46 Kolluru, Axinte, Becker (bib0035) 2013; 62 Rai, Finite (bib0030) 2008; 48 Toride, Yamada, Araki (bib0010) 2008; 52 Tsai, Liao (bib0055) 1999; 94 Aijun (10.1016/j.precisioneng.2017.07.006_bib0050) 2008; 206 Smith (10.1016/j.precisioneng.2017.07.006_bib0015) 1998; 8 Budak (10.1016/j.precisioneng.2017.07.006_bib0075) 1995; 35 Kolluru (10.1016/j.precisioneng.2017.07.006_bib0035) 2013; 62 Ratchev (10.1016/j.precisioneng.2017.07.006_bib0005) 2006; 46 Wang (10.1016/j.precisioneng.2017.07.006_bib0080) 2015; 9 Toride (10.1016/j.precisioneng.2017.07.006_bib0010) 2008; 52 Koike (10.1016/j.precisioneng.2017.07.006_bib0020) 2012; 6 Budak (10.1016/j.precisioneng.2017.07.006_bib0045) 2013; 62 Sagherian (10.1016/j.precisioneng.2017.07.006_bib0060) 1990; 14 Koike (10.1016/j.precisioneng.2017.07.006_bib0025) 2013; 62 Tsai (10.1016/j.precisioneng.2017.07.006_bib0055) 1999; 94 Liu (10.1016/j.precisioneng.2017.07.006_bib0040) 2006; 28 Smith (10.1016/j.precisioneng.2017.07.006_bib0070) 2012; 61 Rai (10.1016/j.precisioneng.2017.07.006_bib0030) 2008; 48 10.1016/j.precisioneng.2017.07.006_bib0065 |
References_xml | – volume: 28 start-page: 653 year: 2006 end-page: 658 ident: bib0040 article-title: Optimal fixture design in peripheral milling of thin-walled workpiece publication-title: Int J Adv Manuf Technol – volume: 61 start-page: 379 year: 2012 end-page: 382 ident: bib0070 article-title: Sacrificial structure preforms for thin part machining publication-title: CIRP Ann—Manuf Technol – volume: 46 start-page: 542 year: 2006 end-page: 551 ident: bib0005 article-title: An advanced FEA based force induced error compensation strategy in milling publication-title: Int J Mach Tools Manuf – volume: 62 start-page: 415 year: 2013 end-page: 418 ident: bib0035 article-title: A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface publication-title: CIRP Ann—Manuf Technol – volume: 8 start-page: 291 year: 1998 end-page: 300 ident: bib0015 article-title: Tool path strategies for high speed milling aluminum workpieces with thin webs publication-title: Mechatronics – volume: 62 start-page: 403 year: 2013 end-page: 406 ident: bib0045 article-title: Stability and high performance machining conditions in simultaneous milling publication-title: CIRP Ann—Manuf Technol – reference: . – volume: 9 start-page: 122 year: 2015 end-page: 128 ident: bib0080 article-title: FEM-based simulation for workpiece deformation in thin-wall milling publication-title: Int J Autom Technol – volume: 62 start-page: 419 year: 2013 end-page: 422 ident: bib0025 article-title: Design method of material removal process for minimizing workpiece displacement at cutting point publication-title: CIRP Ann—Manuf Technol – volume: 52 start-page: 466 year: 2008 end-page: 471 ident: bib0010 article-title: Study on the generation of micro shafts by turning operation (2nd report) Discussion on the geometrical shapes of cutting edges publication-title: J Jpn Soc Abras Technol – volume: 6 start-page: 638 year: 2012 end-page: 647 ident: bib0020 article-title: Cutting path design to minimize workpiece displacement at cutting point: milling of thin-walled parts publication-title: Int J Autom Technol – volume: 206 start-page: 345 year: 2008 end-page: 351 ident: bib0050 article-title: Deformations of thin-walled plate due to static end milling force publication-title: J Mater Process Technol – volume: 14 start-page: 293 year: 1990 end-page: 305 ident: bib0060 article-title: A simulation system for improving machining accuracy in milling publication-title: Comput Ind – volume: 48 start-page: 629 year: 2008 end-page: 643 ident: bib0030 article-title: element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components publication-title: Int J Mach Tools Manuf – volume: 35 start-page: 459 year: 1995 end-page: 476 ident: bib0075 article-title: Modeling and avoidance of static form errors in peripheral milling of plates publication-title: Int J Mach Tools Manuf – volume: 94 start-page: 235 year: 1999 end-page: 246 ident: bib0055 article-title: Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces publication-title: J Mater Process Technol – volume: 8 start-page: 291 year: 1998 ident: 10.1016/j.precisioneng.2017.07.006_bib0015 article-title: Tool path strategies for high speed milling aluminum workpieces with thin webs publication-title: Mechatronics doi: 10.1016/S0957-4158(97)00058-5 – volume: 206 start-page: 345 year: 2008 ident: 10.1016/j.precisioneng.2017.07.006_bib0050 article-title: Deformations of thin-walled plate due to static end milling force publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.12.089 – volume: 14 start-page: 293 year: 1990 ident: 10.1016/j.precisioneng.2017.07.006_bib0060 article-title: A simulation system for improving machining accuracy in milling publication-title: Comput Ind doi: 10.1016/0166-3615(90)90037-P – ident: 10.1016/j.precisioneng.2017.07.006_bib0065 – volume: 62 start-page: 415 year: 2013 ident: 10.1016/j.precisioneng.2017.07.006_bib0035 article-title: A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface publication-title: CIRP Ann—Manuf Technol doi: 10.1016/j.cirp.2013.03.136 – volume: 61 start-page: 379 year: 2012 ident: 10.1016/j.precisioneng.2017.07.006_bib0070 article-title: Sacrificial structure preforms for thin part machining publication-title: CIRP Ann—Manuf Technol doi: 10.1016/j.cirp.2012.03.142 – volume: 35 start-page: 459 year: 1995 ident: 10.1016/j.precisioneng.2017.07.006_bib0075 article-title: Modeling and avoidance of static form errors in peripheral milling of plates publication-title: Int J Mach Tools Manuf doi: 10.1016/0890-6955(94)P2628-S – volume: 94 start-page: 235 year: 1999 ident: 10.1016/j.precisioneng.2017.07.006_bib0055 article-title: Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(99)00109-0 – volume: 62 start-page: 403 year: 2013 ident: 10.1016/j.precisioneng.2017.07.006_bib0045 article-title: Stability and high performance machining conditions in simultaneous milling publication-title: CIRP Ann—Manuf Technol doi: 10.1016/j.cirp.2013.03.141 – volume: 48 start-page: 629 year: 2008 ident: 10.1016/j.precisioneng.2017.07.006_bib0030 article-title: element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2007.11.004 – volume: 9 start-page: 122 year: 2015 ident: 10.1016/j.precisioneng.2017.07.006_bib0080 article-title: FEM-based simulation for workpiece deformation in thin-wall milling publication-title: Int J Autom Technol doi: 10.20965/ijat.2015.p0122 – volume: 6 start-page: 638 year: 2012 ident: 10.1016/j.precisioneng.2017.07.006_bib0020 article-title: Cutting path design to minimize workpiece displacement at cutting point: milling of thin-walled parts publication-title: Int J Autom Technol doi: 10.20965/ijat.2012.p0638 – volume: 52 start-page: 466 year: 2008 ident: 10.1016/j.precisioneng.2017.07.006_bib0010 article-title: Study on the generation of micro shafts by turning operation (2nd report) Discussion on the geometrical shapes of cutting edges publication-title: J Jpn Soc Abras Technol – volume: 46 start-page: 542 year: 2006 ident: 10.1016/j.precisioneng.2017.07.006_bib0005 article-title: An advanced FEA based force induced error compensation strategy in milling publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2005.06.003 – volume: 62 start-page: 419 year: 2013 ident: 10.1016/j.precisioneng.2017.07.006_bib0025 article-title: Design method of material removal process for minimizing workpiece displacement at cutting point publication-title: CIRP Ann—Manuf Technol doi: 10.1016/j.cirp.2013.03.144 – volume: 28 start-page: 653 year: 2006 ident: 10.1016/j.precisioneng.2017.07.006_bib0040 article-title: Optimal fixture design in peripheral milling of thin-walled workpiece publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2425-8 |
SSID | ssj0007804 |
Score | 2.4105048 |
Snippet | •End milling of workpiece of lower stiffness is often subject to larger machining error.•Optimization of block removal reduces deformation in thin-wall... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 506 |
SubjectTerms | CAM (computer-aided manufacturing) Cutting process Displacement Thin wall Tool path |
Title | A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining |
URI | https://dx.doi.org/10.1016/j.precisioneng.2017.07.006 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVY0sy6-hQwgNaQuZGshmJFlKXRwnGIdu_e09-ZGm0CFQ8CLbZ8z5uPuEv_sOoXuA3EJIjxHXZZLwwPNJ5EeKcMOUdhijSlZsi6k_mfGXuTfvoFHbC2NplU3ur3N6la2bM4PGm4N1mg4sLQnAhAf7DUjDEGa2g50HNsofvn5oHlZgp6YxOsTe3QqPVhyvddEOsskXluYVVEKedvrRX0Vqp_CMT9BxgxjxsH6pU9TR-Rk62tERPEfJEKtNRWDGLTUaryAXLJsmSyyyxapIy_clLle4sGqtGgPywxUrK9WwSvS2jRGnOVxMc_IpsgwvK7YlPPoCzcZPb6MJacYnEOVGtCQiAmzgJr6nqfC0ECaREVNUc8lgSyypVo42gfa4kdSIAHBcqCIu4GwoaAJI5RJ1c3DNFcIydAzU9chhwuc0USEcrqYmMQFTAec9FLX-ilWjLW5HXGRxSyL7iHd9HVtfx9T--vZ7yN3armuFjb2sHtvPEv-KlxhKwR721_-0v0GHdlXT-m5Rtyw2-g7gSSn7Vfz10cHw-XUy_QaPN-n2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MT63IPXpZvNJmkOHkpRWh89KfQWdjcbjaRpCSn-fWfzKBU8FIRcssuEMBlmviXffANwh5BbSuVx6rpcURF4Pg39UFORcG0czplWFdti4o_exdPUm27BsO2FsbTKJvfXOb3K1s1Kr_Fmb5GmPUtLQjDh4XkD0zCG2TbsWHUqrwM7g_HzaLJKyFZjp2YyOtQatNqjFc1rUbSzbPIPy_QKKi1POwDprzq1VnseD-GgAY1kUL_XEWyZ_Bj216QETyAeEL2sOMykZUeTOaaDWdNnSWT2MS_S8nNGyjkprGCrIQj-SEXMSg3exWbVyUjSHDfTnH7LLCOzinCJjz6F98eHt-GINhMUqHZDVlIZIjxwY98zTHpGyiRWIdfMCMXxVKyY0Y5JAuOJRLFEBgjl-joUElf7ksUIVs6gk6NrzoGovpNgaQ8dLn3BYt3HyzUsiZOA60CILoStvyLdyIvbKRdZ1PLIvqJ1X0fW1xGzf7_9Lrgr20UtsrGR1X37WaJfIRNhNdjA_uKf9rewO3p7fYlexpPnS9izOzXL7wo6ZbE014hWSnXTROMPivjspw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cutting+sequence+optimization+algorithm+to+reduce+the+workpiece+deformation+in+thin-wall+machining&rft.jtitle=Precision+engineering&rft.au=Wang%2C+Jun&rft.au=Ibaraki%2C+Soichi&rft.au=Matsubara%2C+Atsushi&rft.date=2017-10-01&rft.pub=Elsevier+Inc&rft.issn=0141-6359&rft.eissn=1873-2372&rft.volume=50&rft.spage=506&rft.epage=514&rft_id=info:doi/10.1016%2Fj.precisioneng.2017.07.006&rft.externalDocID=S0141635917303793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |