Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability

This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods us...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 245; pp. 62 - 80
Main Authors Chubar, Natalia, Gilmour, Robert, Gerda, Vasyl, Mičušík, Matej, Omastova, Maria, Heister, Katja, Man, Pascal, Fraissard, Jacques, Zaitsev, Vladimir
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2017
Subjects
Online AccessGet full text
ISSN0001-8686
1873-3727
1873-3727
DOI10.1016/j.cis.2017.04.013

Cover

Abstract This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of “classical” anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method―structure/surface/interlayer―removal―suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. [Display omitted] •Properties of layered double hydroxides (LDH) are reviewed on the speciation level•The first report to link LDHs materials chemistry with water treatment application•The first critical view on the “memory effect” in context of dynamic adsorption•Exchangeability of the interlayer anions versus atomic scale properties•Physisorbed and interlayer water in LDH versus involvement of the interlayer anions
AbstractList This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.
This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.
This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of “classical” anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method―structure/surface/interlayer―removal―suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. [Display omitted] •Properties of layered double hydroxides (LDH) are reviewed on the speciation level•The first report to link LDHs materials chemistry with water treatment application•The first critical view on the “memory effect” in context of dynamic adsorption•Exchangeability of the interlayer anions versus atomic scale properties•Physisorbed and interlayer water in LDH versus involvement of the interlayer anions
Author Heister, Katja
Chubar, Natalia
Omastova, Maria
Man, Pascal
Gilmour, Robert
Gerda, Vasyl
Fraissard, Jacques
Mičušík, Matej
Zaitsev, Vladimir
Author_xml – sequence: 1
  givenname: Natalia
  surname: Chubar
  fullname: Chubar, Natalia
  email: natachubar@yahoo.com
  organization: Glasgow Caledonian University, School of Engineering and Built Environment, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
– sequence: 2
  givenname: Robert
  surname: Gilmour
  fullname: Gilmour, Robert
  organization: Glasgow Caledonian University, School of Engineering and Built Environment, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
– sequence: 3
  givenname: Vasyl
  surname: Gerda
  fullname: Gerda, Vasyl
  organization: Taras Shevchenko National University of Kyiv, Faculty of Chemistry, 64 Volodymyrska Street, 01601 Kyiv, Ukraine
– sequence: 4
  givenname: Matej
  surname: Mičušík
  fullname: Mičušík, Matej
  organization: Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovak Republic
– sequence: 5
  givenname: Maria
  surname: Omastova
  fullname: Omastova, Maria
  organization: Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovak Republic
– sequence: 6
  givenname: Katja
  surname: Heister
  fullname: Heister, Katja
  organization: GeoLab, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands
– sequence: 7
  givenname: Pascal
  surname: Man
  fullname: Man, Pascal
  organization: Institut des Matériaux de Paris Centre, Sorbonne Universités, UPMC Univ Paris, 06 (CNRS, FR 2482) 4, Place Jussieu, 75005 Paris, France
– sequence: 8
  givenname: Jacques
  surname: Fraissard
  fullname: Fraissard, Jacques
  organization: Université P. et M. Curie, ESPCI-LPEM, 75005 Paris, France
– sequence: 9
  givenname: Vladimir
  surname: Zaitsev
  fullname: Zaitsev, Vladimir
  organization: Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de Sao Vicente, 225-Gavea, Rio de Janeiro 22451-900, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28477867$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS3Uim4LP4AL8pFLgh0ndgwnVLWAtBKHwtly7MmuV1l7sZ1q8-_rZQsHDr3Ympn3jTTvXaMLHzwg9I6SmhLKP-5q41LdECpq0taEsldoRXvBKiYacYFWhBBa9bznV-g6pV0pm050r9FV07dC9FysUFrrBSJYbMM8TIC3i43h6CwkrBPOW8AejhlvwEPU2QWPnQ9xo70zuDylhqPZar-BmD7hh8UXJJfZHvI22IQfS38uuw6HyRk9uMnl5Q26HPWU4O3zf4N-3d_9vP1WrX98_X77ZV0ZJkmupBwYI7qljI7j0IDVRo5tp6WR1hrdGRDQSqZ5Y2k5rJe8HbuBN9wKPfSCsxv04bz3EMPvGVJWe5cMTJP2EOak6AmhnMq2SN8_S-dhD1YdotvruKi_RhUBPQtMDClFGP9JKFGnMNROlTDUKQxFWlXCKIz4jzEu_zExR-2mF8nPZxKKPY8OokrGgTdgXQSTlQ3uBfoJuNqmaw
CitedBy_id crossref_primary_10_3390_ma18061190
crossref_primary_10_1016_j_jssc_2020_121595
crossref_primary_10_1002_adsu_202000041
crossref_primary_10_1016_j_colsurfa_2022_130661
crossref_primary_10_1016_j_envres_2022_113068
crossref_primary_10_1080_15422119_2022_2149413
crossref_primary_10_1007_s10853_020_04742_z
crossref_primary_10_1016_j_jhazmat_2025_137412
crossref_primary_10_1007_s00289_023_04732_6
crossref_primary_10_1007_s44274_024_00179_2
crossref_primary_10_1016_j_cej_2022_135342
crossref_primary_10_1021_acsami_9b19160
crossref_primary_10_3390_ma18010162
crossref_primary_10_1016_j_electacta_2021_138288
crossref_primary_10_1016_j_solidstatesciences_2018_03_007
crossref_primary_10_3390_w10060745
crossref_primary_10_1016_j_clay_2020_105765
crossref_primary_10_1016_j_colsurfa_2020_125860
crossref_primary_10_1016_j_clay_2024_107263
crossref_primary_10_3390_app11178252
crossref_primary_10_1002_admi_202200373
crossref_primary_10_1007_s11356_022_21703_y
crossref_primary_10_1016_j_cattod_2018_11_081
crossref_primary_10_1016_j_colsurfa_2024_134901
crossref_primary_10_1016_j_mtchem_2024_101897
crossref_primary_10_3390_chemengineering2030031
crossref_primary_10_3390_ma12213569
crossref_primary_10_1007_s10910_018_0889_2
crossref_primary_10_1021_acsami_3c10999
crossref_primary_10_1016_j_clay_2019_04_021
crossref_primary_10_1016_j_ccr_2019_213111
crossref_primary_10_1039_D0NJ00278J
crossref_primary_10_3390_coatings10040428
crossref_primary_10_1007_s42452_020_2893_y
crossref_primary_10_1016_j_inoche_2021_108914
crossref_primary_10_1021_acsami_0c10487
crossref_primary_10_1021_acsomega_1c01025
crossref_primary_10_1016_j_solener_2024_112549
crossref_primary_10_2116_analsci_33_989
crossref_primary_10_1021_acs_inorgchem_1c01479
crossref_primary_10_3390_catal13030593
crossref_primary_10_1021_acsami_8b01145
crossref_primary_10_1016_j_mtcomm_2023_107073
crossref_primary_10_52676_1729_7885_2022_4_17_29
crossref_primary_10_1016_j_matdes_2022_111289
crossref_primary_10_3390_chemosensors13030115
crossref_primary_10_1016_j_indcrop_2022_114555
crossref_primary_10_1016_j_apsusc_2018_07_193
crossref_primary_10_1007_s40097_018_0289_y
crossref_primary_10_1016_j_colsurfa_2021_126583
crossref_primary_10_3390_nano9020247
crossref_primary_10_1016_j_jhazmat_2021_125485
crossref_primary_10_1002_adfm_201903879
crossref_primary_10_1016_j_clay_2021_106070
crossref_primary_10_1016_j_ijbiomac_2024_136271
crossref_primary_10_1021_acs_iecr_4c00541
crossref_primary_10_1080_14686996_2022_2119101
crossref_primary_10_1007_s13762_019_02457_6
crossref_primary_10_1016_j_conbuildmat_2023_132580
crossref_primary_10_1016_j_jma_2022_05_003
crossref_primary_10_1016_j_jece_2023_109669
crossref_primary_10_1016_j_solener_2019_02_019
crossref_primary_10_1021_acsestengg_1c00218
crossref_primary_10_1016_j_jcis_2019_05_040
crossref_primary_10_1016_j_jclepro_2024_140705
crossref_primary_10_1021_acs_langmuir_8b02469
crossref_primary_10_1016_j_jcis_2019_03_078
crossref_primary_10_1002_cjce_23992
crossref_primary_10_32434_0321_4095_2019_124_3_59_66
crossref_primary_10_1016_j_conbuildmat_2018_03_210
crossref_primary_10_1016_j_measurement_2023_113683
crossref_primary_10_1016_j_ecoenv_2018_09_083
crossref_primary_10_1016_j_jhazmat_2019_121734
crossref_primary_10_1021_acs_iecr_3c03431
crossref_primary_10_1016_j_colsurfa_2021_127942
crossref_primary_10_1002_anie_202005878
crossref_primary_10_1016_j_conbuildmat_2017_11_099
crossref_primary_10_1007_s10973_021_10684_8
crossref_primary_10_1180_clm_2022_26
crossref_primary_10_1021_acs_langmuir_0c01089
crossref_primary_10_1088_1757_899X_858_1_012008
crossref_primary_10_1016_j_envres_2025_121031
crossref_primary_10_1016_j_jece_2021_105273
crossref_primary_10_3390_w15122207
crossref_primary_10_1002_ceat_202000590
crossref_primary_10_12693_APhysPolA_133_1091
crossref_primary_10_1016_j_conbuildmat_2023_131122
crossref_primary_10_1016_j_colsurfa_2024_134578
crossref_primary_10_1016_j_jcis_2019_03_101
crossref_primary_10_20964_2019_08_101
crossref_primary_10_1016_j_jcis_2019_03_100
crossref_primary_10_1016_j_jece_2022_108605
crossref_primary_10_1016_j_diamond_2021_108492
crossref_primary_10_1016_j_seppur_2019_115813
crossref_primary_10_3390_ma13194344
crossref_primary_10_1039_C9EW00808J
crossref_primary_10_1021_acs_iecr_4c04648
crossref_primary_10_1016_j_clay_2023_106927
crossref_primary_10_1016_j_surfcoat_2019_124902
crossref_primary_10_1039_C9TA13522G
crossref_primary_10_1002_admi_201801366
crossref_primary_10_3390_bioengineering10060734
crossref_primary_10_1016_j_clay_2021_106095
crossref_primary_10_1016_j_ejpe_2022_08_002
crossref_primary_10_1016_j_jwpe_2023_104625
crossref_primary_10_1016_j_clay_2022_106537
crossref_primary_10_1016_j_surfin_2024_105341
crossref_primary_10_3390_nano10091832
crossref_primary_10_1021_acsami_2c12823
crossref_primary_10_3390_ma12091373
crossref_primary_10_1016_j_clay_2024_107585
crossref_primary_10_1016_j_desal_2024_118259
crossref_primary_10_1016_j_ultsonch_2024_106806
crossref_primary_10_1007_s42765_024_00469_7
crossref_primary_10_1016_j_jtice_2018_01_044
crossref_primary_10_1016_j_enmm_2021_100451
crossref_primary_10_1007_s40995_024_01771_0
crossref_primary_10_1016_j_seppur_2022_122072
crossref_primary_10_1007_s11356_023_30723_1
crossref_primary_10_1080_00986445_2021_1895773
crossref_primary_10_1002_ep_13744
crossref_primary_10_5004_dwt_2018_22962
crossref_primary_10_3390_met14010111
crossref_primary_10_1016_j_psep_2024_05_115
crossref_primary_10_1016_j_eti_2024_104003
crossref_primary_10_1016_j_jssc_2018_10_018
crossref_primary_10_1039_C8SM00081F
crossref_primary_10_1002_ange_202005878
crossref_primary_10_1016_j_colsurfb_2022_112623
crossref_primary_10_1134_S1070363220030263
crossref_primary_10_1016_j_cis_2020_102216
crossref_primary_10_1016_j_colsurfb_2020_111134
crossref_primary_10_1016_j_jece_2021_106948
crossref_primary_10_1016_j_jpba_2020_113515
crossref_primary_10_1021_jacsau_2c00237
crossref_primary_10_1016_j_trac_2019_06_036
crossref_primary_10_3390_molecules27165054
crossref_primary_10_1016_j_ijhydene_2023_05_253
crossref_primary_10_5802_crchim_249
crossref_primary_10_1016_j_ccr_2025_216613
crossref_primary_10_1016_j_jallcom_2019_02_035
crossref_primary_10_1016_j_enzmictec_2019_109365
crossref_primary_10_1016_j_cattod_2023_114504
crossref_primary_10_1016_j_jtice_2019_09_006
crossref_primary_10_1016_j_cej_2023_141926
crossref_primary_10_3390_w14193010
crossref_primary_10_1007_s41742_025_00757_z
crossref_primary_10_1007_s42250_024_00928_z
crossref_primary_10_1016_j_cej_2017_12_144
crossref_primary_10_1016_j_matchemphys_2020_123044
crossref_primary_10_1080_00207233_2018_1517936
crossref_primary_10_1007_s11426_024_2215_y
crossref_primary_10_1016_j_cattod_2023_114222
crossref_primary_10_1016_j_jpcs_2023_111644
crossref_primary_10_1016_j_jhazmat_2021_127612
crossref_primary_10_1016_j_lfs_2018_05_031
crossref_primary_10_1021_acsanm_4c04863
crossref_primary_10_1080_24701556_2020_1869781
crossref_primary_10_1039_C7CE01737E
crossref_primary_10_3390_chemengineering4020039
crossref_primary_10_1007_s10853_019_04178_0
crossref_primary_10_1063_5_0191593
crossref_primary_10_1016_j_seppur_2025_131851
crossref_primary_10_1002_tcr_202300260
crossref_primary_10_1007_s00604_020_04237_3
crossref_primary_10_1134_S0023158419060016
crossref_primary_10_1016_j_jece_2021_105197
crossref_primary_10_1016_j_psep_2020_08_048
crossref_primary_10_1002_slct_201901490
crossref_primary_10_1016_j_ces_2023_119035
crossref_primary_10_3390_chemengineering3010020
crossref_primary_10_1016_j_addr_2022_114270
crossref_primary_10_1002_pc_26895
crossref_primary_10_1038_s41545_023_00245_x
crossref_primary_10_1021_acs_est_1c01247
crossref_primary_10_1002_advs_202306035
crossref_primary_10_1016_j_ab_2020_113949
Cites_doi 10.1016/j.jhazmat.2005.10.012
10.1002/(SICI)1099-0682(199810)1998:10<1439::AID-EJIC1439>3.0.CO;2-1
10.2136/sssaj2005.0054
10.2166/ws.2011.080
10.1021/cr00099a003
10.1080/07366290008934702
10.1021/es0346431
10.1021/ed081p207
10.1016/j.jhazmat.2008.04.089
10.1039/a900535h
10.1016/j.jnucmat.2010.11.101
10.1039/a808567f
10.1016/j.jcis.2006.06.015
10.1016/S1381-5148(97)00058-8
10.1021/jp8114644
10.1016/j.ceramint.2011.05.034
10.1016/j.cej.2015.05.070
10.1021/ie102498s
10.1346/CCMN.1975.0230508
10.1016/j.jhazmat.2010.10.066
10.1016/j.jcis.2009.08.033
10.5012/bkcs.2007.28.11.2029
10.1002/j.1551-8833.1987.tb02895.x
10.1021/cm400846k
10.1016/j.jcis.2013.11.040
10.1016/j.jcis.2006.08.014
10.1016/S1359-6454(03)00441-5
10.1016/j.cemconres.2004.05.012
10.1016/j.colsurfa.2004.12.015
10.1180/minmag.2012.076.5.10
10.1016/j.jcis.2016.10.060
10.1016/j.mattod.2015.10.006
10.1016/j.cej.2013.08.010
10.1021/jp062281o
10.1021/es802811n
10.1016/S0926-860X(99)00009-5
10.1016/j.jcis.2016.12.008
10.1180/minmag.1967.036.280.01
10.1366/000370209788701152
10.1016/j.jhazmat.2013.01.081
10.1016/j.chemosphere.2010.07.066
10.1016/j.molcata.2011.11.015
10.1180/minmag.1973.039.304.01
10.1016/j.ultsonch.2010.10.001
10.1021/ja1087216
10.1016/j.jcis.2014.07.029
10.1039/a804640i
10.1039/b416913a
10.1021/es200668q
10.1016/S0021-9673(03)00528-4
10.1039/C4TA03463E
10.1016/j.watres.2008.12.030
10.1039/B409027F
10.1016/j.jeurceramsoc.2007.11.016
10.1021/jp034296h
10.1016/j.micromeso.2005.11.050
10.1039/c4ta01028k
10.1080/19443994.2014.934725
10.1016/j.watres.2007.10.043
10.1016/S0169-1317(00)00043-0
10.1016/j.cej.2013.08.101
10.1116/11.20060601
10.1016/0927-7757(95)03368-8
10.1016/j.jcis.2006.06.024
10.1002/adfm.201202825
10.1039/c3ra44231d
10.1016/j.jcis.2011.01.098
10.1002/hlca.19420250115
10.1016/j.cej.2013.08.097
10.1021/cr200434v
10.1016/j.jcis.2005.04.086
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cis.2017.04.013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1873-3727
EndPage 80
ExternalDocumentID 28477867
10_1016_j_cis_2017_04_013
S0001868617300635
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
PKN
7X8
EFKBS
ID FETCH-LOGICAL-c390t-99b330a4131ffb2edac9f45a9c9ddca5ce7e493a62d10258964f5b626d7ab8763
IEDL.DBID AIKHN
ISSN 0001-8686
1873-3727
IngestDate Fri Sep 05 14:01:44 EDT 2025
Wed Feb 19 02:40:08 EST 2025
Tue Jul 01 03:12:02 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Fri Feb 23 02:17:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water treatment
Synthesis
Inorganic anion exchangers
Adsorption
Layered double hydroxides
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-99b330a4131ffb2edac9f45a9c9ddca5ce7e493a62d10258964f5b626d7ab8763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 28477867
PQID 1896416194
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_1896416194
pubmed_primary_28477867
crossref_primary_10_1016_j_cis_2017_04_013
crossref_citationtrail_10_1016_j_cis_2017_04_013
elsevier_sciencedirect_doi_10_1016_j_cis_2017_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advances in colloid and interface science
PublicationTitleAlternate Adv Colloid Interface Sci
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Walker, Liu, Cooper, Lu, Bartlett (bb0200) 2007; 2
Shao, Ning, Zhao, Wei, Evans, Duan (bb0370) 2013; 23
Peak (bb0420) 2006; 303
Li, Yang, Zhang, Wang, Xue (bb0185) 2014; 2
Zhang, Guo, He, Qian (bb0355) 2008; 28
Crepaldi, Pavan, Valim (bb0245) 1999; 2
You, Vance, Zhao (bb0160) 2001; 20
Khairallah, Glisenti (bb0330) 2006; 13
Long, Wang, Xiao, An, Yang (bb0405) 2016; 19
Wilkie, Hering (bb0090) 1996; 107
Mostafa, Bakr, Eshaq, Kamel (bb0335) 2015; 56
Chubar, Gerda, Banerjee, Yablokova (bb0430) 2017; 487
Goh, Lim, Dong (bb0140) 2008; 42
Xu, Walker, Liu, Cooper, Max Lu, Bartlett (bb0380) 2007; 2
Peak, Saha, Huang (bb0425) 2006; 70
Philipps, Vandeperre (bb0175) 2011; 416
Chubar (bb0280) 2011; 357
Mills, Christry, Genin, Kameda, Colombo (bb0105) 2012; 76
Wang, O’Hare (bb0255) 2012; 112
Clearfield (bb0060) 2000; 18
Baerlocher, McCusker, Olson (bb0025) 2007
Gong, Liu, Wang, Hu, Zhang (bb0320) 2011; 45
Chubar (bb0285) 2011; 11
Ishihara, Deguchi, Sato, Takegawa, Nii, Ohki (bb0345) 2013; 3
Hadi, Grangeon, Warmont, Seron, Greneche (bb0240) 2014; 234
Goh, Lim, Dong (bb0205) 2009; 43
Kameda, Uchiyama, Yoshioka (bb0300) 2010; 81
Gupta, Chen (bb0070) 1978; 50
Rives V, editor. Nova Science Publishers; 2011.
Heredia, Oliva, Zandalazini, Agu, Eimer, Sacuscheli (bb0340) 2011; 50
Kuroda, Miyamoto, Hibino, Yamaguchi, Mizuno (bb0235) 2013; 25
Chubar, Samanidou, Kouts, Gallios, Kanibolotsky, Strelko (bb0270) 2005; 291
Liu, Frost, Martens (bb0400) 2009; 43
Yang, Choi, Jiang, Park (bb0190) 2007; 28
bb0265
Prüss-Ustün, Wolf, Corvalán, Bos, Neira (bb0005) 2006
Chubar, Szlachta (bb0295) 2015; 279
Ashby, Bréchet (bb0015) 2003; 51
Xu, Stevenson, Lu, Lu (bb0195) 2006; 110
Naslund, Cavalerri, Ogasawara, Nilsson, Pettersson, Wernet (bb0325) 2013; 107
Aramendıa, Aviles, Borau, Luque, Marinas, Ruiz (bb0375) 1999; 9
Hibino, Kobayashi (bb0410) 2005; 15
Palmer, Frost (bb0135) 2009; 63
Helfferich FG. New York: McGraw Hill Book Company; 1962.
Amphlett C. Amsterdam: Elsevier Publishing; 1964.
Fogg, Willliams, Chester, O’Hare (bb0225) 2004; 14
Zhong, Yang, Luo, Wu, Li, Liu (bb0165) 2013; 250–251
Chubar, Gerda, Banerjee (bb0435) 2017; 491
Kim, Kim, Choi, Rengaraj, Yi (bb0075) 2004; 38
Feitknecht, Gerber (bb0110) 1942; 25
Jiao, Chen, Fu, Hu, Wang (bb0360) 2009; 39
Chubar, Kanibolotskyy, Strelko, Gallios, Samanidou, Shaposhnikova TO, Milgrandt, Zhuravlev (bb0275) 2005; 255
Prevot, Forano, Besse (bb0390) 1999; 9
Chang, Zhu, Luo, Lei, Zhang, Tang (bb0210) 2011; 18
Hathaway, Rubel (bb0065) 1987; 79
Voyutsky S. Moscow: Chemistry (Khimia) [In Russian]; 1975.
Elzinga, Tang, McDonald, DeSisto, Reeder (bb0415) 2009; 340
Koilraj, Kannan (bb0170) 2013; 234
Chubar, Gerda, Megantari, Mičušík, Omastova, Heister (bb0130) 2013; 234
Zhuravlev, Strelko (bb0040) 2006
Mokhtara, Saleh, Basahela (bb0310) 2012; 353-354
Kunin R. NY: Robert E. Krieger Publishing; 1972.
Yang, Liu, Xu, Lan, Wei, Sun (bb0250) 2006; 302
Liu, Wei, Qi, Liu, Zhao, Liu (bb0035) 2006; 91
Wang, Wai (bb0085) 2004; 81
Abrams, Millar (bb0010) 1997; 35
(bb0080) 1999
Gaini, Lakraimi, Sebbar, Meghea, Bakasse (bb0155) 2009; 161
Geng, Xu, Li, Chang, Sun, Lei (bb0315) 2013; 232
Kang, Huang, Na, Bai, Ma, Li (bb0365) 2009; 113
Chitrakar, Makita, Sonoda, Hirotsu (bb0220) 2011; 185
Lv, He, Wei, Evans, Duan (bb0305) 2006; 133
Chubar (bb0290) 2014; 2
Beres, Palinko, Kiricsi, Nagy, Kiyozumi, Mizukami (bb0150) 1999; 182
Clearfield A. CRC Press; 1982.
Ma, Liang, Takada, Sasaki (bb0230) 2011; 133
Salomao, Milena, Wakamatsu, Pandolfelli (bb0215) 2011; 37
Taylor (bb0120) 1973; 39
bb0125
Frost, Musumeci (bb0350) 2006; 302
Ingram, Taylor (bb0115) 1967; 36
Lucy (bb0045) 2003; 1000
Raki, Beaudoin, Mitchell (bb0395) 2004; 34
Theiss, Couperwaite, Ayoko, Frost (bb0385) 2014; 417
Miyata (bb0145) 1975; 23
Costantino, Marmottini, Nocchetti, Vivani (bb0180) 1998; 10
Hench, West (bb0260) 1990; 90
Mokhtara (10.1016/j.cis.2017.04.013_bb0310) 2012; 353-354
Feitknecht (10.1016/j.cis.2017.04.013_bb0110) 1942; 25
Aramendıa (10.1016/j.cis.2017.04.013_bb0375) 1999; 9
Taylor (10.1016/j.cis.2017.04.013_bb0120) 1973; 39
Xu (10.1016/j.cis.2017.04.013_bb0195) 2006; 110
Zhang (10.1016/j.cis.2017.04.013_bb0355) 2008; 28
Peak (10.1016/j.cis.2017.04.013_bb0420) 2006; 303
Elzinga (10.1016/j.cis.2017.04.013_bb0415) 2009; 340
Ashby (10.1016/j.cis.2017.04.013_bb0015) 2003; 51
Liu (10.1016/j.cis.2017.04.013_bb0035) 2006; 91
Hathaway (10.1016/j.cis.2017.04.013_bb0065) 1987; 79
Chubar (10.1016/j.cis.2017.04.013_bb0130) 2013; 234
Yang (10.1016/j.cis.2017.04.013_bb0250) 2006; 302
Philipps (10.1016/j.cis.2017.04.013_bb0175) 2011; 416
Kuroda (10.1016/j.cis.2017.04.013_bb0235) 2013; 25
Costantino (10.1016/j.cis.2017.04.013_bb0180) 1998; 10
Gong (10.1016/j.cis.2017.04.013_bb0320) 2011; 45
You (10.1016/j.cis.2017.04.013_bb0160) 2001; 20
Khairallah (10.1016/j.cis.2017.04.013_bb0330) 2006; 13
Long (10.1016/j.cis.2017.04.013_bb0405) 2016; 19
Lv (10.1016/j.cis.2017.04.013_bb0305) 2006; 133
Mills (10.1016/j.cis.2017.04.013_bb0105) 2012; 76
Wang (10.1016/j.cis.2017.04.013_bb0255) 2012; 112
Chubar (10.1016/j.cis.2017.04.013_bb0290) 2014; 2
Wilkie (10.1016/j.cis.2017.04.013_bb0090) 1996; 107
Chitrakar (10.1016/j.cis.2017.04.013_bb0220) 2011; 185
Fogg (10.1016/j.cis.2017.04.013_bb0225) 2004; 14
Lucy (10.1016/j.cis.2017.04.013_bb0045) 2003; 1000
Shao (10.1016/j.cis.2017.04.013_bb0370) 2013; 23
Li (10.1016/j.cis.2017.04.013_bb0185) 2014; 2
(10.1016/j.cis.2017.04.013_bb0080) 1999
10.1016/j.cis.2017.04.013_bb0095
Xu (10.1016/j.cis.2017.04.013_bb0200) 2007; 2
10.1016/j.cis.2017.04.013_bb0050
Raki (10.1016/j.cis.2017.04.013_bb0395) 2004; 34
Chubar (10.1016/j.cis.2017.04.013_bb0275) 2005; 255
10.1016/j.cis.2017.04.013_bb0055
Chang (10.1016/j.cis.2017.04.013_bb0210) 2011; 18
Clearfield (10.1016/j.cis.2017.04.013_bb0060) 2000; 18
Naslund (10.1016/j.cis.2017.04.013_bb0325) 2013; 107
Yang (10.1016/j.cis.2017.04.013_bb0190) 2007; 28
Prüss-Ustün (10.1016/j.cis.2017.04.013_bb0005)
Jiao (10.1016/j.cis.2017.04.013_bb0360) 2009; 39
Zhong (10.1016/j.cis.2017.04.013_bb0165) 2013; 250–251
Ingram (10.1016/j.cis.2017.04.013_bb0115) 1967; 36
Ma (10.1016/j.cis.2017.04.013_bb0230) 2011; 133
Crepaldi (10.1016/j.cis.2017.04.013_bb0245) 1999; 2
Beres (10.1016/j.cis.2017.04.013_bb0150) 1999; 182
Prevot (10.1016/j.cis.2017.04.013_bb0390) 1999; 9
Mostafa (10.1016/j.cis.2017.04.013_bb0335) 2015; 56
Geng (10.1016/j.cis.2017.04.013_bb0315) 2013; 232
Hibino (10.1016/j.cis.2017.04.013_bb0410) 2005; 15
Chubar (10.1016/j.cis.2017.04.013_bb0295) 2015; 279
Goh (10.1016/j.cis.2017.04.013_bb0205) 2009; 43
Koilraj (10.1016/j.cis.2017.04.013_bb0170) 2013; 234
Chubar (10.1016/j.cis.2017.04.013_bb0285) 2011; 11
Goh (10.1016/j.cis.2017.04.013_bb0140) 2008; 42
Baerlocher (10.1016/j.cis.2017.04.013_bb0025) 2007
Palmer (10.1016/j.cis.2017.04.013_bb0135) 2009; 63
Hadi (10.1016/j.cis.2017.04.013_bb0240) 2014; 234
Heredia (10.1016/j.cis.2017.04.013_bb0340) 2011; 50
Abrams (10.1016/j.cis.2017.04.013_bb0010) 1997; 35
Ishihara (10.1016/j.cis.2017.04.013_bb0345) 2013; 3
10.1016/j.cis.2017.04.013_bb0100
Gaini (10.1016/j.cis.2017.04.013_bb0155) 2009; 161
Peak (10.1016/j.cis.2017.04.013_bb0425) 2006; 70
Chubar (10.1016/j.cis.2017.04.013_bb0270) 2005; 291
10.1016/j.cis.2017.04.013_bb0020
Zhuravlev (10.1016/j.cis.2017.04.013_bb0040) 2006
Theiss (10.1016/j.cis.2017.04.013_bb0385) 2014; 417
Hench (10.1016/j.cis.2017.04.013_bb0260) 1990; 90
Kameda (10.1016/j.cis.2017.04.013_bb0300) 2010; 81
Frost (10.1016/j.cis.2017.04.013_bb0350) 2006; 302
Kang (10.1016/j.cis.2017.04.013_bb0365) 2009; 113
Salomao (10.1016/j.cis.2017.04.013_bb0215) 2011; 37
Chubar (10.1016/j.cis.2017.04.013_bb0435) 2017; 491
Liu (10.1016/j.cis.2017.04.013_bb0400) 2009; 43
Chubar (10.1016/j.cis.2017.04.013_bb0430) 2017; 487
Gupta (10.1016/j.cis.2017.04.013_bb0070) 1978; 50
Wang (10.1016/j.cis.2017.04.013_bb0085) 2004; 81
Chubar (10.1016/j.cis.2017.04.013_bb0280) 2011; 357
10.1016/j.cis.2017.04.013_bb0030
Miyata (10.1016/j.cis.2017.04.013_bb0145) 1975; 23
Kim (10.1016/j.cis.2017.04.013_bb0075) 2004; 38
Xu (10.1016/j.cis.2017.04.013_bb0380) 2007; 2
References_xml – volume: 250–251
  start-page: 345
  year: 2013
  end-page: 353
  ident: bb0165
  publication-title: J Hazard Mater
– volume: 90
  start-page: 33
  year: 1990
  end-page: 72
  ident: bb0260
  publication-title: Chem Rev
– volume: 76
  start-page: 1289
  year: 2012
  end-page: 1336
  ident: bb0105
  publication-title: Mineral Mag
– volume: 232
  start-page: 510
  year: 2013
  end-page: 518
  ident: bb0315
  publication-title: Chem Eng J
– volume: 110
  start-page: 16923
  year: 2006
  end-page: 16929
  ident: bb0195
  publication-title: J Phys Chem B
– volume: 91
  start-page: 225
  year: 2006
  end-page: 232
  ident: bb0035
  publication-title: Microporous Mesoporous Mater
– reference: Kunin R. NY: Robert E. Krieger Publishing; 1972.
– volume: 9
  start-page: 1603
  year: 1999
  end-page: 1607
  ident: bb0375
  publication-title: J Mater Chem
– volume: 39
  start-page: 377
  year: 1973
  end-page: 389
  ident: bb0120
  publication-title: Mineral Mag
– volume: 291
  start-page: 67
  year: 2005
  end-page: 74
  ident: bb0270
  publication-title: J Colloid Interface Sci
– volume: 81
  start-page: 658
  year: 2010
  end-page: 662
  ident: bb0300
  publication-title: Chemosphere
– start-page: 405
  year: 2007
  ident: bb0025
  article-title: Atlas Zeolite Framew Types
– volume: 2
  start-page: 155
  year: 1999
  end-page: 156
  ident: bb0245
  publication-title: Chem Commun
– volume: 43
  start-page: 1323
  year: 2009
  end-page: 1329
  ident: bb0400
  publication-title: Water Res
– volume: 357
  start-page: 198
  year: 2011
  end-page: 209
  ident: bb0280
  publication-title: J Colloid Interface Sci
– volume: 28
  start-page: 1623
  year: 2008
  end-page: 1629
  ident: bb0355
  publication-title: J Eur Ceram Soc
– volume: 303
  start-page: 337
  year: 2006
  end-page: 345
  ident: bb0420
  publication-title: J Colloid Interface Sci
– reference: Helfferich FG. New York: McGraw Hill Book Company; 1962.
– volume: 302
  start-page: 159
  year: 2006
  end-page: 619
  ident: bb0250
  publication-title: J Colloid Interface Sci
– volume: 133
  start-page: 613
  year: 2011
  end-page: 620
  ident: bb0230
  publication-title: J Am Chem Soc
– volume: 39
  start-page: 127
  year: 2009
  end-page: 130
  ident: bb0360
  publication-title: Lat Am Appl Res
– volume: 63
  start-page: 748
  year: 2009
  end-page: 752
  ident: bb0135
  publication-title: Appl Spectrosc
– volume: 23
  start-page: 369
  year: 1975
  end-page: 375
  ident: bb0145
  publication-title: Clays Clay Miner
– start-page: 289
  year: 1999
  ident: bb0080
  article-title: Technol Costs Remov Arsen from Drink Water
  publication-title: Draft Report, EPA-815 P-01-001, Draft
– ident: bb0265
– volume: 34
  start-page: 1717
  year: 2004
  end-page: 1724
  ident: bb0395
  publication-title: Cem Concr Res
– volume: 20
  start-page: 13
  year: 2001
  end-page: 25
  ident: bb0160
  publication-title: Appl Clay Sci
– volume: 487
  start-page: 388
  year: 2017
  end-page: 400
  ident: bb0430
  publication-title: J Colloid Interface Sci
– volume: 35
  start-page: 7
  year: 1997
  end-page: 22
  ident: bb0010
  publication-title: React Funct Polym
– volume: 2
  start-page: 163
  year: 2007
  end-page: 174
  ident: bb0200
  publication-title: Int J Nanomedicine
– volume: 185
  start-page: 1435
  year: 2011
  end-page: 1439
  ident: bb0220
  publication-title: J Hazard Mater
– ident: bb0125
– volume: 37
  start-page: 3063
  year: 2011
  end-page: 3070
  ident: bb0215
  publication-title: Ceram Int
– volume: 3
  start-page: 19857
  year: 2013
  end-page: 19860
  ident: bb0345
  publication-title: RSC Adv
– volume: 10
  start-page: 1439
  year: 1998
  end-page: 1446
  ident: bb0180
  publication-title: Eur J Inorg Chem
– volume: 491
  start-page: 111
  year: 2017
  end-page: 122
  ident: bb0435
  publication-title: J Colloid Interface Sci
– volume: 353-354
  start-page: 122
  year: 2012
  end-page: 131
  ident: bb0310
  publication-title: J Mol Catal A
– volume: 28
  start-page: 2029
  year: 2007
  end-page: 2033
  ident: bb0190
  publication-title: Bull Korean Chem Soc
– volume: 25
  start-page: 2291
  year: 2013
  end-page: 2296
  ident: bb0235
  publication-title: Chem Mater
– volume: 255
  start-page: 55
  year: 2005
  end-page: 63
  ident: bb0275
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 2
  start-page: 15995
  year: 2014
  end-page: 16007
  ident: bb0290
  publication-title: J Mater Chem A
– volume: 113
  start-page: 9157
  year: 2009
  end-page: 9163
  ident: bb0365
  publication-title: J Phys Chem
– volume: 38
  start-page: 924
  year: 2004
  end-page: 931
  ident: bb0075
  publication-title: Environ Sci Technol
– volume: 25
  start-page: 131
  year: 1942
  end-page: 137
  ident: bb0110
  publication-title: Helv Chim Acta
– volume: 112
  start-page: 4124
  year: 2012
  end-page: 4155
  ident: bb0255
  publication-title: Chem Rev
– volume: 45
  start-page: 6181
  year: 2011
  end-page: 6187
  ident: bb0320
  publication-title: Environ Sci Technol
– volume: 19
  start-page: 213
  year: 2016
  end-page: 226
  ident: bb0405
  publication-title: Mater Today
– reference: Amphlett C. Amsterdam: Elsevier Publishing; 1964.
– volume: 182
  start-page: 237
  year: 1999
  end-page: 247
  ident: bb0150
  publication-title: Appl Catal A
– volume: 1000
  start-page: 711
  year: 2003
  end-page: 724
  ident: bb0045
  publication-title: J Chromatogr A
– volume: 107
  start-page: 6869
  year: 2013
  end-page: 6876
  ident: bb0325
  publication-title: J Phys Chem A
– volume: 81
  start-page: 207
  year: 2004
  end-page: 213
  ident: bb0085
  publication-title: J Chem Educ
– reference: Voyutsky S. Moscow: Chemistry (Khimia) [In Russian]; 1975.
– volume: 14
  start-page: 2369
  year: 2004
  end-page: 2371
  ident: bb0225
  publication-title: J Mater Chem
– volume: 302
  start-page: 203
  year: 2006
  end-page: 206
  ident: bb0350
  publication-title: J Colloid Interface Sci
– volume: 50
  start-page: 493
  year: 1978
  end-page: 505
  ident: bb0070
  publication-title: J Water Pollut Control Fed
– reference: Rives V, editor. Nova Science Publishers; 2011.
– volume: 416
  start-page: 225
  year: 2011
  end-page: 229
  ident: bb0175
  publication-title: J Nucl Mater
– volume: 56
  start-page: 239
  year: 2015
  end-page: 247
  ident: bb0335
  publication-title: Desalin Water Treat
– volume: 417
  start-page: 356
  year: 2014
  end-page: 358
  ident: bb0385
  publication-title: J Colloid Interface Sci
– year: 2006
  ident: bb0005
– volume: 36
  start-page: 465
  year: 1967
  end-page: 479
  ident: bb0115
  publication-title: Mineral Mag
– volume: 13
  start-page: 58
  year: 2006
  end-page: 71
  ident: bb0330
  publication-title: Surf Sci Spectra
– volume: 42
  start-page: 1343
  year: 2008
  end-page: 1368
  ident: bb0140
  publication-title: Water Res
– volume: 340
  start-page: 153
  year: 2009
  end-page: 159
  ident: bb0415
  publication-title: J Colloid Interface Sci
– volume: 43
  start-page: 2537
  year: 2009
  end-page: 2543
  ident: bb0205
  publication-title: Environ Sci Technol
– volume: 50
  start-page: 6695
  year: 2011
  end-page: 6703
  ident: bb0340
  publication-title: Indian Eng Chem Res
– volume: 18
  start-page: 655
  year: 2000
  end-page: 678
  ident: bb0060
  publication-title: Solvent Extr Ion Exch
– volume: 15
  start-page: 653
  year: 2005
  end-page: 656
  ident: bb0410
  publication-title: J Mater Chem
– volume: 234
  start-page: 406
  year: 2013
  end-page: 415
  ident: bb0170
  publication-title: Chem Eng J
– volume: 234
  start-page: 284
  year: 2013
  end-page: 299
  ident: bb0130
  publication-title: Chem Eng J
– volume: 18
  start-page: 553
  year: 2011
  end-page: 561
  ident: bb0210
  publication-title: Ultrason Sonochem
– volume: 70
  start-page: 192
  year: 2006
  end-page: 203
  ident: bb0425
  publication-title: Soil Sci Soc Am J
– volume: 79
  start-page: 61
  year: 1987
  end-page: 65
  ident: bb0065
  publication-title: J Am Water Work Assoc
– volume: 11
  start-page: 505
  year: 2011
  end-page: 515
  ident: bb0285
  publication-title: Water Sci Technol Water Supply
– volume: 51
  start-page: 5801
  year: 2003
  end-page: 5821
  ident: bb0015
  publication-title: Acta Mater
– reference: Clearfield A. CRC Press; 1982.
– volume: 234
  start-page: 130
  year: 2014
  end-page: 140
  ident: bb0240
  publication-title: J Colloid Interface Sci
– start-page: 93
  year: 2006
  end-page: 98
  ident: bb0040
  publication-title: Comb. Hybrid Adsorbents, Fundam. Appl
– volume: 23
  start-page: 3513
  year: 2013
  end-page: 3518
  ident: bb0370
  publication-title: Adv Funct Mater
– volume: 279
  start-page: 885
  year: 2015
  end-page: 896
  ident: bb0295
  publication-title: Chem Eng J
– volume: 133
  start-page: 119
  year: 2006
  end-page: 128
  ident: bb0305
  publication-title: J Hazard Mater
– volume: 2
  start-page: 10202
  year: 2014
  end-page: 10210
  ident: bb0185
  publication-title: J Mater Chem A
– volume: 107
  start-page: 97
  year: 1996
  end-page: 110
  ident: bb0090
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 161
  start-page: 627
  year: 2009
  end-page: 632
  ident: bb0155
  publication-title: J Hazard Mater
– volume: 9
  start-page: 155
  year: 1999
  end-page: 160
  ident: bb0390
  publication-title: J Mater Chem
– volume: 2
  start-page: 163
  year: 2007
  end-page: 174
  ident: bb0380
  publication-title: Int J Nanomedicine
– volume: 133
  start-page: 119
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0305
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2005.10.012
– volume: 10
  start-page: 1439
  year: 1998
  ident: 10.1016/j.cis.2017.04.013_bb0180
  publication-title: Eur J Inorg Chem
  doi: 10.1002/(SICI)1099-0682(199810)1998:10<1439::AID-EJIC1439>3.0.CO;2-1
– volume: 70
  start-page: 192
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0425
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0054
– ident: 10.1016/j.cis.2017.04.013_bb0055
– volume: 50
  start-page: 493
  year: 1978
  ident: 10.1016/j.cis.2017.04.013_bb0070
  publication-title: J Water Pollut Control Fed
– volume: 11
  start-page: 505
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0285
  publication-title: Water Sci Technol Water Supply
  doi: 10.2166/ws.2011.080
– volume: 90
  start-page: 33
  year: 1990
  ident: 10.1016/j.cis.2017.04.013_bb0260
  publication-title: Chem Rev
  doi: 10.1021/cr00099a003
– volume: 18
  start-page: 655
  year: 2000
  ident: 10.1016/j.cis.2017.04.013_bb0060
  publication-title: Solvent Extr Ion Exch
  doi: 10.1080/07366290008934702
– volume: 38
  start-page: 924
  year: 2004
  ident: 10.1016/j.cis.2017.04.013_bb0075
  publication-title: Environ Sci Technol
  doi: 10.1021/es0346431
– volume: 81
  start-page: 207
  year: 2004
  ident: 10.1016/j.cis.2017.04.013_bb0085
  publication-title: J Chem Educ
  doi: 10.1021/ed081p207
– volume: 161
  start-page: 627
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0155
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.04.089
– volume: 9
  start-page: 1603
  year: 1999
  ident: 10.1016/j.cis.2017.04.013_bb0375
  publication-title: J Mater Chem
  doi: 10.1039/a900535h
– volume: 416
  start-page: 225
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0175
  publication-title: J Nucl Mater
  doi: 10.1016/j.jnucmat.2010.11.101
– volume: 2
  start-page: 155
  year: 1999
  ident: 10.1016/j.cis.2017.04.013_bb0245
  publication-title: Chem Commun
  doi: 10.1039/a808567f
– volume: 302
  start-page: 159
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0250
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2006.06.015
– volume: 35
  start-page: 7
  year: 1997
  ident: 10.1016/j.cis.2017.04.013_bb0010
  publication-title: React Funct Polym
  doi: 10.1016/S1381-5148(97)00058-8
– volume: 113
  start-page: 9157
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0365
  publication-title: J Phys Chem
  doi: 10.1021/jp8114644
– volume: 37
  start-page: 3063
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0215
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2011.05.034
– volume: 279
  start-page: 885
  year: 2015
  ident: 10.1016/j.cis.2017.04.013_bb0295
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.05.070
– start-page: 405
  year: 2007
  ident: 10.1016/j.cis.2017.04.013_bb0025
– volume: 50
  start-page: 6695
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0340
  publication-title: Indian Eng Chem Res
  doi: 10.1021/ie102498s
– volume: 23
  start-page: 369
  year: 1975
  ident: 10.1016/j.cis.2017.04.013_bb0145
  publication-title: Clays Clay Miner
  doi: 10.1346/CCMN.1975.0230508
– volume: 185
  start-page: 1435
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0220
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.10.066
– ident: 10.1016/j.cis.2017.04.013_bb0005
– volume: 340
  start-page: 153
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0415
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2009.08.033
– volume: 28
  start-page: 2029
  year: 2007
  ident: 10.1016/j.cis.2017.04.013_bb0190
  publication-title: Bull Korean Chem Soc
  doi: 10.5012/bkcs.2007.28.11.2029
– volume: 2
  start-page: 163
  year: 2007
  ident: 10.1016/j.cis.2017.04.013_bb0200
  publication-title: Int J Nanomedicine
– volume: 79
  start-page: 61
  year: 1987
  ident: 10.1016/j.cis.2017.04.013_bb0065
  publication-title: J Am Water Work Assoc
  doi: 10.1002/j.1551-8833.1987.tb02895.x
– start-page: 289
  year: 1999
  ident: 10.1016/j.cis.2017.04.013_bb0080
  article-title: Technol Costs Remov Arsen from Drink Water
– ident: 10.1016/j.cis.2017.04.013_bb0095
– volume: 25
  start-page: 2291
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0235
  publication-title: Chem Mater
  doi: 10.1021/cm400846k
– volume: 417
  start-page: 356
  year: 2014
  ident: 10.1016/j.cis.2017.04.013_bb0385
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2013.11.040
– volume: 303
  start-page: 337
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0420
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2006.08.014
– volume: 51
  start-page: 5801
  year: 2003
  ident: 10.1016/j.cis.2017.04.013_bb0015
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(03)00441-5
– volume: 34
  start-page: 1717
  year: 2004
  ident: 10.1016/j.cis.2017.04.013_bb0395
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.05.012
– volume: 255
  start-page: 55
  year: 2005
  ident: 10.1016/j.cis.2017.04.013_bb0275
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2004.12.015
– volume: 76
  start-page: 1289
  year: 2012
  ident: 10.1016/j.cis.2017.04.013_bb0105
  publication-title: Mineral Mag
  doi: 10.1180/minmag.2012.076.5.10
– volume: 487
  start-page: 388
  year: 2017
  ident: 10.1016/j.cis.2017.04.013_bb0430
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2016.10.060
– volume: 19
  start-page: 213
  year: 2016
  ident: 10.1016/j.cis.2017.04.013_bb0405
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 232
  start-page: 510
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0315
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.08.010
– start-page: 93
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0040
– volume: 110
  start-page: 16923
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0195
  publication-title: J Phys Chem B
  doi: 10.1021/jp062281o
– volume: 43
  start-page: 2537
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0205
  publication-title: Environ Sci Technol
  doi: 10.1021/es802811n
– volume: 182
  start-page: 237
  year: 1999
  ident: 10.1016/j.cis.2017.04.013_bb0150
  publication-title: Appl Catal A
  doi: 10.1016/S0926-860X(99)00009-5
– volume: 491
  start-page: 111
  year: 2017
  ident: 10.1016/j.cis.2017.04.013_bb0435
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2016.12.008
– volume: 36
  start-page: 465
  year: 1967
  ident: 10.1016/j.cis.2017.04.013_bb0115
  publication-title: Mineral Mag
  doi: 10.1180/minmag.1967.036.280.01
– volume: 63
  start-page: 748
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0135
  publication-title: Appl Spectrosc
  doi: 10.1366/000370209788701152
– volume: 250–251
  start-page: 345
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0165
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2013.01.081
– volume: 81
  start-page: 658
  year: 2010
  ident: 10.1016/j.cis.2017.04.013_bb0300
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.07.066
– volume: 39
  start-page: 127
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0360
  publication-title: Lat Am Appl Res
– volume: 353-354
  start-page: 122
  year: 2012
  ident: 10.1016/j.cis.2017.04.013_bb0310
  publication-title: J Mol Catal A
  doi: 10.1016/j.molcata.2011.11.015
– volume: 39
  start-page: 377
  year: 1973
  ident: 10.1016/j.cis.2017.04.013_bb0120
  publication-title: Mineral Mag
  doi: 10.1180/minmag.1973.039.304.01
– volume: 18
  start-page: 553
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0210
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2010.10.001
– volume: 133
  start-page: 613
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0230
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1087216
– ident: 10.1016/j.cis.2017.04.013_bb0050
– volume: 234
  start-page: 130
  year: 2014
  ident: 10.1016/j.cis.2017.04.013_bb0240
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2014.07.029
– volume: 9
  start-page: 155
  year: 1999
  ident: 10.1016/j.cis.2017.04.013_bb0390
  publication-title: J Mater Chem
  doi: 10.1039/a804640i
– volume: 15
  start-page: 653
  year: 2005
  ident: 10.1016/j.cis.2017.04.013_bb0410
  publication-title: J Mater Chem
  doi: 10.1039/b416913a
– volume: 45
  start-page: 6181
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0320
  publication-title: Environ Sci Technol
  doi: 10.1021/es200668q
– volume: 2
  start-page: 163
  year: 2007
  ident: 10.1016/j.cis.2017.04.013_bb0380
  publication-title: Int J Nanomedicine
– volume: 1000
  start-page: 711
  year: 2003
  ident: 10.1016/j.cis.2017.04.013_bb0045
  publication-title: J Chromatogr A
  doi: 10.1016/S0021-9673(03)00528-4
– ident: 10.1016/j.cis.2017.04.013_bb0100
– volume: 2
  start-page: 15995
  year: 2014
  ident: 10.1016/j.cis.2017.04.013_bb0290
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA03463E
– volume: 43
  start-page: 1323
  year: 2009
  ident: 10.1016/j.cis.2017.04.013_bb0400
  publication-title: Water Res
  doi: 10.1016/j.watres.2008.12.030
– volume: 14
  start-page: 2369
  year: 2004
  ident: 10.1016/j.cis.2017.04.013_bb0225
  publication-title: J Mater Chem
  doi: 10.1039/B409027F
– volume: 28
  start-page: 1623
  year: 2008
  ident: 10.1016/j.cis.2017.04.013_bb0355
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.11.016
– volume: 107
  start-page: 6869
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0325
  publication-title: J Phys Chem A
  doi: 10.1021/jp034296h
– volume: 91
  start-page: 225
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0035
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2005.11.050
– volume: 2
  start-page: 10202
  year: 2014
  ident: 10.1016/j.cis.2017.04.013_bb0185
  publication-title: J Mater Chem A
  doi: 10.1039/c4ta01028k
– volume: 56
  start-page: 239
  year: 2015
  ident: 10.1016/j.cis.2017.04.013_bb0335
  publication-title: Desalin Water Treat
  doi: 10.1080/19443994.2014.934725
– volume: 42
  start-page: 1343
  year: 2008
  ident: 10.1016/j.cis.2017.04.013_bb0140
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.10.043
– volume: 20
  start-page: 13
  year: 2001
  ident: 10.1016/j.cis.2017.04.013_bb0160
  publication-title: Appl Clay Sci
  doi: 10.1016/S0169-1317(00)00043-0
– ident: 10.1016/j.cis.2017.04.013_bb0020
– volume: 234
  start-page: 406
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0170
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.08.101
– volume: 13
  start-page: 58
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0330
  publication-title: Surf Sci Spectra
  doi: 10.1116/11.20060601
– volume: 107
  start-page: 97
  year: 1996
  ident: 10.1016/j.cis.2017.04.013_bb0090
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/0927-7757(95)03368-8
– volume: 302
  start-page: 203
  year: 2006
  ident: 10.1016/j.cis.2017.04.013_bb0350
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2006.06.024
– volume: 23
  start-page: 3513
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0370
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201202825
– volume: 3
  start-page: 19857
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0345
  publication-title: RSC Adv
  doi: 10.1039/c3ra44231d
– volume: 357
  start-page: 198
  year: 2011
  ident: 10.1016/j.cis.2017.04.013_bb0280
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2011.01.098
– ident: 10.1016/j.cis.2017.04.013_bb0030
– volume: 25
  start-page: 131
  year: 1942
  ident: 10.1016/j.cis.2017.04.013_bb0110
  publication-title: Helv Chim Acta
  doi: 10.1002/hlca.19420250115
– volume: 234
  start-page: 284
  year: 2013
  ident: 10.1016/j.cis.2017.04.013_bb0130
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.08.097
– volume: 112
  start-page: 4124
  year: 2012
  ident: 10.1016/j.cis.2017.04.013_bb0255
  publication-title: Chem Rev
  doi: 10.1021/cr200434v
– volume: 291
  start-page: 67
  year: 2005
  ident: 10.1016/j.cis.2017.04.013_bb0270
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2005.04.086
SSID ssj0002575
Score 2.5900538
SecondaryResourceType review_article
Snippet This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Adsorption
Inorganic anion exchangers
Layered double hydroxides
Synthesis
Water treatment
Title Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability
URI https://dx.doi.org/10.1016/j.cis.2017.04.013
https://www.ncbi.nlm.nih.gov/pubmed/28477867
https://www.proquest.com/docview/1896416194
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyG4VFBeW6AyEiek0CSOkzW3akW1sNADUNGb5ScEVdmq2ZWaC7-dmThZiUN74JIolh07Hmse8fj7AN7oWZmGmSwTh8FJUugiT8zMVImtDM-EQ5PrKVD8clYuzotPF-JiB-bjWRhKqxx0f9TpvbYeSo6H2Ty-qms645sS1juaYE6GVuzCXs5lKSawd_JxuTjbKmRclZHIACNnajBubvZpXrYm0O6s6gFPM36bebrN_ezN0OlD2B_8R3YSh_gIdnxzAPcio2R3APfnI4EblvbZnbZ9DO1n3REnJ3Orjbn07Ffnrlc3tfMt0y1DF5A1qKPZzx6CmiTF6ibSPVmGF3z2N8MJ4fY9-9Y12AT7Z5F-umWU2rHBd8XN8D7dtnsC56cfvs8XycC2kFgu03UipeE81WjUshBM7p22MhRCSyuds1pYX_lCcl3mDp0SgfItgjAYD7lKG8K1ewqTZtX458Cq1IecPDeCH-SlkFg51UKHXAbLA59COk6ysgMUOTFiXKox5-w3lreK5KLSQqFcpvB22-Qq4nDcVbkYJaf-WUwK7cRdzV6PUlYoKto50Y1fbVqV0ddm9MNnCs-i-LejIPtezcrq8P86fQEP6ClmAL-Eyfp641-hn7M2R7D77k92NKxmui-__lj-Ba4D_Y4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEWovqJTX0gJG4oQUmsR2vOaGVlQLbHuhlXqz_CxBVbZqdqXm0t_emTgp4tAeuESKY8eOx5pvJv48Q8hHM63yOFVV5sE5ybjhZWanVmZOWlYID5Ab0FE8Oq7mp_zHmTjbILPxLAzSKgfdn3R6r62HkoNhNg8u6xrP-OYY6x0gmCHQikfkMRdMIq_v881fngesyZTGAPxmrD5ubfYkL1djyO5C9uFOC3YfON1nfPYgdLhDng7WI_2aBviMbIRmlzxJ-SS7XbI1G9O3QWnP7XTtc9IuTIcZOalfru1FoL87f7W8rn1oqWkpGIC0AQ1Nz_sA1CgnWjcp2ZOjcIH7cD2cD26_0F9dA02gf5qST7cUiR1reFfaCu_Jtt0Lcnr47WQ2z4ZcC5ljKl9lSlnGcgOQVsRoy-CNU5ELo5zy3hnhggxcMVOVHkwSAdLlUVjwhrw0FqPavSSbzbIJrwmVeYgl2m0YfJBVQkHl3AgTSxUdi2xC8nGStRsCkWM-jAs9Ms7-QHmrUS465xrkMiGf7ppcpigcD1Xmo-T0P0tJA0o81OzDKGUNosJ9E9OE5brVBX5tgb97JuRVEv_dKBDd5bSSb_6v0_dka35ytNCL78c_98g2Pklc4H2yubpah7dg8azsu35F3wLqsvy2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+double+hydroxides+as+the+next+generation+inorganic+anion+exchangers%3A+Synthetic+methods+versus+applicability&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Chubar%2C+Natalia&rft.au=Gilmour%2C+Robert&rft.au=Gerda%2C+Vasyl&rft.au=Mi%C4%8Du%C5%A1%C3%ADk%2C+Matej&rft.date=2017-07-01&rft.eissn=1873-3727&rft.volume=245&rft.spage=62&rft_id=info:doi/10.1016%2Fj.cis.2017.04.013&rft_id=info%3Apmid%2F28477867&rft.externalDocID=28477867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon