Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability
This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods us...
Saved in:
Published in | Advances in colloid and interface science Vol. 245; pp. 62 - 80 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8686 1873-3727 1873-3727 |
DOI | 10.1016/j.cis.2017.04.013 |
Cover
Abstract | This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of “classical” anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method―structure/surface/interlayer―removal―suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.
[Display omitted]
•Properties of layered double hydroxides (LDH) are reviewed on the speciation level•The first report to link LDHs materials chemistry with water treatment application•The first critical view on the “memory effect” in context of dynamic adsorption•Exchangeability of the interlayer anions versus atomic scale properties•Physisorbed and interlayer water in LDH versus involvement of the interlayer anions |
---|---|
AbstractList | This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale.This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of “classical” anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method―structure/surface/interlayer―removal―suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. [Display omitted] •Properties of layered double hydroxides (LDH) are reviewed on the speciation level•The first report to link LDHs materials chemistry with water treatment application•The first critical view on the “memory effect” in context of dynamic adsorption•Exchangeability of the interlayer anions versus atomic scale properties•Physisorbed and interlayer water in LDH versus involvement of the interlayer anions |
Author | Heister, Katja Chubar, Natalia Omastova, Maria Man, Pascal Gilmour, Robert Gerda, Vasyl Fraissard, Jacques Mičušík, Matej Zaitsev, Vladimir |
Author_xml | – sequence: 1 givenname: Natalia surname: Chubar fullname: Chubar, Natalia email: natachubar@yahoo.com organization: Glasgow Caledonian University, School of Engineering and Built Environment, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom – sequence: 2 givenname: Robert surname: Gilmour fullname: Gilmour, Robert organization: Glasgow Caledonian University, School of Engineering and Built Environment, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom – sequence: 3 givenname: Vasyl surname: Gerda fullname: Gerda, Vasyl organization: Taras Shevchenko National University of Kyiv, Faculty of Chemistry, 64 Volodymyrska Street, 01601 Kyiv, Ukraine – sequence: 4 givenname: Matej surname: Mičušík fullname: Mičušík, Matej organization: Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovak Republic – sequence: 5 givenname: Maria surname: Omastova fullname: Omastova, Maria organization: Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovak Republic – sequence: 6 givenname: Katja surname: Heister fullname: Heister, Katja organization: GeoLab, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, The Netherlands – sequence: 7 givenname: Pascal surname: Man fullname: Man, Pascal organization: Institut des Matériaux de Paris Centre, Sorbonne Universités, UPMC Univ Paris, 06 (CNRS, FR 2482) 4, Place Jussieu, 75005 Paris, France – sequence: 8 givenname: Jacques surname: Fraissard fullname: Fraissard, Jacques organization: Université P. et M. Curie, ESPCI-LPEM, 75005 Paris, France – sequence: 9 givenname: Vladimir surname: Zaitsev fullname: Zaitsev, Vladimir organization: Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de Sao Vicente, 225-Gavea, Rio de Janeiro 22451-900, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28477867$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS3Uim4LP4AL8pFLgh0ndgwnVLWAtBKHwtly7MmuV1l7sZ1q8-_rZQsHDr3Ympn3jTTvXaMLHzwg9I6SmhLKP-5q41LdECpq0taEsldoRXvBKiYacYFWhBBa9bznV-g6pV0pm050r9FV07dC9FysUFrrBSJYbMM8TIC3i43h6CwkrBPOW8AejhlvwEPU2QWPnQ9xo70zuDylhqPZar-BmD7hh8UXJJfZHvI22IQfS38uuw6HyRk9uMnl5Q26HPWU4O3zf4N-3d_9vP1WrX98_X77ZV0ZJkmupBwYI7qljI7j0IDVRo5tp6WR1hrdGRDQSqZ5Y2k5rJe8HbuBN9wKPfSCsxv04bz3EMPvGVJWe5cMTJP2EOak6AmhnMq2SN8_S-dhD1YdotvruKi_RhUBPQtMDClFGP9JKFGnMNROlTDUKQxFWlXCKIz4jzEu_zExR-2mF8nPZxKKPY8OokrGgTdgXQSTlQ3uBfoJuNqmaw |
CitedBy_id | crossref_primary_10_3390_ma18061190 crossref_primary_10_1016_j_jssc_2020_121595 crossref_primary_10_1002_adsu_202000041 crossref_primary_10_1016_j_colsurfa_2022_130661 crossref_primary_10_1016_j_envres_2022_113068 crossref_primary_10_1080_15422119_2022_2149413 crossref_primary_10_1007_s10853_020_04742_z crossref_primary_10_1016_j_jhazmat_2025_137412 crossref_primary_10_1007_s00289_023_04732_6 crossref_primary_10_1007_s44274_024_00179_2 crossref_primary_10_1016_j_cej_2022_135342 crossref_primary_10_1021_acsami_9b19160 crossref_primary_10_3390_ma18010162 crossref_primary_10_1016_j_electacta_2021_138288 crossref_primary_10_1016_j_solidstatesciences_2018_03_007 crossref_primary_10_3390_w10060745 crossref_primary_10_1016_j_clay_2020_105765 crossref_primary_10_1016_j_colsurfa_2020_125860 crossref_primary_10_1016_j_clay_2024_107263 crossref_primary_10_3390_app11178252 crossref_primary_10_1002_admi_202200373 crossref_primary_10_1007_s11356_022_21703_y crossref_primary_10_1016_j_cattod_2018_11_081 crossref_primary_10_1016_j_colsurfa_2024_134901 crossref_primary_10_1016_j_mtchem_2024_101897 crossref_primary_10_3390_chemengineering2030031 crossref_primary_10_3390_ma12213569 crossref_primary_10_1007_s10910_018_0889_2 crossref_primary_10_1021_acsami_3c10999 crossref_primary_10_1016_j_clay_2019_04_021 crossref_primary_10_1016_j_ccr_2019_213111 crossref_primary_10_1039_D0NJ00278J crossref_primary_10_3390_coatings10040428 crossref_primary_10_1007_s42452_020_2893_y crossref_primary_10_1016_j_inoche_2021_108914 crossref_primary_10_1021_acsami_0c10487 crossref_primary_10_1021_acsomega_1c01025 crossref_primary_10_1016_j_solener_2024_112549 crossref_primary_10_2116_analsci_33_989 crossref_primary_10_1021_acs_inorgchem_1c01479 crossref_primary_10_3390_catal13030593 crossref_primary_10_1021_acsami_8b01145 crossref_primary_10_1016_j_mtcomm_2023_107073 crossref_primary_10_52676_1729_7885_2022_4_17_29 crossref_primary_10_1016_j_matdes_2022_111289 crossref_primary_10_3390_chemosensors13030115 crossref_primary_10_1016_j_indcrop_2022_114555 crossref_primary_10_1016_j_apsusc_2018_07_193 crossref_primary_10_1007_s40097_018_0289_y crossref_primary_10_1016_j_colsurfa_2021_126583 crossref_primary_10_3390_nano9020247 crossref_primary_10_1016_j_jhazmat_2021_125485 crossref_primary_10_1002_adfm_201903879 crossref_primary_10_1016_j_clay_2021_106070 crossref_primary_10_1016_j_ijbiomac_2024_136271 crossref_primary_10_1021_acs_iecr_4c00541 crossref_primary_10_1080_14686996_2022_2119101 crossref_primary_10_1007_s13762_019_02457_6 crossref_primary_10_1016_j_conbuildmat_2023_132580 crossref_primary_10_1016_j_jma_2022_05_003 crossref_primary_10_1016_j_jece_2023_109669 crossref_primary_10_1016_j_solener_2019_02_019 crossref_primary_10_1021_acsestengg_1c00218 crossref_primary_10_1016_j_jcis_2019_05_040 crossref_primary_10_1016_j_jclepro_2024_140705 crossref_primary_10_1021_acs_langmuir_8b02469 crossref_primary_10_1016_j_jcis_2019_03_078 crossref_primary_10_1002_cjce_23992 crossref_primary_10_32434_0321_4095_2019_124_3_59_66 crossref_primary_10_1016_j_conbuildmat_2018_03_210 crossref_primary_10_1016_j_measurement_2023_113683 crossref_primary_10_1016_j_ecoenv_2018_09_083 crossref_primary_10_1016_j_jhazmat_2019_121734 crossref_primary_10_1021_acs_iecr_3c03431 crossref_primary_10_1016_j_colsurfa_2021_127942 crossref_primary_10_1002_anie_202005878 crossref_primary_10_1016_j_conbuildmat_2017_11_099 crossref_primary_10_1007_s10973_021_10684_8 crossref_primary_10_1180_clm_2022_26 crossref_primary_10_1021_acs_langmuir_0c01089 crossref_primary_10_1088_1757_899X_858_1_012008 crossref_primary_10_1016_j_envres_2025_121031 crossref_primary_10_1016_j_jece_2021_105273 crossref_primary_10_3390_w15122207 crossref_primary_10_1002_ceat_202000590 crossref_primary_10_12693_APhysPolA_133_1091 crossref_primary_10_1016_j_conbuildmat_2023_131122 crossref_primary_10_1016_j_colsurfa_2024_134578 crossref_primary_10_1016_j_jcis_2019_03_101 crossref_primary_10_20964_2019_08_101 crossref_primary_10_1016_j_jcis_2019_03_100 crossref_primary_10_1016_j_jece_2022_108605 crossref_primary_10_1016_j_diamond_2021_108492 crossref_primary_10_1016_j_seppur_2019_115813 crossref_primary_10_3390_ma13194344 crossref_primary_10_1039_C9EW00808J crossref_primary_10_1021_acs_iecr_4c04648 crossref_primary_10_1016_j_clay_2023_106927 crossref_primary_10_1016_j_surfcoat_2019_124902 crossref_primary_10_1039_C9TA13522G crossref_primary_10_1002_admi_201801366 crossref_primary_10_3390_bioengineering10060734 crossref_primary_10_1016_j_clay_2021_106095 crossref_primary_10_1016_j_ejpe_2022_08_002 crossref_primary_10_1016_j_jwpe_2023_104625 crossref_primary_10_1016_j_clay_2022_106537 crossref_primary_10_1016_j_surfin_2024_105341 crossref_primary_10_3390_nano10091832 crossref_primary_10_1021_acsami_2c12823 crossref_primary_10_3390_ma12091373 crossref_primary_10_1016_j_clay_2024_107585 crossref_primary_10_1016_j_desal_2024_118259 crossref_primary_10_1016_j_ultsonch_2024_106806 crossref_primary_10_1007_s42765_024_00469_7 crossref_primary_10_1016_j_jtice_2018_01_044 crossref_primary_10_1016_j_enmm_2021_100451 crossref_primary_10_1007_s40995_024_01771_0 crossref_primary_10_1016_j_seppur_2022_122072 crossref_primary_10_1007_s11356_023_30723_1 crossref_primary_10_1080_00986445_2021_1895773 crossref_primary_10_1002_ep_13744 crossref_primary_10_5004_dwt_2018_22962 crossref_primary_10_3390_met14010111 crossref_primary_10_1016_j_psep_2024_05_115 crossref_primary_10_1016_j_eti_2024_104003 crossref_primary_10_1016_j_jssc_2018_10_018 crossref_primary_10_1039_C8SM00081F crossref_primary_10_1002_ange_202005878 crossref_primary_10_1016_j_colsurfb_2022_112623 crossref_primary_10_1134_S1070363220030263 crossref_primary_10_1016_j_cis_2020_102216 crossref_primary_10_1016_j_colsurfb_2020_111134 crossref_primary_10_1016_j_jece_2021_106948 crossref_primary_10_1016_j_jpba_2020_113515 crossref_primary_10_1021_jacsau_2c00237 crossref_primary_10_1016_j_trac_2019_06_036 crossref_primary_10_3390_molecules27165054 crossref_primary_10_1016_j_ijhydene_2023_05_253 crossref_primary_10_5802_crchim_249 crossref_primary_10_1016_j_ccr_2025_216613 crossref_primary_10_1016_j_jallcom_2019_02_035 crossref_primary_10_1016_j_enzmictec_2019_109365 crossref_primary_10_1016_j_cattod_2023_114504 crossref_primary_10_1016_j_jtice_2019_09_006 crossref_primary_10_1016_j_cej_2023_141926 crossref_primary_10_3390_w14193010 crossref_primary_10_1007_s41742_025_00757_z crossref_primary_10_1007_s42250_024_00928_z crossref_primary_10_1016_j_cej_2017_12_144 crossref_primary_10_1016_j_matchemphys_2020_123044 crossref_primary_10_1080_00207233_2018_1517936 crossref_primary_10_1007_s11426_024_2215_y crossref_primary_10_1016_j_cattod_2023_114222 crossref_primary_10_1016_j_jpcs_2023_111644 crossref_primary_10_1016_j_jhazmat_2021_127612 crossref_primary_10_1016_j_lfs_2018_05_031 crossref_primary_10_1021_acsanm_4c04863 crossref_primary_10_1080_24701556_2020_1869781 crossref_primary_10_1039_C7CE01737E crossref_primary_10_3390_chemengineering4020039 crossref_primary_10_1007_s10853_019_04178_0 crossref_primary_10_1063_5_0191593 crossref_primary_10_1016_j_seppur_2025_131851 crossref_primary_10_1002_tcr_202300260 crossref_primary_10_1007_s00604_020_04237_3 crossref_primary_10_1134_S0023158419060016 crossref_primary_10_1016_j_jece_2021_105197 crossref_primary_10_1016_j_psep_2020_08_048 crossref_primary_10_1002_slct_201901490 crossref_primary_10_1016_j_ces_2023_119035 crossref_primary_10_3390_chemengineering3010020 crossref_primary_10_1016_j_addr_2022_114270 crossref_primary_10_1002_pc_26895 crossref_primary_10_1038_s41545_023_00245_x crossref_primary_10_1021_acs_est_1c01247 crossref_primary_10_1002_advs_202306035 crossref_primary_10_1016_j_ab_2020_113949 |
Cites_doi | 10.1016/j.jhazmat.2005.10.012 10.1002/(SICI)1099-0682(199810)1998:10<1439::AID-EJIC1439>3.0.CO;2-1 10.2136/sssaj2005.0054 10.2166/ws.2011.080 10.1021/cr00099a003 10.1080/07366290008934702 10.1021/es0346431 10.1021/ed081p207 10.1016/j.jhazmat.2008.04.089 10.1039/a900535h 10.1016/j.jnucmat.2010.11.101 10.1039/a808567f 10.1016/j.jcis.2006.06.015 10.1016/S1381-5148(97)00058-8 10.1021/jp8114644 10.1016/j.ceramint.2011.05.034 10.1016/j.cej.2015.05.070 10.1021/ie102498s 10.1346/CCMN.1975.0230508 10.1016/j.jhazmat.2010.10.066 10.1016/j.jcis.2009.08.033 10.5012/bkcs.2007.28.11.2029 10.1002/j.1551-8833.1987.tb02895.x 10.1021/cm400846k 10.1016/j.jcis.2013.11.040 10.1016/j.jcis.2006.08.014 10.1016/S1359-6454(03)00441-5 10.1016/j.cemconres.2004.05.012 10.1016/j.colsurfa.2004.12.015 10.1180/minmag.2012.076.5.10 10.1016/j.jcis.2016.10.060 10.1016/j.mattod.2015.10.006 10.1016/j.cej.2013.08.010 10.1021/jp062281o 10.1021/es802811n 10.1016/S0926-860X(99)00009-5 10.1016/j.jcis.2016.12.008 10.1180/minmag.1967.036.280.01 10.1366/000370209788701152 10.1016/j.jhazmat.2013.01.081 10.1016/j.chemosphere.2010.07.066 10.1016/j.molcata.2011.11.015 10.1180/minmag.1973.039.304.01 10.1016/j.ultsonch.2010.10.001 10.1021/ja1087216 10.1016/j.jcis.2014.07.029 10.1039/a804640i 10.1039/b416913a 10.1021/es200668q 10.1016/S0021-9673(03)00528-4 10.1039/C4TA03463E 10.1016/j.watres.2008.12.030 10.1039/B409027F 10.1016/j.jeurceramsoc.2007.11.016 10.1021/jp034296h 10.1016/j.micromeso.2005.11.050 10.1039/c4ta01028k 10.1080/19443994.2014.934725 10.1016/j.watres.2007.10.043 10.1016/S0169-1317(00)00043-0 10.1016/j.cej.2013.08.101 10.1116/11.20060601 10.1016/0927-7757(95)03368-8 10.1016/j.jcis.2006.06.024 10.1002/adfm.201202825 10.1039/c3ra44231d 10.1016/j.jcis.2011.01.098 10.1002/hlca.19420250115 10.1016/j.cej.2013.08.097 10.1021/cr200434v 10.1016/j.jcis.2005.04.086 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.cis.2017.04.013 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1873-3727 |
EndPage | 80 |
ExternalDocumentID | 28477867 10_1016_j_cis_2017_04_013 S0001868617300635 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K WUQ XPP ZGI ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM PKN 7X8 EFKBS |
ID | FETCH-LOGICAL-c390t-99b330a4131ffb2edac9f45a9c9ddca5ce7e493a62d10258964f5b626d7ab8763 |
IEDL.DBID | AIKHN |
ISSN | 0001-8686 1873-3727 |
IngestDate | Fri Sep 05 14:01:44 EDT 2025 Wed Feb 19 02:40:08 EST 2025 Tue Jul 01 03:12:02 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Fri Feb 23 02:17:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water treatment Synthesis Inorganic anion exchangers Adsorption Layered double hydroxides |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-99b330a4131ffb2edac9f45a9c9ddca5ce7e493a62d10258964f5b626d7ab8763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 28477867 |
PQID | 1896416194 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1896416194 pubmed_primary_28477867 crossref_primary_10_1016_j_cis_2017_04_013 crossref_citationtrail_10_1016_j_cis_2017_04_013 elsevier_sciencedirect_doi_10_1016_j_cis_2017_04_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Advances in colloid and interface science |
PublicationTitleAlternate | Adv Colloid Interface Sci |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Walker, Liu, Cooper, Lu, Bartlett (bb0200) 2007; 2 Shao, Ning, Zhao, Wei, Evans, Duan (bb0370) 2013; 23 Peak (bb0420) 2006; 303 Li, Yang, Zhang, Wang, Xue (bb0185) 2014; 2 Zhang, Guo, He, Qian (bb0355) 2008; 28 Crepaldi, Pavan, Valim (bb0245) 1999; 2 You, Vance, Zhao (bb0160) 2001; 20 Khairallah, Glisenti (bb0330) 2006; 13 Long, Wang, Xiao, An, Yang (bb0405) 2016; 19 Wilkie, Hering (bb0090) 1996; 107 Mostafa, Bakr, Eshaq, Kamel (bb0335) 2015; 56 Chubar, Gerda, Banerjee, Yablokova (bb0430) 2017; 487 Goh, Lim, Dong (bb0140) 2008; 42 Xu, Walker, Liu, Cooper, Max Lu, Bartlett (bb0380) 2007; 2 Peak, Saha, Huang (bb0425) 2006; 70 Philipps, Vandeperre (bb0175) 2011; 416 Chubar (bb0280) 2011; 357 Mills, Christry, Genin, Kameda, Colombo (bb0105) 2012; 76 Wang, O’Hare (bb0255) 2012; 112 Clearfield (bb0060) 2000; 18 Baerlocher, McCusker, Olson (bb0025) 2007 Gong, Liu, Wang, Hu, Zhang (bb0320) 2011; 45 Chubar (bb0285) 2011; 11 Ishihara, Deguchi, Sato, Takegawa, Nii, Ohki (bb0345) 2013; 3 Hadi, Grangeon, Warmont, Seron, Greneche (bb0240) 2014; 234 Goh, Lim, Dong (bb0205) 2009; 43 Kameda, Uchiyama, Yoshioka (bb0300) 2010; 81 Gupta, Chen (bb0070) 1978; 50 Rives V, editor. Nova Science Publishers; 2011. Heredia, Oliva, Zandalazini, Agu, Eimer, Sacuscheli (bb0340) 2011; 50 Kuroda, Miyamoto, Hibino, Yamaguchi, Mizuno (bb0235) 2013; 25 Chubar, Samanidou, Kouts, Gallios, Kanibolotsky, Strelko (bb0270) 2005; 291 Liu, Frost, Martens (bb0400) 2009; 43 Yang, Choi, Jiang, Park (bb0190) 2007; 28 bb0265 Prüss-Ustün, Wolf, Corvalán, Bos, Neira (bb0005) 2006 Chubar, Szlachta (bb0295) 2015; 279 Ashby, Bréchet (bb0015) 2003; 51 Xu, Stevenson, Lu, Lu (bb0195) 2006; 110 Naslund, Cavalerri, Ogasawara, Nilsson, Pettersson, Wernet (bb0325) 2013; 107 Aramendıa, Aviles, Borau, Luque, Marinas, Ruiz (bb0375) 1999; 9 Hibino, Kobayashi (bb0410) 2005; 15 Palmer, Frost (bb0135) 2009; 63 Helfferich FG. New York: McGraw Hill Book Company; 1962. Amphlett C. Amsterdam: Elsevier Publishing; 1964. Fogg, Willliams, Chester, O’Hare (bb0225) 2004; 14 Zhong, Yang, Luo, Wu, Li, Liu (bb0165) 2013; 250–251 Chubar, Gerda, Banerjee (bb0435) 2017; 491 Kim, Kim, Choi, Rengaraj, Yi (bb0075) 2004; 38 Feitknecht, Gerber (bb0110) 1942; 25 Jiao, Chen, Fu, Hu, Wang (bb0360) 2009; 39 Chubar, Kanibolotskyy, Strelko, Gallios, Samanidou, Shaposhnikova TO, Milgrandt, Zhuravlev (bb0275) 2005; 255 Prevot, Forano, Besse (bb0390) 1999; 9 Chang, Zhu, Luo, Lei, Zhang, Tang (bb0210) 2011; 18 Hathaway, Rubel (bb0065) 1987; 79 Voyutsky S. Moscow: Chemistry (Khimia) [In Russian]; 1975. Elzinga, Tang, McDonald, DeSisto, Reeder (bb0415) 2009; 340 Koilraj, Kannan (bb0170) 2013; 234 Chubar, Gerda, Megantari, Mičušík, Omastova, Heister (bb0130) 2013; 234 Zhuravlev, Strelko (bb0040) 2006 Mokhtara, Saleh, Basahela (bb0310) 2012; 353-354 Kunin R. NY: Robert E. Krieger Publishing; 1972. Yang, Liu, Xu, Lan, Wei, Sun (bb0250) 2006; 302 Liu, Wei, Qi, Liu, Zhao, Liu (bb0035) 2006; 91 Wang, Wai (bb0085) 2004; 81 Abrams, Millar (bb0010) 1997; 35 (bb0080) 1999 Gaini, Lakraimi, Sebbar, Meghea, Bakasse (bb0155) 2009; 161 Geng, Xu, Li, Chang, Sun, Lei (bb0315) 2013; 232 Kang, Huang, Na, Bai, Ma, Li (bb0365) 2009; 113 Chitrakar, Makita, Sonoda, Hirotsu (bb0220) 2011; 185 Lv, He, Wei, Evans, Duan (bb0305) 2006; 133 Chubar (bb0290) 2014; 2 Beres, Palinko, Kiricsi, Nagy, Kiyozumi, Mizukami (bb0150) 1999; 182 Clearfield A. CRC Press; 1982. Ma, Liang, Takada, Sasaki (bb0230) 2011; 133 Salomao, Milena, Wakamatsu, Pandolfelli (bb0215) 2011; 37 Taylor (bb0120) 1973; 39 bb0125 Frost, Musumeci (bb0350) 2006; 302 Ingram, Taylor (bb0115) 1967; 36 Lucy (bb0045) 2003; 1000 Raki, Beaudoin, Mitchell (bb0395) 2004; 34 Theiss, Couperwaite, Ayoko, Frost (bb0385) 2014; 417 Miyata (bb0145) 1975; 23 Costantino, Marmottini, Nocchetti, Vivani (bb0180) 1998; 10 Hench, West (bb0260) 1990; 90 Mokhtara (10.1016/j.cis.2017.04.013_bb0310) 2012; 353-354 Feitknecht (10.1016/j.cis.2017.04.013_bb0110) 1942; 25 Aramendıa (10.1016/j.cis.2017.04.013_bb0375) 1999; 9 Taylor (10.1016/j.cis.2017.04.013_bb0120) 1973; 39 Xu (10.1016/j.cis.2017.04.013_bb0195) 2006; 110 Zhang (10.1016/j.cis.2017.04.013_bb0355) 2008; 28 Peak (10.1016/j.cis.2017.04.013_bb0420) 2006; 303 Elzinga (10.1016/j.cis.2017.04.013_bb0415) 2009; 340 Ashby (10.1016/j.cis.2017.04.013_bb0015) 2003; 51 Liu (10.1016/j.cis.2017.04.013_bb0035) 2006; 91 Hathaway (10.1016/j.cis.2017.04.013_bb0065) 1987; 79 Chubar (10.1016/j.cis.2017.04.013_bb0130) 2013; 234 Yang (10.1016/j.cis.2017.04.013_bb0250) 2006; 302 Philipps (10.1016/j.cis.2017.04.013_bb0175) 2011; 416 Kuroda (10.1016/j.cis.2017.04.013_bb0235) 2013; 25 Costantino (10.1016/j.cis.2017.04.013_bb0180) 1998; 10 Gong (10.1016/j.cis.2017.04.013_bb0320) 2011; 45 You (10.1016/j.cis.2017.04.013_bb0160) 2001; 20 Khairallah (10.1016/j.cis.2017.04.013_bb0330) 2006; 13 Long (10.1016/j.cis.2017.04.013_bb0405) 2016; 19 Lv (10.1016/j.cis.2017.04.013_bb0305) 2006; 133 Mills (10.1016/j.cis.2017.04.013_bb0105) 2012; 76 Wang (10.1016/j.cis.2017.04.013_bb0255) 2012; 112 Chubar (10.1016/j.cis.2017.04.013_bb0290) 2014; 2 Wilkie (10.1016/j.cis.2017.04.013_bb0090) 1996; 107 Chitrakar (10.1016/j.cis.2017.04.013_bb0220) 2011; 185 Fogg (10.1016/j.cis.2017.04.013_bb0225) 2004; 14 Lucy (10.1016/j.cis.2017.04.013_bb0045) 2003; 1000 Shao (10.1016/j.cis.2017.04.013_bb0370) 2013; 23 Li (10.1016/j.cis.2017.04.013_bb0185) 2014; 2 (10.1016/j.cis.2017.04.013_bb0080) 1999 10.1016/j.cis.2017.04.013_bb0095 Xu (10.1016/j.cis.2017.04.013_bb0200) 2007; 2 10.1016/j.cis.2017.04.013_bb0050 Raki (10.1016/j.cis.2017.04.013_bb0395) 2004; 34 Chubar (10.1016/j.cis.2017.04.013_bb0275) 2005; 255 10.1016/j.cis.2017.04.013_bb0055 Chang (10.1016/j.cis.2017.04.013_bb0210) 2011; 18 Clearfield (10.1016/j.cis.2017.04.013_bb0060) 2000; 18 Naslund (10.1016/j.cis.2017.04.013_bb0325) 2013; 107 Yang (10.1016/j.cis.2017.04.013_bb0190) 2007; 28 Prüss-Ustün (10.1016/j.cis.2017.04.013_bb0005) Jiao (10.1016/j.cis.2017.04.013_bb0360) 2009; 39 Zhong (10.1016/j.cis.2017.04.013_bb0165) 2013; 250–251 Ingram (10.1016/j.cis.2017.04.013_bb0115) 1967; 36 Ma (10.1016/j.cis.2017.04.013_bb0230) 2011; 133 Crepaldi (10.1016/j.cis.2017.04.013_bb0245) 1999; 2 Beres (10.1016/j.cis.2017.04.013_bb0150) 1999; 182 Prevot (10.1016/j.cis.2017.04.013_bb0390) 1999; 9 Mostafa (10.1016/j.cis.2017.04.013_bb0335) 2015; 56 Geng (10.1016/j.cis.2017.04.013_bb0315) 2013; 232 Hibino (10.1016/j.cis.2017.04.013_bb0410) 2005; 15 Chubar (10.1016/j.cis.2017.04.013_bb0295) 2015; 279 Goh (10.1016/j.cis.2017.04.013_bb0205) 2009; 43 Koilraj (10.1016/j.cis.2017.04.013_bb0170) 2013; 234 Chubar (10.1016/j.cis.2017.04.013_bb0285) 2011; 11 Goh (10.1016/j.cis.2017.04.013_bb0140) 2008; 42 Baerlocher (10.1016/j.cis.2017.04.013_bb0025) 2007 Palmer (10.1016/j.cis.2017.04.013_bb0135) 2009; 63 Hadi (10.1016/j.cis.2017.04.013_bb0240) 2014; 234 Heredia (10.1016/j.cis.2017.04.013_bb0340) 2011; 50 Abrams (10.1016/j.cis.2017.04.013_bb0010) 1997; 35 Ishihara (10.1016/j.cis.2017.04.013_bb0345) 2013; 3 10.1016/j.cis.2017.04.013_bb0100 Gaini (10.1016/j.cis.2017.04.013_bb0155) 2009; 161 Peak (10.1016/j.cis.2017.04.013_bb0425) 2006; 70 Chubar (10.1016/j.cis.2017.04.013_bb0270) 2005; 291 10.1016/j.cis.2017.04.013_bb0020 Zhuravlev (10.1016/j.cis.2017.04.013_bb0040) 2006 Theiss (10.1016/j.cis.2017.04.013_bb0385) 2014; 417 Hench (10.1016/j.cis.2017.04.013_bb0260) 1990; 90 Kameda (10.1016/j.cis.2017.04.013_bb0300) 2010; 81 Frost (10.1016/j.cis.2017.04.013_bb0350) 2006; 302 Kang (10.1016/j.cis.2017.04.013_bb0365) 2009; 113 Salomao (10.1016/j.cis.2017.04.013_bb0215) 2011; 37 Chubar (10.1016/j.cis.2017.04.013_bb0435) 2017; 491 Liu (10.1016/j.cis.2017.04.013_bb0400) 2009; 43 Chubar (10.1016/j.cis.2017.04.013_bb0430) 2017; 487 Gupta (10.1016/j.cis.2017.04.013_bb0070) 1978; 50 Wang (10.1016/j.cis.2017.04.013_bb0085) 2004; 81 Chubar (10.1016/j.cis.2017.04.013_bb0280) 2011; 357 10.1016/j.cis.2017.04.013_bb0030 Miyata (10.1016/j.cis.2017.04.013_bb0145) 1975; 23 Kim (10.1016/j.cis.2017.04.013_bb0075) 2004; 38 Xu (10.1016/j.cis.2017.04.013_bb0380) 2007; 2 |
References_xml | – volume: 250–251 start-page: 345 year: 2013 end-page: 353 ident: bb0165 publication-title: J Hazard Mater – volume: 90 start-page: 33 year: 1990 end-page: 72 ident: bb0260 publication-title: Chem Rev – volume: 76 start-page: 1289 year: 2012 end-page: 1336 ident: bb0105 publication-title: Mineral Mag – volume: 232 start-page: 510 year: 2013 end-page: 518 ident: bb0315 publication-title: Chem Eng J – volume: 110 start-page: 16923 year: 2006 end-page: 16929 ident: bb0195 publication-title: J Phys Chem B – volume: 91 start-page: 225 year: 2006 end-page: 232 ident: bb0035 publication-title: Microporous Mesoporous Mater – reference: Kunin R. NY: Robert E. Krieger Publishing; 1972. – volume: 9 start-page: 1603 year: 1999 end-page: 1607 ident: bb0375 publication-title: J Mater Chem – volume: 39 start-page: 377 year: 1973 end-page: 389 ident: bb0120 publication-title: Mineral Mag – volume: 291 start-page: 67 year: 2005 end-page: 74 ident: bb0270 publication-title: J Colloid Interface Sci – volume: 81 start-page: 658 year: 2010 end-page: 662 ident: bb0300 publication-title: Chemosphere – start-page: 405 year: 2007 ident: bb0025 article-title: Atlas Zeolite Framew Types – volume: 2 start-page: 155 year: 1999 end-page: 156 ident: bb0245 publication-title: Chem Commun – volume: 43 start-page: 1323 year: 2009 end-page: 1329 ident: bb0400 publication-title: Water Res – volume: 357 start-page: 198 year: 2011 end-page: 209 ident: bb0280 publication-title: J Colloid Interface Sci – volume: 28 start-page: 1623 year: 2008 end-page: 1629 ident: bb0355 publication-title: J Eur Ceram Soc – volume: 303 start-page: 337 year: 2006 end-page: 345 ident: bb0420 publication-title: J Colloid Interface Sci – reference: Helfferich FG. New York: McGraw Hill Book Company; 1962. – volume: 302 start-page: 159 year: 2006 end-page: 619 ident: bb0250 publication-title: J Colloid Interface Sci – volume: 133 start-page: 613 year: 2011 end-page: 620 ident: bb0230 publication-title: J Am Chem Soc – volume: 39 start-page: 127 year: 2009 end-page: 130 ident: bb0360 publication-title: Lat Am Appl Res – volume: 63 start-page: 748 year: 2009 end-page: 752 ident: bb0135 publication-title: Appl Spectrosc – volume: 23 start-page: 369 year: 1975 end-page: 375 ident: bb0145 publication-title: Clays Clay Miner – start-page: 289 year: 1999 ident: bb0080 article-title: Technol Costs Remov Arsen from Drink Water publication-title: Draft Report, EPA-815 P-01-001, Draft – ident: bb0265 – volume: 34 start-page: 1717 year: 2004 end-page: 1724 ident: bb0395 publication-title: Cem Concr Res – volume: 20 start-page: 13 year: 2001 end-page: 25 ident: bb0160 publication-title: Appl Clay Sci – volume: 487 start-page: 388 year: 2017 end-page: 400 ident: bb0430 publication-title: J Colloid Interface Sci – volume: 35 start-page: 7 year: 1997 end-page: 22 ident: bb0010 publication-title: React Funct Polym – volume: 2 start-page: 163 year: 2007 end-page: 174 ident: bb0200 publication-title: Int J Nanomedicine – volume: 185 start-page: 1435 year: 2011 end-page: 1439 ident: bb0220 publication-title: J Hazard Mater – ident: bb0125 – volume: 37 start-page: 3063 year: 2011 end-page: 3070 ident: bb0215 publication-title: Ceram Int – volume: 3 start-page: 19857 year: 2013 end-page: 19860 ident: bb0345 publication-title: RSC Adv – volume: 10 start-page: 1439 year: 1998 end-page: 1446 ident: bb0180 publication-title: Eur J Inorg Chem – volume: 491 start-page: 111 year: 2017 end-page: 122 ident: bb0435 publication-title: J Colloid Interface Sci – volume: 353-354 start-page: 122 year: 2012 end-page: 131 ident: bb0310 publication-title: J Mol Catal A – volume: 28 start-page: 2029 year: 2007 end-page: 2033 ident: bb0190 publication-title: Bull Korean Chem Soc – volume: 25 start-page: 2291 year: 2013 end-page: 2296 ident: bb0235 publication-title: Chem Mater – volume: 255 start-page: 55 year: 2005 end-page: 63 ident: bb0275 publication-title: Colloids Surf A Physicochem Eng Asp – volume: 2 start-page: 15995 year: 2014 end-page: 16007 ident: bb0290 publication-title: J Mater Chem A – volume: 113 start-page: 9157 year: 2009 end-page: 9163 ident: bb0365 publication-title: J Phys Chem – volume: 38 start-page: 924 year: 2004 end-page: 931 ident: bb0075 publication-title: Environ Sci Technol – volume: 25 start-page: 131 year: 1942 end-page: 137 ident: bb0110 publication-title: Helv Chim Acta – volume: 112 start-page: 4124 year: 2012 end-page: 4155 ident: bb0255 publication-title: Chem Rev – volume: 45 start-page: 6181 year: 2011 end-page: 6187 ident: bb0320 publication-title: Environ Sci Technol – volume: 19 start-page: 213 year: 2016 end-page: 226 ident: bb0405 publication-title: Mater Today – reference: Amphlett C. Amsterdam: Elsevier Publishing; 1964. – volume: 182 start-page: 237 year: 1999 end-page: 247 ident: bb0150 publication-title: Appl Catal A – volume: 1000 start-page: 711 year: 2003 end-page: 724 ident: bb0045 publication-title: J Chromatogr A – volume: 107 start-page: 6869 year: 2013 end-page: 6876 ident: bb0325 publication-title: J Phys Chem A – volume: 81 start-page: 207 year: 2004 end-page: 213 ident: bb0085 publication-title: J Chem Educ – reference: Voyutsky S. Moscow: Chemistry (Khimia) [In Russian]; 1975. – volume: 14 start-page: 2369 year: 2004 end-page: 2371 ident: bb0225 publication-title: J Mater Chem – volume: 302 start-page: 203 year: 2006 end-page: 206 ident: bb0350 publication-title: J Colloid Interface Sci – volume: 50 start-page: 493 year: 1978 end-page: 505 ident: bb0070 publication-title: J Water Pollut Control Fed – reference: Rives V, editor. Nova Science Publishers; 2011. – volume: 416 start-page: 225 year: 2011 end-page: 229 ident: bb0175 publication-title: J Nucl Mater – volume: 56 start-page: 239 year: 2015 end-page: 247 ident: bb0335 publication-title: Desalin Water Treat – volume: 417 start-page: 356 year: 2014 end-page: 358 ident: bb0385 publication-title: J Colloid Interface Sci – year: 2006 ident: bb0005 – volume: 36 start-page: 465 year: 1967 end-page: 479 ident: bb0115 publication-title: Mineral Mag – volume: 13 start-page: 58 year: 2006 end-page: 71 ident: bb0330 publication-title: Surf Sci Spectra – volume: 42 start-page: 1343 year: 2008 end-page: 1368 ident: bb0140 publication-title: Water Res – volume: 340 start-page: 153 year: 2009 end-page: 159 ident: bb0415 publication-title: J Colloid Interface Sci – volume: 43 start-page: 2537 year: 2009 end-page: 2543 ident: bb0205 publication-title: Environ Sci Technol – volume: 50 start-page: 6695 year: 2011 end-page: 6703 ident: bb0340 publication-title: Indian Eng Chem Res – volume: 18 start-page: 655 year: 2000 end-page: 678 ident: bb0060 publication-title: Solvent Extr Ion Exch – volume: 15 start-page: 653 year: 2005 end-page: 656 ident: bb0410 publication-title: J Mater Chem – volume: 234 start-page: 406 year: 2013 end-page: 415 ident: bb0170 publication-title: Chem Eng J – volume: 234 start-page: 284 year: 2013 end-page: 299 ident: bb0130 publication-title: Chem Eng J – volume: 18 start-page: 553 year: 2011 end-page: 561 ident: bb0210 publication-title: Ultrason Sonochem – volume: 70 start-page: 192 year: 2006 end-page: 203 ident: bb0425 publication-title: Soil Sci Soc Am J – volume: 79 start-page: 61 year: 1987 end-page: 65 ident: bb0065 publication-title: J Am Water Work Assoc – volume: 11 start-page: 505 year: 2011 end-page: 515 ident: bb0285 publication-title: Water Sci Technol Water Supply – volume: 51 start-page: 5801 year: 2003 end-page: 5821 ident: bb0015 publication-title: Acta Mater – reference: Clearfield A. CRC Press; 1982. – volume: 234 start-page: 130 year: 2014 end-page: 140 ident: bb0240 publication-title: J Colloid Interface Sci – start-page: 93 year: 2006 end-page: 98 ident: bb0040 publication-title: Comb. Hybrid Adsorbents, Fundam. Appl – volume: 23 start-page: 3513 year: 2013 end-page: 3518 ident: bb0370 publication-title: Adv Funct Mater – volume: 279 start-page: 885 year: 2015 end-page: 896 ident: bb0295 publication-title: Chem Eng J – volume: 133 start-page: 119 year: 2006 end-page: 128 ident: bb0305 publication-title: J Hazard Mater – volume: 2 start-page: 10202 year: 2014 end-page: 10210 ident: bb0185 publication-title: J Mater Chem A – volume: 107 start-page: 97 year: 1996 end-page: 110 ident: bb0090 publication-title: Colloids Surf A Physicochem Eng Asp – volume: 161 start-page: 627 year: 2009 end-page: 632 ident: bb0155 publication-title: J Hazard Mater – volume: 9 start-page: 155 year: 1999 end-page: 160 ident: bb0390 publication-title: J Mater Chem – volume: 2 start-page: 163 year: 2007 end-page: 174 ident: bb0380 publication-title: Int J Nanomedicine – volume: 133 start-page: 119 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0305 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2005.10.012 – volume: 10 start-page: 1439 year: 1998 ident: 10.1016/j.cis.2017.04.013_bb0180 publication-title: Eur J Inorg Chem doi: 10.1002/(SICI)1099-0682(199810)1998:10<1439::AID-EJIC1439>3.0.CO;2-1 – volume: 70 start-page: 192 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0425 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0054 – ident: 10.1016/j.cis.2017.04.013_bb0055 – volume: 50 start-page: 493 year: 1978 ident: 10.1016/j.cis.2017.04.013_bb0070 publication-title: J Water Pollut Control Fed – volume: 11 start-page: 505 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0285 publication-title: Water Sci Technol Water Supply doi: 10.2166/ws.2011.080 – volume: 90 start-page: 33 year: 1990 ident: 10.1016/j.cis.2017.04.013_bb0260 publication-title: Chem Rev doi: 10.1021/cr00099a003 – volume: 18 start-page: 655 year: 2000 ident: 10.1016/j.cis.2017.04.013_bb0060 publication-title: Solvent Extr Ion Exch doi: 10.1080/07366290008934702 – volume: 38 start-page: 924 year: 2004 ident: 10.1016/j.cis.2017.04.013_bb0075 publication-title: Environ Sci Technol doi: 10.1021/es0346431 – volume: 81 start-page: 207 year: 2004 ident: 10.1016/j.cis.2017.04.013_bb0085 publication-title: J Chem Educ doi: 10.1021/ed081p207 – volume: 161 start-page: 627 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0155 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.04.089 – volume: 9 start-page: 1603 year: 1999 ident: 10.1016/j.cis.2017.04.013_bb0375 publication-title: J Mater Chem doi: 10.1039/a900535h – volume: 416 start-page: 225 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0175 publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2010.11.101 – volume: 2 start-page: 155 year: 1999 ident: 10.1016/j.cis.2017.04.013_bb0245 publication-title: Chem Commun doi: 10.1039/a808567f – volume: 302 start-page: 159 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0250 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.06.015 – volume: 35 start-page: 7 year: 1997 ident: 10.1016/j.cis.2017.04.013_bb0010 publication-title: React Funct Polym doi: 10.1016/S1381-5148(97)00058-8 – volume: 113 start-page: 9157 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0365 publication-title: J Phys Chem doi: 10.1021/jp8114644 – volume: 37 start-page: 3063 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0215 publication-title: Ceram Int doi: 10.1016/j.ceramint.2011.05.034 – volume: 279 start-page: 885 year: 2015 ident: 10.1016/j.cis.2017.04.013_bb0295 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.05.070 – start-page: 405 year: 2007 ident: 10.1016/j.cis.2017.04.013_bb0025 – volume: 50 start-page: 6695 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0340 publication-title: Indian Eng Chem Res doi: 10.1021/ie102498s – volume: 23 start-page: 369 year: 1975 ident: 10.1016/j.cis.2017.04.013_bb0145 publication-title: Clays Clay Miner doi: 10.1346/CCMN.1975.0230508 – volume: 185 start-page: 1435 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0220 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2010.10.066 – ident: 10.1016/j.cis.2017.04.013_bb0005 – volume: 340 start-page: 153 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0415 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2009.08.033 – volume: 28 start-page: 2029 year: 2007 ident: 10.1016/j.cis.2017.04.013_bb0190 publication-title: Bull Korean Chem Soc doi: 10.5012/bkcs.2007.28.11.2029 – volume: 2 start-page: 163 year: 2007 ident: 10.1016/j.cis.2017.04.013_bb0200 publication-title: Int J Nanomedicine – volume: 79 start-page: 61 year: 1987 ident: 10.1016/j.cis.2017.04.013_bb0065 publication-title: J Am Water Work Assoc doi: 10.1002/j.1551-8833.1987.tb02895.x – start-page: 289 year: 1999 ident: 10.1016/j.cis.2017.04.013_bb0080 article-title: Technol Costs Remov Arsen from Drink Water – ident: 10.1016/j.cis.2017.04.013_bb0095 – volume: 25 start-page: 2291 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0235 publication-title: Chem Mater doi: 10.1021/cm400846k – volume: 417 start-page: 356 year: 2014 ident: 10.1016/j.cis.2017.04.013_bb0385 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2013.11.040 – volume: 303 start-page: 337 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0420 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.08.014 – volume: 51 start-page: 5801 year: 2003 ident: 10.1016/j.cis.2017.04.013_bb0015 publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00441-5 – volume: 34 start-page: 1717 year: 2004 ident: 10.1016/j.cis.2017.04.013_bb0395 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.05.012 – volume: 255 start-page: 55 year: 2005 ident: 10.1016/j.cis.2017.04.013_bb0275 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2004.12.015 – volume: 76 start-page: 1289 year: 2012 ident: 10.1016/j.cis.2017.04.013_bb0105 publication-title: Mineral Mag doi: 10.1180/minmag.2012.076.5.10 – volume: 487 start-page: 388 year: 2017 ident: 10.1016/j.cis.2017.04.013_bb0430 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2016.10.060 – volume: 19 start-page: 213 year: 2016 ident: 10.1016/j.cis.2017.04.013_bb0405 publication-title: Mater Today doi: 10.1016/j.mattod.2015.10.006 – volume: 232 start-page: 510 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0315 publication-title: Chem Eng J doi: 10.1016/j.cej.2013.08.010 – start-page: 93 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0040 – volume: 110 start-page: 16923 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0195 publication-title: J Phys Chem B doi: 10.1021/jp062281o – volume: 43 start-page: 2537 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0205 publication-title: Environ Sci Technol doi: 10.1021/es802811n – volume: 182 start-page: 237 year: 1999 ident: 10.1016/j.cis.2017.04.013_bb0150 publication-title: Appl Catal A doi: 10.1016/S0926-860X(99)00009-5 – volume: 491 start-page: 111 year: 2017 ident: 10.1016/j.cis.2017.04.013_bb0435 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2016.12.008 – volume: 36 start-page: 465 year: 1967 ident: 10.1016/j.cis.2017.04.013_bb0115 publication-title: Mineral Mag doi: 10.1180/minmag.1967.036.280.01 – volume: 63 start-page: 748 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0135 publication-title: Appl Spectrosc doi: 10.1366/000370209788701152 – volume: 250–251 start-page: 345 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0165 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.01.081 – volume: 81 start-page: 658 year: 2010 ident: 10.1016/j.cis.2017.04.013_bb0300 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.07.066 – volume: 39 start-page: 127 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0360 publication-title: Lat Am Appl Res – volume: 353-354 start-page: 122 year: 2012 ident: 10.1016/j.cis.2017.04.013_bb0310 publication-title: J Mol Catal A doi: 10.1016/j.molcata.2011.11.015 – volume: 39 start-page: 377 year: 1973 ident: 10.1016/j.cis.2017.04.013_bb0120 publication-title: Mineral Mag doi: 10.1180/minmag.1973.039.304.01 – volume: 18 start-page: 553 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0210 publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2010.10.001 – volume: 133 start-page: 613 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0230 publication-title: J Am Chem Soc doi: 10.1021/ja1087216 – ident: 10.1016/j.cis.2017.04.013_bb0050 – volume: 234 start-page: 130 year: 2014 ident: 10.1016/j.cis.2017.04.013_bb0240 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2014.07.029 – volume: 9 start-page: 155 year: 1999 ident: 10.1016/j.cis.2017.04.013_bb0390 publication-title: J Mater Chem doi: 10.1039/a804640i – volume: 15 start-page: 653 year: 2005 ident: 10.1016/j.cis.2017.04.013_bb0410 publication-title: J Mater Chem doi: 10.1039/b416913a – volume: 45 start-page: 6181 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0320 publication-title: Environ Sci Technol doi: 10.1021/es200668q – volume: 2 start-page: 163 year: 2007 ident: 10.1016/j.cis.2017.04.013_bb0380 publication-title: Int J Nanomedicine – volume: 1000 start-page: 711 year: 2003 ident: 10.1016/j.cis.2017.04.013_bb0045 publication-title: J Chromatogr A doi: 10.1016/S0021-9673(03)00528-4 – ident: 10.1016/j.cis.2017.04.013_bb0100 – volume: 2 start-page: 15995 year: 2014 ident: 10.1016/j.cis.2017.04.013_bb0290 publication-title: J Mater Chem A doi: 10.1039/C4TA03463E – volume: 43 start-page: 1323 year: 2009 ident: 10.1016/j.cis.2017.04.013_bb0400 publication-title: Water Res doi: 10.1016/j.watres.2008.12.030 – volume: 14 start-page: 2369 year: 2004 ident: 10.1016/j.cis.2017.04.013_bb0225 publication-title: J Mater Chem doi: 10.1039/B409027F – volume: 28 start-page: 1623 year: 2008 ident: 10.1016/j.cis.2017.04.013_bb0355 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.11.016 – volume: 107 start-page: 6869 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0325 publication-title: J Phys Chem A doi: 10.1021/jp034296h – volume: 91 start-page: 225 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0035 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2005.11.050 – volume: 2 start-page: 10202 year: 2014 ident: 10.1016/j.cis.2017.04.013_bb0185 publication-title: J Mater Chem A doi: 10.1039/c4ta01028k – volume: 56 start-page: 239 year: 2015 ident: 10.1016/j.cis.2017.04.013_bb0335 publication-title: Desalin Water Treat doi: 10.1080/19443994.2014.934725 – volume: 42 start-page: 1343 year: 2008 ident: 10.1016/j.cis.2017.04.013_bb0140 publication-title: Water Res doi: 10.1016/j.watres.2007.10.043 – volume: 20 start-page: 13 year: 2001 ident: 10.1016/j.cis.2017.04.013_bb0160 publication-title: Appl Clay Sci doi: 10.1016/S0169-1317(00)00043-0 – ident: 10.1016/j.cis.2017.04.013_bb0020 – volume: 234 start-page: 406 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0170 publication-title: Chem Eng J doi: 10.1016/j.cej.2013.08.101 – volume: 13 start-page: 58 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0330 publication-title: Surf Sci Spectra doi: 10.1116/11.20060601 – volume: 107 start-page: 97 year: 1996 ident: 10.1016/j.cis.2017.04.013_bb0090 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/0927-7757(95)03368-8 – volume: 302 start-page: 203 year: 2006 ident: 10.1016/j.cis.2017.04.013_bb0350 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.06.024 – volume: 23 start-page: 3513 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0370 publication-title: Adv Funct Mater doi: 10.1002/adfm.201202825 – volume: 3 start-page: 19857 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0345 publication-title: RSC Adv doi: 10.1039/c3ra44231d – volume: 357 start-page: 198 year: 2011 ident: 10.1016/j.cis.2017.04.013_bb0280 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2011.01.098 – ident: 10.1016/j.cis.2017.04.013_bb0030 – volume: 25 start-page: 131 year: 1942 ident: 10.1016/j.cis.2017.04.013_bb0110 publication-title: Helv Chim Acta doi: 10.1002/hlca.19420250115 – volume: 234 start-page: 284 year: 2013 ident: 10.1016/j.cis.2017.04.013_bb0130 publication-title: Chem Eng J doi: 10.1016/j.cej.2013.08.097 – volume: 112 start-page: 4124 year: 2012 ident: 10.1016/j.cis.2017.04.013_bb0255 publication-title: Chem Rev doi: 10.1021/cr200434v – volume: 291 start-page: 67 year: 2005 ident: 10.1016/j.cis.2017.04.013_bb0270 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2005.04.086 |
SSID | ssj0002575 |
Score | 2.5900538 |
SecondaryResourceType | review_article |
Snippet | This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | Adsorption Inorganic anion exchangers Layered double hydroxides Synthesis Water treatment |
Title | Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability |
URI | https://dx.doi.org/10.1016/j.cis.2017.04.013 https://www.ncbi.nlm.nih.gov/pubmed/28477867 https://www.proquest.com/docview/1896416194 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyG4VFBeW6AyEiek0CSOkzW3akW1sNADUNGb5ScEVdmq2ZWaC7-dmThZiUN74JIolh07Hmse8fj7AN7oWZmGmSwTh8FJUugiT8zMVImtDM-EQ5PrKVD8clYuzotPF-JiB-bjWRhKqxx0f9TpvbYeSo6H2Ty-qms645sS1juaYE6GVuzCXs5lKSawd_JxuTjbKmRclZHIACNnajBubvZpXrYm0O6s6gFPM36bebrN_ezN0OlD2B_8R3YSh_gIdnxzAPcio2R3APfnI4EblvbZnbZ9DO1n3REnJ3Orjbn07Ffnrlc3tfMt0y1DF5A1qKPZzx6CmiTF6ibSPVmGF3z2N8MJ4fY9-9Y12AT7Z5F-umWU2rHBd8XN8D7dtnsC56cfvs8XycC2kFgu03UipeE81WjUshBM7p22MhRCSyuds1pYX_lCcl3mDp0SgfItgjAYD7lKG8K1ewqTZtX458Cq1IecPDeCH-SlkFg51UKHXAbLA59COk6ysgMUOTFiXKox5-w3lreK5KLSQqFcpvB22-Qq4nDcVbkYJaf-WUwK7cRdzV6PUlYoKto50Y1fbVqV0ddm9MNnCs-i-LejIPtezcrq8P86fQEP6ClmAL-Eyfp641-hn7M2R7D77k92NKxmui-__lj-Ba4D_Y4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEWovqJTX0gJG4oQUmsR2vOaGVlQLbHuhlXqz_CxBVbZqdqXm0t_emTgp4tAeuESKY8eOx5pvJv48Q8hHM63yOFVV5sE5ybjhZWanVmZOWlYID5Ab0FE8Oq7mp_zHmTjbILPxLAzSKgfdn3R6r62HkoNhNg8u6xrP-OYY6x0gmCHQikfkMRdMIq_v881fngesyZTGAPxmrD5ubfYkL1djyO5C9uFOC3YfON1nfPYgdLhDng7WI_2aBviMbIRmlzxJ-SS7XbI1G9O3QWnP7XTtc9IuTIcZOalfru1FoL87f7W8rn1oqWkpGIC0AQ1Nz_sA1CgnWjcp2ZOjcIH7cD2cD26_0F9dA02gf5qST7cUiR1reFfaCu_Jtt0Lcnr47WQ2z4ZcC5ljKl9lSlnGcgOQVsRoy-CNU5ELo5zy3hnhggxcMVOVHkwSAdLlUVjwhrw0FqPavSSbzbIJrwmVeYgl2m0YfJBVQkHl3AgTSxUdi2xC8nGStRsCkWM-jAs9Ms7-QHmrUS465xrkMiGf7ppcpigcD1Xmo-T0P0tJA0o81OzDKGUNosJ9E9OE5brVBX5tgb97JuRVEv_dKBDd5bSSb_6v0_dka35ytNCL78c_98g2Pklc4H2yubpah7dg8azsu35F3wLqsvy2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+double+hydroxides+as+the+next+generation+inorganic+anion+exchangers%3A+Synthetic+methods+versus+applicability&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Chubar%2C+Natalia&rft.au=Gilmour%2C+Robert&rft.au=Gerda%2C+Vasyl&rft.au=Mi%C4%8Du%C5%A1%C3%ADk%2C+Matej&rft.date=2017-07-01&rft.eissn=1873-3727&rft.volume=245&rft.spage=62&rft_id=info:doi/10.1016%2Fj.cis.2017.04.013&rft_id=info%3Apmid%2F28477867&rft.externalDocID=28477867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon |