Statistical analysis of functional MRI data in the wavelet domain

The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 17; no. 2; pp. 142 - 154
Main Authors Ruttimann, U.E., Unser, M., Rawlings, R.R., Rio, D., Ramsey, N.F., Mattay, V.S., Hommer, D.W., Frank, J.A., Weinberger, D.R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.1998
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.
AbstractList The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.
Author Ruttimann, U.E.
Ramsey, N.F.
Hommer, D.W.
Frank, J.A.
Unser, M.
Mattay, V.S.
Weinberger, D.R.
Rio, D.
Rawlings, R.R.
Author_xml – sequence: 1
  givenname: U.E.
  surname: Ruttimann
  fullname: Ruttimann, U.E.
  organization: Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 2
  givenname: M.
  surname: Unser
  fullname: Unser, M.
– sequence: 3
  givenname: R.R.
  surname: Rawlings
  fullname: Rawlings, R.R.
– sequence: 4
  givenname: D.
  surname: Rio
  fullname: Rio, D.
– sequence: 5
  givenname: N.F.
  surname: Ramsey
  fullname: Ramsey, N.F.
– sequence: 6
  givenname: V.S.
  surname: Mattay
  fullname: Mattay, V.S.
– sequence: 7
  givenname: D.W.
  surname: Hommer
  fullname: Hommer, D.W.
– sequence: 8
  givenname: J.A.
  surname: Frank
  fullname: Frank, J.A.
– sequence: 9
  givenname: D.R.
  surname: Weinberger
  fullname: Weinberger, D.R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2346254$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9688147$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLJDEUhbNocdrWxWwFIQsZmEXrzaOS1FJkHoIi-FiHW0kKM1SntJJ26H8_1XTpYhgYVxfu-c5ZnHNAZqlPgZDPDM4Yg_pc8jMNoLmekTlwbZYAin8iBzn_AmCygnqf7NfKGCb1nFzcFywxl-iwo5iw2-SYad_Sdp1cif34oTd3V9RjQRoTLU-B_sbX0IVCfb_CmA7JXotdDkfTXZDH798eLn8ur29_XF1eXC-dqKEsjfPOqIoFxWrfoEJhVMMb1M43gE5WiJ63vgYheaO5MKBUq33reeCCBScW5Msu93noX9YhF7uK2YWuwxT6dbYGQArO1H9BbpTSdfUBkAnNlJIjeDKB62YVvH0e4gqHjZ1aHPXTScc89tgOmFzM7xgXUvFqG3O-w9zQ5zyE1rq4bb9PZcDYWQZ2u6CV3O4WHB1f_3K8Zf6LPd6xMYTwzk3iHylLo24
CODEN ITMID4
CitedBy_id crossref_primary_10_5589_cjrs3304fi
crossref_primary_10_1016_j_jneumeth_2012_10_011
crossref_primary_10_1016_j_neuroimage_2006_10_038
crossref_primary_10_1109_TMI_2003_823064
crossref_primary_10_1016_j_asoc_2019_105905
crossref_primary_10_1016_j_neuroimage_2004_10_037
crossref_primary_10_1016_j_ijleo_2018_12_028
crossref_primary_10_1016_j_neuroimage_2013_01_058
crossref_primary_10_1016_j_neuroimage_2004_07_012
crossref_primary_10_1016_j_neuroimage_2004_07_056
crossref_primary_10_1109_TMI_2004_824234
crossref_primary_10_1287_moor_2021_1176
crossref_primary_10_1097_00004647_199911000_00003
crossref_primary_10_1109_TMI_2003_809638
crossref_primary_10_1016_j_neuroimage_2007_05_057
crossref_primary_10_5589_m07_034
crossref_primary_10_1006_nimg_2001_0870
crossref_primary_10_2460_ajvr_69_5_652
crossref_primary_10_1016_j_acha_2010_04_005
crossref_primary_10_1016_j_jneumeth_2005_09_020
crossref_primary_10_1002_hbm_21388
crossref_primary_10_1002_1097_0193_200102_12_2_61__AID_HBM1004_3_0_CO_2_W
crossref_primary_10_1016_j_neuroimage_2007_06_011
crossref_primary_10_1016_j_neuroimage_2012_08_041
crossref_primary_10_1016_S0933_3657_02_00072_6
crossref_primary_10_1152_jn_00447_2012
crossref_primary_10_1016_j_biopsych_2004_12_005
crossref_primary_10_1016_j_neucom_2014_12_082
crossref_primary_10_1007_s00521_007_0102_1
crossref_primary_10_1109_MEMB_2006_1607671
crossref_primary_10_1214_15_AOAS829
crossref_primary_10_1016_j_cmpb_2016_08_026
crossref_primary_10_1016_j_neuroimage_2004_08_052
crossref_primary_10_1016_j_media_2006_09_003
crossref_primary_10_1016_j_neuroimage_2005_10_041
crossref_primary_10_1016_j_neuroimage_2009_03_054
crossref_primary_10_1016_j_bspc_2017_08_021
crossref_primary_10_1002_1097_0193_200009_11_1_46__AID_HBM40_3_0_CO_2_5
crossref_primary_10_1021_ie901179m
crossref_primary_10_1191_0962280203sm339ra
crossref_primary_10_1002_hbm_20244
crossref_primary_10_1109_42_906422
crossref_primary_10_1016_j_neuroimage_2006_06_033
crossref_primary_10_1002_hbm_1038
crossref_primary_10_1016_j_neuroimage_2004_07_034
crossref_primary_10_1002_sim_9209
crossref_primary_10_1016_j_neuroimage_2015_05_050
crossref_primary_10_1155_2012_574971
crossref_primary_10_1016_j_chemolab_2004_02_005
crossref_primary_10_1109_TMI_2004_841225
crossref_primary_10_1109_TMI_2012_2185943
crossref_primary_10_1214_17_AOS1588
crossref_primary_10_1109_TMI_2003_809583
crossref_primary_10_1002_scj_20393
crossref_primary_10_1016_S0167_2789_03_00136_2
crossref_primary_10_1198_016214502388618933
crossref_primary_10_1109_TSP_2005_853098
crossref_primary_10_1016_j_neuroimage_2021_118095
crossref_primary_10_1016_j_neuroimage_2015_06_010
crossref_primary_10_1109_42_925291
crossref_primary_10_1016_j_neuroimage_2004_04_017
crossref_primary_10_1016_j_neuroimage_2006_10_005
crossref_primary_10_1109_TMI_2003_809587
crossref_primary_10_1016_j_mri_2008_09_001
crossref_primary_10_1214_12_AOAS565
crossref_primary_10_1109_JSTSP_2008_2007763
crossref_primary_10_1155_2013_185750
crossref_primary_10_1080_01621459_2016_1246366
crossref_primary_10_1146_annurev_bioeng_2_1_511
crossref_primary_10_1109_JSTSP_2008_2007762
crossref_primary_10_1111_biom_13055
crossref_primary_10_35193_bseufbd_1091035
crossref_primary_10_1177_096228020000900404
crossref_primary_10_1016_j_jneumeth_2008_08_019
crossref_primary_10_1002_aic_11733
crossref_primary_10_1002_jmri_10219
crossref_primary_10_1016_j_neuroimage_2011_06_043
crossref_primary_10_1109_42_938239
crossref_primary_10_1080_07350015_2021_1910041
Cites_doi 10.1002/mrm.1910300617
10.1137/1.9781611970104
10.2307/2337118
10.1002/mrm.1910320123
10.1109/42.491423
10.1016/S1076-6332(96)80186-3
10.1080/01630569308816532
10.1002/mrm.1910300318
10.1109/42.538936
10.1007/BF03168476
10.1002/mrm.1910250220
10.1109/42.363098
10.1109/18.119733
10.1002/mrm.1910140108
10.1002/mrm.1910240209
10.1016/0006-3223(94)00260-A
10.1109/83.650848
10.1109/5.488704
10.1117/12.292801
10.1002/mrm.1910310307
10.1109/42.491416
10.1109/42.538941
10.1016/0165-1684(93)90144-Y
10.1073/pnas.92.15.6906
10.1007/BF01248406
10.1002/mrm.1910360417
10.1097/00004647-199601000-00002
10.1007/BF01205550
10.1002/nbm.1940070113
10.1097/00004647-199609000-00001
10.1148/radiology.201.2.8888231
10.1117/12.146601
10.1006/nimg.1995.1023
10.1073/pnas.89.12.5675
10.1109/18.382009
10.1002/mrm.1910210213
10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
10.1109/42.511757
10.1109/78.193220
10.1002/mrm.1910350219
10.1109/34.192463
10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.3.CO;2-S
10.1073/pnas.89.13.5951
10.1109/78.301841
10.1002/nbm.1940070111
10.1002/mrm.1910260118
10.1109/18.119740
10.1109/42.363095
10.1006/acha.1993.1008
10.1109/78.229891
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/42.700727
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EndPage 154
ExternalDocumentID 345090
9688147
2346254
10_1109_42_700727
700727
Genre orig-research
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c390t-8cdc8651e619dba6a386b2ba7cdb0ac45aad2fd90342b7238066f7dfd2e231ec3
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Thu Jul 10 23:44:43 EDT 2025
Mon Jul 21 11:39:07 EDT 2025
Mon Jul 21 11:33:18 EDT 2025
Wed Feb 19 01:21:37 EST 2025
Mon Jul 21 09:16:06 EDT 2025
Tue Jul 01 03:15:38 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Tue Aug 26 21:00:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Statistical analysis
Wavelet transformation
Statistical model
Central nervous system
Medical imagery
Nuclear magnetic resonance imaging
Multiresolution analysis
Image reconstruction
Brain (vertebrata)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-8cdc8651e619dba6a386b2ba7cdb0ac45aad2fd90342b7238066f7dfd2e231ec3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 9688147
PQID 21371664
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_28667956
pascalfrancis_primary_2346254
proquest_miscellaneous_80043216
proquest_miscellaneous_21371664
pubmed_primary_9688147
ieee_primary_700727
crossref_citationtrail_10_1109_42_700727
crossref_primary_10_1109_42_700727
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-04-01
PublicationDateYYYYMMDD 1998-04-01
PublicationDate_xml – month: 04
  year: 1998
  text: 1998-04-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References gelman (ref11) 1996; 36
ref13
ref12
ref15
ref14
ref53
ref55
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ramsey (ref52) 1996; 16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
donoho (ref49) 1995; 57
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
hollander (ref56) 1973
ruttimann (ref29) 1996
ref23
savoy (ref28) 1996
ref26
ref25
ref20
ref22
ref21
aldroubi (ref2) 1996
ref27
hajnal (ref24) 1994; 31
lemarie (ref37) 1988; 67
References_xml – start-page: 115
  year: 1996
  ident: ref29
  article-title: statistical analysis of image differences by wavelet decomposition
  publication-title: Wavelets in Medicine and Biology
– year: 1996
  ident: ref2
  publication-title: Wavelets in Medicine and Biology
– ident: ref55
  doi: 10.1002/mrm.1910300617
– ident: ref33
  doi: 10.1137/1.9781611970104
– ident: ref13
  doi: 10.2307/2337118
– ident: ref53
  doi: 10.1002/mrm.1910320123
– ident: ref15
  doi: 10.1109/42.491423
– ident: ref16
  doi: 10.1016/S1076-6332(96)80186-3
– ident: ref38
  doi: 10.1080/01630569308816532
– ident: ref27
  doi: 10.1002/mrm.1910300318
– ident: ref17
  doi: 10.1109/42.538936
– ident: ref3
  doi: 10.1007/BF03168476
– ident: ref22
  doi: 10.1002/mrm.1910250220
– ident: ref47
  doi: 10.1109/42.363098
– ident: ref39
  doi: 10.1109/18.119733
– start-page: 12
  year: 1996
  ident: ref28
  publication-title: Rec A Two Day Workshop on Functional Magnetic Imaging
– ident: ref19
  doi: 10.1002/mrm.1910140108
– ident: ref8
  doi: 10.1002/mrm.1910240209
– ident: ref20
  doi: 10.1016/0006-3223(94)00260-A
– ident: ref51
  doi: 10.1109/83.650848
– volume: 57
  start-page: 301
  year: 1995
  ident: ref49
  article-title: wavelet shrinkage: asymptopia?
  publication-title: J Roy Statistical Soc
– ident: ref1
  doi: 10.1109/5.488704
– ident: ref35
  doi: 10.1117/12.292801
– volume: 31
  start-page: 283
  year: 1994
  ident: ref24
  article-title: artifacts due to stimulus correlated motion in functional imaging of the brain
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910310307
– ident: ref10
  doi: 10.1109/42.491416
– ident: ref4
  doi: 10.1109/42.538941
– year: 1973
  ident: ref56
  publication-title: Nonparametric Statistical Methods
– ident: ref42
  doi: 10.1016/0165-1684(93)90144-Y
– ident: ref30
  doi: 10.1073/pnas.92.15.6906
– ident: ref7
  doi: 10.1007/BF01248406
– volume: 36
  start-page: 613
  year: 1996
  ident: ref11
  article-title: wavelet encoding for 3-d gradient-echo mr-imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910360417
– ident: ref50
  doi: 10.1097/00004647-199601000-00002
– ident: ref36
  doi: 10.1007/BF01205550
– ident: ref25
  doi: 10.1002/nbm.1940070113
– volume: 16
  start-page: 755
  year: 1996
  ident: ref52
  article-title: functional brain mapping of human sensorimotor cortex with 3-d bold fmri correlates highly with h$_2$^{15}$o pet rcbf
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-199609000-00001
– ident: ref31
  doi: 10.1148/radiology.201.2.8888231
– ident: ref18
  doi: 10.1117/12.146601
– ident: ref45
  doi: 10.1006/nimg.1995.1023
– ident: ref23
  doi: 10.1073/pnas.89.12.5675
– ident: ref41
  doi: 10.1109/18.382009
– ident: ref12
  doi: 10.1002/mrm.1910210213
– ident: ref46
  doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
– ident: ref5
  doi: 10.1109/42.511757
– ident: ref43
  doi: 10.1109/78.193220
– ident: ref44
  doi: 10.1002/mrm.1910350219
– ident: ref32
  doi: 10.1109/34.192463
– ident: ref48
  doi: 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.3.CO;2-S
– ident: ref21
  doi: 10.1073/pnas.89.13.5951
– ident: ref6
  doi: 10.1109/78.301841
– ident: ref26
  doi: 10.1002/nbm.1940070111
– ident: ref54
  doi: 10.1002/mrm.1910260118
– volume: 67
  start-page: 227
  year: 1988
  ident: ref37
  article-title: ondelettes a´ localisation exponentielles
  publication-title: J Math pures et appl
– ident: ref9
  doi: 10.1109/18.119740
– ident: ref14
  doi: 10.1109/42.363095
– ident: ref40
  doi: 10.1006/acha.1993.1008
– ident: ref34
  doi: 10.1109/78.229891
SSID ssj0014509
Score 1.9238191
Snippet The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two...
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Adult
Algorithms
Bandwidth
Biological and medical sciences
Brain - physiology
Echo-Planar Imaging - methods
Echo-Planar Imaging - statistics & numerical data
Fingers - physiology
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Investigative techniques, diagnostic techniques (general aspects)
Linear Models
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Medical sciences
Motor Skills - physiology
Nervous system
Normal Distribution
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Sensitivity and Specificity
Signal detection
Signal to noise ratio
Statistical analysis
Statistical tests
Testing
Wavelet analysis
Wavelet coefficients
Wavelet domain
Wavelet transforms
Title Statistical analysis of functional MRI data in the wavelet domain
URI https://ieeexplore.ieee.org/document/700727
https://www.ncbi.nlm.nih.gov/pubmed/9688147
https://www.proquest.com/docview/21371664
https://www.proquest.com/docview/28667956
https://www.proquest.com/docview/80043216
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFB90QdGDtquLa2s7iAcvWZPJZDI5lqJoYT1Ihb2FyXyAaJPiZhH61_e9mWzYFle8heSFJPMmM7_39XuEnDGlYd2XSZQh2y13Oo8qJVRkU6GdiR3gOXQNTG_F9T3_MctmHc-2r4Wx1vrkMzvBQx_LN41eoKvsIkee63yTbILdFkq1-oABz0I2B0PC2FiwjkQoiYsLzibhxh2yVQgpE2ylsrIJ-a4qmBOp5jAsLvSzWA84_cZztR8quueerxDzTR4ni7aa6D__sTm-85s-kL0OgNJvYcZ8JBu2HpLdFVrCIdmedgH3A1h1MVQ_9w5vqjoCE9o4ivthcCPS6d0NxURT-lBTgJP0RWEzi5aa5pd6qA_J_dXlz-_XUdd1IdJpEbeR1EZLkSUWTCuDekulqFilcm2qGDSbKWWYMwVyB1bYsgxAi8uNM8wCVrQ6HZFB3dT2iNBCWq5ih5FEzi1DMKnzKrUFWGU20emYnC_VUOqOkhw7YzyV3jSJi5KzMgzQmJz2or8DD8drQkMc4F5gefbkH9X2l1nKwfrjY_J1qeoS_i0MmKjaNot5yZIUzEnxloQUIgcTc72E9KSHCUiMwizqH9_NxeNXX_oT2QnVj5gj9JkM2ueFPQH401Zf_MT_CyokADg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIqAc-NlSsUCphUDikm3iOI5z4ICAapd2e0Ct1Ftw_CNVQILYrCp4FV6Fh2MmzkYFtdwqcYuSUeJ4xp4Z-_M3AM-5NjjvqyTKiO1WeJNHlZY6cqk03sYe4zlaGpgfyumxeH-SnazBz-EsjHOuA5-5CV12e_m2MUtaKtvNiec67xGU--77GeZni1ezt6jMF5zvvTt6M436EgKRwWS-jZSxRskscZgnWGpEqmTFK50bW8XYzExry70tiAivovpb6IF9br3lDgMfZ1J87zW4jmFGxsPhsGGLQmQBP8KJojaWvKctSuJiV_BJaOoG3CikUgkVbznn9ro6LoTC1AtUhA8VNC4PcTtXt3cXfq06KSBcPk2WbTUxP_7ij_xPe_Ee3OlDbPY6jIn7sObqEdw-R7w4gpvzHlKwiX6FwAiLbkmf6Z6ihTWekccPC6Vs_mHGCErLTmuGATM701Suo2W2-aJP6wdwfCW_swXrdVO7h8AK5YSOPe2VCuE4hcsmr1JXYN7pEpOO4eVK7aXpSdep9sfnsku-4qIUvAwKGcOzQfRrYBq5SGhECh0EVne3_zCl4TFPBea3Ygw7K9MqcfagLSFdu2a5KHmSYsIs_yWhpMwxib5cQnW0jglKbAWrHT7f2_6jCxu9A7emR_OD8mB2uP8YNsJZT0JEPYH19tvSbWOw11ZPu0HH4ONV2-dvktRgAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+analysis+of+functional+MRI+data+in+the+wavelet+domain&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ruttimann%2C+U.E.&rft.au=Unser%2C+M.&rft.au=Rawlings%2C+R.R.&rft.au=Rio%2C+D.&rft.date=1998-04-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=17&rft.issue=2&rft.spage=142&rft.epage=154&rft_id=info:doi/10.1109%2F42.700727&rft_id=info%3Apmid%2F9688147&rft.externalDocID=700727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon