Statistical analysis of functional MRI data in the wavelet domain
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 17; no. 2; pp. 142 - 154 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.1998
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing. |
---|---|
AbstractList | The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing. The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities. Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing. The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing. |
Author | Ruttimann, U.E. Ramsey, N.F. Hommer, D.W. Frank, J.A. Unser, M. Mattay, V.S. Weinberger, D.R. Rio, D. Rawlings, R.R. |
Author_xml | – sequence: 1 givenname: U.E. surname: Ruttimann fullname: Ruttimann, U.E. organization: Nat. Inst. of Health, Bethesda, MD, USA – sequence: 2 givenname: M. surname: Unser fullname: Unser, M. – sequence: 3 givenname: R.R. surname: Rawlings fullname: Rawlings, R.R. – sequence: 4 givenname: D. surname: Rio fullname: Rio, D. – sequence: 5 givenname: N.F. surname: Ramsey fullname: Ramsey, N.F. – sequence: 6 givenname: V.S. surname: Mattay fullname: Mattay, V.S. – sequence: 7 givenname: D.W. surname: Hommer fullname: Hommer, D.W. – sequence: 8 givenname: J.A. surname: Frank fullname: Frank, J.A. – sequence: 9 givenname: D.R. surname: Weinberger fullname: Weinberger, D.R. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2346254$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9688147$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLJDEUhbNocdrWxWwFIQsZmEXrzaOS1FJkHoIi-FiHW0kKM1SntJJ26H8_1XTpYhgYVxfu-c5ZnHNAZqlPgZDPDM4Yg_pc8jMNoLmekTlwbZYAin8iBzn_AmCygnqf7NfKGCb1nFzcFywxl-iwo5iw2-SYad_Sdp1cif34oTd3V9RjQRoTLU-B_sbX0IVCfb_CmA7JXotdDkfTXZDH798eLn8ur29_XF1eXC-dqKEsjfPOqIoFxWrfoEJhVMMb1M43gE5WiJ63vgYheaO5MKBUq33reeCCBScW5Msu93noX9YhF7uK2YWuwxT6dbYGQArO1H9BbpTSdfUBkAnNlJIjeDKB62YVvH0e4gqHjZ1aHPXTScc89tgOmFzM7xgXUvFqG3O-w9zQ5zyE1rq4bb9PZcDYWQZ2u6CV3O4WHB1f_3K8Zf6LPd6xMYTwzk3iHylLo24 |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_5589_cjrs3304fi crossref_primary_10_1016_j_jneumeth_2012_10_011 crossref_primary_10_1016_j_neuroimage_2006_10_038 crossref_primary_10_1109_TMI_2003_823064 crossref_primary_10_1016_j_asoc_2019_105905 crossref_primary_10_1016_j_neuroimage_2004_10_037 crossref_primary_10_1016_j_ijleo_2018_12_028 crossref_primary_10_1016_j_neuroimage_2013_01_058 crossref_primary_10_1016_j_neuroimage_2004_07_012 crossref_primary_10_1016_j_neuroimage_2004_07_056 crossref_primary_10_1109_TMI_2004_824234 crossref_primary_10_1287_moor_2021_1176 crossref_primary_10_1097_00004647_199911000_00003 crossref_primary_10_1109_TMI_2003_809638 crossref_primary_10_1016_j_neuroimage_2007_05_057 crossref_primary_10_5589_m07_034 crossref_primary_10_1006_nimg_2001_0870 crossref_primary_10_2460_ajvr_69_5_652 crossref_primary_10_1016_j_acha_2010_04_005 crossref_primary_10_1016_j_jneumeth_2005_09_020 crossref_primary_10_1002_hbm_21388 crossref_primary_10_1002_1097_0193_200102_12_2_61__AID_HBM1004_3_0_CO_2_W crossref_primary_10_1016_j_neuroimage_2007_06_011 crossref_primary_10_1016_j_neuroimage_2012_08_041 crossref_primary_10_1016_S0933_3657_02_00072_6 crossref_primary_10_1152_jn_00447_2012 crossref_primary_10_1016_j_biopsych_2004_12_005 crossref_primary_10_1016_j_neucom_2014_12_082 crossref_primary_10_1007_s00521_007_0102_1 crossref_primary_10_1109_MEMB_2006_1607671 crossref_primary_10_1214_15_AOAS829 crossref_primary_10_1016_j_cmpb_2016_08_026 crossref_primary_10_1016_j_neuroimage_2004_08_052 crossref_primary_10_1016_j_media_2006_09_003 crossref_primary_10_1016_j_neuroimage_2005_10_041 crossref_primary_10_1016_j_neuroimage_2009_03_054 crossref_primary_10_1016_j_bspc_2017_08_021 crossref_primary_10_1002_1097_0193_200009_11_1_46__AID_HBM40_3_0_CO_2_5 crossref_primary_10_1021_ie901179m crossref_primary_10_1191_0962280203sm339ra crossref_primary_10_1002_hbm_20244 crossref_primary_10_1109_42_906422 crossref_primary_10_1016_j_neuroimage_2006_06_033 crossref_primary_10_1002_hbm_1038 crossref_primary_10_1016_j_neuroimage_2004_07_034 crossref_primary_10_1002_sim_9209 crossref_primary_10_1016_j_neuroimage_2015_05_050 crossref_primary_10_1155_2012_574971 crossref_primary_10_1016_j_chemolab_2004_02_005 crossref_primary_10_1109_TMI_2004_841225 crossref_primary_10_1109_TMI_2012_2185943 crossref_primary_10_1214_17_AOS1588 crossref_primary_10_1109_TMI_2003_809583 crossref_primary_10_1002_scj_20393 crossref_primary_10_1016_S0167_2789_03_00136_2 crossref_primary_10_1198_016214502388618933 crossref_primary_10_1109_TSP_2005_853098 crossref_primary_10_1016_j_neuroimage_2021_118095 crossref_primary_10_1016_j_neuroimage_2015_06_010 crossref_primary_10_1109_42_925291 crossref_primary_10_1016_j_neuroimage_2004_04_017 crossref_primary_10_1016_j_neuroimage_2006_10_005 crossref_primary_10_1109_TMI_2003_809587 crossref_primary_10_1016_j_mri_2008_09_001 crossref_primary_10_1214_12_AOAS565 crossref_primary_10_1109_JSTSP_2008_2007763 crossref_primary_10_1155_2013_185750 crossref_primary_10_1080_01621459_2016_1246366 crossref_primary_10_1146_annurev_bioeng_2_1_511 crossref_primary_10_1109_JSTSP_2008_2007762 crossref_primary_10_1111_biom_13055 crossref_primary_10_35193_bseufbd_1091035 crossref_primary_10_1177_096228020000900404 crossref_primary_10_1016_j_jneumeth_2008_08_019 crossref_primary_10_1002_aic_11733 crossref_primary_10_1002_jmri_10219 crossref_primary_10_1016_j_neuroimage_2011_06_043 crossref_primary_10_1109_42_938239 crossref_primary_10_1080_07350015_2021_1910041 |
Cites_doi | 10.1002/mrm.1910300617 10.1137/1.9781611970104 10.2307/2337118 10.1002/mrm.1910320123 10.1109/42.491423 10.1016/S1076-6332(96)80186-3 10.1080/01630569308816532 10.1002/mrm.1910300318 10.1109/42.538936 10.1007/BF03168476 10.1002/mrm.1910250220 10.1109/42.363098 10.1109/18.119733 10.1002/mrm.1910140108 10.1002/mrm.1910240209 10.1016/0006-3223(94)00260-A 10.1109/83.650848 10.1109/5.488704 10.1117/12.292801 10.1002/mrm.1910310307 10.1109/42.491416 10.1109/42.538941 10.1016/0165-1684(93)90144-Y 10.1073/pnas.92.15.6906 10.1007/BF01248406 10.1002/mrm.1910360417 10.1097/00004647-199601000-00002 10.1007/BF01205550 10.1002/nbm.1940070113 10.1097/00004647-199609000-00001 10.1148/radiology.201.2.8888231 10.1117/12.146601 10.1006/nimg.1995.1023 10.1073/pnas.89.12.5675 10.1109/18.382009 10.1002/mrm.1910210213 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O 10.1109/42.511757 10.1109/78.193220 10.1002/mrm.1910350219 10.1109/34.192463 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.3.CO;2-S 10.1073/pnas.89.13.5951 10.1109/78.301841 10.1002/nbm.1940070111 10.1002/mrm.1910260118 10.1109/18.119740 10.1109/42.363095 10.1006/acha.1993.1008 10.1109/78.229891 |
ContentType | Journal Article |
Copyright | 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 INIST-CNRS |
DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/42.700727 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EndPage | 154 |
ExternalDocumentID | 345090 9688147 2346254 10_1109_42_700727 700727 |
Genre | orig-research Journal Article Comparative Study |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c390t-8cdc8651e619dba6a386b2ba7cdb0ac45aad2fd90342b7238066f7dfd2e231ec3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Thu Jul 10 23:44:43 EDT 2025 Mon Jul 21 11:39:07 EDT 2025 Mon Jul 21 11:33:18 EDT 2025 Wed Feb 19 01:21:37 EST 2025 Mon Jul 21 09:16:06 EDT 2025 Tue Jul 01 03:15:38 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Tue Aug 26 21:00:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Statistical analysis Wavelet transformation Statistical model Central nervous system Medical imagery Nuclear magnetic resonance imaging Multiresolution analysis Image reconstruction Brain (vertebrata) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-8cdc8651e619dba6a386b2ba7cdb0ac45aad2fd90342b7238066f7dfd2e231ec3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 9688147 |
PQID | 21371664 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_28667956 pascalfrancis_primary_2346254 proquest_miscellaneous_80043216 proquest_miscellaneous_21371664 pubmed_primary_9688147 ieee_primary_700727 crossref_citationtrail_10_1109_42_700727 crossref_primary_10_1109_42_700727 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-04-01 |
PublicationDateYYYYMMDD | 1998-04-01 |
PublicationDate_xml | – month: 04 year: 1998 text: 1998-04-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 1998 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | gelman (ref11) 1996; 36 ref13 ref12 ref15 ref14 ref53 ref55 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ramsey (ref52) 1996; 16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 donoho (ref49) 1995; 57 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 hollander (ref56) 1973 ruttimann (ref29) 1996 ref23 savoy (ref28) 1996 ref26 ref25 ref20 ref22 ref21 aldroubi (ref2) 1996 ref27 hajnal (ref24) 1994; 31 lemarie (ref37) 1988; 67 |
References_xml | – start-page: 115 year: 1996 ident: ref29 article-title: statistical analysis of image differences by wavelet decomposition publication-title: Wavelets in Medicine and Biology – year: 1996 ident: ref2 publication-title: Wavelets in Medicine and Biology – ident: ref55 doi: 10.1002/mrm.1910300617 – ident: ref33 doi: 10.1137/1.9781611970104 – ident: ref13 doi: 10.2307/2337118 – ident: ref53 doi: 10.1002/mrm.1910320123 – ident: ref15 doi: 10.1109/42.491423 – ident: ref16 doi: 10.1016/S1076-6332(96)80186-3 – ident: ref38 doi: 10.1080/01630569308816532 – ident: ref27 doi: 10.1002/mrm.1910300318 – ident: ref17 doi: 10.1109/42.538936 – ident: ref3 doi: 10.1007/BF03168476 – ident: ref22 doi: 10.1002/mrm.1910250220 – ident: ref47 doi: 10.1109/42.363098 – ident: ref39 doi: 10.1109/18.119733 – start-page: 12 year: 1996 ident: ref28 publication-title: Rec A Two Day Workshop on Functional Magnetic Imaging – ident: ref19 doi: 10.1002/mrm.1910140108 – ident: ref8 doi: 10.1002/mrm.1910240209 – ident: ref20 doi: 10.1016/0006-3223(94)00260-A – ident: ref51 doi: 10.1109/83.650848 – volume: 57 start-page: 301 year: 1995 ident: ref49 article-title: wavelet shrinkage: asymptopia? publication-title: J Roy Statistical Soc – ident: ref1 doi: 10.1109/5.488704 – ident: ref35 doi: 10.1117/12.292801 – volume: 31 start-page: 283 year: 1994 ident: ref24 article-title: artifacts due to stimulus correlated motion in functional imaging of the brain publication-title: Magn Reson Med doi: 10.1002/mrm.1910310307 – ident: ref10 doi: 10.1109/42.491416 – ident: ref4 doi: 10.1109/42.538941 – year: 1973 ident: ref56 publication-title: Nonparametric Statistical Methods – ident: ref42 doi: 10.1016/0165-1684(93)90144-Y – ident: ref30 doi: 10.1073/pnas.92.15.6906 – ident: ref7 doi: 10.1007/BF01248406 – volume: 36 start-page: 613 year: 1996 ident: ref11 article-title: wavelet encoding for 3-d gradient-echo mr-imaging publication-title: Magn Reson Med doi: 10.1002/mrm.1910360417 – ident: ref50 doi: 10.1097/00004647-199601000-00002 – ident: ref36 doi: 10.1007/BF01205550 – ident: ref25 doi: 10.1002/nbm.1940070113 – volume: 16 start-page: 755 year: 1996 ident: ref52 article-title: functional brain mapping of human sensorimotor cortex with 3-d bold fmri correlates highly with h$_2$^{15}$o pet rcbf publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-199609000-00001 – ident: ref31 doi: 10.1148/radiology.201.2.8888231 – ident: ref18 doi: 10.1117/12.146601 – ident: ref45 doi: 10.1006/nimg.1995.1023 – ident: ref23 doi: 10.1073/pnas.89.12.5675 – ident: ref41 doi: 10.1109/18.382009 – ident: ref12 doi: 10.1002/mrm.1910210213 – ident: ref46 doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O – ident: ref5 doi: 10.1109/42.511757 – ident: ref43 doi: 10.1109/78.193220 – ident: ref44 doi: 10.1002/mrm.1910350219 – ident: ref32 doi: 10.1109/34.192463 – ident: ref48 doi: 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.3.CO;2-S – ident: ref21 doi: 10.1073/pnas.89.13.5951 – ident: ref6 doi: 10.1109/78.301841 – ident: ref26 doi: 10.1002/nbm.1940070111 – ident: ref54 doi: 10.1002/mrm.1910260118 – volume: 67 start-page: 227 year: 1988 ident: ref37 article-title: ondelettes a´ localisation exponentielles publication-title: J Math pures et appl – ident: ref9 doi: 10.1109/18.119740 – ident: ref14 doi: 10.1109/42.363095 – ident: ref40 doi: 10.1006/acha.1993.1008 – ident: ref34 doi: 10.1109/78.229891 |
SSID | ssj0014509 |
Score | 1.9238191 |
Snippet | The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two... The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142 |
SubjectTerms | Adult Algorithms Bandwidth Biological and medical sciences Brain - physiology Echo-Planar Imaging - methods Echo-Planar Imaging - statistics & numerical data Fingers - physiology Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - statistics & numerical data Investigative techniques, diagnostic techniques (general aspects) Linear Models Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Medical sciences Motor Skills - physiology Nervous system Normal Distribution Radiodiagnosis. Nmr imagery. Nmr spectrometry Sensitivity and Specificity Signal detection Signal to noise ratio Statistical analysis Statistical tests Testing Wavelet analysis Wavelet coefficients Wavelet domain Wavelet transforms |
Title | Statistical analysis of functional MRI data in the wavelet domain |
URI | https://ieeexplore.ieee.org/document/700727 https://www.ncbi.nlm.nih.gov/pubmed/9688147 https://www.proquest.com/docview/21371664 https://www.proquest.com/docview/28667956 https://www.proquest.com/docview/80043216 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFB90QdGDtquLa2s7iAcvWZPJZDI5lqJoYT1Ihb2FyXyAaJPiZhH61_e9mWzYFle8heSFJPMmM7_39XuEnDGlYd2XSZQh2y13Oo8qJVRkU6GdiR3gOXQNTG_F9T3_MctmHc-2r4Wx1vrkMzvBQx_LN41eoKvsIkee63yTbILdFkq1-oABz0I2B0PC2FiwjkQoiYsLzibhxh2yVQgpE2ylsrIJ-a4qmBOp5jAsLvSzWA84_cZztR8quueerxDzTR4ni7aa6D__sTm-85s-kL0OgNJvYcZ8JBu2HpLdFVrCIdmedgH3A1h1MVQ_9w5vqjoCE9o4ivthcCPS6d0NxURT-lBTgJP0RWEzi5aa5pd6qA_J_dXlz-_XUdd1IdJpEbeR1EZLkSUWTCuDekulqFilcm2qGDSbKWWYMwVyB1bYsgxAi8uNM8wCVrQ6HZFB3dT2iNBCWq5ih5FEzi1DMKnzKrUFWGU20emYnC_VUOqOkhw7YzyV3jSJi5KzMgzQmJz2or8DD8drQkMc4F5gefbkH9X2l1nKwfrjY_J1qeoS_i0MmKjaNot5yZIUzEnxloQUIgcTc72E9KSHCUiMwizqH9_NxeNXX_oT2QnVj5gj9JkM2ueFPQH401Zf_MT_CyokADg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIqAc-NlSsUCphUDikm3iOI5z4ICAapd2e0Ct1Ftw_CNVQILYrCp4FV6Fh2MmzkYFtdwqcYuSUeJ4xp4Z-_M3AM-5NjjvqyTKiO1WeJNHlZY6cqk03sYe4zlaGpgfyumxeH-SnazBz-EsjHOuA5-5CV12e_m2MUtaKtvNiec67xGU--77GeZni1ezt6jMF5zvvTt6M436EgKRwWS-jZSxRskscZgnWGpEqmTFK50bW8XYzExry70tiAivovpb6IF9br3lDgMfZ1J87zW4jmFGxsPhsGGLQmQBP8KJojaWvKctSuJiV_BJaOoG3CikUgkVbznn9ro6LoTC1AtUhA8VNC4PcTtXt3cXfq06KSBcPk2WbTUxP_7ij_xPe_Ee3OlDbPY6jIn7sObqEdw-R7w4gpvzHlKwiX6FwAiLbkmf6Z6ihTWekccPC6Vs_mHGCErLTmuGATM701Suo2W2-aJP6wdwfCW_swXrdVO7h8AK5YSOPe2VCuE4hcsmr1JXYN7pEpOO4eVK7aXpSdep9sfnsku-4qIUvAwKGcOzQfRrYBq5SGhECh0EVne3_zCl4TFPBea3Ygw7K9MqcfagLSFdu2a5KHmSYsIs_yWhpMwxib5cQnW0jglKbAWrHT7f2_6jCxu9A7emR_OD8mB2uP8YNsJZT0JEPYH19tvSbWOw11ZPu0HH4ONV2-dvktRgAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+analysis+of+functional+MRI+data+in+the+wavelet+domain&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Ruttimann%2C+U.E.&rft.au=Unser%2C+M.&rft.au=Rawlings%2C+R.R.&rft.au=Rio%2C+D.&rft.date=1998-04-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=17&rft.issue=2&rft.spage=142&rft.epage=154&rft_id=info:doi/10.1109%2F42.700727&rft_id=info%3Apmid%2F9688147&rft.externalDocID=700727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |