Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory
A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cyc...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 27; pp. 7985 - 7994 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na as the reaction with Na proceeds through a different pathway associated with the formation of amorphous Na sub(x)Sb phases. For the first time we rationalize the amorphization of Na sub(x)Sb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li sub(3)Sb forms concomitantly with cubic Li sub(3)Sb. The XRD results confirm that Sb crystallizes into hexagonal Na sub(3)Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M sub(3)Sb (M = Li, Na). Interestingly, calculations show that the energy barrier for near-neighbor vacancy migration, predominant in these close-packed phases, is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO sub(4) dissolved in pure PC with(out) the addition of 5 wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates. |
---|---|
AbstractList | A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na as the reaction with Na proceeds through a different pathway associated with the formation of amorphous NaₓSb phases. For the first time we rationalize the amorphization of NaₓSb phases by the long ranged strain propagation due to Na-vacancy compared to Li–Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li₃Sb forms concomitantly with cubic Li₃Sb. The XRD results confirm that Sb crystallizes into hexagonal Na₃Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M₃Sb (M = Li, Na). Interestingly, calculations show that the energy barrier for near-neighbor vacancy migration, predominant in these close-packed phases, is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO₄ dissolved in pure PC with(out) the addition of 5 wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates. A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na as the reaction with Na proceeds through a different pathway associated with the formation of amorphous Na sub(x)Sb phases. For the first time we rationalize the amorphization of Na sub(x)Sb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li sub(3)Sb forms concomitantly with cubic Li sub(3)Sb. The XRD results confirm that Sb crystallizes into hexagonal Na sub(3)Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M sub(3)Sb (M = Li, Na). Interestingly, calculations show that the energy barrier for near-neighbor vacancy migration, predominant in these close-packed phases, is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO sub(4) dissolved in pure PC with(out) the addition of 5 wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates. A detailed comparative study between electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na. For Li the difference between the first and subsequent cycles is rooted in an improvement of the kinetics likely due to the decrease of Sb particle size whereas the reaction with Na proceeds through a different pathway from the first to subsequent cycles and is associated with the formation of amorphous NaxSb phases. For the first time we rationalize the amorphization of NaxSb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li3Sb forms concomitantly with cubic Li3Sb. The XRD results confirm that Sb crystallizes into hexagonal Na3Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M3Sb (M=Li, Na), and the results show that the apparent diffusion coefficients for Li are equivalent or one order of magnitude higher than those for Na. Interestingly, calculations show that the energy barrier for near-neighbor vacancy motion, predominant in these close-packed phases is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO4 dissolved in pure PC with(out) the addition of 5wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates. |
Author | Baggetto, Loïc Meisner, Roberta A. Zawodzinski, Thomas A. Sun, Che-Nan Veith, Gabriel M. Ganesh, P. |
Author_xml | – sequence: 1 givenname: Loïc surname: Baggetto fullname: Baggetto, Loïc – sequence: 2 givenname: P. surname: Ganesh fullname: Ganesh, P. – sequence: 3 givenname: Che-Nan surname: Sun fullname: Sun, Che-Nan – sequence: 4 givenname: Roberta A. surname: Meisner fullname: Meisner, Roberta A. – sequence: 5 givenname: Thomas A. surname: Zawodzinski fullname: Zawodzinski, Thomas A. – sequence: 6 givenname: Gabriel M. surname: Veith fullname: Veith, Gabriel M. |
BackLink | https://www.osti.gov/biblio/1084412$$D View this record in Osti.gov |
BookMark | eNqFkV9LHDEUxYMo1K770k8w9EmEafN_M76JaCss-qB9HpLMHTY6m2yTWLrf3ttdqVCE5iUn4Xdyb879SA5jikDIJ0a_MCq6r15Uy5jSxh2QY04VbRey04d_tTEfyLyUR4rLUKq77pj8uok1h1iCb-oK8joN22jXeLJxaJ5ChIp6k9MGcg1QmjQ2966BCXzNacCLMeVmGdqQ4s5ya3fS2Voho-G8gd_oDWuIdQdglZS3J-RotFOB-es-Iz-urx4uv7fLu283lxfL1ouO1tbwkSnFzaC0U1xrNehRehBuwfmis8KCUbLzVjinvXQapOOjkUYID0CdEzPyef9uKjX0xYcKfuVTjNh_z6iRknGETvcQ_vPnM5Tar0PxME02QnouPRdMcSWZYf9FMf0FY0ZpgejZHvU5lZJh7DcYg81brNv_mVf_Ni-E6T8wtmorRlmzDdN7lhenWpr5 |
CitedBy_id | crossref_primary_10_1021_acsaem_9b01216 crossref_primary_10_1021_nl404165c crossref_primary_10_1016_j_jpowsour_2015_02_152 crossref_primary_10_1016_j_cej_2016_06_049 crossref_primary_10_1007_s11581_018_2782_1 crossref_primary_10_1149_1945_7111_ab69fa crossref_primary_10_1016_j_jpowsour_2014_05_083 crossref_primary_10_1016_j_jqsrt_2023_108508 crossref_primary_10_1039_C8TA11955D crossref_primary_10_1021_acs_chemmater_5b02356 crossref_primary_10_1021_acs_jpcc_2c01708 crossref_primary_10_1016_j_jpowsour_2013_10_033 crossref_primary_10_1016_j_nanoen_2022_107349 crossref_primary_10_1021_acs_energyfuels_0c01968 crossref_primary_10_1016_j_jcis_2019_05_021 crossref_primary_10_1016_j_jallcom_2019_152161 crossref_primary_10_1038_s41598_017_05629_x crossref_primary_10_1002_nano_202000092 crossref_primary_10_1016_j_cej_2024_150101 crossref_primary_10_1039_C6RA24455F crossref_primary_10_1016_j_scib_2017_03_026 crossref_primary_10_1016_j_electacta_2016_04_175 crossref_primary_10_3390_batteries11020054 crossref_primary_10_1039_c3ta12040f crossref_primary_10_1016_j_jpowsour_2024_235739 crossref_primary_10_1021_acsami_6b11544 crossref_primary_10_1016_j_jallcom_2016_10_230 crossref_primary_10_1088_2053_1591_ab00cd crossref_primary_10_1016_j_jpowsour_2013_06_074 crossref_primary_10_1021_acs_jpcc_8b04575 crossref_primary_10_1021_am507436u crossref_primary_10_1007_s11434_016_1118_7 crossref_primary_10_1039_C5TA06183K crossref_primary_10_1016_j_cossms_2021_100980 crossref_primary_10_1016_j_cej_2020_124299 crossref_primary_10_1002_aenm_201900343 crossref_primary_10_1021_acsami_5b08037 crossref_primary_10_1039_D0MH00440E crossref_primary_10_1016_j_ssi_2013_09_038 crossref_primary_10_1002_admi_201600798 crossref_primary_10_1039_C9TA08792C crossref_primary_10_1016_j_ccr_2024_216246 crossref_primary_10_1021_acs_chemmater_6b00491 crossref_primary_10_1021_nn4063598 crossref_primary_10_1007_s11771_022_5137_z crossref_primary_10_1134_S1023193518020076 crossref_primary_10_1021_acs_jpcc_3c02343 crossref_primary_10_1021_acsami_5b12242 crossref_primary_10_1002_adfm_202204231 crossref_primary_10_1039_C7TA01443K crossref_primary_10_1021_cr500207g crossref_primary_10_1016_j_jpowsour_2015_02_071 crossref_primary_10_1002_adfm_201808745 crossref_primary_10_1039_C5TA04703J crossref_primary_10_1016_j_porgcoat_2021_106696 crossref_primary_10_1002_slct_202305056 crossref_primary_10_1016_j_electacta_2021_138641 crossref_primary_10_1016_j_materresbull_2021_111491 crossref_primary_10_1016_j_nanoen_2020_105123 crossref_primary_10_1016_j_jallcom_2016_09_150 crossref_primary_10_1039_C4TA06771A crossref_primary_10_1039_D0NA00711K crossref_primary_10_1016_j_jpowsour_2015_11_047 crossref_primary_10_1039_C8SE00381E crossref_primary_10_1021_acsami_5b08777 crossref_primary_10_1002_batt_202300281 crossref_primary_10_1016_j_nanoen_2015_09_008 crossref_primary_10_1002_chem_201402511 crossref_primary_10_1016_j_jpowsour_2018_12_017 crossref_primary_10_1002_adfm_202311478 crossref_primary_10_1016_j_electacta_2019_135106 crossref_primary_10_1021_nn502045y crossref_primary_10_1007_s12274_017_1536_0 crossref_primary_10_1002_smll_201805427 crossref_primary_10_1016_j_ceramint_2016_07_017 crossref_primary_10_1016_j_nanoen_2015_05_013 crossref_primary_10_1039_C8NR08461K crossref_primary_10_1002_elsa_202100010 crossref_primary_10_1007_s12540_017_7105_y crossref_primary_10_1002_adfm_201504461 crossref_primary_10_1039_C7TA00690J crossref_primary_10_1002_aenm_201703237 crossref_primary_10_1039_C4TA04428B crossref_primary_10_1016_j_mtener_2018_10_017 crossref_primary_10_1007_s10800_018_1267_2 crossref_primary_10_3390_coatings11101233 crossref_primary_10_1039_C4CC06106C crossref_primary_10_1016_j_matchemphys_2018_12_048 crossref_primary_10_1039_D1TA07763E crossref_primary_10_1007_s11664_015_4260_0 crossref_primary_10_3390_en15228615 crossref_primary_10_1021_acs_jpcc_5b01099 crossref_primary_10_1149_2_0201713jes crossref_primary_10_1016_j_electacta_2020_136948 crossref_primary_10_1039_C7QM00480J crossref_primary_10_1021_acsenergylett_6b00649 crossref_primary_10_1039_C8TA03511C crossref_primary_10_20517_energymater_2024_06 crossref_primary_10_1021_jp501032d crossref_primary_10_1039_C6TA10138K crossref_primary_10_1039_D3TC03306F crossref_primary_10_1016_j_jallcom_2020_156939 crossref_primary_10_1021_acsami_5b05509 crossref_primary_10_1002_aenm_201500174 crossref_primary_10_1021_acs_jpcc_3c01086 crossref_primary_10_1134_S1070427219030017 crossref_primary_10_1007_s12274_017_1501_y crossref_primary_10_1021_acsnano_1c03839 crossref_primary_10_1021_nl502812x crossref_primary_10_1016_j_jcis_2017_11_025 crossref_primary_10_1039_C4TA06476C crossref_primary_10_3390_ma14247521 crossref_primary_10_1002_smll_201500491 crossref_primary_10_1039_D1SE00386K crossref_primary_10_1016_j_cej_2023_147717 crossref_primary_10_5796_electrochemistry_19_00014 crossref_primary_10_1007_s10008_022_05321_9 crossref_primary_10_1016_j_jallcom_2021_160906 crossref_primary_10_1007_s40843_022_2051_3 crossref_primary_10_1039_C4CP05140H crossref_primary_10_1007_s11581_019_02961_2 crossref_primary_10_1016_j_matchemphys_2020_123476 crossref_primary_10_1002_slct_201803284 crossref_primary_10_1039_C8RA01942H crossref_primary_10_1039_C6CP02364A crossref_primary_10_1016_j_cej_2020_127380 crossref_primary_10_1021_acs_chemmater_6b04914 crossref_primary_10_1016_j_jallcom_2020_155191 crossref_primary_10_1073_pnas_2110470118 crossref_primary_10_1016_j_jpowsour_2015_01_093 crossref_primary_10_1021_jz5002743 crossref_primary_10_1002_aenm_201502130 crossref_primary_10_1016_j_jallcom_2017_06_005 crossref_primary_10_1149_2_0521707jes crossref_primary_10_1016_j_jallcom_2023_173305 crossref_primary_10_1021_acsaem_8b00416 crossref_primary_10_1002_adfm_201703857 crossref_primary_10_1021_acsami_6b09619 crossref_primary_10_1039_C4TC02688H crossref_primary_10_1016_j_jpowsour_2019_226762 crossref_primary_10_1016_j_surfin_2025_106296 crossref_primary_10_1016_j_electacta_2016_06_018 crossref_primary_10_1016_j_electacta_2016_03_089 crossref_primary_10_1016_j_ijleo_2017_09_059 crossref_primary_10_1039_C8NR03829E crossref_primary_10_1007_s10853_016_0732_8 crossref_primary_10_1039_c4cp00738g crossref_primary_10_1016_j_jpowsour_2014_09_037 crossref_primary_10_1016_j_ensm_2024_103780 crossref_primary_10_1021_acs_nanolett_5b03373 crossref_primary_10_1016_j_electacta_2016_09_051 crossref_primary_10_1149_1945_7111_ac6b5e crossref_primary_10_1039_C9NR04645C crossref_primary_10_1039_C8TA01782D crossref_primary_10_1002_aenm_201900673 crossref_primary_10_1002_adsu_201800006 crossref_primary_10_1021_acssuschemeng_7b00469 crossref_primary_10_1016_j_jpowsour_2020_229027 crossref_primary_10_1039_c4cp01240b crossref_primary_10_3390_batteries3030020 crossref_primary_10_1016_j_mtcomm_2020_101189 crossref_primary_10_1021_acsami_2c22068 crossref_primary_10_1021_acsami_5b04225 crossref_primary_10_1039_C7TA07648G crossref_primary_10_1002_er_7311 crossref_primary_10_1016_j_vacuum_2023_112655 crossref_primary_10_1016_j_electacta_2017_04_088 crossref_primary_10_1021_acs_chemmater_5b01747 crossref_primary_10_1039_C8TA02248H crossref_primary_10_1088_1361_6528_ab73b8 crossref_primary_10_1002_smll_201501313 crossref_primary_10_1039_D0TA12063D crossref_primary_10_1039_D0TA08611H crossref_primary_10_1149_2_0331509jes crossref_primary_10_1016_j_jechem_2024_12_036 crossref_primary_10_1002_smll_201700762 crossref_primary_10_1039_D3TA02787B crossref_primary_10_1016_j_electacta_2019_01_138 crossref_primary_10_1016_j_jallcom_2016_11_003 crossref_primary_10_1016_j_jpowsour_2015_10_087 crossref_primary_10_3390_batteries4020025 crossref_primary_10_1007_s00707_025_04242_8 crossref_primary_10_1039_C4TA04356A crossref_primary_10_1039_D1QM00274K crossref_primary_10_1016_j_jpowsour_2018_03_031 crossref_primary_10_1016_j_jpowsour_2018_03_032 crossref_primary_10_1002_advs_201600051 crossref_primary_10_1007_s10854_017_6812_y crossref_primary_10_1039_C7NJ02105D crossref_primary_10_1016_j_ensm_2018_11_021 crossref_primary_10_1021_jacs_8b02016 crossref_primary_10_1038_s41467_018_03322_9 crossref_primary_10_1021_jacs_5b13273 crossref_primary_10_1002_advs_202001801 crossref_primary_10_1039_C9TA13899D crossref_primary_10_1039_C8TA00592C crossref_primary_10_1016_j_jpowsour_2015_03_051 crossref_primary_10_1021_acs_chemmater_8b05272 crossref_primary_10_1002_aenm_202200662 crossref_primary_10_1016_j_jallcom_2020_156369 crossref_primary_10_1016_j_ensm_2016_12_005 crossref_primary_10_1038_s41565_020_0690_9 crossref_primary_10_1016_j_mtener_2017_08_002 crossref_primary_10_1016_j_electacta_2017_07_030 crossref_primary_10_1021_acs_jpcc_5b05482 crossref_primary_10_1039_C5CP04023J crossref_primary_10_1002_aenm_202304431 crossref_primary_10_1002_smtd_202000218 crossref_primary_10_1016_j_actamat_2022_118292 crossref_primary_10_1016_j_jpowsour_2014_07_081 crossref_primary_10_1016_j_materresbull_2015_12_044 crossref_primary_10_1039_C9TA11782B crossref_primary_10_1016_j_jpowsour_2015_03_043 crossref_primary_10_1002_smll_201900258 crossref_primary_10_1016_j_susmat_2022_e00480 crossref_primary_10_1038_natrevmats_2016_13 crossref_primary_10_1039_C7TA03060F crossref_primary_10_3390_batteries9020098 crossref_primary_10_1016_j_ensm_2017_08_011 crossref_primary_10_1002_celc_201800776 crossref_primary_10_1002_aenm_202003078 crossref_primary_10_1557_s43578_022_00649_4 |
Cites_doi | 10.1016/j.electacta.2004.03.049 10.1039/c2cc17129e 10.1103/PhysRevB.59.1758 10.1039/c2cc32730a 10.1149/1.2128939 10.1016/j.electacta.2010.06.012 10.1016/j.jpowsour.2013.01.083 10.1149/1.3073879 10.1063/1.1329672 10.1016/j.elecom.2013.03.029 10.1038/nmat3393 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.58.15583 10.1021/ja310347x 10.1103/PhysRev.56.978 10.1149/1.1622959 10.1103/PhysRevB.9.5307 10.1016/j.electacta.2012.11.120 10.1016/j.cossms.2012.04.002 10.1039/c2ee02781j 10.1149/1.1359194 10.1016/j.elecom.2012.11.030 10.1103/PhysRevB.54.11169 |
ContentType | Journal Article |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) Center for Nanophase Materials Sciences (CNMS) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) – name: Center for Nanophase Materials Sciences (CNMS) |
DBID | AAYXX CITATION 7ST 7U6 C1K 7S9 L.6 OTOTI |
DOI | 10.1039/c3ta11568b |
DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 7994 |
ExternalDocumentID | 1084412 10_1039_c3ta11568b |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST 7U6 C1K 7S9 L.6 -JG AAGNR ABGFH AGSTE AUNWK OTOTI UCJ XFK |
ID | FETCH-LOGICAL-c390t-82f15528d56b52665d6f4ce3b72279a3ae8549ca3bb6c4b6e4b2f84833cee0bb3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu May 18 18:37:44 EDT 2023 Fri Jul 11 07:33:18 EDT 2025 Fri Jul 11 12:00:54 EDT 2025 Tue Jul 01 04:17:21 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-82f15528d56b52665d6f4ce3b72279a3ae8549ca3bb6c4b6e4b2f84833cee0bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 DE-AC05-00OR22725 USDOE Office of Science (SC) |
PQID | 1567118563 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1084412 proquest_miscellaneous_2315254181 proquest_miscellaneous_1567118563 crossref_primary_10_1039_c3ta11568b crossref_citationtrail_10_1039_c3ta11568b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2013 |
References | Kresse (c3ta11568b-(cit13)/*[position()=1]) 1999; 59 Kemeny (c3ta11568b-(cit22)/*[position()=1]) 1974; 9 Baggetto (c3ta11568b-(cit11)/*[position()=1]) 2013; 90 Xiao (c3ta11568b-(cit7)/*[position()=1]) 2012; 48 Larcher (c3ta11568b-(cit17)/*[position()=1]) 2003; 150 Palomares (c3ta11568b-(cit1)/*[position()=1]) 2012; 5 Qian (c3ta11568b-(cit6)/*[position()=1]) 2012; 48 Patterson (c3ta11568b-(cit20)/*[position()=1]) 1939; 56 Ellis (c3ta11568b-(cit2)/*[position()=1]) 2012; 16 Wen (c3ta11568b-(cit19)/*[position()=1]) 1979; 126 Hewitt (c3ta11568b-(cit8)/*[position()=1]) 2001; 148 Baggetto (c3ta11568b-(cit10)/*[position()=1]) 2010; 55 Baggetto (c3ta11568b-(cit3)/*[position()=1]) 2013; 234 Darwiche (c3ta11568b-(cit4)/*[position()=1]) 2012; 134 Courtney (c3ta11568b-(cit15)/*[position()=1]) 1998; 58 Li (c3ta11568b-(cit9)/*[position()=1]) 2009; 156 Blochl (c3ta11568b-(cit14)/*[position()=1]) 1994; 50 Henkelman (c3ta11568b-(cit16)/*[position()=1]) 2000; 113 Kresse (c3ta11568b-(cit12)/*[position()=1]) 1996; 54 Edström (c3ta11568b-(cit21)/*[position()=1]) 2004; 50 Kim (c3ta11568b-(cit23)/*[position()=1]) 2012; 11 Darwiche (c3ta11568b-(cit18)/*[position()=1]) 2013; 32 Baggetto (c3ta11568b-(cit5)/*[position()=1]) 2013; 27 |
References_xml | – volume: 50 start-page: 397 year: 2004 ident: c3ta11568b-(cit21)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.03.049 – volume: 48 start-page: 3321 year: 2012 ident: c3ta11568b-(cit7)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc17129e – volume: 59 start-page: 1758 year: 1999 ident: c3ta11568b-(cit13)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 48 start-page: 7070 year: 2012 ident: c3ta11568b-(cit6)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc32730a – volume: 126 start-page: 2258 year: 1979 ident: c3ta11568b-(cit19)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2128939 – volume: 55 start-page: 6617 year: 2010 ident: c3ta11568b-(cit10)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.06.012 – volume: 234 start-page: 48 year: 2013 ident: c3ta11568b-(cit3)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.083 – volume: 156 start-page: A283 year: 2009 ident: c3ta11568b-(cit9)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.3073879 – volume: 113 start-page: 9901 year: 2000 ident: c3ta11568b-(cit16)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 32 start-page: 18 year: 2013 ident: c3ta11568b-(cit18)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.03.029 – volume: 11 start-page: 888 year: 2012 ident: c3ta11568b-(cit23)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3393 – volume: 50 start-page: 17953 year: 1994 ident: c3ta11568b-(cit14)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.50.17953 – volume: 58 start-page: 15583 year: 1998 ident: c3ta11568b-(cit15)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.58.15583 – volume: 134 start-page: 20805 year: 2012 ident: c3ta11568b-(cit4)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310347x – volume: 56 start-page: 978 year: 1939 ident: c3ta11568b-(cit20)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.56.978 – volume: 150 start-page: A1643 year: 2003 ident: c3ta11568b-(cit17)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1622959 – volume: 9 start-page: 5307 year: 1974 ident: c3ta11568b-(cit22)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.9.5307 – volume: 90 start-page: 135 year: 2013 ident: c3ta11568b-(cit11)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.120 – volume: 16 start-page: 168 year: 2012 ident: c3ta11568b-(cit2)/*[position()=1] publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2012.04.002 – volume: 5 start-page: 5884 year: 2012 ident: c3ta11568b-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 148 start-page: A402 year: 2001 ident: c3ta11568b-(cit8)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1359194 – volume: 27 start-page: 168 year: 2013 ident: c3ta11568b-(cit5)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.11.030 – volume: 54 start-page: 11169 year: 1996 ident: c3ta11568b-(cit12)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.54.11169 |
SSID | ssj0000800699 |
Score | 2.4870226 |
Snippet | A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic... A detailed comparative study between electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7985 |
SubjectTerms | ambient temperature antimony batteries carbonates comparative study crystallization density functional theory diffusivity electrochemistry electrodes electrolytes energy ethers lithium mechanical properties sodium sodium fluoride sodium perchlorate thermodynamics X-ray diffraction X-ray photoelectron spectroscopy |
Title | Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory |
URI | https://www.proquest.com/docview/1567118563 https://www.proquest.com/docview/2315254181 https://www.osti.gov/biblio/1084412 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoA2QEL6jKSO3YSXirUKcNdeVhrbS3yHbsUQHNVFIe-Fn8Qo4vuVQb0uDFilzHSn2-2J-dc76D0FtuSiUnTEYAkCRKdM6iTDIoYmLyCVW8FHajeLbgJ6vk0wW7GAx-97yWdrU8Ur9ujCv5H6tCHdjVRsn-g2XbTqECrsG-UIKFobyVjU839Xa9gXG29HH7vSp9enn3QeAr0EcrxnplT9u3VjbVxafIcUh8U2qnxACb8qjxSF4Idymd5ObaO8t1GQAaX8tqP4i6x2iB_Pp_PVZNGrmj8dRHBDW_OIVxH2_ojuyb-C3rotvFVojLS127BE_jebVWrZOQgIn5y15U2vkueA3oaNEB_Uxbkc-e67gIZ7bhfMPmmmjPN9w0SGIWW8VTP0vrfp3PhdvO4z24er2BMCmnuc8KFBb4NPdpla8tHjG12quK1gJoMs9kt0Q2bgGLz8Xxaj4vlrOL5R10QGBrQoboYDpbns7bkz3LwblLXNo-eqOLS_P3Xfd7TGhYwYx-jQ84krN8gO4HW-Kph9pDNNCbR-heT7PyMfrZgg7vgQ6DOXEAHe5AhyuDzyXuQIcBAdiDzt3iQYdb0H3AHeRcAw-5J2h1PFt-PIlC8o5I0Tyuo4wYq-6XlYxLBiyQldwkSlOZWs1KQYXOWJIrQaXkKpFcJ5KYLMkoBdoWS0mfouGm2uhnCE_SNJMpkE0js6TURuSGKUMMETkpeUpH6F0zkIUKyvY2wcq3wnlY0LzoBn2E3rRtr7yey42tDq09CmChVkpZWZ8zVVsxXdg9kBF63ZipgJfJfmED-Fe7HwXcnMKOnXH69zawoWKEJcCsn9-in0N0t3spXqBhvd3pl0CDa_kq4O4P20G6YA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+thermodynamic+and+kinetic+properties+of+Sb+electrodes+for+Li-ion+and+Na-ion+batteries%3A+experiment+and+theory&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Baggetto%2C+Loic&rft.au=Ganesh%2C+P&rft.au=Sun%2C+Che-Nan&rft.au=Meisner%2C+Roberta+A&rft.date=2013-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=27&rft.spage=7985&rft.epage=7994&rft_id=info:doi/10.1039%2Fc3ta11568b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |