Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory

A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cyc...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 27; pp. 7985 - 7994
Main Authors Baggetto, Loïc, Ganesh, P., Sun, Che-Nan, Meisner, Roberta A., Zawodzinski, Thomas A., Veith, Gabriel M.
Format Journal Article
LanguageEnglish
Published United States 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na as the reaction with Na proceeds through a different pathway associated with the formation of amorphous Na sub(x)Sb phases. For the first time we rationalize the amorphization of Na sub(x)Sb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li sub(3)Sb forms concomitantly with cubic Li sub(3)Sb. The XRD results confirm that Sb crystallizes into hexagonal Na sub(3)Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M sub(3)Sb (M = Li, Na). Interestingly, calculations show that the energy barrier for near-neighbor vacancy migration, predominant in these close-packed phases, is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO sub(4) dissolved in pure PC with(out) the addition of 5 wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates.
AbstractList A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na as the reaction with Na proceeds through a different pathway associated with the formation of amorphous NaₓSb phases. For the first time we rationalize the amorphization of NaₓSb phases by the long ranged strain propagation due to Na-vacancy compared to Li–Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li₃Sb forms concomitantly with cubic Li₃Sb. The XRD results confirm that Sb crystallizes into hexagonal Na₃Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M₃Sb (M = Li, Na). Interestingly, calculations show that the energy barrier for near-neighbor vacancy migration, predominant in these close-packed phases, is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO₄ dissolved in pure PC with(out) the addition of 5 wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates.
A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na as the reaction with Na proceeds through a different pathway associated with the formation of amorphous Na sub(x)Sb phases. For the first time we rationalize the amorphization of Na sub(x)Sb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li sub(3)Sb forms concomitantly with cubic Li sub(3)Sb. The XRD results confirm that Sb crystallizes into hexagonal Na sub(3)Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M sub(3)Sb (M = Li, Na). Interestingly, calculations show that the energy barrier for near-neighbor vacancy migration, predominant in these close-packed phases, is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO sub(4) dissolved in pure PC with(out) the addition of 5 wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates.
A detailed comparative study between electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and electrochemical properties has been carried out. For this purpose, a wide range of measurements using electrochemical (galvanostatic cycling, GITT, PITT), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) methods as well as density functional theory (DFT) based investigations have been undertaken. Assessment of the thermodynamics reveals that the reaction proceeds identically during the first and second cycles for Li whereas it differs between the first and subsequent cycles for Na. For Li the difference between the first and subsequent cycles is rooted in an improvement of the kinetics likely due to the decrease of Sb particle size whereas the reaction with Na proceeds through a different pathway from the first to subsequent cycles and is associated with the formation of amorphous NaxSb phases. For the first time we rationalize the amorphization of NaxSb phases by the long ranged strain propagation due to Na-vacancy compared to Li-Sb. At full discharge, our XRD results show for the first time that a minor fraction of hexagonal Li3Sb forms concomitantly with cubic Li3Sb. The XRD results confirm that Sb crystallizes into hexagonal Na3Sb at full sodiation. The kinetics of the reaction is assessed by rate performance tests which highlight that both Li and Na can diffuse rapidly throughout micron thick films at room temperature. However, it is found that the (de)insertion of Li provides lower overpotentials and larger storage capacities compared to Na. The difference in rate performance is complemented by diffusion coefficient determinations near the 0 V region where both materials are crystallized into M3Sb (M=Li, Na), and the results show that the apparent diffusion coefficients for Li are equivalent or one order of magnitude higher than those for Na. Interestingly, calculations show that the energy barrier for near-neighbor vacancy motion, predominant in these close-packed phases is about twice for Na than for Li. Our analysis tries to relate the lower intrinsic diffusivity of Na compared to Li with the long-range strain propagation induced by the former, thereby leading to an intrinsic origin of differences in rates, mechanical properties and amorphization. Finally, the surface chemistry of Sb electrodes cycled in NaClO4 dissolved in pure PC with(out) the addition of 5wt% EC or FEC shows presence of ethers and NaF for the EC- and FEC-based electrolytes, respectively, and SEI films rich in Na-based carbonates.
Author Baggetto, Loïc
Meisner, Roberta A.
Zawodzinski, Thomas A.
Sun, Che-Nan
Veith, Gabriel M.
Ganesh, P.
Author_xml – sequence: 1
  givenname: Loïc
  surname: Baggetto
  fullname: Baggetto, Loïc
– sequence: 2
  givenname: P.
  surname: Ganesh
  fullname: Ganesh, P.
– sequence: 3
  givenname: Che-Nan
  surname: Sun
  fullname: Sun, Che-Nan
– sequence: 4
  givenname: Roberta A.
  surname: Meisner
  fullname: Meisner, Roberta A.
– sequence: 5
  givenname: Thomas A.
  surname: Zawodzinski
  fullname: Zawodzinski, Thomas A.
– sequence: 6
  givenname: Gabriel M.
  surname: Veith
  fullname: Veith, Gabriel M.
BackLink https://www.osti.gov/biblio/1084412$$D View this record in Osti.gov
BookMark eNqFkV9LHDEUxYMo1K770k8w9EmEafN_M76JaCss-qB9HpLMHTY6m2yTWLrf3ttdqVCE5iUn4Xdyb879SA5jikDIJ0a_MCq6r15Uy5jSxh2QY04VbRey04d_tTEfyLyUR4rLUKq77pj8uok1h1iCb-oK8joN22jXeLJxaJ5ChIp6k9MGcg1QmjQ2966BCXzNacCLMeVmGdqQ4s5ya3fS2Voho-G8gd_oDWuIdQdglZS3J-RotFOB-es-Iz-urx4uv7fLu283lxfL1ouO1tbwkSnFzaC0U1xrNehRehBuwfmis8KCUbLzVjinvXQapOOjkUYID0CdEzPyef9uKjX0xYcKfuVTjNh_z6iRknGETvcQ_vPnM5Tar0PxME02QnouPRdMcSWZYf9FMf0FY0ZpgejZHvU5lZJh7DcYg81brNv_mVf_Ni-E6T8wtmorRlmzDdN7lhenWpr5
CitedBy_id crossref_primary_10_1021_acsaem_9b01216
crossref_primary_10_1021_nl404165c
crossref_primary_10_1016_j_jpowsour_2015_02_152
crossref_primary_10_1016_j_cej_2016_06_049
crossref_primary_10_1007_s11581_018_2782_1
crossref_primary_10_1149_1945_7111_ab69fa
crossref_primary_10_1016_j_jpowsour_2014_05_083
crossref_primary_10_1016_j_jqsrt_2023_108508
crossref_primary_10_1039_C8TA11955D
crossref_primary_10_1021_acs_chemmater_5b02356
crossref_primary_10_1021_acs_jpcc_2c01708
crossref_primary_10_1016_j_jpowsour_2013_10_033
crossref_primary_10_1016_j_nanoen_2022_107349
crossref_primary_10_1021_acs_energyfuels_0c01968
crossref_primary_10_1016_j_jcis_2019_05_021
crossref_primary_10_1016_j_jallcom_2019_152161
crossref_primary_10_1038_s41598_017_05629_x
crossref_primary_10_1002_nano_202000092
crossref_primary_10_1016_j_cej_2024_150101
crossref_primary_10_1039_C6RA24455F
crossref_primary_10_1016_j_scib_2017_03_026
crossref_primary_10_1016_j_electacta_2016_04_175
crossref_primary_10_3390_batteries11020054
crossref_primary_10_1039_c3ta12040f
crossref_primary_10_1016_j_jpowsour_2024_235739
crossref_primary_10_1021_acsami_6b11544
crossref_primary_10_1016_j_jallcom_2016_10_230
crossref_primary_10_1088_2053_1591_ab00cd
crossref_primary_10_1016_j_jpowsour_2013_06_074
crossref_primary_10_1021_acs_jpcc_8b04575
crossref_primary_10_1021_am507436u
crossref_primary_10_1007_s11434_016_1118_7
crossref_primary_10_1039_C5TA06183K
crossref_primary_10_1016_j_cossms_2021_100980
crossref_primary_10_1016_j_cej_2020_124299
crossref_primary_10_1002_aenm_201900343
crossref_primary_10_1021_acsami_5b08037
crossref_primary_10_1039_D0MH00440E
crossref_primary_10_1016_j_ssi_2013_09_038
crossref_primary_10_1002_admi_201600798
crossref_primary_10_1039_C9TA08792C
crossref_primary_10_1016_j_ccr_2024_216246
crossref_primary_10_1021_acs_chemmater_6b00491
crossref_primary_10_1021_nn4063598
crossref_primary_10_1007_s11771_022_5137_z
crossref_primary_10_1134_S1023193518020076
crossref_primary_10_1021_acs_jpcc_3c02343
crossref_primary_10_1021_acsami_5b12242
crossref_primary_10_1002_adfm_202204231
crossref_primary_10_1039_C7TA01443K
crossref_primary_10_1021_cr500207g
crossref_primary_10_1016_j_jpowsour_2015_02_071
crossref_primary_10_1002_adfm_201808745
crossref_primary_10_1039_C5TA04703J
crossref_primary_10_1016_j_porgcoat_2021_106696
crossref_primary_10_1002_slct_202305056
crossref_primary_10_1016_j_electacta_2021_138641
crossref_primary_10_1016_j_materresbull_2021_111491
crossref_primary_10_1016_j_nanoen_2020_105123
crossref_primary_10_1016_j_jallcom_2016_09_150
crossref_primary_10_1039_C4TA06771A
crossref_primary_10_1039_D0NA00711K
crossref_primary_10_1016_j_jpowsour_2015_11_047
crossref_primary_10_1039_C8SE00381E
crossref_primary_10_1021_acsami_5b08777
crossref_primary_10_1002_batt_202300281
crossref_primary_10_1016_j_nanoen_2015_09_008
crossref_primary_10_1002_chem_201402511
crossref_primary_10_1016_j_jpowsour_2018_12_017
crossref_primary_10_1002_adfm_202311478
crossref_primary_10_1016_j_electacta_2019_135106
crossref_primary_10_1021_nn502045y
crossref_primary_10_1007_s12274_017_1536_0
crossref_primary_10_1002_smll_201805427
crossref_primary_10_1016_j_ceramint_2016_07_017
crossref_primary_10_1016_j_nanoen_2015_05_013
crossref_primary_10_1039_C8NR08461K
crossref_primary_10_1002_elsa_202100010
crossref_primary_10_1007_s12540_017_7105_y
crossref_primary_10_1002_adfm_201504461
crossref_primary_10_1039_C7TA00690J
crossref_primary_10_1002_aenm_201703237
crossref_primary_10_1039_C4TA04428B
crossref_primary_10_1016_j_mtener_2018_10_017
crossref_primary_10_1007_s10800_018_1267_2
crossref_primary_10_3390_coatings11101233
crossref_primary_10_1039_C4CC06106C
crossref_primary_10_1016_j_matchemphys_2018_12_048
crossref_primary_10_1039_D1TA07763E
crossref_primary_10_1007_s11664_015_4260_0
crossref_primary_10_3390_en15228615
crossref_primary_10_1021_acs_jpcc_5b01099
crossref_primary_10_1149_2_0201713jes
crossref_primary_10_1016_j_electacta_2020_136948
crossref_primary_10_1039_C7QM00480J
crossref_primary_10_1021_acsenergylett_6b00649
crossref_primary_10_1039_C8TA03511C
crossref_primary_10_20517_energymater_2024_06
crossref_primary_10_1021_jp501032d
crossref_primary_10_1039_C6TA10138K
crossref_primary_10_1039_D3TC03306F
crossref_primary_10_1016_j_jallcom_2020_156939
crossref_primary_10_1021_acsami_5b05509
crossref_primary_10_1002_aenm_201500174
crossref_primary_10_1021_acs_jpcc_3c01086
crossref_primary_10_1134_S1070427219030017
crossref_primary_10_1007_s12274_017_1501_y
crossref_primary_10_1021_acsnano_1c03839
crossref_primary_10_1021_nl502812x
crossref_primary_10_1016_j_jcis_2017_11_025
crossref_primary_10_1039_C4TA06476C
crossref_primary_10_3390_ma14247521
crossref_primary_10_1002_smll_201500491
crossref_primary_10_1039_D1SE00386K
crossref_primary_10_1016_j_cej_2023_147717
crossref_primary_10_5796_electrochemistry_19_00014
crossref_primary_10_1007_s10008_022_05321_9
crossref_primary_10_1016_j_jallcom_2021_160906
crossref_primary_10_1007_s40843_022_2051_3
crossref_primary_10_1039_C4CP05140H
crossref_primary_10_1007_s11581_019_02961_2
crossref_primary_10_1016_j_matchemphys_2020_123476
crossref_primary_10_1002_slct_201803284
crossref_primary_10_1039_C8RA01942H
crossref_primary_10_1039_C6CP02364A
crossref_primary_10_1016_j_cej_2020_127380
crossref_primary_10_1021_acs_chemmater_6b04914
crossref_primary_10_1016_j_jallcom_2020_155191
crossref_primary_10_1073_pnas_2110470118
crossref_primary_10_1016_j_jpowsour_2015_01_093
crossref_primary_10_1021_jz5002743
crossref_primary_10_1002_aenm_201502130
crossref_primary_10_1016_j_jallcom_2017_06_005
crossref_primary_10_1149_2_0521707jes
crossref_primary_10_1016_j_jallcom_2023_173305
crossref_primary_10_1021_acsaem_8b00416
crossref_primary_10_1002_adfm_201703857
crossref_primary_10_1021_acsami_6b09619
crossref_primary_10_1039_C4TC02688H
crossref_primary_10_1016_j_jpowsour_2019_226762
crossref_primary_10_1016_j_surfin_2025_106296
crossref_primary_10_1016_j_electacta_2016_06_018
crossref_primary_10_1016_j_electacta_2016_03_089
crossref_primary_10_1016_j_ijleo_2017_09_059
crossref_primary_10_1039_C8NR03829E
crossref_primary_10_1007_s10853_016_0732_8
crossref_primary_10_1039_c4cp00738g
crossref_primary_10_1016_j_jpowsour_2014_09_037
crossref_primary_10_1016_j_ensm_2024_103780
crossref_primary_10_1021_acs_nanolett_5b03373
crossref_primary_10_1016_j_electacta_2016_09_051
crossref_primary_10_1149_1945_7111_ac6b5e
crossref_primary_10_1039_C9NR04645C
crossref_primary_10_1039_C8TA01782D
crossref_primary_10_1002_aenm_201900673
crossref_primary_10_1002_adsu_201800006
crossref_primary_10_1021_acssuschemeng_7b00469
crossref_primary_10_1016_j_jpowsour_2020_229027
crossref_primary_10_1039_c4cp01240b
crossref_primary_10_3390_batteries3030020
crossref_primary_10_1016_j_mtcomm_2020_101189
crossref_primary_10_1021_acsami_2c22068
crossref_primary_10_1021_acsami_5b04225
crossref_primary_10_1039_C7TA07648G
crossref_primary_10_1002_er_7311
crossref_primary_10_1016_j_vacuum_2023_112655
crossref_primary_10_1016_j_electacta_2017_04_088
crossref_primary_10_1021_acs_chemmater_5b01747
crossref_primary_10_1039_C8TA02248H
crossref_primary_10_1088_1361_6528_ab73b8
crossref_primary_10_1002_smll_201501313
crossref_primary_10_1039_D0TA12063D
crossref_primary_10_1039_D0TA08611H
crossref_primary_10_1149_2_0331509jes
crossref_primary_10_1016_j_jechem_2024_12_036
crossref_primary_10_1002_smll_201700762
crossref_primary_10_1039_D3TA02787B
crossref_primary_10_1016_j_electacta_2019_01_138
crossref_primary_10_1016_j_jallcom_2016_11_003
crossref_primary_10_1016_j_jpowsour_2015_10_087
crossref_primary_10_3390_batteries4020025
crossref_primary_10_1007_s00707_025_04242_8
crossref_primary_10_1039_C4TA04356A
crossref_primary_10_1039_D1QM00274K
crossref_primary_10_1016_j_jpowsour_2018_03_031
crossref_primary_10_1016_j_jpowsour_2018_03_032
crossref_primary_10_1002_advs_201600051
crossref_primary_10_1007_s10854_017_6812_y
crossref_primary_10_1039_C7NJ02105D
crossref_primary_10_1016_j_ensm_2018_11_021
crossref_primary_10_1021_jacs_8b02016
crossref_primary_10_1038_s41467_018_03322_9
crossref_primary_10_1021_jacs_5b13273
crossref_primary_10_1002_advs_202001801
crossref_primary_10_1039_C9TA13899D
crossref_primary_10_1039_C8TA00592C
crossref_primary_10_1016_j_jpowsour_2015_03_051
crossref_primary_10_1021_acs_chemmater_8b05272
crossref_primary_10_1002_aenm_202200662
crossref_primary_10_1016_j_jallcom_2020_156369
crossref_primary_10_1016_j_ensm_2016_12_005
crossref_primary_10_1038_s41565_020_0690_9
crossref_primary_10_1016_j_mtener_2017_08_002
crossref_primary_10_1016_j_electacta_2017_07_030
crossref_primary_10_1021_acs_jpcc_5b05482
crossref_primary_10_1039_C5CP04023J
crossref_primary_10_1002_aenm_202304431
crossref_primary_10_1002_smtd_202000218
crossref_primary_10_1016_j_actamat_2022_118292
crossref_primary_10_1016_j_jpowsour_2014_07_081
crossref_primary_10_1016_j_materresbull_2015_12_044
crossref_primary_10_1039_C9TA11782B
crossref_primary_10_1016_j_jpowsour_2015_03_043
crossref_primary_10_1002_smll_201900258
crossref_primary_10_1016_j_susmat_2022_e00480
crossref_primary_10_1038_natrevmats_2016_13
crossref_primary_10_1039_C7TA03060F
crossref_primary_10_3390_batteries9020098
crossref_primary_10_1016_j_ensm_2017_08_011
crossref_primary_10_1002_celc_201800776
crossref_primary_10_1002_aenm_202003078
crossref_primary_10_1557_s43578_022_00649_4
Cites_doi 10.1016/j.electacta.2004.03.049
10.1039/c2cc17129e
10.1103/PhysRevB.59.1758
10.1039/c2cc32730a
10.1149/1.2128939
10.1016/j.electacta.2010.06.012
10.1016/j.jpowsour.2013.01.083
10.1149/1.3073879
10.1063/1.1329672
10.1016/j.elecom.2013.03.029
10.1038/nmat3393
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.58.15583
10.1021/ja310347x
10.1103/PhysRev.56.978
10.1149/1.1622959
10.1103/PhysRevB.9.5307
10.1016/j.electacta.2012.11.120
10.1016/j.cossms.2012.04.002
10.1039/c2ee02781j
10.1149/1.1359194
10.1016/j.elecom.2012.11.030
10.1103/PhysRevB.54.11169
ContentType Journal Article
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Center for Nanophase Materials Sciences (CNMS)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
– name: Center for Nanophase Materials Sciences (CNMS)
DBID AAYXX
CITATION
7ST
7U6
C1K
7S9
L.6
OTOTI
DOI 10.1039/c3ta11568b
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 7994
ExternalDocumentID 1084412
10_1039_c3ta11568b
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
7U6
C1K
7S9
L.6
-JG
AAGNR
ABGFH
AGSTE
AUNWK
OTOTI
UCJ
XFK
ID FETCH-LOGICAL-c390t-82f15528d56b52665d6f4ce3b72279a3ae8549ca3bb6c4b6e4b2f84833cee0bb3
ISSN 2050-7488
2050-7496
IngestDate Thu May 18 18:37:44 EDT 2023
Fri Jul 11 07:33:18 EDT 2025
Fri Jul 11 12:00:54 EDT 2025
Tue Jul 01 04:17:21 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-82f15528d56b52665d6f4ce3b72279a3ae8549ca3bb6c4b6e4b2f84833cee0bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DE-AC05-00OR22725
USDOE Office of Science (SC)
PQID 1567118563
PQPubID 23462
PageCount 10
ParticipantIDs osti_scitechconnect_1084412
proquest_miscellaneous_2315254181
proquest_miscellaneous_1567118563
crossref_primary_10_1039_c3ta11568b
crossref_citationtrail_10_1039_c3ta11568b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2013
References Kresse (c3ta11568b-(cit13)/*[position()=1]) 1999; 59
Kemeny (c3ta11568b-(cit22)/*[position()=1]) 1974; 9
Baggetto (c3ta11568b-(cit11)/*[position()=1]) 2013; 90
Xiao (c3ta11568b-(cit7)/*[position()=1]) 2012; 48
Larcher (c3ta11568b-(cit17)/*[position()=1]) 2003; 150
Palomares (c3ta11568b-(cit1)/*[position()=1]) 2012; 5
Qian (c3ta11568b-(cit6)/*[position()=1]) 2012; 48
Patterson (c3ta11568b-(cit20)/*[position()=1]) 1939; 56
Ellis (c3ta11568b-(cit2)/*[position()=1]) 2012; 16
Wen (c3ta11568b-(cit19)/*[position()=1]) 1979; 126
Hewitt (c3ta11568b-(cit8)/*[position()=1]) 2001; 148
Baggetto (c3ta11568b-(cit10)/*[position()=1]) 2010; 55
Baggetto (c3ta11568b-(cit3)/*[position()=1]) 2013; 234
Darwiche (c3ta11568b-(cit4)/*[position()=1]) 2012; 134
Courtney (c3ta11568b-(cit15)/*[position()=1]) 1998; 58
Li (c3ta11568b-(cit9)/*[position()=1]) 2009; 156
Blochl (c3ta11568b-(cit14)/*[position()=1]) 1994; 50
Henkelman (c3ta11568b-(cit16)/*[position()=1]) 2000; 113
Kresse (c3ta11568b-(cit12)/*[position()=1]) 1996; 54
Edström (c3ta11568b-(cit21)/*[position()=1]) 2004; 50
Kim (c3ta11568b-(cit23)/*[position()=1]) 2012; 11
Darwiche (c3ta11568b-(cit18)/*[position()=1]) 2013; 32
Baggetto (c3ta11568b-(cit5)/*[position()=1]) 2013; 27
References_xml – volume: 50
  start-page: 397
  year: 2004
  ident: c3ta11568b-(cit21)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.03.049
– volume: 48
  start-page: 3321
  year: 2012
  ident: c3ta11568b-(cit7)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17129e
– volume: 59
  start-page: 1758
  year: 1999
  ident: c3ta11568b-(cit13)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 48
  start-page: 7070
  year: 2012
  ident: c3ta11568b-(cit6)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32730a
– volume: 126
  start-page: 2258
  year: 1979
  ident: c3ta11568b-(cit19)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2128939
– volume: 55
  start-page: 6617
  year: 2010
  ident: c3ta11568b-(cit10)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.06.012
– volume: 234
  start-page: 48
  year: 2013
  ident: c3ta11568b-(cit3)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.083
– volume: 156
  start-page: A283
  year: 2009
  ident: c3ta11568b-(cit9)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3073879
– volume: 113
  start-page: 9901
  year: 2000
  ident: c3ta11568b-(cit16)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 32
  start-page: 18
  year: 2013
  ident: c3ta11568b-(cit18)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.03.029
– volume: 11
  start-page: 888
  year: 2012
  ident: c3ta11568b-(cit23)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3393
– volume: 50
  start-page: 17953
  year: 1994
  ident: c3ta11568b-(cit14)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.50.17953
– volume: 58
  start-page: 15583
  year: 1998
  ident: c3ta11568b-(cit15)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.58.15583
– volume: 134
  start-page: 20805
  year: 2012
  ident: c3ta11568b-(cit4)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310347x
– volume: 56
  start-page: 978
  year: 1939
  ident: c3ta11568b-(cit20)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.978
– volume: 150
  start-page: A1643
  year: 2003
  ident: c3ta11568b-(cit17)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1622959
– volume: 9
  start-page: 5307
  year: 1974
  ident: c3ta11568b-(cit22)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.9.5307
– volume: 90
  start-page: 135
  year: 2013
  ident: c3ta11568b-(cit11)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.120
– volume: 16
  start-page: 168
  year: 2012
  ident: c3ta11568b-(cit2)/*[position()=1]
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2012.04.002
– volume: 5
  start-page: 5884
  year: 2012
  ident: c3ta11568b-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02781j
– volume: 148
  start-page: A402
  year: 2001
  ident: c3ta11568b-(cit8)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1359194
– volume: 27
  start-page: 168
  year: 2013
  ident: c3ta11568b-(cit5)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.11.030
– volume: 54
  start-page: 11169
  year: 1996
  ident: c3ta11568b-(cit12)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0000800699
Score 2.4870226
Snippet A detailed comparative study between the electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic...
A detailed comparative study between electrochemical lithiation and sodiation of pure antimony (Sb), relating changes in structural, thermodynamic, kinetic and...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7985
SubjectTerms ambient temperature
antimony
batteries
carbonates
comparative study
crystallization
density functional theory
diffusivity
electrochemistry
electrodes
electrolytes
energy
ethers
lithium
mechanical properties
sodium
sodium fluoride
sodium perchlorate
thermodynamics
X-ray diffraction
X-ray photoelectron spectroscopy
Title Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory
URI https://www.proquest.com/docview/1567118563
https://www.proquest.com/docview/2315254181
https://www.osti.gov/biblio/1084412
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoA2QEL6jKSO3YSXirUKcNdeVhrbS3yHbsUQHNVFIe-Fn8Qo4vuVQb0uDFilzHSn2-2J-dc76D0FtuSiUnTEYAkCRKdM6iTDIoYmLyCVW8FHajeLbgJ6vk0wW7GAx-97yWdrU8Ur9ujCv5H6tCHdjVRsn-g2XbTqECrsG-UIKFobyVjU839Xa9gXG29HH7vSp9enn3QeAr0EcrxnplT9u3VjbVxafIcUh8U2qnxACb8qjxSF4Idymd5ObaO8t1GQAaX8tqP4i6x2iB_Pp_PVZNGrmj8dRHBDW_OIVxH2_ojuyb-C3rotvFVojLS127BE_jebVWrZOQgIn5y15U2vkueA3oaNEB_Uxbkc-e67gIZ7bhfMPmmmjPN9w0SGIWW8VTP0vrfp3PhdvO4z24er2BMCmnuc8KFBb4NPdpla8tHjG12quK1gJoMs9kt0Q2bgGLz8Xxaj4vlrOL5R10QGBrQoboYDpbns7bkz3LwblLXNo-eqOLS_P3Xfd7TGhYwYx-jQ84krN8gO4HW-Kph9pDNNCbR-heT7PyMfrZgg7vgQ6DOXEAHe5AhyuDzyXuQIcBAdiDzt3iQYdb0H3AHeRcAw-5J2h1PFt-PIlC8o5I0Tyuo4wYq-6XlYxLBiyQldwkSlOZWs1KQYXOWJIrQaXkKpFcJ5KYLMkoBdoWS0mfouGm2uhnCE_SNJMpkE0js6TURuSGKUMMETkpeUpH6F0zkIUKyvY2wcq3wnlY0LzoBn2E3rRtr7yey42tDq09CmChVkpZWZ8zVVsxXdg9kBF63ZipgJfJfmED-Fe7HwXcnMKOnXH69zawoWKEJcCsn9-in0N0t3spXqBhvd3pl0CDa_kq4O4P20G6YA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+thermodynamic+and+kinetic+properties+of+Sb+electrodes+for+Li-ion+and+Na-ion+batteries%3A+experiment+and+theory&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Baggetto%2C+Loic&rft.au=Ganesh%2C+P&rft.au=Sun%2C+Che-Nan&rft.au=Meisner%2C+Roberta+A&rft.date=2013-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=27&rft.spage=7985&rft.epage=7994&rft_id=info:doi/10.1039%2Fc3ta11568b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon