Real-Time Optimal States Estimation with Inertial and Delayed Visual Measurements for Unmanned Aerial Vehicles
Motion estimation is a major issue in applications of Unmanned Aerial Vehicles (UAVs). This paper proposes an entire solution to solve this issue using information from an Inertial Measurement Unit (IMU) and a monocular camera. The solution includes two steps: visual location and multisensory data f...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 22; p. 9074 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motion estimation is a major issue in applications of Unmanned Aerial Vehicles (UAVs). This paper proposes an entire solution to solve this issue using information from an Inertial Measurement Unit (IMU) and a monocular camera. The solution includes two steps: visual location and multisensory data fusion. In this paper, attitude information provided by the IMU is used as parameters in Kalman equations, which are different from pure visual location methods. Then, the location of the system is obtained, and it will be utilized as the observation in data fusion. Considering the multiple updating frequencies of sensors and the delay of visual observation, a multi-rate delay-compensated optimal estimator based on the Kalman filter is presented, which could fuse the information and obtain the estimation of 3D positions as well as translational speed. Additionally, the estimator was modified to minimize the computational burden, so that it could run onboard in real time. The performance of the overall solution was assessed using field experiments on a quadrotor system, compared with the estimation results of some other methods as well as the ground truth data. The results illustrate the effectiveness of the proposed method. |
---|---|
AbstractList | Motion estimation is a major issue in applications of Unmanned Aerial Vehicles (UAVs). This paper proposes an entire solution to solve this issue using information from an Inertial Measurement Unit (IMU) and a monocular camera. The solution includes two steps: visual location and multisensory data fusion. In this paper, attitude information provided by the IMU is used as parameters in Kalman equations, which are different from pure visual location methods. Then, the location of the system is obtained, and it will be utilized as the observation in data fusion. Considering the multiple updating frequencies of sensors and the delay of visual observation, a multi-rate delay-compensated optimal estimator based on the Kalman filter is presented, which could fuse the information and obtain the estimation of 3D positions as well as translational speed. Additionally, the estimator was modified to minimize the computational burden, so that it could run onboard in real time. The performance of the overall solution was assessed using field experiments on a quadrotor system, compared with the estimation results of some other methods as well as the ground truth data. The results illustrate the effectiveness of the proposed method. |
Audience | Academic |
Author | Zhang, Chi Li, Shanhong Zou, Le Sun, Xinxin |
Author_xml | – sequence: 1 givenname: Xinxin surname: Sun fullname: Sun, Xinxin – sequence: 2 givenname: Chi surname: Zhang fullname: Zhang, Chi – sequence: 3 givenname: Le surname: Zou fullname: Zou, Le – sequence: 4 givenname: Shanhong surname: Li fullname: Li, Shanhong |
BookMark | eNpdUU1P3DAUjBCVCpRD_0EkLu0h1F-J4-OK0nYlKqTycbVenGfwKrG3tiPEv6-XRQhVPthvPDP2aI6rQx88VtVnSs45V-RbYpwxRaQ4qI6oYKLpGSOH784fq-OUNoQwznl_VPk_CFNz62asr7fZzTDVNxkypvoy7cbsgq-fXH6s1x5jduUe_Fh_xwmecazvXVoK9BshLRFn9DnVNsT6zs_gfSGsMO409_jozITpU_XBwpTw9HU_qe5-XN5e_Gqurn-uL1ZXjSkhciO7jtCuN4QPY6uE4t0o7aisJRTGjiBHsB0UqABqGKVBQgwxvKcWKFMDP6nWe98xwEZvY0kSn3UAp1-AEB80lDTlS1qA5GhR4gCDGFo6dKwdrJISKaVG8uL1Ze-1jeHvginr2SWD0wQew5I06xXvRceJKtSz_6ibsERfkr6weCuI2LHO96wHKO87b0OOYMoacXam9GldwVdSCs5axdoi-LoXmBhSimjfElGid7Xrt9r5P8amoKg |
Cites_doi | 10.1109/CISCE.2019.00160 10.1007/s10846-011-9646-5 10.1109/JSEN.2015.2447015 10.1109/ROBOT.1999.770011 10.1109/IROS.2009.5354152 10.1109/ROBOT.2007.363617 10.1109/JSEN.2011.2166066 10.3390/s18072071 10.1016/j.inffus.2021.09.005 10.1177/0278364915578646 10.1155/2016/6217428 10.1007/s10846-010-9494-8 10.1109/TAES.2012.6324687 10.1109/IROS.2010.5649019 10.1080/02286203.2021.1952386 10.1504/IJAAC.2020.107083 10.1109/TPAMI.2017.2658577 10.1109/TRO.2011.2163435 10.1007/s00371-019-01714-6 10.1109/TAES.2021.3117368 10.3182/20080706-5-KR-1001.01503 10.3390/drones7080540 10.1109/JSEN.2022.3187423 10.1109/TRO.2018.2853729 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 DOA |
DOI | 10.3390/s23229074 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_4a73efe7ebab4b51b625bf977e111c73 A774325925 10_3390_s23229074 |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c390t-7660168c03bd594936d7fd9ff01ad60e3eaf6a7fdf019bd7ce00c0c381fa129b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:10:29 EDT 2024 Sat Oct 26 00:28:24 EDT 2024 Thu Oct 10 19:56:39 EDT 2024 Wed Nov 13 00:10:59 EST 2024 Thu Sep 26 16:15:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-7660168c03bd594936d7fd9ff01ad60e3eaf6a7fdf019bd7ce00c0c381fa129b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5718-0813 |
OpenAccessLink | https://www.proquest.com/docview/2893354049?pq-origsite=%requestingapplication% |
PQID | 2893354049 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a73efe7ebab4b51b625bf977e111c73 proquest_miscellaneous_2893846309 proquest_journals_2893354049 gale_infotracacademiconefile_A774325925 crossref_primary_10_3390_s23229074 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-09 |
PublicationDateYYYYMMDD | 2023-11-09 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Matko (ref_15) 2012; 67 Grabe (ref_13) 2015; 34 Garcia (ref_16) 2012; 48 ref_19 Ahmed (ref_2) 2017; 18 Chen (ref_27) 2022; 79 ref_17 Zou (ref_11) 2022; 58 Whitcomb (ref_6) 1999; Volume 1 Salahshoor (ref_23) 2008; 41 Eberli (ref_14) 2011; 61 He (ref_18) 2020; 36 Zhao (ref_7) 2012; 12 ref_25 ref_24 ref_22 Krznar (ref_26) 2020; 14 Boucheloukh (ref_10) 2022; 42 Herisse (ref_12) 2012; 28 Stuckey (ref_8) 2022; 22 ref_28 Jiang (ref_1) 2015; 15 ref_9 Gu (ref_3) 2016; 2016 ref_5 Engel (ref_20) 2017; 40 Qin (ref_21) 2017; 34 ref_4 |
References_xml | – ident: ref_22 doi: 10.1109/CISCE.2019.00160 – ident: ref_28 – volume: 67 start-page: 43 year: 2012 ident: ref_15 article-title: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-011-9646-5 contributor: fullname: Matko – ident: ref_24 – volume: 15 start-page: 5634 year: 2015 ident: ref_1 article-title: Optimal Data Fusion Algorithm for Navigation Using Triple Integration of PPP-GNSS, INS, and Terrestrial Ranging System publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2447015 contributor: fullname: Jiang – volume: Volume 1 start-page: 399 year: 1999 ident: ref_6 article-title: Advances in doppler-based navigation of underwater robotic vehicles publication-title: Proceedings of the International Conference on Robotics and Automation doi: 10.1109/ROBOT.1999.770011 contributor: fullname: Whitcomb – volume: 18 start-page: 1723 year: 2017 ident: ref_2 article-title: Accurate Attitude Estimation of a Moving Land Vehicle Using Low-Cost MEMS IMU Sensors publication-title: J. Turbul. contributor: fullname: Ahmed – ident: ref_9 doi: 10.1109/IROS.2009.5354152 – ident: ref_25 doi: 10.1109/ROBOT.2007.363617 – volume: 12 start-page: 943 year: 2012 ident: ref_7 article-title: Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended kalman filter for data fusion publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2166066 contributor: fullname: Zhao – ident: ref_4 doi: 10.3390/s18072071 – volume: 79 start-page: 124 year: 2022 ident: ref_27 article-title: Real-world single image super-resolution: A brief review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.09.005 contributor: fullname: Chen – volume: 34 start-page: 1114 year: 2015 ident: ref_13 article-title: Nonlinear ego-motion estimation from optical flow for online control of a quadrotor UAV publication-title: Int. J. Robot. Res. doi: 10.1177/0278364915578646 contributor: fullname: Grabe – volume: 2016 start-page: 6217428 year: 2016 ident: ref_3 article-title: A Fault-Tolerant Multiple Sensor Fusion Approach Applied to UAV Attitude Estimation publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2016/6217428 contributor: fullname: Gu – volume: 61 start-page: 495 year: 2011 ident: ref_14 article-title: Vision based position control for MAVs using onesingle circular landmark publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-010-9494-8 contributor: fullname: Eberli – volume: 48 start-page: 3159 year: 2012 ident: ref_16 article-title: Hovering quad-rotor control: A comparison of nonlinearcontrollers using visual feedback publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2012.6324687 contributor: fullname: Garcia – ident: ref_17 doi: 10.1109/IROS.2010.5649019 – volume: 42 start-page: 595 year: 2022 ident: ref_10 article-title: UAV navigation based on adaptive fuzzy backstepping controller using visual odometry publication-title: Int. J. Model. Simul. doi: 10.1080/02286203.2021.1952386 contributor: fullname: Boucheloukh – volume: 14 start-page: 284 year: 2020 ident: ref_26 article-title: Propeller speed estimation for unmanned aerial vehicles using Kalman filtering publication-title: Int. J. Autom. Control. doi: 10.1504/IJAAC.2020.107083 contributor: fullname: Krznar – volume: 40 start-page: 611 year: 2017 ident: ref_20 article-title: Direct sparse odometry publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2658577 contributor: fullname: Engel – volume: 28 start-page: 77 year: 2012 ident: ref_12 article-title: Landing a VTOL unmanned aerial vehicle on a movingplatform using optical flow publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2011.2163435 contributor: fullname: Herisse – volume: 36 start-page: 1053 year: 2020 ident: ref_18 article-title: A review of monocular visual odometry publication-title: Vis. Comput. doi: 10.1007/s00371-019-01714-6 contributor: fullname: He – volume: 58 start-page: 1069 year: 2022 ident: ref_11 article-title: Adaptive Fault-Tolerant Distributed Formation Control of Clustered Vertical Takeoff and Landing UAVs publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3117368 contributor: fullname: Zou – ident: ref_19 – volume: 41 start-page: 8896 year: 2008 ident: ref_23 article-title: Process Fault Monitoring Using Data Fusion Based on Extended Kalman Filter Incorporated with Time-Delayed Measurements publication-title: IFAC Proc. Vol. doi: 10.3182/20080706-5-KR-1001.01503 contributor: fullname: Salahshoor – ident: ref_5 doi: 10.3390/drones7080540 – volume: 22 start-page: 15497 year: 2022 ident: ref_8 article-title: A Spatial Localization and Attitude Estimation System for Unmanned Aerial Vehicles Using a Single Dynamic Vision Sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3187423 contributor: fullname: Stuckey – volume: 34 start-page: 1004 year: 2017 ident: ref_21 article-title: VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2853729 contributor: fullname: Qin |
SSID | ssj0023338 |
Score | 2.4481485 |
Snippet | Motion estimation is a major issue in applications of Unmanned Aerial Vehicles (UAVs). This paper proposes an entire solution to solve this issue using... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 9074 |
SubjectTerms | Algorithms Cameras data fusion Drone aircraft inertial sensors Lasers Measurement Methods motion estimation Sensors UAV Unmanned aerial vehicles Vehicles Velocity vision delay |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE6urRBE8FbNN2zTHVVdUWAVxxVvIEwWtsu0e_PfOtN1VD-LFY6cppDOZ5Pvy-ELIkfS4XidcLF0BBMWKPNZ9XcTBi0buyRYeieLoJr8cp9eP2eO3q75wT1grD9w67iTVgnv40httUpP1DQB2EwC1eMhSK1qdTyZnZKqjWhyYV6sjxIHUn1SAGxKkgT9Gn0ak_7euuBlfLlbJSgcM6aCt0BpZ8OU6Wf4mF7hByjtAdTEe2qC3kOmvULzFinRY4SP6mOLEKr0qcbs0vNelo-f-RX94Rx-eqymYRl-zghUFyErH5avG3pYOmtZIH_xTs1duk4wvhvdnl3F3X0Js4SfrWOSorVJYxo3LZCp57kRwMgTW1y5nnnsdcg0mMEjjhPWMWWZhzA4ahn3Dt8hi-Vb6bUJ5YoNLWOEyvJI6C7JwBXeaBUBIQnMbkcOZH9V7K4uhgE6gs9Xc2RE5RQ_PC6CSdWOA-Kouvuqv-EbkGOOjMN_qiba6OzYA9UTlKjUA_MqBwyVZRHqzEKouESsFfJLj1FYqI3Iwfw0phOsiuvRv07YMwDDO5M5_1HiXLOGd9M2BRdkji_Vk6vcAudRmv2mkn5XC7Wk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9gIHRFsQoaUyCIlTVG-cxPEJLX2oVCpIFVvtzfITKrXZdrN74N8z42R34QDHjK0oGc-Mv8-PGYAPKtB-nfS58g0SFCfr3IxMk8cgU7on1wQiildf64tJeTmtpsOCWzccq1zFxBSo_czRGvlxQXXhEV6U6tPDY05Vo2h3dSih8QR2RgWv6UiXnG4Il0D-1WcTEkjtjztEDwWRwb_moJSq_18BOc0y5y_g-QAP2bgfz13YCu0ePPsjaeA-tNeI7XK6usG-ob_fY_ceMbKzjh5J04yWV9mXlg5NY7tpPTsNd-ZX8Ozmtlui6GqzNtgxBK5s0t4birlsnGyS3YSf6cTcS5icn30_uciHqgm5w59c5LKmDCuN48L6SpVK1F5Gr2LkI-NrHkQwsTYoQoGyXrrAueMOZ-5ocPK34hVst7M2vAYmChd9wRtfUWHqKqrGN8IbHhEnSSNcBu9XetQPfXIMjaSClK3Xys7gM2l43YHyWSfBbP5DD-6hSyNFQPsI1tjSViOLtMxGxKYBY7GTIoOPND6avG4xN84MlwfwOyl_lR4jihXI5Ioqg8PVEOrBHTu9MZ4M3q2b0ZFod8S0Ybbs-yAYE1y9-f8rDuAp1ZxPFxLVIWwv5svwFpHJwh4l8_sN0rLkHQ priority: 102 providerName: ProQuest |
Title | Real-Time Optimal States Estimation with Inertial and Delayed Visual Measurements for Unmanned Aerial Vehicles |
URI | https://www.proquest.com/docview/2893354049 https://search.proquest.com/docview/2893846309 https://doaj.org/article/4a73efe7ebab4b51b625bf977e111c73 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4ikMJVoQEifDxmt7vQeE0jahILWgilS5WfssSK0DcSLRf8_M2klbCSQuljw7B3t2Zvf79jED8Fp52q-TLlWuQoJiZZnqoa7S4GVM92QrT0Tx-KQ8muafZ8VsC9Y1NnsDtn-ldlRParq4ePv719UHDPj3xDiRsr9rERVkRPK2YTfLkaDTCb58s5mQCaRhXVKh2-q3pqKYsf9f43KcbCb34V6PEtmo69YHsOWbh3D3Ru7AR9CcIsRL6QYH-4Jhf4nqHXBk45ZeyeCMVlnZp4bOTmO7bhw79Bf6yjt29qNdoej4eomwZYhf2bS51DT0slF0TXbmv8eDc49hOhl_OzhK--IJqcWfXKaypEQrleXCuELlSpROBqdC4EPtSu6F16HUKEKBMk5az7nlFifwoBEDGPEEdpp5458CE5kNLuOVK6g-dRFU5SrhNA8Il6QWNoFXazvWP7scGTVyCzJ2vTF2Avtk4Y0CpbWOgvnivO6jpM61FB7dxBttclMMDbIzExCiehySrRQJvKH-qckdlgttdX-HAL-T0ljVIwSzAgldViSwt-7Ceu1UNZJLQetcuUrg5aYZ44k2SXTj56tOBzGZ4OrZf-g8hztUfz5eTlR7sLNcrPwLRClLM4BtOZP4rCYfB7C7Pz75ejqIjH8QvfMPFWDr7g |
link.rule.ids | 315,783,787,867,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74073,74363,74630 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4AeKp4itIBBSJyiZuMkjk9oC1ttobugqlv1ZvlJK7XZstk98O-ZSbxbOMAxthUlY8_4-_z4BuC99LRfJ1wqXY0ExYoq1QNdp8GLTu7J1p6I4mRajWfFl4vyIi64tfFY5TomdoHazS2tkR_klBce4UUhP97-TClrFO2uxhQa92GbpKqQfG0fjqbfTzeUiyMD6_WEOJL7gxbxQ0508K9ZqBPr_1dI7uaZo0ewGwEiG_Y9-hju-eYJ7PwhG_gUmlNEdyld3mDf0ONvsHmPGdmopUeyNaMFVnbc0LFprNeNY5_9tf7lHTu_aldYNLlbHWwZQlc2a240RV027EYlO_eX3Zm5ZzA7Gp19Gqcxb0Jq8SeXqahIY6W2GTeulIXklRPByRCygXZV5rnXodJYhAXSOGF9ltnMogGDxunf8Oew1cwb_wIYz21weVa7klJTl0HWruZOZwGRktDcJvBubUd128tjKKQVZGy1MXYCh2ThTQNStO4K5osfKjqIKrTgHkeIN9oUphwYJGYmIDr1GI2t4Al8oP5R5HfLhbY6Xh_A7yQFKzVEHMuRy-VlAvvrLlTRIVt1N3wSeLupRlei_RHd-Pmqb4NwjGfy5f9f8QYejM8mJ-rkePp1Dx5SBvrueqLch63lYuVfIU5ZmtdxMP4GmDjocw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyF4mMaXCBtgEBJPUdM4ieMn1G2tNmBlmui0N8ufgMTS0bQP_PfcJW4HD_AY24qS893597PPdwBvpafzOuFS6WokKFZUqR7pOg1edOmebO2JKJ7NqpN58eGqvIrxT20Mq9z4xM5Ru4WlPfJhTnXhEV4UchhiWMT58fT9zc-UKkjRSWssp3EXdkRR8WwAO4eT2fnFln5xZGN9biGORH_YIpbIiRr-tSJ1ifv_5Z67NWe6B7sRLLJxP7sP4Y5vHsGDP1IIPobmApFeShc52Ge0_msc3uNHNmnpkeTOaLOVnTYUQo39unHs2P_Qv7xjl9_bNTad3e4UtgxhLJs315o8MBt3Gsou_bcufu4JzKeTL0cnaayhkFr8yVUqKsq3UtuMG1fKQvLKieBkCNlIuyrz3OtQaWzCBmmcsD7LbGZxHQ8aoYDhT2HQLBr_DBjPbXB5VruSylSXQdau5k5nAVGT0Nwm8GYjR3XTp8pQSDFI2Gor7AQOScLbAZTdumtYLL-qaCyq0IJ71BZvtClMOTJI0kxApOrRM1vBE3hH86PIBldLbXW8SoDfSdms1BgxLUdel5cJHGymUEXjbNWtKiXwetuNZkVnJbrxi3U_piY1ks___4pXcA_1UH06nX3ch_tUjL67qSgPYLBarv0LhCwr8zLq4m8-veyh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Optimal+States+Estimation+with+Inertial+and+Delayed+Visual+Measurements+for+Unmanned+Aerial+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Xinxin&rft.au=Zhang%2C+Chi&rft.au=Zou%2C+Le&rft.au=Li%2C+Shanhong&rft.date=2023-11-09&rft.eissn=1424-8220&rft.volume=23&rft.issue=22&rft_id=info:doi/10.3390%2Fs23229074&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |