Highly Stable Zr(IV)-Based Metal–Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography
Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reve...
Saved in:
Published in | Journal of the American Chemical Society Vol. 143; no. 1; pp. 390 - 398 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
Amer Chemical Soc
13.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.0c11276 |
Cover
Loading…
Abstract | Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)(8)(H2O)(4)(L)(2)]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity. |
---|---|
AbstractList | Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr
O
(OH)
(H
O)
(
)
]. They share the same
topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity. Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)(8)(H2O)(4)(L)(2)]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity. Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal–organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1′-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr₆O₄(OH)₈(H₂O)₄(L)₂]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity. Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity.Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity. |
Author | Liu, Yan Zhang, Wenqiang Zhao, Xiangxiang Jiang, Hong Cui, Yong Yang, Kuiwei Jiang, Jianwen |
Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0002-4118-5297 surname: Jiang fullname: Jiang, Hong organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Kuiwei surname: Yang fullname: Yang, Kuiwei organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore – sequence: 3 givenname: Xiangxiang surname: Zhao fullname: Zhao, Xiangxiang organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Wenqiang surname: Zhang fullname: Zhang, Wenqiang organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 5 givenname: Yan orcidid: 0000-0002-7560-519X surname: Liu fullname: Liu, Yan organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 6 givenname: Jianwen orcidid: 0000-0003-1310-9024 surname: Jiang fullname: Jiang, Jianwen organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore – sequence: 7 givenname: Yong orcidid: 0000-0003-1977-0470 surname: Cui fullname: Cui, Yong organization: School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33356210$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s1u1DAUBWALFdFpy4418rIVpPgnsZMlRC2tNKiIAgs20Y1zM-OSxFM7oZod78Ab8iR4mKELhERXlqXv2NK594DsDW5AQp5xdsqZ4K9uwIRTZjgXWj0iM54JlmRcqD0yY4yJROdK7pODEG7iNRU5f0L2pZSZEpzNSLiwi2W3ptcj1B3SL_748vNJ8gYCNvQdjtD9_P7jyi9gsIaee-jxzvmvgbbO03JpPXT0GlfgYbRuoHagH_Ab-hhO3i_jG3RubyfbROpdD6NbeFgt10fkcQtdwKe785B8Oj_7WF4k86u3l-XreWJkwcZEK9YAh0IIrZGlUDRYZ5KDgsK0sm5RyrzNat5KnTHkGc9yJUA0jDVaqxrlITnevrvy7nbCMFa9DQa7DgZ0U6hEJlKhChkL-i9NtUwFj71F-nxHp7rHplp524NfV386jSDfgjusXRuMxcHgPYtDUJyzXOrNOPLSjr-7K900jDH64uHRqF9utfEuBI_tveSs2uxGtdmNarcbkYu_uNl9Pnqw3b9DvwAWx7s7 |
CitedBy_id | crossref_primary_10_1021_jacs_1c09992 crossref_primary_10_1039_D2DT01221A crossref_primary_10_1021_jacs_1c11836 crossref_primary_10_2139_ssrn_4063568 crossref_primary_10_1002_chir_23453 crossref_primary_10_1016_j_chroma_2022_463415 crossref_primary_10_1016_j_apsusc_2023_156788 crossref_primary_10_1016_j_chroma_2022_462960 crossref_primary_10_1134_S1061934823010100 crossref_primary_10_1016_j_saa_2022_121390 crossref_primary_10_1016_j_chroma_2024_465441 crossref_primary_10_1016_j_molstruc_2021_131792 crossref_primary_10_1016_j_talanta_2023_125547 crossref_primary_10_1021_acs_jcim_4c02259 crossref_primary_10_1016_j_micromeso_2022_112075 crossref_primary_10_1016_j_aca_2024_343541 crossref_primary_10_1002_ange_202419916 crossref_primary_10_1021_acs_inorgchem_2c02877 crossref_primary_10_1016_j_memsci_2025_123873 crossref_primary_10_1021_acs_inorgchem_3c03277 crossref_primary_10_1002_ange_202104111 crossref_primary_10_1039_D1CE01244D crossref_primary_10_31857_S0044450223010115 crossref_primary_10_3390_chemosensors11010029 crossref_primary_10_1016_j_flatc_2021_100240 crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1016_j_chroma_2021_462672 crossref_primary_10_1039_D4CC04902K crossref_primary_10_1007_s12274_023_6000_8 crossref_primary_10_1021_acs_analchem_1c01941 crossref_primary_10_3724_SP_J_1123_2023_04021 crossref_primary_10_1021_acsami_4c00399 crossref_primary_10_1016_j_ccr_2023_215120 crossref_primary_10_1016_j_cclet_2023_108342 crossref_primary_10_1039_D0AY02310H crossref_primary_10_1021_jacs_1c08487 crossref_primary_10_1002_anie_202104111 crossref_primary_10_1016_j_cca_2023_117367 crossref_primary_10_3390_molecules28073235 crossref_primary_10_1016_j_jssc_2025_125252 crossref_primary_10_1007_s40242_022_1490_6 crossref_primary_10_1016_j_chroma_2022_463555 crossref_primary_10_1016_j_susc_2023_122306 crossref_primary_10_1016_j_trac_2023_117471 crossref_primary_10_1002_advs_202308663 crossref_primary_10_1016_j_chroma_2023_464444 crossref_primary_10_1016_j_chroma_2023_464032 crossref_primary_10_1016_j_talanta_2022_123763 crossref_primary_10_3724_SP_J_1123_2023_07029 crossref_primary_10_1002_app_55571 crossref_primary_10_1016_j_seppur_2022_122213 crossref_primary_10_1007_s00604_021_05094_4 crossref_primary_10_1016_j_aca_2024_342995 crossref_primary_10_1016_j_microc_2022_107933 crossref_primary_10_1039_D1NJ01643A crossref_primary_10_1016_j_jcis_2023_12_026 crossref_primary_10_1016_j_microc_2024_110606 crossref_primary_10_1021_jacs_4c15087 crossref_primary_10_1016_j_jelechem_2021_115173 crossref_primary_10_1007_s12039_022_02130_5 crossref_primary_10_3390_molecules28155908 crossref_primary_10_1007_s00604_024_06911_2 crossref_primary_10_1021_acs_analchem_2c00218 crossref_primary_10_1039_D2DT00288D crossref_primary_10_3390_chemosensors10120508 crossref_primary_10_1016_j_chroma_2021_462296 crossref_primary_10_1016_j_inoche_2024_112249 crossref_primary_10_1016_j_seppur_2024_127827 crossref_primary_10_1002_chir_23499 crossref_primary_10_1007_s11426_022_1237_x crossref_primary_10_1016_j_jddst_2024_106378 crossref_primary_10_3724_SP_J_1123_2024_01022 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1021_acsami_3c01735 crossref_primary_10_1002_jssc_202100593 crossref_primary_10_1021_acs_analchem_1c03626 crossref_primary_10_1039_D4QI01342E crossref_primary_10_1016_j_chemosphere_2024_143083 crossref_primary_10_1016_j_microc_2022_107566 crossref_primary_10_1002_elps_202100116 crossref_primary_10_1016_j_jcoa_2021_100002 crossref_primary_10_1016_j_memsci_2024_123657 crossref_primary_10_1021_acs_inorgchem_1c00608 crossref_primary_10_1016_j_inoche_2022_109355 crossref_primary_10_1016_j_inoche_2023_111562 crossref_primary_10_1039_D0CS01236J crossref_primary_10_1016_j_microc_2021_106907 crossref_primary_10_1021_acscentsci_1c01571 crossref_primary_10_1016_j_jelechem_2022_116306 crossref_primary_10_1016_j_supmat_2023_100039 crossref_primary_10_1021_acs_cgd_1c01426 crossref_primary_10_1016_j_bioelechem_2024_108677 crossref_primary_10_1016_j_cclet_2024_109787 crossref_primary_10_1016_j_ccr_2024_216302 crossref_primary_10_1039_D2QI00152G crossref_primary_10_1002_smll_202408147 crossref_primary_10_1016_j_microc_2024_111569 crossref_primary_10_1016_j_trac_2024_117864 crossref_primary_10_1021_jacs_4c06046 crossref_primary_10_1039_D3SC01630G crossref_primary_10_1002_smll_202301460 crossref_primary_10_1007_s10337_022_04128_0 crossref_primary_10_1002_anie_202424859 crossref_primary_10_1016_j_chroma_2024_464799 crossref_primary_10_1016_j_chroma_2022_463341 crossref_primary_10_1021_acsami_1c13438 crossref_primary_10_1002_ange_202424859 crossref_primary_10_1002_marc_202400535 crossref_primary_10_1039_D3CS00939D crossref_primary_10_1002_anie_202419916 crossref_primary_10_1016_j_foodchem_2024_141816 crossref_primary_10_1021_acs_analchem_1c01903 crossref_primary_10_1002_chem_202401091 crossref_primary_10_1016_j_seppur_2022_123077 crossref_primary_10_1016_j_aca_2024_343377 crossref_primary_10_1002_cjoc_202200690 crossref_primary_10_1007_s00604_021_04840_y crossref_primary_10_1007_s41664_024_00340_z crossref_primary_10_1021_jacs_3c14230 crossref_primary_10_1016_j_sampre_2025_100151 crossref_primary_10_1021_acs_analchem_3c01178 crossref_primary_10_1039_D3NJ05461F crossref_primary_10_1016_j_jssc_2024_125090 crossref_primary_10_1016_j_ceja_2023_100510 crossref_primary_10_1021_jacs_1c11051 crossref_primary_10_1007_s10118_024_3249_7 crossref_primary_10_1016_j_chroma_2023_464367 crossref_primary_10_1016_j_bios_2024_116336 crossref_primary_10_1039_D1CE00630D crossref_primary_10_1002_jssc_202400148 crossref_primary_10_1039_D2RA01239A crossref_primary_10_1039_D2CS00232A crossref_primary_10_1016_j_jssc_2024_125028 crossref_primary_10_1039_D1RA06590D crossref_primary_10_1039_D2AN00993E crossref_primary_10_1002_marc_202300555 crossref_primary_10_1002_jssc_202200637 crossref_primary_10_1016_j_seppur_2024_129804 crossref_primary_10_1039_D2SC02436E crossref_primary_10_1021_acsnano_2c01592 crossref_primary_10_1038_s41467_024_55473_7 crossref_primary_10_1016_j_chroma_2024_465228 crossref_primary_10_1016_j_chroma_2024_465349 crossref_primary_10_1021_acssensors_2c02320 |
Cites_doi | 10.1021/cr8005558 10.1038/nchem.738 10.1039/c1cc14893a 10.1002/anie.201307340 10.1021/jacs.5b08773 10.1021/jacs.7b11747 10.1016/j.chempr.2017.07.004 10.1038/ncomms5406 10.1039/C8CS00688A 10.1002/adma.201000197 10.1039/c2cc33939k 10.1021/acscentsci.7b00197 10.1021/ja2044453 10.1021/jacs.6b01663 10.1021/acs.chemrev.5b00317 10.1107/S0021889802022112 10.1021/acschemneuro.0c00254 10.1016/S0021-9673(01)81756-8 10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5 10.1021/ac403674p 10.1021/jacs.9b06500 10.1021/jacs.0c07081 10.1021/jacs.9b02294 10.1021/ar2002599 10.1039/c000408c 10.1021/jacs.7b12110 10.1039/C8TA06804F 10.1016/0021-9673(95)01198-6 10.1021/jm5018913 10.1002/anie.201810571 10.1002/elps.201400079 10.1021/ja00789a051 10.1021/jacs.7b09973 10.1016/S0021-9673(99)00202-2 10.1021/ja8057953 10.1021/acs.jmedchem.5b00612 10.1039/b808881k 10.1021/jacs.9b02947 10.1039/C8CS00657A 10.1039/D0CS00009D 10.1021/jacs.0c00637 10.1126/science.aaz8881 10.1039/C5CS00837A 10.1126/science.1230444 10.1016/S0021-9673(98)00606-2 10.1039/c3cc41966e 10.1021/jacs.5b12860 10.1021/ar50121a002 10.1039/b718359n 10.1021/acs.chemrev.8b00246 10.1016/j.ces.2014.10.012 10.1021/ac202892w 10.1021/jacs.8b12372 10.1039/c8cs00657a 10.1039/c5cs00837a 10.1038/NCHEM.738 10.1039/c8ta06804f 10.1039/d0cs00009d 10.1039/c8cs00688a |
ContentType | Journal Article |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HGBXW NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c11276 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2021 PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Web of Science AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 398 |
ExternalDocumentID | 33356210 000611083700048 10_1021_jacs_0c11276 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shanghai Rising-Star Program grantid: 19QA1404300 – fundername: National Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21620102001; 91856204; 91956124; 21875136 – fundername: China Postdoctoral Science Foundation grantid: 2020M681280 – fundername: Key Project of Basic Research of Shanghai grantid: 17JC1403100; 18JC1413200 – fundername: National Key Basic Research Program of China; National Basic Research Program of China grantid: 2016YFA0203400 |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CITATION CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW YQT YZZ ZCA ~02 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM VQA YIN 7X8 7S9 AETEA AHDLI L.6 |
ID | FETCH-LOGICAL-c390t-760da1a92277e04a9deb531a6a9cf3bfe338f5b1f3750e1515862a2d00d776be3 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 157 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000611083700048 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 21 09:31:14 EDT 2025 Mon Jul 21 11:29:04 EDT 2025 Wed Feb 19 02:28:16 EST 2025 Wed Aug 06 10:11:51 EDT 2025 Fri Aug 29 16:25:23 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DESIGN RECOGNITION MOF ENANTIOMERS RESOLUTION CHEMISTRY DERIVATIVES RACEMIC AMINO-ACIDS |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c390t-760da1a92277e04a9deb531a6a9cf3bfe338f5b1f3750e1515862a2d00d776be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4118-5297 0000-0002-7560-519X 0000-0003-1977-0470 0000-0003-1310-9024 0000-0002-3398-9332 |
PMID | 33356210 |
PQID | 2473421333 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2524269386 crossref_citationtrail_10_1021_jacs_0c11276 webofscience_primary_000611083700048CitationCount webofscience_primary_000611083700048 crossref_primary_10_1021_jacs_0c11276 proquest_miscellaneous_2473421333 pubmed_primary_33356210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-13 |
PublicationDateYYYYMMDD | 2021-01-13 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J Am Chem Soc |
PublicationYear | 2021 |
Publisher | Amer Chemical Soc |
Publisher_xml | – name: Amer Chemical Soc |
References | ref17/cit17b ref17/cit17c ref17/cit17a ref13/cit13a ref13/cit13b ref2/cit2b ref2/cit2a ref1/cit1a ref1/cit1b ref5/cit5b ref5/cit5c ref5/cit5a ref16/cit16c ref16/cit16b ref16/cit16a ref3/cit3b ref3/cit3c ref11/cit11b ref3/cit3a ref11/cit11a ref7/cit7c ref7/cit7b ref7/cit7a ref5/cit5f ref5/cit5d ref5/cit5e ref10/cit10c1 ref10/cit10d ref9/cit9b ref9/cit9a ref8/cit8a ref10/cit10a ref8/cit8c ref10/cit10b ref8/cit8b ref10/cit10c ref8/cit8e ref8/cit8d ref8/cit8g ref8/cit8f ref6/cit6d ref18/cit18b ref4/cit4a ref4/cit4b ref4/cit4c ref18/cit18a ref14/cit14a ref12/cit12 ref14/cit14b ref15/cit15 ref6/cit6a ref6/cit6b ref6/cit6c Ward, TJ (WOS:000299134400007) 2012; 84 Wang, B (WOS:000376331000022) 2016; 138 Xie, SM (WOS:000293768400021) 2011; 133 Sancho, R (WOS:000263715000012) 2009; 38 Berthod, A (WOS:A1996UK38700013) 1996; 731 Ma, LQ (WOS:000282091300016) 2010; 2 Kirchon, A (WOS:000451657800005) 2018; 47 Kent, CN (WOS:000542930500008) 2020; 11 Bicchi, C (WOS:000080949600004) 1999; 843 Zhang, SY (WOS:000408622600012) 2017; 3 Gong, W (WOS:000467781600034) 2019; 141 Yan, Y (WOS:000428356000024) 2018; 140 Okamoto, Y (WOS:000261170900001) 2008; 37 Zhang, SN (WOS:000453348900028) 2018; 57 Pang, JD (WOS:000416496400068) 2017; 139 SHINBO, T (WOS:A1987K203800012) 1987; 405 Brown, KM (WOS:000360415800002) 2015; 58 Shen, J (WOS:000370216000009) 2016; 116 Tanaka, K (WOS:000306945800035) 2012; 48 Zhang, MW (WOS:000330983300031) 2014; 53 Liu, Y (WOS:000283392000002) 2010; 22 Peng, YW (WOS:000340618900007) 2014; 5 Jiang, H (WOS:000537734000010) 2020; 142 Kuang, X (WOS:000330204500043) 2014; 86 Hang, X (WOS:000423496700010) 2018; 140 Cavka, JH (WOS:000260047700020) 2008; 130 Bai, Y (WOS:000374403800014) 2016; 45 KYBA, EB (WOS:A1973P411000051) 1973; 95 Kasprzyk-Hordern, B (WOS:000283141300031) 2010; 39 Zhang, M (WOS:000318790500025) 2013; 49 CRAM, DJ (WOS:A1978EG89100002) 1978; 11 Angeli, GK (WOS:000573374400039) 2020; 142 Duerinck, T (WOS:000349447000020) 2015; 124 Kou, WT (WOS:000448340100003) 2018; 6 Hartlieb, KJ (WOS:000371103900042) 2016; 138 Ikai, T (WOS:000271856900025) 2009; 109 Hendon, CH (WOS:000404825000010) 2017; 3 Chen, ZJ (WOS:000526525400048) 2020; 368 Zuvela, P (WOS:000462950700004) 2019; 119 Furukawa, H (WOS:000323652300033) 2013; 341 Han, X (WOS:000570357800006) 2020; 49 Li, XJ (WOS:000342910300005) 2014; 35 Gu, ZY (WOS:000303965300006) 2012; 45 Padmanaban, M (WOS:000296342800014) 2011; 47 Zhang, JY (WOS:000468628400002) 2019; 48 Weigel, LF (WOS:000362701600008) 2015; 58 Corella-Ochoa, N (WOS:000486361800042) 2019; 141 Hyun, MH (WOS:000076480900019) 1998; 822 Spek, AL (WOS:000180457300002) 2003; 36 Xu, HQ (WOS:000363916600001) 2015; 137 Okamoto, Y (WOS:000073570300001) 1998; 37 Lv, XL (WOS:000474669700021) 2019; 141 Cao, CC (WOS:000459222100052) 2019; 141 |
References_xml | – ident: ref3/cit3b doi: 10.1021/cr8005558 – ident: ref13/cit13b doi: 10.1038/nchem.738 – ident: ref8/cit8a doi: 10.1039/c1cc14893a – ident: ref10/cit10b doi: 10.1002/anie.201307340 – ident: ref5/cit5f doi: 10.1021/jacs.5b08773 – ident: ref10/cit10c1 doi: 10.1021/jacs.7b11747 – ident: ref7/cit7b doi: 10.1016/j.chempr.2017.07.004 – ident: ref8/cit8d doi: 10.1038/ncomms5406 – ident: ref5/cit5c doi: 10.1039/C8CS00688A – ident: ref1/cit1b doi: 10.1002/adma.201000197 – ident: ref8/cit8b doi: 10.1039/c2cc33939k – ident: ref5/cit5b doi: 10.1021/acscentsci.7b00197 – ident: ref7/cit7a doi: 10.1021/ja2044453 – ident: ref14/cit14b doi: 10.1021/jacs.6b01663 – ident: ref4/cit4c doi: 10.1021/acs.chemrev.5b00317 – ident: ref12/cit12 doi: 10.1107/S0021889802022112 – ident: ref18/cit18a doi: 10.1021/acschemneuro.0c00254 – ident: ref17/cit17a doi: 10.1016/S0021-9673(01)81756-8 – ident: ref4/cit4a doi: 10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5 – ident: ref8/cit8e doi: 10.1021/ac403674p – ident: ref8/cit8g doi: 10.1021/jacs.9b06500 – ident: ref10/cit10d doi: 10.1021/jacs.0c07081 – ident: ref13/cit13a doi: 10.1021/jacs.9b02294 – ident: ref6/cit6a doi: 10.1021/ar2002599 – ident: ref1/cit1a doi: 10.1039/c000408c – ident: ref16/cit16a doi: 10.1021/jacs.7b12110 – ident: ref7/cit7c doi: 10.1039/C8TA06804F – ident: ref17/cit17c doi: 10.1016/0021-9673(95)01198-6 – ident: ref18/cit18b doi: 10.1021/jm5018913 – ident: ref16/cit16b doi: 10.1002/anie.201810571 – ident: ref6/cit6c doi: 10.1002/elps.201400079 – ident: ref11/cit11a doi: 10.1021/ja00789a051 – ident: ref10/cit10c doi: 10.1021/jacs.7b09973 – ident: ref4/cit4b doi: 10.1016/S0021-9673(99)00202-2 – ident: ref9/cit9a doi: 10.1021/ja8057953 – ident: ref15/cit15 doi: 10.1021/acs.jmedchem.5b00612 – ident: ref2/cit2b doi: 10.1039/b808881k – ident: ref14/cit14a doi: 10.1021/jacs.9b02947 – ident: ref6/cit6d doi: 10.1039/C8CS00657A – ident: ref16/cit16c doi: 10.1039/D0CS00009D – ident: ref10/cit10a doi: 10.1021/jacs.0c00637 – ident: ref5/cit5d doi: 10.1126/science.aaz8881 – ident: ref9/cit9b doi: 10.1039/C5CS00837A – ident: ref5/cit5a doi: 10.1126/science.1230444 – ident: ref17/cit17b doi: 10.1016/S0021-9673(98)00606-2 – ident: ref8/cit8c doi: 10.1039/c3cc41966e – ident: ref8/cit8f doi: 10.1021/jacs.5b12860 – ident: ref11/cit11b doi: 10.1021/ar50121a002 – ident: ref3/cit3c doi: 10.1039/b718359n – ident: ref3/cit3a doi: 10.1021/acs.chemrev.8b00246 – ident: ref6/cit6b doi: 10.1016/j.ces.2014.10.012 – ident: ref2/cit2a doi: 10.1021/ac202892w – ident: ref5/cit5e doi: 10.1021/jacs.8b12372 – volume: 124 start-page: 179 year: 2015 ident: WOS:000349447000020 article-title: Metal-organic frameworks as stationary phases for chiral chromatographic and membrane separations publication-title: CHEMICAL ENGINEERING SCIENCE doi: 10.1016/j.ces.2014.10.012 – volume: 822 start-page: 155 year: 1998 ident: WOS:000076480900019 article-title: Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether publication-title: JOURNAL OF CHROMATOGRAPHY A – volume: 39 start-page: 4466 year: 2010 ident: WOS:000283141300031 article-title: Pharmacologically active compounds in the environment and their chirality publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c000408c – volume: 341 start-page: 974 year: 2013 ident: WOS:000323652300033 article-title: The Chemistry and Applications of Metal-Organic Frameworks publication-title: SCIENCE doi: 10.1126/science.1230444 – volume: 57 start-page: 16754 year: 2018 ident: WOS:000453348900028 article-title: Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201810571 – volume: 48 start-page: 2566 year: 2019 ident: WOS:000468628400002 article-title: Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00657a – volume: 141 start-page: 2589 year: 2019 ident: WOS:000459222100052 article-title: Catalysis through Dynamic Spacer Installation of Multivariate Functionalities in Metal-Organic Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b12372 – volume: 3 start-page: 281 year: 2017 ident: WOS:000408622600012 article-title: A Chiral Metal-Organic Material that Enables Enantiomeric Identification and Purification publication-title: CHEM doi: 10.1016/j.chempr.2017.07.004 – volume: 22 start-page: 4112 year: 2010 ident: WOS:000283392000002 article-title: Engineering Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201000197 – volume: 137 start-page: 13440 year: 2015 ident: WOS:000363916600001 article-title: Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b08773 – volume: 35 start-page: 2733 year: 2014 ident: WOS:000342910300005 article-title: Applications of homochiral metal-organic frameworks in enantioselective adsorption and chromatography separation publication-title: ELECTROPHORESIS doi: 10.1002/elps.201400079 – volume: 109 start-page: 6077 year: 2009 ident: WOS:000271856900025 article-title: Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography publication-title: CHEMICAL REVIEWS doi: 10.1021/cr8005558 – volume: 3 start-page: 554 year: 2017 ident: WOS:000404825000010 article-title: Grand Challenges and Future Opportunities for Metal-Organic Frameworks publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.7b00197 – volume: 11 start-page: 8 year: 1978 ident: WOS:A1978EG89100002 article-title: DESIGN OF COMPLEXES BETWEEN SYNTHETIC HOSTS AND ORGANIC GUESTS publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 45 start-page: 2327 year: 2016 ident: WOS:000374403800014 article-title: Zr-based metal-organic frameworks: design, synthesis, structure, and applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00837a – volume: 36 start-page: 7 year: 2003 ident: WOS:000180457300002 article-title: Single-crystal structure validation with the program PLATON publication-title: JOURNAL OF APPLIED CRYSTALLOGRAPHY doi: 10.1107/S0021889802022112 – volume: 11 start-page: 1740 year: 2020 ident: WOS:000542930500008 article-title: Classics in Chemical Neuroscience: Baclofen publication-title: ACS CHEMICAL NEUROSCIENCE doi: 10.1021/acschemneuro.0c00254 – volume: 37 start-page: 2593 year: 2008 ident: WOS:000261170900001 article-title: Chiral HPLC for efficient resolution of enantiomers publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b808881k – volume: 58 start-page: 6336 year: 2015 ident: WOS:000360415800002 article-title: Activation of the gamma-Aminobutyric Acid Type B (GABA(B)) Receptor by Agonists and Positive Allosteric Modulators publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm5018913 – volume: 140 start-page: 3952 year: 2018 ident: WOS:000428356000024 article-title: Unusual and Tunable Negative Linear Compressibility in the Metal-Organic Framework MFM-133(M) (M = Zr, Hf) publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b11747 – volume: 53 start-page: 815 year: 2014 ident: WOS:000330983300031 article-title: Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks with Fluorite Topology publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201307340 – volume: 138 start-page: 2292 year: 2016 ident: WOS:000371103900042 article-title: CD-MOF: A Versatile Separation Medium publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b12860 – volume: 119 start-page: 3674 year: 2019 ident: WOS:000462950700004 article-title: Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.8b00246 – volume: 140 start-page: 892 year: 2018 ident: WOS:000423496700010 article-title: Chiral 3D Covalent Organic Frameworks for High Performance Liquid Chromatographic Enantioseparation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b12110 – volume: 141 start-page: 7498 year: 2019 ident: WOS:000467781600034 article-title: Highly Stable Zr(IV)-Based Metal-Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02294 – volume: 843 start-page: 99 year: 1999 ident: WOS:000080949600004 article-title: Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields publication-title: JOURNAL OF CHROMATOGRAPHY A – volume: 95 start-page: 2692 year: 1973 ident: WOS:A1973P411000051 article-title: CHIRAL RECOGNITION IN MOLECULAR COMPLEXING publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 142 start-page: 9642 year: 2020 ident: WOS:000537734000010 article-title: Topology-Based Functionalization of Robust Chiral Zr-Based Metal-Organic Frameworks for Catalytic Enantioselective Hydrogenation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c00637 – volume: 130 start-page: 13850 year: 2008 ident: WOS:000260047700020 article-title: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja8057953 – volume: 368 start-page: 297 year: 2020 ident: WOS:000526525400048 article-title: Balancing volumetric and gravimetric uptake in highly porous materials for clean energy publication-title: SCIENCE doi: 10.1126/science.aaz8881 – volume: 2 start-page: 838 year: 2010 ident: WOS:000282091300016 article-title: A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.738 – volume: 47 start-page: 12089 year: 2011 ident: WOS:000296342800014 article-title: Application of a chiral metal-organic framework in enantioselective separation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c1cc14893a – volume: 142 start-page: 15986 year: 2020 ident: WOS:000573374400039 article-title: Remarkable Structural Diversity between Zr/Hf and Rare-Earth MOFs via Ligand Functionalization and the Discovery of Unique (4,8)-c and (4,12)-connected Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c07081 – volume: 86 start-page: 1277 year: 2014 ident: WOS:000330204500043 article-title: High-Performance Liquid Chromatographic Enantioseparation of Racemic Drugs Based on Homochiral Metal-Organic Framework publication-title: ANALYTICAL CHEMISTRY doi: 10.1021/ac403674p – volume: 141 start-page: 10283 year: 2019 ident: WOS:000474669700021 article-title: Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02947 – volume: 58 start-page: 7719 year: 2015 ident: WOS:000362701600008 article-title: Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.5b00612 – volume: 116 start-page: 1094 year: 2016 ident: WOS:000370216000009 article-title: Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00317 – volume: 6 start-page: 17861 year: 2018 ident: WOS:000448340100003 article-title: Post-synthetic modification of metal-organic frameworks for chiral gas chromatography publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c8ta06804f – volume: 48 start-page: 8577 year: 2012 ident: WOS:000306945800035 article-title: Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF-silica composite publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c2cc33939k – volume: 141 start-page: 14306 year: 2019 ident: WOS:000486361800042 article-title: Homochiral Metal-Organic Frameworks for Enantioselective Separations in Liquid Chromatography publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b06500 – volume: 405 start-page: 145 year: 1987 ident: WOS:A1987K203800012 article-title: CHROMATOGRAPHIC-SEPARATION OF RACEMIC AMINO-ACIDS BY USE OF CHIRAL CROWN ETHER-COATED REVERSED-PHASE PACKINGS publication-title: JOURNAL OF CHROMATOGRAPHY – volume: 49 start-page: 5201 year: 2013 ident: WOS:000318790500025 article-title: Chiral recognition of a 3D chiral nanoporous metal-organic framework publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc41966e – volume: 731 start-page: 123 year: 1996 ident: WOS:A1996UK38700013 article-title: Facile liquid chromatographic enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase publication-title: JOURNAL OF CHROMATOGRAPHY A – volume: 138 start-page: 6204 year: 2016 ident: WOS:000376331000022 article-title: Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b01663 – volume: 139 start-page: 16939 year: 2017 ident: WOS:000416496400068 article-title: Control the Structure of Zr-Tetracarboxylate Frameworks through Steric Tuning publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b09973 – volume: 49 start-page: 6248 year: 2020 ident: WOS:000570357800006 article-title: Chiral covalent organic frameworks: design, synthesis and property publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00009d – volume: 38 start-page: 797 year: 2009 ident: WOS:000263715000012 article-title: The chromatographic separation of enantiomers through nanoscale design publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b718359n – volume: 47 start-page: 8611 year: 2018 ident: WOS:000451657800005 article-title: From fundamentals to applications: a toolbox for robust and multifunctional MOF materials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00688a – volume: 133 start-page: 11892 year: 2011 ident: WOS:000293768400021 article-title: Chiral Metal-Organic Frameworks for High-Resolution Gas Chromatographic Separations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja2044453 – volume: 37 start-page: 1020 year: 1998 ident: WOS:000073570300001 article-title: Polysaccharide derivatives for chromatographic separation of enantiomers publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 45 start-page: 734 year: 2012 ident: WOS:000303965300006 article-title: Metal-Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar2002599 – volume: 84 start-page: 626 year: 2012 ident: WOS:000299134400007 article-title: Chiral Separations: A Review of Current Topics and Trends publication-title: ANALYTICAL CHEMISTRY doi: 10.1021/ac202892w – volume: 5 start-page: ARTN 4406 year: 2014 ident: WOS:000340618900007 article-title: Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms5406 |
SSID | ssj0004281 |
Score | 2.6502018 |
Snippet | Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs)... Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal–organic frameworks (MOFs)... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 390 |
SubjectTerms | Chemistry Chemistry, Multidisciplinary durability enantiomers influenza ligands pharmacology Physical Sciences reversed-phase high performance liquid chromatography reversed-phase liquid chromatography Science & Technology stereoselectivity topology |
Title | Highly Stable Zr(IV)-Based Metal–Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography |
URI | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000611083700048 https://www.ncbi.nlm.nih.gov/pubmed/33356210 https://www.proquest.com/docview/2473421333 https://www.proquest.com/docview/2524269386 |
Volume | 143 |
WOS | 000611083700048 |
WOSCitedRecordID | wos000611083700048 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELYQF7gU-oJAW7kSlYoqR36tnT3SVVOoSlVBqRCXle31KhHRBpLNAU78h_7D_pKO9xFaKI_zjmdle-z5RjPzGaEtMIko10qSQEZHpMoVMVRxEqhBtLHcR1UqZv-b2j2SX46j4-sC2ZsZfB74gdy0Sx3gAl0xa2sZKPJ3ksPr9kfeYy3K1T0lmvr2m4P_9Ty34OR_PU_lZfor6HPbq1MXl5x2Z6Xtusvb1I0PTGAVPWmAJt6pLeMpWvDFM7SUtO-7PUfTUOIxusAAN-3I45PJ-72f2-QjeLUM73vA5L-vftWdmg732xKuKQaQi5PBcAK6D31NHD4u8LDABz5UePiMfB-ADvx1eD4bZjiQ7wIoboixX6Cj_qcfyS5pnmAgTsS0JFrRzDATc661p9LEmbdwao0yscuFzT1EuHlkWS4AefgAjiBCMjyjNNNaWS9eosViXPh1hGUMsSSPneQUQkJnYmpiC3cc0865jEcd9KHdntQ1_OThmYxRWuXJOcQpsJBps5Ad9G4ufVbzctwh97bd6RTWN2RDTOHHs2nKpRaSQ4gu7pGJqlZf0QM9a7WZzP8GAwE7MtpBW3_bzfx7hQ4ZDeRC4ZrsIPYYsaSZeWAkKDceOclNtMxDqQ1lhIlXaLGczPxrwEqlfVOdlD813g03 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stable+Zr%28IV%29-Based+Metal-Organic+Frameworks+for+Chiral+Separation+in+Reversed-Phase+Liquid+Chromatography&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Jiang%2C+Hong&rft.au=Yang%2C+Kuiwei&rft.au=Zhao%2C+Xiangxiang&rft.au=Zhang%2C+Wenqiang&rft.date=2021-01-13&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=143&rft.issue=1&rft.spage=390&rft_id=info:doi/10.1021%2Fjacs.0c11276&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |