Modelling cavitation during drop impact on solid surfaces

The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 260; pp. 46 - 64
Main Authors Kyriazis, Nikolaos, Koukouvinis, Phoevos, Gavaises, Manolis
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text
ISSN0001-8686
1873-3727
1873-3727
DOI10.1016/j.cis.2018.08.004

Cover

Abstract The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end. [Display omitted] •Compressibility and cavitation effects induced during droplet impact on a solid flat surface are investigated.•A multi-phase density-based solver is developed, modelling the coexistence of liquid, non-condensable gas and vapour phases.•The solver is validated against shock tube cases and experimental results for a planar ‘drop’ impact.•Formation and collapse of cavitation regions due to reflection of shock wave on the drop surface are simulated.•The amount of vapour generated inside the drop and the pressure loading on the wall for varying impact velocity are examined.
AbstractList The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end.
The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end.The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end.
The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end. [Display omitted] •Compressibility and cavitation effects induced during droplet impact on a solid flat surface are investigated.•A multi-phase density-based solver is developed, modelling the coexistence of liquid, non-condensable gas and vapour phases.•The solver is validated against shock tube cases and experimental results for a planar ‘drop’ impact.•Formation and collapse of cavitation regions due to reflection of shock wave on the drop surface are simulated.•The amount of vapour generated inside the drop and the pressure loading on the wall for varying impact velocity are examined.
Author Gavaises, Manolis
Kyriazis, Nikolaos
Koukouvinis, Phoevos
Author_xml – sequence: 1
  givenname: Nikolaos
  surname: Kyriazis
  fullname: Kyriazis, Nikolaos
  email: nikolaos.kyriazis@city.ac.uk
– sequence: 2
  givenname: Phoevos
  orcidid: 0000-0002-3945-3707
  surname: Koukouvinis
  fullname: Koukouvinis, Phoevos
– sequence: 3
  givenname: Manolis
  surname: Gavaises
  fullname: Gavaises, Manolis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30195460$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1r4zAQhkXp0qTd_oBeio-9OB1Zsj7oqZR-Qcpeds9CkcZFwbFSyS70369C0j3sITAgZnjeQfOck9MhDkjIFYUFBSpu1wsX8qIBqhZQCvgJmVMlWc1kI0_JHABorYQSM3Ke87q0TSvbMzJjQHXLBcyJfose-z4M75Wzn2G0Y4hD5ae0m_gUt1XYbK0bqzLNsQ--ylPqrMP8k_zobJ_x8vBekD9Pj78fXurlr-fXh_tl7ZiGsZaMI1eUSy84MrVS2iL3vhWyY0J62bRi1aiWS4krrXQjOy6BgXBadA69ZhfkZr93m-LHhHk0m5Bd-bMdME7ZNEWFpoICK-j1AZ1WG_Rmm8LGpi_zfW4B6B5wKeacsPuHUDA7pWZtilKzU2qgFPCSkf9l3EHTmGzojybv9kksej4DJpNdwKFcFRK60fgYjqT_AgXgjow
CitedBy_id crossref_primary_10_1177_1468087421993348
crossref_primary_10_1016_j_sna_2024_115937
crossref_primary_10_3390_en14102923
crossref_primary_10_1016_j_jaecs_2021_100037
crossref_primary_10_1109_TBME_2021_3100542
crossref_primary_10_1016_j_compfluid_2020_104648
crossref_primary_10_1063_5_0136536
crossref_primary_10_1016_j_jwpe_2021_102097
crossref_primary_10_1098_rspa_2018_0548
crossref_primary_10_1088_1742_6596_1399_3_033001
crossref_primary_10_1103_PhysRevFluids_7_103604
crossref_primary_10_1063_5_0127105
crossref_primary_10_1063_5_0151404
crossref_primary_10_1088_1742_6596_2094_3_032022
crossref_primary_10_1007_s00348_025_03996_0
crossref_primary_10_1063_5_0071781
crossref_primary_10_1017_jfm_2020_926
crossref_primary_10_1016_j_fuel_2020_117871
crossref_primary_10_1016_j_ijmecsci_2024_109386
crossref_primary_10_1016_j_triboint_2023_108297
crossref_primary_10_1134_S1995080223050256
crossref_primary_10_1002_fld_5026
crossref_primary_10_1016_j_jcp_2019_109225
crossref_primary_10_1063_5_0232109
crossref_primary_10_1016_j_ultsonch_2023_106663
crossref_primary_10_1017_jfm_2024_472
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104847
crossref_primary_10_1016_j_ijmecsci_2023_108824
crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_001
crossref_primary_10_1016_j_applthermaleng_2023_121773
crossref_primary_10_1063_5_0145568
crossref_primary_10_1017_jfm_2023_542
crossref_primary_10_1051_epjconf_202532101008
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121559
Cites_doi 10.2320/matertrans.MRA2008025
10.1016/j.ijimpeng.2008.07.020
10.1006/jcph.2002.6992
10.1115/1.1486223
10.1002/fld.975
10.1016/j.ijmultiphaseflow.2011.03.007
10.1063/1.1657361
10.1063/1.1401810
10.1103/PhysRevE.72.046309
10.1146/annurev.fluid.31.1.567
10.1063/1.1495533
10.1063/1.858724
10.1017/S0022112098008738
10.1098/rsos.160405
10.1016/j.fuproc.2016.09.012
10.1088/1742-6596/656/1/012160
10.1063/1.4813813
10.1016/j.foodres.2013.07.042
10.1016/j.colsurfa.2008.03.005
10.1109/TUFFC.2005.1561623
10.1016/j.euromechflu.2013.01.003
10.1016/j.cocis.2011.06.009
10.1016/S0045-7930(02)00010-5
10.1016/0167-2789(92)90228-F
10.1063/1.343136
10.1016/j.wear.2011.09.006
10.1017/S002211209200003X
10.1016/j.proci.2014.06.072
10.1063/1.4928701
10.1098/rspa.1985.0096
10.1016/j.ces.2015.01.056
10.1017/jfm.2011.85
10.1016/j.compfluid.2016.05.018
10.1016/S0021-9991(03)00298-5
10.1063/1.2911039
10.1098/rspa.1981.0125
10.1016/j.jcp.2010.06.025
10.1080/713836348
10.1016/j.compfluid.2014.03.027
10.1088/0169-5983/41/6/065001
10.1243/0954406041474200
10.1017/S0022112071001058
10.1146/annurev.fluid.38.050304.092144
10.1088/1742-6596/105/1/012001
10.1007/s00193-013-0482-3
10.1016/j.compfluid.2012.07.020
10.1017/S0022112008002061
10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
10.1016/j.jcp.2011.06.012
10.1016/S0021-9991(03)00011-1
10.1063/1.870005
10.1063/1.868622
10.4208/cicp.291011.270112s
10.1115/1.1521956
10.1016/j.ijmultiphaseflow.2014.11.009
10.1016/j.wear.2012.03.006
10.1137/S0036139998343198
10.1006/jcph.1996.0200
10.1016/0169-5983(93)90106-K
10.1063/1.4958694
10.1016/j.ijmultiphaseflow.2017.04.004
10.1017/S0022112008003777
10.1016/0021-9991(81)90145-5
10.1016/S0142-727X(00)00086-2
10.1016/S0045-7930(99)00039-0
10.1137/S1064827597323749
10.1016/S0045-7930(98)00017-6
10.1017/S0022112093003027
10.1063/1.1928828
10.1063/1.1709031
10.1017/S0022112075003448
10.1115/1.1486474
10.1177/1468087416658604
10.1063/1.868124
10.1016/j.ijheatmasstransfer.2003.05.001
10.1016/j.jcp.2007.06.020
10.1098/rspa.2000.0649
10.1017/jfm.2011.380
10.1063/1.3205446
10.1016/j.ultsonch.2015.04.026
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cis.2018.08.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1873-3727
EndPage 64
ExternalDocumentID 30195460
10_1016_j_cis_2018_08_004
S0001868618301398
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c390t-734e48147d64e38b89ae4dd567f367d7256b285477eb98927f470306c96fced93
IEDL.DBID AIKHN
ISSN 0001-8686
1873-3727
IngestDate Fri Sep 05 08:31:33 EDT 2025
Thu Apr 03 07:05:04 EDT 2025
Tue Jul 01 03:12:02 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 23 02:17:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords OpenFOAM
Approximate Riemann solvers
Drop impact
Cavitation
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-734e48147d64e38b89ae4dd567f367d7256b285477eb98927f470306c96fced93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3945-3707
PMID 30195460
PQID 2101916103
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2101916103
pubmed_primary_30195460
crossref_primary_10_1016_j_cis_2018_08_004
crossref_citationtrail_10_1016_j_cis_2018_08_004
elsevier_sciencedirect_doi_10_1016_j_cis_2018_08_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advances in colloid and interface science
PublicationTitleAlternate Adv Colloid Interface Sci
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Crane (bb0010) 2004; 218
Kyriazis, Koukouvinis, Gavaises (bb0480) 2017; 93
Toro (bb0610) 2009
Varas, Zaera, López-Puente (bb0450) 2009; 36
Bussmann, Mostaghimi, Chandra (bb0115) 1999; 11
Zhou, Li, Chen, Yonezu, Xu, Hui (bb0045) 2008; 49
Zhang, Duncan, Chahine (bb0245) 1994
Wagner, Pruß (bb0640) 2002; 31
Aniszewski, Ménard, Marek (bb0085) 2014; 97
Singhal, Athavale, Li, Jiang (bb0375) 2002; 124
Rossinelli, Hejazialhosseini, Hadjidoukas, Bekas, Curioni, Bertsch (bb0290) 2013
Munz, Roller, Klein, Geratz (bb0595) 2003; 32
Zhangrui, Sun, Zong (bb0255) 2013; 83
Nagrath, Jansen, Lahey, Akhatov (bb0310) 2006; 215
van der Heul, Vuik, Wesseling (bb0590) 2000
Lemmon, McLinden, Friend (bb0645) 2005
Miller, Puckett (bb0190) 1996; 128
Moss, Levantin, Szeri (bb0425) 2000; 456
Harlow, Shannon (bb0065) 1967; 38
Curtiss, Leppinen, Wang, Blake (bb0260) 2013; 730
Alajbegovic, Grogger, Philipp (bb0365) 1999
Marengo, Antonini, Roisman, Tropea (bb0125) 2011; 16
Niu, Wang (bb0525) 2016; 134135
Plesset, Chapman (bb0220) 1971; 47
Fukai, Zhao, Poulikakos, Megaridis, Miyatake (bb0035) 1993; 5
G. H. Schnerr, I. H. Sezal, S. J. Schmidt, Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics, Phys Fluids 20 (4) (2008) 040703. arXiv
Tamura, Sugiyama, Matsumoto (bb0390) 2001
.
Pöhl, Mottyll, Skoda, Huth (bb0285) 2014; 330–331
Koukouvinis, Naseri, Gavaises (bb0580) 2017; 18
Yarin, Roisman, Tropea (bb0030) 2017
Meister (bb0605) 1999; 60
Martin, Hoath, Hutchings (bb0020) 2008; 105
doi
Koop (bb0475) 2008
Franc, Riondet, Karimi, Chahine (bb0335) 2012; 274-275
T. Marić, H. Marschall, D. Bothe, vofoam - a geometrical volume of fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using openfoam (arXiv:1305.3417). arXiv:1305.3417v1.
Rein (bb0005) 1993; 12
Haller, Ventikos, Poulikakos, Monkewitz (bb0510) 2002; 92
Zhang, Yao, Feng (bb0250) 2009; 36
Hickel, Mihatsch, Schmidt (bb0345) 2011
Andrade, Skurtys, Osorio (bb0025) 2013; 54
Šikalo, Wilhelm, Roisman, Jakirlić, Tropea (bb0100) 2005; 17
Malgarinos, Nikolopoulos, Gavaises (bb0135) 2017; 156
URL
Li, Jia, Zhang, Lu (bb0295) 2014; 24
Guo, Lian, Sussman (bb0040) 2016; 28
Guillard, Viozat (bb0600) 1999; 28
Koukouvinis, Gavaises, Georgoulas, Marengo (bb0635) 2016
Zhang, Duncan, Chahine (bb0240) 1993; 257
Pasandideh-Fard, Aziz, Chandra, Mostaghimi (bb0110) 2001; 22
Lu, Katz, Prosperetti (bb0435) 2012
Maitre (bb0325) 2006
Greenshields (bb0545) 21 May 2015
Chahine (bb0275) 2014
Kunz, Boger, Stinebring, Chyczewski, Lindau, Gibeling (bb0355) 2000; 29
Jamaluddin, Ball, Thrangan, Leighton (bb0405) 2011; 677
Rudman (bb0080) 1997; 24
Shin (bb0300) 2010
Falcucci, Ubertini, Bella, Succi (bb0460) 2013; 13
Schmidt, Sezal, Schnerr, Talhamer (bb0615) 2008
Matsumoto, Kanbara, Sugiyama, Tamura (bb0380) 1998
Ma, Hsiao, Chahine (bb0560) 2015; 656
J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, R Soc Open Sci 3 (11). doi
Akhatov, Lindau, Topolnikov, Mettin, Vakhitova, Lauterborn (bb0235) 2001; 13
D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn Res 41 (6). URL
Berchiche, Franc, Michel (bb0350) 2002; 124
Buttenbender, Pelz (bb0430) 2012
Ando, Colonius, Brennen (bb0410) 2011; 37
Franc, Michel (bb0585) 2005
Roisman, Opfer, Tropea, Raessi, Mostaghimi, Chandra (bb0120) 2008; 322
Parker, Youngs (bb0140) 1992
Field, Dear, Ogren (bb0055) 1989; 65
Gnanaskandan, Mahesh (bb0540) 2015; 70
Chizhov, Takayama (bb0515) 2004; 47
Xiao, Honma, Kono (bb0160) 2005; 48
Ma, Chahine, Hsiao (bb0565) 2015; 128
Thompson, Lee, Gupta (bb0485) 1991
Umemura, Kawabata, Fau Sasaki, Sasaki (bb0330) 2005; 52
Lacaze, Misdariis, Ruiz, Oefelein (bb0530) 2015; 35
W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence, Phys Fluids 6.
Tryggvason, Scardovelli, Zaleski (bb0270) 2011
Adams, Schmidt (bb0280) 2013
Xiao, Ii, Chen (bb0170) 2011; 230
Scardovelli, Zaleski (bb0145) 1999; 31
Shukla, Pantano, Freund (bb0175) 2010; 229
Li, Sun, Zhi, Dong (bb0265) 2012; 28
Lesser (bb0505) 1981; 377
Puckett, Saltzman (bb0185) 1992; 60
Liu, Shao, Shang (bb0445) 2012
Ardekani, Dabiri, Rangel (bb0130) 2009; 21
Örley, Trummler, Hickel, Mihatsch, Schmidt, Adams (bb0535) 2015; 27
G. H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: ICMF 2001, 4th Int. Conf. on Multiphase Flows, New Orleans, USA, 2001.
Francois, Shyy (bb0095) 2003; 44
Kubota, Kato, Yamaguchi (bb0395) 1992; 240
Mitra, Sathe, Doroodchi, Utikar, Shah, Pareek (bb0105) 2013; 100
J. Dumond, F. Magagnato, A. Class, Stochastic-field cavitation model, Phys Fluids 25(7). doi
McBride, Sanford (bb0490) 1992
Saurel, Petitpas, Abgrall (bb0630) 2008; 607
Sanada, Ando, Colonius (bb0520) 2011; 7
Moukalled, Mangani, Darwish (bb0620) 2015; Vol. 113
Marek, Aniszewski, Boguslawski (bb0155) 2008; 12
Field, Lesser, Dear (bb0050) 1985; 401
Chahine, Kapahi, Choi, Hsiao (bb0340) 2016; 29
Hirt, Nichols (bb0070) 1981; 39
Fuster, T. (bb0415) 2011; 688
Norman, Winkler (bb0180) 1986
Yarin (bb0015) 2006; 38
Giannadakis, Gavaises, Arcoumanis (bb0400) 2008; 616
Youngs (bb0075) 1984
Brennen (bb0570) 1995
Yuan (bb0420) 2005; 72
Field, Camus, Tinguely, Obreschkow, Farhat (bb0060) 2012; 290291
D. P. Garrick, W. A. Hagen, J. D. Regele, An interface capturing scheme for modeling atomization in compressible flows, J Comput Phys doi
Lauer, Hu, Hickel, Adams (bb0315) 2012; 69
S. Adami, J. Kaiser, N. Adams, I. Bermejo-Moreno, Numerical modeling of shock waves in biomedicine, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, pp. 15–24.
Fukai, Shiiba, Yamamoto, Miyatake, Poulikakos, Megaridis (bb0090) 1995; 7
Popinet (bb0210) 2003; 190
W. Yuan, G. Schnerr, Cavitation in injection nozzles - effect of injection pressure fluctuations, in: CAV2001, 4th Int. Symposium on Cavitation, Pasadena, USA, 2001.
Abgrall, Saurel (bb0625) 2003; 186
Johnsen, Colonius (bb0305) 2009; 629
Hsiao, Chahine, Liu (bb0555) 2003; 125
Coralic, Colonius (bb0465) 2013; 40
Lauterborn, Bolle (bb0225) 1975; 72
Hawker, Ventikos (bb0320) 2009
Zwart, Gerber, Belamri (bb0550) 2004
Bourg (bb0455) 2008
Philipp, Lauterborn (bb0230) 1998; 361
Yokoi (bb0150) 2007; 226
Senocak (bb0360) 2002; 176
Saurel, Abgrall (bb0195) 1999; 21
Heymann (bb0500) 1969; 40
Toro (10.1016/j.cis.2018.08.004_bb0610) 2009
Rossinelli (10.1016/j.cis.2018.08.004_bb0290) 2013
Zhang (10.1016/j.cis.2018.08.004_bb0240) 1993; 257
Guillard (10.1016/j.cis.2018.08.004_bb0600) 1999; 28
Ardekani (10.1016/j.cis.2018.08.004_bb0130) 2009; 21
Wagner (10.1016/j.cis.2018.08.004_bb0640) 2002; 31
Lauterborn (10.1016/j.cis.2018.08.004_bb0225) 1975; 72
Ma (10.1016/j.cis.2018.08.004_bb0560) 2015; 656
10.1016/j.cis.2018.08.004_bb0575
Yarin (10.1016/j.cis.2018.08.004_bb0030) 2017
10.1016/j.cis.2018.08.004_bb0215
Fuster (10.1016/j.cis.2018.08.004_bb0415) 2011; 688
Jamaluddin (10.1016/j.cis.2018.08.004_bb0405) 2011; 677
Sanada (10.1016/j.cis.2018.08.004_bb0520) 2011; 7
Hickel (10.1016/j.cis.2018.08.004_bb0345) 2011
Senocak (10.1016/j.cis.2018.08.004_bb0360) 2002; 176
Rudman (10.1016/j.cis.2018.08.004_bb0080) 1997; 24
Yokoi (10.1016/j.cis.2018.08.004_bb0150) 2007; 226
Gnanaskandan (10.1016/j.cis.2018.08.004_bb0540) 2015; 70
Liu (10.1016/j.cis.2018.08.004_bb0445) 2012
Li (10.1016/j.cis.2018.08.004_bb0265) 2012; 28
Lauer (10.1016/j.cis.2018.08.004_bb0315) 2012; 69
Lu (10.1016/j.cis.2018.08.004_bb0435) 2012
Fukai (10.1016/j.cis.2018.08.004_bb0035) 1993; 5
Harlow (10.1016/j.cis.2018.08.004_bb0065) 1967; 38
Lacaze (10.1016/j.cis.2018.08.004_bb0530) 2015; 35
Chahine (10.1016/j.cis.2018.08.004_bb0275) 2014
Matsumoto (10.1016/j.cis.2018.08.004_bb0380) 1998
Parker (10.1016/j.cis.2018.08.004_bb0140) 1992
Curtiss (10.1016/j.cis.2018.08.004_bb0260) 2013; 730
Hawker (10.1016/j.cis.2018.08.004_bb0320) 2009
Saurel (10.1016/j.cis.2018.08.004_bb0195) 1999; 21
Akhatov (10.1016/j.cis.2018.08.004_bb0235) 2001; 13
Franc (10.1016/j.cis.2018.08.004_bb0335) 2012; 274-275
Munz (10.1016/j.cis.2018.08.004_bb0595) 2003; 32
Guo (10.1016/j.cis.2018.08.004_bb0040) 2016; 28
Lesser (10.1016/j.cis.2018.08.004_bb0505) 1981; 377
Hsiao (10.1016/j.cis.2018.08.004_bb0555) 2003; 125
Malgarinos (10.1016/j.cis.2018.08.004_bb0135) 2017; 156
Xiao (10.1016/j.cis.2018.08.004_bb0170) 2011; 230
Popinet (10.1016/j.cis.2018.08.004_bb0210) 2003; 190
Roisman (10.1016/j.cis.2018.08.004_bb0120) 2008; 322
Pöhl (10.1016/j.cis.2018.08.004_bb0285) 2014; 330–331
10.1016/j.cis.2018.08.004_bb0470
Shukla (10.1016/j.cis.2018.08.004_bb0175) 2010; 229
Örley (10.1016/j.cis.2018.08.004_bb0535) 2015; 27
Adams (10.1016/j.cis.2018.08.004_bb0280) 2013
Andrade (10.1016/j.cis.2018.08.004_bb0025) 2013; 54
Philipp (10.1016/j.cis.2018.08.004_bb0230) 1998; 361
Kyriazis (10.1016/j.cis.2018.08.004_bb0480) 2017; 93
Niu (10.1016/j.cis.2018.08.004_bb0525) 2016; 134135
Li (10.1016/j.cis.2018.08.004_bb0295) 2014; 24
Field (10.1016/j.cis.2018.08.004_bb0055) 1989; 65
Yuan (10.1016/j.cis.2018.08.004_bb0420) 2005; 72
Maitre (10.1016/j.cis.2018.08.004_bb0325) 2006
Tamura (10.1016/j.cis.2018.08.004_bb0390) 2001
Rein (10.1016/j.cis.2018.08.004_bb0005) 1993; 12
Mitra (10.1016/j.cis.2018.08.004_bb0105) 2013; 100
Schmidt (10.1016/j.cis.2018.08.004_bb0615) 2008
Kunz (10.1016/j.cis.2018.08.004_bb0355) 2000; 29
10.1016/j.cis.2018.08.004_bb0370
Youngs (10.1016/j.cis.2018.08.004_bb0075) 1984
Field (10.1016/j.cis.2018.08.004_bb0050) 1985; 401
10.1016/j.cis.2018.08.004_bb0495
Crane (10.1016/j.cis.2018.08.004_bb0010) 2004; 218
Zhou (10.1016/j.cis.2018.08.004_bb0045) 2008; 49
Francois (10.1016/j.cis.2018.08.004_bb0095) 2003; 44
Saurel (10.1016/j.cis.2018.08.004_bb0630) 2008; 607
Ando (10.1016/j.cis.2018.08.004_bb0410) 2011; 37
Marengo (10.1016/j.cis.2018.08.004_bb0125) 2011; 16
Zhang (10.1016/j.cis.2018.08.004_bb0250) 2009; 36
Nagrath (10.1016/j.cis.2018.08.004_bb0310) 2006; 215
Falcucci (10.1016/j.cis.2018.08.004_bb0460) 2013; 13
Coralic (10.1016/j.cis.2018.08.004_bb0465) 2013; 40
Norman (10.1016/j.cis.2018.08.004_bb0180) 1986
Xiao (10.1016/j.cis.2018.08.004_bb0160) 2005; 48
Brennen (10.1016/j.cis.2018.08.004_bb0570) 1995
Zhangrui (10.1016/j.cis.2018.08.004_bb0255) 2013; 83
Miller (10.1016/j.cis.2018.08.004_bb0190) 1996; 128
Bussmann (10.1016/j.cis.2018.08.004_bb0115) 1999; 11
Chahine (10.1016/j.cis.2018.08.004_bb0340) 2016; 29
van der Heul (10.1016/j.cis.2018.08.004_bb0590) 2000
Giannadakis (10.1016/j.cis.2018.08.004_bb0400) 2008; 616
Puckett (10.1016/j.cis.2018.08.004_bb0185) 1992; 60
Singhal (10.1016/j.cis.2018.08.004_bb0375) 2002; 124
Greenshields (10.1016/j.cis.2018.08.004_bb0545) 2015
Marek (10.1016/j.cis.2018.08.004_bb0155) 2008; 12
Meister (10.1016/j.cis.2018.08.004_bb0605) 1999; 60
Aniszewski (10.1016/j.cis.2018.08.004_bb0085) 2014; 97
Koop (10.1016/j.cis.2018.08.004_bb0475) 2008
10.1016/j.cis.2018.08.004_bb0385
Hirt (10.1016/j.cis.2018.08.004_bb0070) 1981; 39
Lemmon (10.1016/j.cis.2018.08.004_bb0645) 2005
Abgrall (10.1016/j.cis.2018.08.004_bb0625) 2003; 186
Berchiche (10.1016/j.cis.2018.08.004_bb0350) 2002; 124
Thompson (10.1016/j.cis.2018.08.004_bb0485) 1991
Kubota (10.1016/j.cis.2018.08.004_bb0395) 1992; 240
Scardovelli (10.1016/j.cis.2018.08.004_bb0145) 1999; 31
Umemura (10.1016/j.cis.2018.08.004_bb0330) 2005; 52
Fukai (10.1016/j.cis.2018.08.004_bb0090) 1995; 7
Field (10.1016/j.cis.2018.08.004_bb0060) 2012; 290291
Šikalo (10.1016/j.cis.2018.08.004_bb0100) 2005; 17
Ma (10.1016/j.cis.2018.08.004_bb0565) 2015; 128
Koukouvinis (10.1016/j.cis.2018.08.004_bb0580) 2017; 18
Franc (10.1016/j.cis.2018.08.004_bb0585) 2005
Chizhov (10.1016/j.cis.2018.08.004_bb0515) 2004; 47
Yarin (10.1016/j.cis.2018.08.004_bb0015) 2006; 38
Heymann (10.1016/j.cis.2018.08.004_bb0500) 1969; 40
10.1016/j.cis.2018.08.004_bb0205
Moukalled (10.1016/j.cis.2018.08.004_bb0620) 2015; Vol. 113
Haller (10.1016/j.cis.2018.08.004_bb0510) 2002; 92
Varas (10.1016/j.cis.2018.08.004_bb0450) 2009; 36
Bourg (10.1016/j.cis.2018.08.004_bb0455) 2008
Pasandideh-Fard (10.1016/j.cis.2018.08.004_bb0110) 2001; 22
Martin (10.1016/j.cis.2018.08.004_bb0020) 2008; 105
Tryggvason (10.1016/j.cis.2018.08.004_bb0270) 2011
Koukouvinis (10.1016/j.cis.2018.08.004_bb0635) 2016
Alajbegovic (10.1016/j.cis.2018.08.004_bb0365) 1999
Plesset (10.1016/j.cis.2018.08.004_bb0220) 1971; 47
Shin (10.1016/j.cis.2018.08.004_bb0300) 2010
Moss (10.1016/j.cis.2018.08.004_bb0425) 2000; 456
Johnsen (10.1016/j.cis.2018.08.004_bb0305) 2009; 629
10.1016/j.cis.2018.08.004_bb0165
Buttenbender (10.1016/j.cis.2018.08.004_bb0430) 2012
10.1016/j.cis.2018.08.004_bb0440
Zwart (10.1016/j.cis.2018.08.004_bb0550) 2004
McBride (10.1016/j.cis.2018.08.004_bb0490) 1992
10.1016/j.cis.2018.08.004_bb0200
Zhang (10.1016/j.cis.2018.08.004_bb0245) 1994
References_xml – volume: 70
  start-page: 22
  year: 2015
  end-page: 34
  ident: bb0540
  article-title: A numerical method to simulate turbulent cavitating flows
  publication-title: Int J Multiphase Flow
– year: 1995
  ident: bb0570
  article-title: Cavitation and Bubble Dynamics
– reference: S. Adami, J. Kaiser, N. Adams, I. Bermejo-Moreno, Numerical modeling of shock waves in biomedicine, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, pp. 15–24.
– volume: 49
  start-page: 1606
  year: 2008
  end-page: 1615
  ident: bb0045
  article-title: Water drop erosion on turbine blades: Numerical framework and applications
  publication-title: Mater Trans
– volume: 607
  start-page: 313
  year: 2008
  end-page: 350
  ident: bb0630
  article-title: Modelling phase transition in metastable liquids: application to cavitating and flashing flows
  publication-title: J Fluid Mech
– reference: G. H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: ICMF 2001, 4th Int. Conf. on Multiphase Flows, New Orleans, USA, 2001.
– volume: 21
  start-page: 093302
  year: 2009
  ident: bb0130
  article-title: Deformation of a droplet in a particulate shear flow
  publication-title: Phys Fluids
– year: 2017
  ident: bb0030
  article-title: Collision Phenomena in Liquids and Solids
– volume: 124
  start-page: 601
  year: 2002
  end-page: 606
  ident: bb0350
  article-title: A cavitation erosion model for ductile materials
  publication-title: J Fluids Eng
– year: 1991
  ident: bb0485
  article-title: Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000k, Tech. rep
– year: 21 May 2015
  ident: bb0545
  article-title: OpenFOAM - The Open Source CFD Toolbox - User Guide, OpenFOAM Foundation Ltd
– volume: 72
  start-page: 391
  year: 1975
  end-page: 399
  ident: bb0225
  article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
  publication-title: J Fluid Mech
– year: 1998
  ident: bb0380
  article-title: Numerical study of cavitating flow structure on a hydrofoil
  publication-title: 4th KSME-JSME Fluids Eng Conf., Pusan, Korea
– volume: 134135
  start-page: 196
  year: 2016
  end-page: 214
  ident: bb0525
  article-title: Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model
  publication-title: Comput Fluids
– volume: 69
  start-page: 1
  year: 2012
  end-page: 19
  ident: bb0315
  article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics
  publication-title: Comput Fluids
– volume: 229
  start-page: 7411
  year: 2010
  end-page: 7439
  ident: bb0175
  article-title: An interface capturing method for the simulation of multi-phase compressible flows
  publication-title: J Comput Phys
– volume: 28
  start-page: 51
  year: 2012
  end-page: 65
  ident: bb0265
  article-title: A boundary element method for the simulation of non-spherical bubbles and the interactions near a free surface
  publication-title: Acta Mech. Sinica
– volume: 44
  start-page: 119
  year: 2003
  end-page: 143
  ident: bb0095
  article-title: Computations of drop dynamics with the immersed boundary method, part 2: drop impact and heat transfer
  publication-title: Numeric Heat Transf Part B
– year: 2011
  ident: bb0345
  article-title: Implicit large eddy simulation of cavitation in micro channel flows, WIMRC 3rd International Cavitation Forum 2011
– volume: 176
  start-page: 363
  year: 2002
  end-page: 383
  ident: bb0360
  article-title: A pressure-based method for turbulent cavitating flow computations
  publication-title: J Comput Phys
– volume: 105
  start-page: 012001
  year: 2008
  ident: bb0020
  article-title: Inkjet printing - the physics of manipulating liquid jets and drops
  publication-title: J Phys Conf Ser
– volume: 730
  start-page: 245
  year: 2013
  end-page: 272
  ident: bb0260
  article-title: Ultrasonic cavitation near a tissue layer
  publication-title: J. Fluid Mech.
– year: 1992
  ident: bb0490
  article-title: Computer program for calculating and fitting thermodynamic functions, Tech. rep., United States
– start-page: 187
  year: 1986
  end-page: 221
  ident: bb0180
  article-title: 2-D Eulerian Hydrodynamics with Fluid Interfaces, Self-Gravity and Rotation, Springer Netherlands, Dordrecht
– year: 2013
  ident: bb0290
  article-title: 11pflop/s simulations of cloud cavitation collapse
  publication-title: SC '13 Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, no. 3
– volume: 48
  start-page: 1023
  year: 2005
  end-page: 1040
  ident: bb0160
  article-title: A simple algebraic interface capturing scheme using hyperbolic tangent function
  publication-title: Int J Num Meth Fluids
– year: 2004
  ident: bb0550
  article-title: A two-phase flow model for predicting cavitation dynamics
  publication-title: ICMF 2004 International Conference on Multiphase Flow
– volume: 29
  start-page: 849
  year: 2000
  end-page: 875
  ident: bb0355
  article-title: A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction
  publication-title: Comput Fluids
– volume: 32
  start-page: 173
  year: 2003
  end-page: 196
  ident: bb0595
  article-title: The extension of incompressible flow solvers to the weakly compressible regime
  publication-title: Comput Fluids
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bb0070
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J Comput Phys
– volume: 12
  start-page: 25565
  year: 2008
  ident: bb0155
  article-title: Simplified volume of fluid method (svof) for two-phase flows
  publication-title: TASK Q
– volume: 322
  start-page: 183
  year: 2008
  end-page: 191
  ident: bb0120
  article-title: Drop impact onto a dry surface: Role of the dynamic contact angle
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 31
  start-page: 387535
  year: 2002
  ident: bb0640
  article-title: The iapws formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
  publication-title: J Phys Chem Ref Data Monogr
– volume: 100
  start-page: 105
  year: 2013
  end-page: 119
  ident: bb0105
  article-title: Droplet impact dynamics on a spherical particle
  publication-title: Chemical Engineering Science
– volume: 16
  start-page: 292
  year: 2011
  end-page: 302
  ident: bb0125
  article-title: Drop collisions with simple and complex surfaces
  publication-title: Curr Opin Colloid Interface Sci
– volume: 7
  start-page: 236
  year: 1995
  end-page: 247
  ident: bb0090
  article-title: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling
  publication-title: Phys Fluids
– reference: G. H. Schnerr, I. H. Sezal, S. J. Schmidt, Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics, Phys Fluids 20 (4) (2008) 040703. arXiv:
– volume: 97
  start-page: 52
  year: 2014
  end-page: 73
  ident: bb0085
  article-title: Volume of fluid (VOF) type advection methods in two-phase flow: a comparative study
  publication-title: Comput Fluids
– volume: 257
  start-page: 147
  year: 1993
  end-page: 181
  ident: bb0240
  article-title: The final stage of the collapse of a cavitation bubble near a rigid wall
  publication-title: J Fluid Mech
– volume: 7
  start-page: 329
  year: 2011
  end-page: 340
  ident: bb0520
  article-title: A computational study of high-speed droplet impact
  publication-title: Fluid Dyn Mater Process
– reference: T. Marić, H. Marschall, D. Bothe, vofoam - a geometrical volume of fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using openfoam (arXiv:1305.3417). arXiv:1305.3417v1.
– year: 1999
  ident: bb0365
  article-title: Calculation of transient cavitation in nozzle using the two-fluid model
  publication-title: 12th ILASS-America, USA
– volume: 230
  start-page: 7086
  year: 2011
  end-page: 7092
  ident: bb0170
  article-title: Revisit to the {THINC} scheme: a simple algebraic {VOF} algorithm
  publication-title: J Comput Phys
– volume: 40
  start-page: 5113
  year: 1969
  end-page: 5122
  ident: bb0500
  article-title: High speed impact between a liquid drop and a solid surface
  publication-title: J Appl Phys
– volume: 290291
  start-page: 154
  year: 2012
  end-page: 160
  ident: bb0060
  article-title: Cavitation in impacted drops and jets and the effect on erosion damage thresholds
  publication-title: Wear
– year: 2008
  ident: bb0615
  article-title: Riemann techniques for the simulation of compressible liquid flows with phase-transistion at all mach numbers - shock and wave dynamics in cavitating 3-d micro and macro systems, no. 1238
  publication-title: 46th AIAA Aerospace Sciences Meeting and Exhibit
– volume: 27
  start-page: 86
  year: 2015
  end-page: 101
  ident: bb0535
  article-title: Large-eddy simulation of cavitating nozzle flow and primary jet break-up
  publication-title: Phys Fluids
– year: 1984
  ident: bb0075
  article-title: An interface tracking method for a 3D Eulerian hydrodynamics code
  publication-title: Technical Report 44/92/35
– volume: 36
  start-page: 295
  year: 2009
  end-page: 305
  ident: bb0250
  article-title: The dynamic behavior of a gas bubble near a wall
  publication-title: Ocean Eng.
– volume: 125
  start-page: 53
  year: 2003
  end-page: 60
  ident: bb0555
  article-title: Scaling effect on prediction of cavitation inception in a line vortex flow
  publication-title: J Fluids Eng
– volume: 40
  start-page: 64
  year: 2013
  end-page: 74
  ident: bb0465
  article-title: Shock-induced collapse of a bubble inside a deformable vessel
  publication-title: Eur J Mech B Fluids
– volume: 29
  start-page: 528
  year: 2016
  end-page: 549
  ident: bb0340
  article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse
  publication-title: Ultrason Sonochem
– year: 2008
  ident: bb0475
  article-title: Numerical simulation of unsteady three-dimensional sheet cavitation
– volume: 60
  start-page: 256
  year: 1999
  end-page: 271
  ident: bb0605
  article-title: Asymptotic single and multiple scale expansions in the low mach number limit
  publication-title: SIAM J Appl Math
– volume: 215
  start-page: 98
  year: 2006
  end-page: 132
  ident: bb0310
  article-title: Hydrodynamic simulation of air bubble implosion using a level set approach
  publication-title: J. Comput. Phys
– reference: J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, R Soc Open Sci 3 (11). doi:
– volume: 128
  start-page: 64
  year: 2015
  end-page: 81
  ident: bb0565
  article-title: Spherical bubble dynamics in a bubbly medium using an eulerlagrange model
  publication-title: Chem Eng Sci
– volume: 11
  start-page: 1406
  year: 1999
  end-page: 1417
  ident: bb0115
  article-title: On a three-dimensional volume tracking model of droplet impact
  publication-title: Phys Fluids
– reference: D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn Res 41 (6). URL
– volume: 83
  start-page: 1715
  year: 2013
  end-page: 1737
  ident: bb0255
  article-title: Numerical analysis of gas bubbles in close proximity to a movable or deformable body
  publication-title: Arch. Appl. Mech.
– volume: 377
  start-page: 289
  year: 1981
  end-page: 308
  ident: bb0505
  article-title: Analytic solutions of liquid-drop impact problems
  publication-title: Proceed R Soc Lond A
– volume: 65
  start-page: 533
  year: 1989
  end-page: 540
  ident: bb0055
  article-title: The effects of target compliance on liquid drop impact
  publication-title: J Appl Phys
– volume: 35
  start-page: 1603
  year: 2015
  end-page: 1611
  ident: bb0530
  article-title: Analysis of high-pressure diesel fuel injection processes using les with real-fluid thermodynamics and transport
  publication-title: Proc Combust Inst
– volume: 190
  start-page: 572
  year: 2003
  end-page: 600
  ident: bb0210
  article-title: Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries
  publication-title: J Comput Phys
– start-page: 235
  year: 2013
  end-page: 256
  ident: bb0280
  article-title: Shocks in cavitating flows
  publication-title: Bubble Dynamics and Shock Waves
– volume: 226
  start-page: 1985
  year: 2007
  end-page: 2002
  ident: bb0150
  article-title: Efficient implementation of {THINC} scheme: a simple and practical smoothed {VOF} algorithm
  publication-title: J Comput Phys
– volume: 18
  start-page: 333350
  year: 2017
  ident: bb0580
  article-title: Performance of turbulence and cavitation models in prediction of incipient and developed cavitation
  publication-title: Int J Engine Res
– start-page: 1
  year: 2016
  end-page: 12
  ident: bb0635
  article-title: Compressible simulations of bubble dynamics with central-upwind schemes
  publication-title: Int J Comput Fluid Dyn
– volume: 24
  start-page: 317
  year: 2014
  end-page: 324
  ident: bb0295
  article-title: Investigation on the collapse behavior of a cavitation bubble near a conical rigid boundary
  publication-title: Shock Waves
– volume: 92
  start-page: 2821
  year: 2002
  end-page: 2828
  ident: bb0510
  article-title: Computational study of high-speed liquid droplet impact
  publication-title: J Appl Phys
– year: 2012
  ident: bb0435
  article-title: Generation and transport of bubble clouds in high-intensity focused ultrasonic fields
  publication-title: CAV2012, Singapore
– year: 2005
  ident: bb0645
  article-title: Ch. Thermophysical properties of fluid systems
  publication-title: NIST Chemistry WebBook, NIST Standard Reference Database Number 69
– volume: 38
  start-page: 3855
  year: 1967
  end-page: 3866
  ident: bb0065
  article-title: The splash of a liquid drop
  publication-title: J Appl Phys
– volume: 629
  start-page: 231
  year: 2009
  end-page: 262
  ident: bb0305
  article-title: Numerical simulations of non-spherical bubble collapse
  publication-title: J. Fluid Mech.
– year: 1992
  ident: bb0140
  article-title: Two and three dimensional Eulerian simulation of fluid flow with material interfaces
  publication-title: Technical Report
– start-page: 913
  year: 2010
  end-page: 915
  ident: bb0300
  article-title: Numerical simulation of cavitation bubble collapse near wall
  publication-title: Computational Fluid Dynamics 2010
– reference: W. Yuan, G. Schnerr, Cavitation in injection nozzles - effect of injection pressure fluctuations, in: CAV2001, 4th Int. Symposium on Cavitation, Pasadena, USA, 2001.
– volume: 456
  start-page: 2983
  year: 2000
  end-page: 2994
  ident: bb0425
  article-title: A new damping mechanism in strongly collapsing bubbles
  publication-title: Proc R Soc Lond A
– year: 2009
  ident: bb0610
  article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction
– volume: 38
  start-page: 159
  year: 2006
  end-page: 192
  ident: bb0015
  article-title: Drop impact dynamics: splashing, spreading, receding
  publication-title: bouncing, Ann Rev Fluid Mech
– volume: 12
  start-page: 61
  year: 1993
  end-page: 93
  ident: bb0005
  article-title: Phenomena of liquid drop impact on solid and liquid surfaces
  publication-title: Fluid Dyn Res
– reference: . URL
– volume: 47
  start-page: 1391
  year: 2004
  end-page: 1401
  ident: bb0515
  article-title: The impact of compressible liquid droplet on hot rigid surface
  publication-title: Int J Heat Mass Transf
– volume: 37
  start-page: 596
  year: 2011
  end-page: 608
  ident: bb0410
  article-title: Numerical simulation of shock propagation in a polydisperse bubbly liquid
  publication-title: Int J Multiphase Flow
– volume: 5
  start-page: 2588
  year: 1993
  end-page: 2599
  ident: bb0035
  article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface
  publication-title: Phys Fluids A
– volume: 361
  start-page: 75
  year: 1998
  end-page: 116
  ident: bb0230
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J Fluid Mech
– volume: 274-275
  start-page: 248
  year: 2012
  end-page: 259
  ident: bb0335
  article-title: Material and velocity effects on cavitation erosion pitting
  publication-title: Wear
– year: 2001
  ident: bb0390
  article-title: Cavitating flow simulations based on the bubble dynamics
  publication-title: CAV2001, USA
– volume: 72
  start-page: 1
  year: 2005
  end-page: 14
  ident: bb0420
  article-title: Sonochemical effects on single-bubble sonoluminescence
  publication-title: Phys Rev E
– year: 2008
  ident: bb0455
  article-title: Development of the distributed points method with application to cavitating flow
– year: 2012
  ident: bb0445
  article-title: SPH modeling of supercavity induced by underwater high speed objects
  publication-title: 8th International Symposium on Cavitation, Singapore, 13th–16th August, 2012
– volume: 60
  start-page: 84
  year: 1992
  end-page: 93
  ident: bb0185
  article-title: A 3d adaptive mesh refinement algorithm for multimaterial gas dynamics
  publication-title: Phys D
– volume: 688
  start-page: 352
  year: 2011
  end-page: 389
  ident: bb0415
  article-title: Modelling bubble clusters in compressible liquids
  publication-title: J Fluid Mech
– volume: 31
  start-page: 567
  year: 1999
  end-page: 603
  ident: bb0145
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu Rev Fluid Mech
– volume: 240
  start-page: 59
  year: 1992
  end-page: 96
  ident: bb0395
  article-title: A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section
  publication-title: J Fluid Mech
– year: 2012
  ident: bb0430
  article-title: The influence of imposed strain rate and circulation on bubble and cloud dynamics
  publication-title: CAV2012, Singapore
– year: 2000
  ident: bb0590
  article-title: Efficient computation of flow with cavitation by compressible pressure correction
– start-page: 123
  year: 2014
  end-page: 161
  ident: bb0275
  article-title: Modeling of cavitation dynamics and interaction with material
  publication-title: Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
– reference: , doi:
– volume: 128
  start-page: 134
  year: 1996
  end-page: 164
  ident: bb0190
  article-title: A high-order godunov method for multiple condensed phases
  publication-title: J Comput Phys
– reference: J. Dumond, F. Magagnato, A. Class, Stochastic-field cavitation model, Phys Fluids 25(7). doi:
– volume: 124
  start-page: 617
  year: 2002
  end-page: 624
  ident: bb0375
  article-title: Mathematical basis and validation of the full cavitation model
  publication-title: J Fluids Eng
– volume: 401
  start-page: 225
  year: 1985
  end-page: 249
  ident: bb0050
  article-title: Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems
  publication-title: Proceed R Soc Lond A
– year: 2006
  ident: bb0325
  article-title: Review of the numerical methods for free interfaces
  publication-title: Tech. rep., Laboratoire mixte de l’ Ecole Polytechnique et du CNRS
– volume: 21
  start-page: 1115
  year: 1999
  end-page: 1145
  ident: bb0195
  article-title: A simple method for compressible multifluid flows
  publication-title: SIAM J Sci Comp
– volume: 186
  start-page: 361
  year: 2003
  end-page: 396
  ident: bb0625
  article-title: Discrete equations for physical and numerical compressible multiphase mixtures
  publication-title: J Comput Phys
– start-page: 429
  year: 1994
  end-page: 436
  ident: bb0245
  article-title: The behavior of a cavitation bubble near a rigid wall
  publication-title: Bubble Dynamics and Interface Phenomena
– volume: 28
  start-page: 63
  year: 1999
  end-page: 86
  ident: bb0600
  article-title: On the behaviour of upwind schemes in the low mach number limit
  publication-title: Comput Fluids
– volume: 28
  start-page: 073303
  year: 2016
  ident: bb0040
  article-title: Investigation of drop impact on dry and wet surfaces with consideration of surrounding air
  publication-title: Phys Fluids
– year: 2011
  ident: bb0270
  article-title: Direct Numerical Simulations of Gas-Liquid Multiphase Flows
– year: 2009
  ident: bb0320
  article-title: Shock/gas bubble interactions in infinite and finite volumes of liquid, in: 2nd Micro and Nano Flows Conference, West London, UK
– volume: 330–331
  start-page: 618
  year: 2014
  end-page: 628
  ident: bb0285
  article-title: Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element-assisted pit analysis and numerical investigation of the elasto-plastic deformation of metalic materials
  publication-title: Wear
– volume: 36
  start-page: 363
  year: 2009
  end-page: 374
  ident: bb0450
  article-title: Numerical modelling of the hydrodynamic ram phenomenon
  publication-title: Int J Impact Eng
– volume: 13
  start-page: 685
  year: 2013
  end-page: 695
  ident: bb0460
  article-title: Lattice boltzmann simulation of cavitating flows
  publication-title: Commun Comput Phys
– volume: 47
  start-page: 283
  year: 1971
  end-page: 290
  ident: bb0220
  article-title: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
  publication-title: J Fluid Mech
– volume: 156
  start-page: 43
  year: 2017
  end-page: 53
  ident: bb0135
  article-title: Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a fluid catalytic cracking reactor, part ii: 3d simulations
  publication-title: Fuel Process Technol
– volume: 218
  start-page: 859
  year: 2004
  end-page: 870
  ident: bb0010
  article-title: Droplet deposition in steam turbines
  publication-title: Proceed Inst Mech Eng Part C
– volume: 17
  start-page: 062103
  year: 2005
  ident: bb0100
  article-title: Dynamic contact angle of spreading droplets: Experiments and simulations
  publication-title: Phys Fluids
– volume: 22
  start-page: 201
  year: 2001
  end-page: 210
  ident: bb0110
  article-title: Cooling effectiveness of a water drop impinging on a hot surface
  publication-title: Int J Heat Fluid Flow
– volume: 677
  start-page: 305
  year: 2011
  end-page: 341
  ident: bb0405
  article-title: The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy
  publication-title: J Fluid Mech
– volume: 13
  start-page: 2805
  year: 2001
  end-page: 2819
  ident: bb0235
  article-title: Collapse and rebound of a laser-induced cavitation bubble
  publication-title: Phys Fluids
– volume: 616
  start-page: 153
  year: 2008
  end-page: 193
  ident: bb0400
  article-title: Modelling of cavitation in diesel injector nozzles
  publication-title: J Fluid Mech
– reference: D. P. Garrick, W. A. Hagen, J. D. Regele, An interface capturing scheme for modeling atomization in compressible flows, J Comput Phys doi:
– volume: 52
  start-page: 1690
  year: 2005
  end-page: 1698
  ident: bb0330
  article-title: In vivo acceleration of ultrasonic tissue heating by microbubble agent
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– reference: .
– volume: 656
  start-page: 012160
  year: 2015
  ident: bb0560
  article-title: Modelling cavitating flows using an Eulerian-Lagrangian approach and a nucleation model
  publication-title: J Phys Conf Ser
– year: 2005
  ident: bb0585
  article-title: Fundamentals of Cavitation
– volume: 54
  start-page: 397
  year: 2013
  end-page: 405
  ident: bb0025
  article-title: Drop impact behavior on food using spray coating: Fundamentals and applications
  publication-title: Food Res Int
– volume: 24
  start-page: 671
  year: 1997
  end-page: 691
  ident: bb0080
  article-title: Volume-tracking methods for interfacial flow calculations
  publication-title: Int J Num Meth Fluids
– volume: Vol. 113
  year: 2015
  ident: bb0620
  article-title: The Finite Volume Method in Computational Fluid Dynamics, An Advanced Introduction with Open-FOAM and Matlab
– volume: 93
  start-page: 158
  year: 2017
  end-page: 177
  ident: bb0480
  article-title: Numerical investigation of bubble dynamics using tabulated data
  publication-title: Int J Multiphase Flow
– reference: W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence, Phys Fluids 6.
– volume: 7
  start-page: 329
  issue: 4
  year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0520
  article-title: A computational study of high-speed droplet impact
  publication-title: Fluid Dyn Mater Process
– volume: 49
  start-page: 1606
  issue: 7
  year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0045
  article-title: Water drop erosion on turbine blades: Numerical framework and applications
  publication-title: Mater Trans
  doi: 10.2320/matertrans.MRA2008025
– volume: 36
  start-page: 363
  issue: 3
  year: 2009
  ident: 10.1016/j.cis.2018.08.004_bb0450
  article-title: Numerical modelling of the hydrodynamic ram phenomenon
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.07.020
– volume: 176
  start-page: 363
  issue: 2
  year: 2002
  ident: 10.1016/j.cis.2018.08.004_bb0360
  article-title: A pressure-based method for turbulent cavitating flow computations
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.6992
– volume: 124
  start-page: 617
  issue: 3
  year: 2002
  ident: 10.1016/j.cis.2018.08.004_bb0375
  article-title: Mathematical basis and validation of the full cavitation model
  publication-title: J Fluids Eng
  doi: 10.1115/1.1486223
– year: 1999
  ident: 10.1016/j.cis.2018.08.004_bb0365
  article-title: Calculation of transient cavitation in nozzle using the two-fluid model
– ident: 10.1016/j.cis.2018.08.004_bb0385
– volume: 48
  start-page: 1023
  issue: 9
  year: 2005
  ident: 10.1016/j.cis.2018.08.004_bb0160
  article-title: A simple algebraic interface capturing scheme using hyperbolic tangent function
  publication-title: Int J Num Meth Fluids
  doi: 10.1002/fld.975
– volume: 37
  start-page: 596
  year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0410
  article-title: Numerical simulation of shock propagation in a polydisperse bubbly liquid
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2011.03.007
– volume: 40
  start-page: 5113
  issue: 13
  year: 1969
  ident: 10.1016/j.cis.2018.08.004_bb0500
  article-title: High speed impact between a liquid drop and a solid surface
  publication-title: J Appl Phys
  doi: 10.1063/1.1657361
– volume: 13
  start-page: 2805
  issue: 10
  year: 2001
  ident: 10.1016/j.cis.2018.08.004_bb0235
  article-title: Collapse and rebound of a laser-induced cavitation bubble
  publication-title: Phys Fluids
  doi: 10.1063/1.1401810
– volume: 72
  start-page: 1
  year: 2005
  ident: 10.1016/j.cis.2018.08.004_bb0420
  article-title: Sonochemical effects on single-bubble sonoluminescence
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.72.046309
– volume: 31
  start-page: 567
  issue: 1
  year: 1999
  ident: 10.1016/j.cis.2018.08.004_bb0145
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.31.1.567
– volume: 92
  start-page: 2821
  issue: 5
  year: 2002
  ident: 10.1016/j.cis.2018.08.004_bb0510
  article-title: Computational study of high-speed liquid droplet impact
  publication-title: J Appl Phys
  doi: 10.1063/1.1495533
– volume: 5
  start-page: 2588
  issue: 11
  year: 1993
  ident: 10.1016/j.cis.2018.08.004_bb0035
  article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface
  publication-title: Phys Fluids A
  doi: 10.1063/1.858724
– volume: 629
  start-page: 231
  year: 2009
  ident: 10.1016/j.cis.2018.08.004_bb0305
  article-title: Numerical simulations of non-spherical bubble collapse
– volume: 361
  start-page: 75
  year: 1998
  ident: 10.1016/j.cis.2018.08.004_bb0230
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112098008738
– ident: 10.1016/j.cis.2018.08.004_bb0200
  doi: 10.1098/rsos.160405
– volume: 156
  start-page: 43
  year: 2017
  ident: 10.1016/j.cis.2018.08.004_bb0135
  article-title: Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a fluid catalytic cracking reactor, part ii: 3d simulations
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2016.09.012
– year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0455
– volume: 656
  start-page: 012160
  issue: 1
  year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0560
  article-title: Modelling cavitating flows using an Eulerian-Lagrangian approach and a nucleation model
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/656/1/012160
– year: 1984
  ident: 10.1016/j.cis.2018.08.004_bb0075
  article-title: An interface tracking method for a 3D Eulerian hydrodynamics code
– ident: 10.1016/j.cis.2018.08.004_bb0440
  doi: 10.1063/1.4813813
– volume: 54
  start-page: 397
  issue: 1
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0025
  article-title: Drop impact behavior on food using spray coating: Fundamentals and applications
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2013.07.042
– volume: 322
  start-page: 183
  issue: 1
  year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0120
  article-title: Drop impact onto a dry surface: Role of the dynamic contact angle
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2008.03.005
– volume: 52
  start-page: 1690
  issue: 10
  year: 2005
  ident: 10.1016/j.cis.2018.08.004_bb0330
  article-title: In vivo acceleration of ultrasonic tissue heating by microbubble agent
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2005.1561623
– year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0270
– volume: 40
  start-page: 64
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0465
  article-title: Shock-induced collapse of a bubble inside a deformable vessel
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2013.01.003
– volume: 16
  start-page: 292
  issue: 4
  year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0125
  article-title: Drop collisions with simple and complex surfaces
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/j.cocis.2011.06.009
– volume: 32
  start-page: 173
  year: 2003
  ident: 10.1016/j.cis.2018.08.004_bb0595
  article-title: The extension of incompressible flow solvers to the weakly compressible regime
  publication-title: Comput Fluids
  doi: 10.1016/S0045-7930(02)00010-5
– year: 2009
  ident: 10.1016/j.cis.2018.08.004_bb0320
– volume: 60
  start-page: 84
  issue: 1
  year: 1992
  ident: 10.1016/j.cis.2018.08.004_bb0185
  article-title: A 3d adaptive mesh refinement algorithm for multimaterial gas dynamics
  publication-title: Phys D
  doi: 10.1016/0167-2789(92)90228-F
– volume: 330–331
  start-page: 618
  year: 2014
  ident: 10.1016/j.cis.2018.08.004_bb0285
  article-title: Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element-assisted pit analysis and numerical investigation of the elasto-plastic deformation of metalic materials
– volume: 65
  start-page: 533
  issue: 2
  year: 1989
  ident: 10.1016/j.cis.2018.08.004_bb0055
  article-title: The effects of target compliance on liquid drop impact
  publication-title: J Appl Phys
  doi: 10.1063/1.343136
– volume: 274-275
  start-page: 248
  year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0335
  article-title: Material and velocity effects on cavitation erosion pitting
  publication-title: Wear
  doi: 10.1016/j.wear.2011.09.006
– volume: 240
  start-page: 59
  year: 1992
  ident: 10.1016/j.cis.2018.08.004_bb0395
  article-title: A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section
  publication-title: J Fluid Mech
  doi: 10.1017/S002211209200003X
– volume: 35
  start-page: 1603
  issue: 2
  year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0530
  article-title: Analysis of high-pressure diesel fuel injection processes using les with real-fluid thermodynamics and transport
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2014.06.072
– volume: 27
  start-page: 86
  issue: 8
  year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0535
  article-title: Large-eddy simulation of cavitating nozzle flow and primary jet break-up
  publication-title: Phys Fluids
  doi: 10.1063/1.4928701
– volume: 83
  start-page: 1715
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0255
  article-title: Numerical analysis of gas bubbles in close proximity to a movable or deformable body
– year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0445
  article-title: SPH modeling of supercavity induced by underwater high speed objects
– volume: 401
  start-page: 225
  issue: 1821
  year: 1985
  ident: 10.1016/j.cis.2018.08.004_bb0050
  article-title: Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems
  publication-title: Proceed R Soc Lond A
  doi: 10.1098/rspa.1985.0096
– volume: 128
  start-page: 64
  year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0565
  article-title: Spherical bubble dynamics in a bubbly medium using an eulerlagrange model
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2015.01.056
– year: 2009
  ident: 10.1016/j.cis.2018.08.004_bb0610
– volume: 100
  start-page: 105
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0105
  article-title: Droplet impact dynamics on a spherical particle
– volume: 677
  start-page: 305
  year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0405
  article-title: The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2011.85
– year: 1991
  ident: 10.1016/j.cis.2018.08.004_bb0485
– volume: 134135
  start-page: 196
  year: 2016
  ident: 10.1016/j.cis.2018.08.004_bb0525
  article-title: Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2016.05.018
– volume: 190
  start-page: 572
  issue: 2
  year: 2003
  ident: 10.1016/j.cis.2018.08.004_bb0210
  article-title: Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00298-5
– ident: 10.1016/j.cis.2018.08.004_bb0575
  doi: 10.1063/1.2911039
– volume: 377
  start-page: 289
  issue: 1770
  year: 1981
  ident: 10.1016/j.cis.2018.08.004_bb0505
  article-title: Analytic solutions of liquid-drop impact problems
  publication-title: Proceed R Soc Lond A
  doi: 10.1098/rspa.1981.0125
– volume: 229
  start-page: 7411
  issue: 19
  year: 2010
  ident: 10.1016/j.cis.2018.08.004_bb0175
  article-title: An interface capturing method for the simulation of multi-phase compressible flows
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.06.025
– year: 1992
  ident: 10.1016/j.cis.2018.08.004_bb0490
– volume: 44
  start-page: 119
  issue: 2
  year: 2003
  ident: 10.1016/j.cis.2018.08.004_bb0095
  article-title: Computations of drop dynamics with the immersed boundary method, part 2: drop impact and heat transfer
  publication-title: Numeric Heat Transf Part B
  doi: 10.1080/713836348
– year: 2005
  ident: 10.1016/j.cis.2018.08.004_bb0645
  article-title: Ch. Thermophysical properties of fluid systems
– volume: 97
  start-page: 52
  year: 2014
  ident: 10.1016/j.cis.2018.08.004_bb0085
  article-title: Volume of fluid (VOF) type advection methods in two-phase flow: a comparative study
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2014.03.027
– ident: 10.1016/j.cis.2018.08.004_bb0370
– ident: 10.1016/j.cis.2018.08.004_bb0215
  doi: 10.1088/0169-5983/41/6/065001
– year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0615
  article-title: Riemann techniques for the simulation of compressible liquid flows with phase-transistion at all mach numbers - shock and wave dynamics in cavitating 3-d micro and macro systems, no. 1238
– volume: 218
  start-page: 859
  issue: 8
  year: 2004
  ident: 10.1016/j.cis.2018.08.004_bb0010
  article-title: Droplet deposition in steam turbines
  publication-title: Proceed Inst Mech Eng Part C
  doi: 10.1243/0954406041474200
– volume: 47
  start-page: 283
  year: 1971
  ident: 10.1016/j.cis.2018.08.004_bb0220
  article-title: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071001058
– volume: 38
  start-page: 159
  issue: 1
  year: 2006
  ident: 10.1016/j.cis.2018.08.004_bb0015
  article-title: Drop impact dynamics: splashing, spreading, receding
  publication-title: bouncing, Ann Rev Fluid Mech
  doi: 10.1146/annurev.fluid.38.050304.092144
– volume: 105
  start-page: 012001
  issue: 1
  year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0020
  article-title: Inkjet printing - the physics of manipulating liquid jets and drops
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/105/1/012001
– volume: 24
  start-page: 317
  year: 2014
  ident: 10.1016/j.cis.2018.08.004_bb0295
  article-title: Investigation on the collapse behavior of a cavitation bubble near a conical rigid boundary
  publication-title: Shock Waves
  doi: 10.1007/s00193-013-0482-3
– volume: 28
  start-page: 51
  year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0265
  article-title: A boundary element method for the simulation of non-spherical bubbles and the interactions near a free surface
– volume: 69
  start-page: 1
  year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0315
  article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2012.07.020
– year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0290
  article-title: 11pflop/s simulations of cloud cavitation collapse
– year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0545
– volume: 607
  start-page: 313
  year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0630
  article-title: Modelling phase transition in metastable liquids: application to cavitating and flashing flows
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112008002061
– volume: 730
  start-page: 245
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0260
  article-title: Ultrasonic cavitation near a tissue layer
– volume: 24
  start-page: 671
  issue: 7
  year: 1997
  ident: 10.1016/j.cis.2018.08.004_bb0080
  article-title: Volume-tracking methods for interfacial flow calculations
  publication-title: Int J Num Meth Fluids
  doi: 10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
– year: 2005
  ident: 10.1016/j.cis.2018.08.004_bb0585
– volume: Vol. 113
  year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0620
– volume: 230
  start-page: 7086
  issue: 19
  year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0170
  article-title: Revisit to the {THINC} scheme: a simple algebraic {VOF} algorithm
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2011.06.012
– volume: 186
  start-page: 361
  issue: 2
  year: 2003
  ident: 10.1016/j.cis.2018.08.004_bb0625
  article-title: Discrete equations for physical and numerical compressible multiphase mixtures
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00011-1
– start-page: 123
  year: 2014
  ident: 10.1016/j.cis.2018.08.004_bb0275
  article-title: Modeling of cavitation dynamics and interaction with material
– volume: 11
  start-page: 1406
  issue: 6
  year: 1999
  ident: 10.1016/j.cis.2018.08.004_bb0115
  article-title: On a three-dimensional volume tracking model of droplet impact
  publication-title: Phys Fluids
  doi: 10.1063/1.870005
– volume: 7
  start-page: 236
  issue: 2
  year: 1995
  ident: 10.1016/j.cis.2018.08.004_bb0090
  article-title: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling
  publication-title: Phys Fluids
  doi: 10.1063/1.868622
– volume: 13
  start-page: 685
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0460
  article-title: Lattice boltzmann simulation of cavitating flows
  publication-title: Commun Comput Phys
  doi: 10.4208/cicp.291011.270112s
– volume: 12
  start-page: 25565
  year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0155
  article-title: Simplified volume of fluid method (svof) for two-phase flows
  publication-title: TASK Q
– volume: 125
  start-page: 53
  issue: 1
  year: 2003
  ident: 10.1016/j.cis.2018.08.004_bb0555
  article-title: Scaling effect on prediction of cavitation inception in a line vortex flow
  publication-title: J Fluids Eng
  doi: 10.1115/1.1521956
– volume: 70
  start-page: 22
  year: 2015
  ident: 10.1016/j.cis.2018.08.004_bb0540
  article-title: A numerical method to simulate turbulent cavitating flows
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2014.11.009
– start-page: 1
  year: 2016
  ident: 10.1016/j.cis.2018.08.004_bb0635
  article-title: Compressible simulations of bubble dynamics with central-upwind schemes
  publication-title: Int J Comput Fluid Dyn
– year: 1998
  ident: 10.1016/j.cis.2018.08.004_bb0380
  article-title: Numerical study of cavitating flow structure on a hydrofoil
– volume: 290291
  start-page: 154
  year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0060
  article-title: Cavitation in impacted drops and jets and the effect on erosion damage thresholds
  publication-title: Wear
  doi: 10.1016/j.wear.2012.03.006
– year: 2017
  ident: 10.1016/j.cis.2018.08.004_bb0030
– year: 2006
  ident: 10.1016/j.cis.2018.08.004_bb0325
  article-title: Review of the numerical methods for free interfaces
– volume: 60
  start-page: 256
  year: 1999
  ident: 10.1016/j.cis.2018.08.004_bb0605
  article-title: Asymptotic single and multiple scale expansions in the low mach number limit
  publication-title: SIAM J Appl Math
  doi: 10.1137/S0036139998343198
– volume: 31
  start-page: 387535
  issue: 2
  year: 2002
  ident: 10.1016/j.cis.2018.08.004_bb0640
  article-title: The iapws formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
  publication-title: J Phys Chem Ref Data Monogr
– year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0345
– volume: 128
  start-page: 134
  issue: 1
  year: 1996
  ident: 10.1016/j.cis.2018.08.004_bb0190
  article-title: A high-order godunov method for multiple condensed phases
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1996.0200
– start-page: 235
  year: 2013
  ident: 10.1016/j.cis.2018.08.004_bb0280
  article-title: Shocks in cavitating flows
– year: 1995
  ident: 10.1016/j.cis.2018.08.004_bb0570
– volume: 12
  start-page: 61
  year: 1993
  ident: 10.1016/j.cis.2018.08.004_bb0005
  article-title: Phenomena of liquid drop impact on solid and liquid surfaces
  publication-title: Fluid Dyn Res
  doi: 10.1016/0169-5983(93)90106-K
– volume: 28
  start-page: 073303
  issue: 7
  year: 2016
  ident: 10.1016/j.cis.2018.08.004_bb0040
  article-title: Investigation of drop impact on dry and wet surfaces with consideration of surrounding air
  publication-title: Phys Fluids
  doi: 10.1063/1.4958694
– volume: 93
  start-page: 158
  year: 2017
  ident: 10.1016/j.cis.2018.08.004_bb0480
  article-title: Numerical investigation of bubble dynamics using tabulated data
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.04.004
– ident: 10.1016/j.cis.2018.08.004_bb0470
– volume: 616
  start-page: 153
  year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0400
  article-title: Modelling of cavitation in diesel injector nozzles
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112008003777
– volume: 215
  start-page: 98
  year: 2006
  ident: 10.1016/j.cis.2018.08.004_bb0310
  article-title: Hydrodynamic simulation of air bubble implosion using a level set approach
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.cis.2018.08.004_bb0070
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90145-5
– ident: 10.1016/j.cis.2018.08.004_bb0165
– start-page: 187
  year: 1986
  ident: 10.1016/j.cis.2018.08.004_bb0180
– start-page: 429
  year: 1994
  ident: 10.1016/j.cis.2018.08.004_bb0245
  article-title: The behavior of a cavitation bubble near a rigid wall
– volume: 22
  start-page: 201
  issue: 2
  year: 2001
  ident: 10.1016/j.cis.2018.08.004_bb0110
  article-title: Cooling effectiveness of a water drop impinging on a hot surface
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/S0142-727X(00)00086-2
– volume: 29
  start-page: 849
  year: 2000
  ident: 10.1016/j.cis.2018.08.004_bb0355
  article-title: A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction
  publication-title: Comput Fluids
  doi: 10.1016/S0045-7930(99)00039-0
– volume: 21
  start-page: 1115
  issue: 3
  year: 1999
  ident: 10.1016/j.cis.2018.08.004_bb0195
  article-title: A simple method for compressible multifluid flows
  publication-title: SIAM J Sci Comp
  doi: 10.1137/S1064827597323749
– volume: 28
  start-page: 63
  year: 1999
  ident: 10.1016/j.cis.2018.08.004_bb0600
  article-title: On the behaviour of upwind schemes in the low mach number limit
  publication-title: Comput Fluids
  doi: 10.1016/S0045-7930(98)00017-6
– volume: 257
  start-page: 147
  year: 1993
  ident: 10.1016/j.cis.2018.08.004_bb0240
  article-title: The final stage of the collapse of a cavitation bubble near a rigid wall
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112093003027
– volume: 17
  start-page: 062103
  issue: 6
  year: 2005
  ident: 10.1016/j.cis.2018.08.004_bb0100
  article-title: Dynamic contact angle of spreading droplets: Experiments and simulations
  publication-title: Phys Fluids
  doi: 10.1063/1.1928828
– volume: 36
  start-page: 295
  year: 2009
  ident: 10.1016/j.cis.2018.08.004_bb0250
  article-title: The dynamic behavior of a gas bubble near a wall
– year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0430
  article-title: The influence of imposed strain rate and circulation on bubble and cloud dynamics
– volume: 38
  start-page: 3855
  issue: 10
  year: 1967
  ident: 10.1016/j.cis.2018.08.004_bb0065
  article-title: The splash of a liquid drop
  publication-title: J Appl Phys
  doi: 10.1063/1.1709031
– year: 2004
  ident: 10.1016/j.cis.2018.08.004_bb0550
  article-title: A two-phase flow model for predicting cavitation dynamics
– year: 2008
  ident: 10.1016/j.cis.2018.08.004_bb0475
– volume: 72
  start-page: 391
  issue: 2
  year: 1975
  ident: 10.1016/j.cis.2018.08.004_bb0225
  article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112075003448
– volume: 124
  start-page: 601
  year: 2002
  ident: 10.1016/j.cis.2018.08.004_bb0350
  article-title: A cavitation erosion model for ductile materials
  publication-title: J Fluids Eng
  doi: 10.1115/1.1486474
– volume: 18
  start-page: 333350
  issue: 4
  year: 2017
  ident: 10.1016/j.cis.2018.08.004_bb0580
  article-title: Performance of turbulence and cavitation models in prediction of incipient and developed cavitation
  publication-title: Int J Engine Res
  doi: 10.1177/1468087416658604
– ident: 10.1016/j.cis.2018.08.004_bb0495
  doi: 10.1063/1.868124
– volume: 47
  start-page: 1391
  issue: 67
  year: 2004
  ident: 10.1016/j.cis.2018.08.004_bb0515
  article-title: The impact of compressible liquid droplet on hot rigid surface
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2003.05.001
– ident: 10.1016/j.cis.2018.08.004_bb0205
– volume: 226
  start-page: 1985
  issue: 2
  year: 2007
  ident: 10.1016/j.cis.2018.08.004_bb0150
  article-title: Efficient implementation of {THINC} scheme: a simple and practical smoothed {VOF} algorithm
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.06.020
– year: 2000
  ident: 10.1016/j.cis.2018.08.004_bb0590
– volume: 456
  start-page: 2983
  year: 2000
  ident: 10.1016/j.cis.2018.08.004_bb0425
  article-title: A new damping mechanism in strongly collapsing bubbles
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.2000.0649
– volume: 688
  start-page: 352
  year: 2011
  ident: 10.1016/j.cis.2018.08.004_bb0415
  article-title: Modelling bubble clusters in compressible liquids
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2011.380
– year: 2001
  ident: 10.1016/j.cis.2018.08.004_bb0390
  article-title: Cavitating flow simulations based on the bubble dynamics
– volume: 21
  start-page: 093302
  issue: 9
  year: 2009
  ident: 10.1016/j.cis.2018.08.004_bb0130
  article-title: Deformation of a droplet in a particulate shear flow
  publication-title: Phys Fluids
  doi: 10.1063/1.3205446
– year: 2012
  ident: 10.1016/j.cis.2018.08.004_bb0435
  article-title: Generation and transport of bubble clouds in high-intensity focused ultrasonic fields
– year: 1992
  ident: 10.1016/j.cis.2018.08.004_bb0140
  article-title: Two and three dimensional Eulerian simulation of fluid flow with material interfaces
– volume: 29
  start-page: 528
  year: 2016
  ident: 10.1016/j.cis.2018.08.004_bb0340
  article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2015.04.026
– start-page: 913
  year: 2010
  ident: 10.1016/j.cis.2018.08.004_bb0300
  article-title: Numerical simulation of cavitation bubble collapse near wall
SSID ssj0002575
Score 2.432217
SecondaryResourceType review_article
Snippet The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46
SubjectTerms Approximate Riemann solvers
Cavitation
Drop impact
OpenFOAM
Title Modelling cavitation during drop impact on solid surfaces
URI https://dx.doi.org/10.1016/j.cis.2018.08.004
https://www.ncbi.nlm.nih.gov/pubmed/30195460
https://www.proquest.com/docview/2101916103
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ahLG-lLXd2qxbcKFPBa-ypUjWYwkL2QJ9KC3tm7E-DBklCfko9KV_--4sOVBY-7An40OHxel8-gnd3Q_g3DBVSauJ36XCA0rGbIqoukhVxSWXxrCiarItruX4Tvx-GDzswLCthaG0yhj7Q0xvonWUXEZrXi6mU6rxZdTrXaJTEo4pdqGbcy0HHehe_ZqMr7cBGb0yEBngyZkU2svNJs3LTqlpd1Y0jTwjXds_tqe34GezDY0-wX7Ej8lVmOIB7PjZIXwIjJLPh_Bx2BK4obTJ7rSrI9DEeNY0305s9RS7ciehQjFxy_kiCcWSCUrRF6cuWW2WNSVrfYa70c_b4TiNnAmp5ZqtU8WFF0UmlJPC88IUuvLCuYFUNZfKKUQ4hoomlfJGFzpXtaB_nparRpNr_gU6s_nMn0CS55nlSmunrRfCsEohmNKuzl1mclsPesBaU5U2Tp14LR7LNnPsD8pXJVm3JK5LJnpwsVVZhG4a7w0Wrf3LVy5RYrR_T-2sXasSDU73H9XMzzc4CBUQDWeM9-A4LOJ2FpwKJ4VkX__vo6ewR28hy-8bdNbLjf-OaGVt-rD74yXrR5-k5-TmfvIXs9HmVA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR367PCp6Eatpkk-Yoi7I-TwreSvMorMjusg_Bi7_dmaZVBPXgdZrQMJlOvtBv5gM4NkwV0mrSdynwgpIwGyOqzmJVcMmlMSwrKrbFvew-iuun9tMMdJpaGKJV1rk_5PQqW9eWs9qbZ8Nej2p8GfV6lxiUhGOyWZgXba6I13f6_sXzwJgMMgZ4b6bhza_NiuRle9SyO8mqNp61WNsPh9Nv4LM6hC5XYLlGj9F5WOAqzPj-GiwEPcm3NVjsNPJtaK24nXa8Dpr0zqrW25EtXuue3FGoT4zcaDCMQqlkhFaMxJ6LxtNRSVStDXi8vHjodONaMSG2XLNJrLjwIkuEclJ4nplMF14415aq5FI5hfjGUMmkUt7oTKeqFPTF02aV6HDNN2GuP-j7bYjSNLFcae209UIYViiEUtqVqUtMast2C1jjqtzWSydVi5e84Y09o32ck3dzUrpkogUnn1OGoZfGX4NF4__8W0DkmOv_mnbU7FWODqe_H0XfD6Y4CCcgFk4Yb8FW2MTPVXAqmxSS7fzvpYew2H24u81vr-5vdmGJngS-3x7MTUZTv4-4ZWIOqrj8AG7t5Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+cavitation+during+drop+impact+on+solid+surfaces&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Kyriazis%2C+Nikolaos&rft.au=Koukouvinis%2C+Phoevos&rft.au=Gavaises%2C+Manolis&rft.date=2018-10-01&rft.issn=0001-8686&rft.volume=260&rft.spage=46&rft.epage=64&rft_id=info:doi/10.1016%2Fj.cis.2018.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cis_2018_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon