Modelling cavitation during drop impact on solid surfaces
The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models...
Saved in:
Published in | Advances in colloid and interface science Vol. 260; pp. 46 - 64 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8686 1873-3727 1873-3727 |
DOI | 10.1016/j.cis.2018.08.004 |
Cover
Abstract | The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end.
[Display omitted]
•Compressibility and cavitation effects induced during droplet impact on a solid flat surface are investigated.•A multi-phase density-based solver is developed, modelling the coexistence of liquid, non-condensable gas and vapour phases.•The solver is validated against shock tube cases and experimental results for a planar ‘drop’ impact.•Formation and collapse of cavitation regions due to reflection of shock wave on the drop surface are simulated.•The amount of vapour generated inside the drop and the pressure loading on the wall for varying impact velocity are examined. |
---|---|
AbstractList | The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end. The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end.The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end. The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is conducted on relevant studies, aiming to highlight the differences from non-cavitating impact cases. Focus is placed on the numerical models suitable for the simulation of droplet impact at such conditions. Further insight is given from the development of a purpose-built compressible two-phase flow solver that incorporates a phase-change model suitable for cavitation formation and collapse; thermodynamic closure is based on a barotropic Equation of State (EoS) representing the density and speed of sound of the co-existing liquid, gas and vapour phases as well as liquid-vapour mixture. To overcome the known problem of spurious oscillations occurring at the phase boundaries due to the rapid change in the acoustic impedance, a new hybrid numerical flux discretization scheme is proposed, based on approximate Riemann solvers; this is found to offer numerical stability and has allowed for simulations of cavitation formation during drop impact to be presented for the first time. Following a thorough justification of the validity of the model assumptions adopted for the cases of interest, numerical simulations are firstly compared against the Riemann problem, for which the exact solution has been derived for two materials with the same velocity and pressure fields. The model is validated against the single experimental data set available in the literature for a 2-D planar drop impact case. The results are found in good agreement against these data that depict the evolution of both the shock wave generated upon impact and the rarefaction waves, which are also captured reasonably well. Moreover, the location of cavitation formation inside the drop and the areas of possible erosion sites that may develop on the solid surface, are also well captured by the model. Following model validation, numerical experiments have examined the effect of impact conditions on the process, utilizing both planar and 2-D axisymmetric simulations. It is found that the absence of air between the drop and the wall at the initial configuration can generate cavitation regimes closer to the wall surface, which significantly increase the pressures induced on the solid wall surface, even for much lower impact velocities. A summary highlighting the open questions still remaining on the subject is given at the end. [Display omitted] •Compressibility and cavitation effects induced during droplet impact on a solid flat surface are investigated.•A multi-phase density-based solver is developed, modelling the coexistence of liquid, non-condensable gas and vapour phases.•The solver is validated against shock tube cases and experimental results for a planar ‘drop’ impact.•Formation and collapse of cavitation regions due to reflection of shock wave on the drop surface are simulated.•The amount of vapour generated inside the drop and the pressure loading on the wall for varying impact velocity are examined. |
Author | Gavaises, Manolis Kyriazis, Nikolaos Koukouvinis, Phoevos |
Author_xml | – sequence: 1 givenname: Nikolaos surname: Kyriazis fullname: Kyriazis, Nikolaos email: nikolaos.kyriazis@city.ac.uk – sequence: 2 givenname: Phoevos orcidid: 0000-0002-3945-3707 surname: Koukouvinis fullname: Koukouvinis, Phoevos – sequence: 3 givenname: Manolis surname: Gavaises fullname: Gavaises, Manolis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30195460$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1r4zAQhkXp0qTd_oBeio-9OB1Zsj7oqZR-Qcpeds9CkcZFwbFSyS70369C0j3sITAgZnjeQfOck9MhDkjIFYUFBSpu1wsX8qIBqhZQCvgJmVMlWc1kI0_JHABorYQSM3Ke87q0TSvbMzJjQHXLBcyJfose-z4M75Wzn2G0Y4hD5ae0m_gUt1XYbK0bqzLNsQ--ylPqrMP8k_zobJ_x8vBekD9Pj78fXurlr-fXh_tl7ZiGsZaMI1eUSy84MrVS2iL3vhWyY0J62bRi1aiWS4krrXQjOy6BgXBadA69ZhfkZr93m-LHhHk0m5Bd-bMdME7ZNEWFpoICK-j1AZ1WG_Rmm8LGpi_zfW4B6B5wKeacsPuHUDA7pWZtilKzU2qgFPCSkf9l3EHTmGzojybv9kksej4DJpNdwKFcFRK60fgYjqT_AgXgjow |
CitedBy_id | crossref_primary_10_1177_1468087421993348 crossref_primary_10_1016_j_sna_2024_115937 crossref_primary_10_3390_en14102923 crossref_primary_10_1016_j_jaecs_2021_100037 crossref_primary_10_1109_TBME_2021_3100542 crossref_primary_10_1016_j_compfluid_2020_104648 crossref_primary_10_1063_5_0136536 crossref_primary_10_1016_j_jwpe_2021_102097 crossref_primary_10_1098_rspa_2018_0548 crossref_primary_10_1088_1742_6596_1399_3_033001 crossref_primary_10_1103_PhysRevFluids_7_103604 crossref_primary_10_1063_5_0127105 crossref_primary_10_1063_5_0151404 crossref_primary_10_1088_1742_6596_2094_3_032022 crossref_primary_10_1007_s00348_025_03996_0 crossref_primary_10_1063_5_0071781 crossref_primary_10_1017_jfm_2020_926 crossref_primary_10_1016_j_fuel_2020_117871 crossref_primary_10_1016_j_ijmecsci_2024_109386 crossref_primary_10_1016_j_triboint_2023_108297 crossref_primary_10_1134_S1995080223050256 crossref_primary_10_1002_fld_5026 crossref_primary_10_1016_j_jcp_2019_109225 crossref_primary_10_1063_5_0232109 crossref_primary_10_1016_j_ultsonch_2023_106663 crossref_primary_10_1017_jfm_2024_472 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104847 crossref_primary_10_1016_j_ijmecsci_2023_108824 crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_001 crossref_primary_10_1016_j_applthermaleng_2023_121773 crossref_primary_10_1063_5_0145568 crossref_primary_10_1017_jfm_2023_542 crossref_primary_10_1051_epjconf_202532101008 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121559 |
Cites_doi | 10.2320/matertrans.MRA2008025 10.1016/j.ijimpeng.2008.07.020 10.1006/jcph.2002.6992 10.1115/1.1486223 10.1002/fld.975 10.1016/j.ijmultiphaseflow.2011.03.007 10.1063/1.1657361 10.1063/1.1401810 10.1103/PhysRevE.72.046309 10.1146/annurev.fluid.31.1.567 10.1063/1.1495533 10.1063/1.858724 10.1017/S0022112098008738 10.1098/rsos.160405 10.1016/j.fuproc.2016.09.012 10.1088/1742-6596/656/1/012160 10.1063/1.4813813 10.1016/j.foodres.2013.07.042 10.1016/j.colsurfa.2008.03.005 10.1109/TUFFC.2005.1561623 10.1016/j.euromechflu.2013.01.003 10.1016/j.cocis.2011.06.009 10.1016/S0045-7930(02)00010-5 10.1016/0167-2789(92)90228-F 10.1063/1.343136 10.1016/j.wear.2011.09.006 10.1017/S002211209200003X 10.1016/j.proci.2014.06.072 10.1063/1.4928701 10.1098/rspa.1985.0096 10.1016/j.ces.2015.01.056 10.1017/jfm.2011.85 10.1016/j.compfluid.2016.05.018 10.1016/S0021-9991(03)00298-5 10.1063/1.2911039 10.1098/rspa.1981.0125 10.1016/j.jcp.2010.06.025 10.1080/713836348 10.1016/j.compfluid.2014.03.027 10.1088/0169-5983/41/6/065001 10.1243/0954406041474200 10.1017/S0022112071001058 10.1146/annurev.fluid.38.050304.092144 10.1088/1742-6596/105/1/012001 10.1007/s00193-013-0482-3 10.1016/j.compfluid.2012.07.020 10.1017/S0022112008002061 10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9 10.1016/j.jcp.2011.06.012 10.1016/S0021-9991(03)00011-1 10.1063/1.870005 10.1063/1.868622 10.4208/cicp.291011.270112s 10.1115/1.1521956 10.1016/j.ijmultiphaseflow.2014.11.009 10.1016/j.wear.2012.03.006 10.1137/S0036139998343198 10.1006/jcph.1996.0200 10.1016/0169-5983(93)90106-K 10.1063/1.4958694 10.1016/j.ijmultiphaseflow.2017.04.004 10.1017/S0022112008003777 10.1016/0021-9991(81)90145-5 10.1016/S0142-727X(00)00086-2 10.1016/S0045-7930(99)00039-0 10.1137/S1064827597323749 10.1016/S0045-7930(98)00017-6 10.1017/S0022112093003027 10.1063/1.1928828 10.1063/1.1709031 10.1017/S0022112075003448 10.1115/1.1486474 10.1177/1468087416658604 10.1063/1.868124 10.1016/j.ijheatmasstransfer.2003.05.001 10.1016/j.jcp.2007.06.020 10.1098/rspa.2000.0649 10.1017/jfm.2011.380 10.1063/1.3205446 10.1016/j.ultsonch.2015.04.026 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.cis.2018.08.004 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1873-3727 |
EndPage | 64 |
ExternalDocumentID | 30195460 10_1016_j_cis_2018_08_004 S0001868618301398 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K WUQ XPP ZGI ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c390t-734e48147d64e38b89ae4dd567f367d7256b285477eb98927f470306c96fced93 |
IEDL.DBID | AIKHN |
ISSN | 0001-8686 1873-3727 |
IngestDate | Fri Sep 05 08:31:33 EDT 2025 Thu Apr 03 07:05:04 EDT 2025 Tue Jul 01 03:12:02 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 23 02:17:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | OpenFOAM Approximate Riemann solvers Drop impact Cavitation |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-734e48147d64e38b89ae4dd567f367d7256b285477eb98927f470306c96fced93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3945-3707 |
PMID | 30195460 |
PQID | 2101916103 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2101916103 pubmed_primary_30195460 crossref_primary_10_1016_j_cis_2018_08_004 crossref_citationtrail_10_1016_j_cis_2018_08_004 elsevier_sciencedirect_doi_10_1016_j_cis_2018_08_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Advances in colloid and interface science |
PublicationTitleAlternate | Adv Colloid Interface Sci |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Crane (bb0010) 2004; 218 Kyriazis, Koukouvinis, Gavaises (bb0480) 2017; 93 Toro (bb0610) 2009 Varas, Zaera, López-Puente (bb0450) 2009; 36 Bussmann, Mostaghimi, Chandra (bb0115) 1999; 11 Zhou, Li, Chen, Yonezu, Xu, Hui (bb0045) 2008; 49 Zhang, Duncan, Chahine (bb0245) 1994 Wagner, Pruß (bb0640) 2002; 31 Aniszewski, Ménard, Marek (bb0085) 2014; 97 Singhal, Athavale, Li, Jiang (bb0375) 2002; 124 Rossinelli, Hejazialhosseini, Hadjidoukas, Bekas, Curioni, Bertsch (bb0290) 2013 Munz, Roller, Klein, Geratz (bb0595) 2003; 32 Zhangrui, Sun, Zong (bb0255) 2013; 83 Nagrath, Jansen, Lahey, Akhatov (bb0310) 2006; 215 van der Heul, Vuik, Wesseling (bb0590) 2000 Lemmon, McLinden, Friend (bb0645) 2005 Miller, Puckett (bb0190) 1996; 128 Moss, Levantin, Szeri (bb0425) 2000; 456 Harlow, Shannon (bb0065) 1967; 38 Curtiss, Leppinen, Wang, Blake (bb0260) 2013; 730 Alajbegovic, Grogger, Philipp (bb0365) 1999 Marengo, Antonini, Roisman, Tropea (bb0125) 2011; 16 Niu, Wang (bb0525) 2016; 134135 Plesset, Chapman (bb0220) 1971; 47 Fukai, Zhao, Poulikakos, Megaridis, Miyatake (bb0035) 1993; 5 G. H. Schnerr, I. H. Sezal, S. J. Schmidt, Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics, Phys Fluids 20 (4) (2008) 040703. arXiv Tamura, Sugiyama, Matsumoto (bb0390) 2001 . Pöhl, Mottyll, Skoda, Huth (bb0285) 2014; 330–331 Koukouvinis, Naseri, Gavaises (bb0580) 2017; 18 Yarin, Roisman, Tropea (bb0030) 2017 Meister (bb0605) 1999; 60 Martin, Hoath, Hutchings (bb0020) 2008; 105 doi Koop (bb0475) 2008 Franc, Riondet, Karimi, Chahine (bb0335) 2012; 274-275 T. Marić, H. Marschall, D. Bothe, vofoam - a geometrical volume of fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using openfoam (arXiv:1305.3417). arXiv:1305.3417v1. Rein (bb0005) 1993; 12 Haller, Ventikos, Poulikakos, Monkewitz (bb0510) 2002; 92 Zhang, Yao, Feng (bb0250) 2009; 36 Hickel, Mihatsch, Schmidt (bb0345) 2011 Andrade, Skurtys, Osorio (bb0025) 2013; 54 Šikalo, Wilhelm, Roisman, Jakirlić, Tropea (bb0100) 2005; 17 Malgarinos, Nikolopoulos, Gavaises (bb0135) 2017; 156 URL Li, Jia, Zhang, Lu (bb0295) 2014; 24 Guo, Lian, Sussman (bb0040) 2016; 28 Guillard, Viozat (bb0600) 1999; 28 Koukouvinis, Gavaises, Georgoulas, Marengo (bb0635) 2016 Zhang, Duncan, Chahine (bb0240) 1993; 257 Pasandideh-Fard, Aziz, Chandra, Mostaghimi (bb0110) 2001; 22 Lu, Katz, Prosperetti (bb0435) 2012 Maitre (bb0325) 2006 Greenshields (bb0545) 21 May 2015 Chahine (bb0275) 2014 Kunz, Boger, Stinebring, Chyczewski, Lindau, Gibeling (bb0355) 2000; 29 Jamaluddin, Ball, Thrangan, Leighton (bb0405) 2011; 677 Rudman (bb0080) 1997; 24 Shin (bb0300) 2010 Falcucci, Ubertini, Bella, Succi (bb0460) 2013; 13 Schmidt, Sezal, Schnerr, Talhamer (bb0615) 2008 Matsumoto, Kanbara, Sugiyama, Tamura (bb0380) 1998 Ma, Hsiao, Chahine (bb0560) 2015; 656 J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, R Soc Open Sci 3 (11). doi Akhatov, Lindau, Topolnikov, Mettin, Vakhitova, Lauterborn (bb0235) 2001; 13 D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn Res 41 (6). URL Berchiche, Franc, Michel (bb0350) 2002; 124 Buttenbender, Pelz (bb0430) 2012 Ando, Colonius, Brennen (bb0410) 2011; 37 Franc, Michel (bb0585) 2005 Roisman, Opfer, Tropea, Raessi, Mostaghimi, Chandra (bb0120) 2008; 322 Parker, Youngs (bb0140) 1992 Field, Dear, Ogren (bb0055) 1989; 65 Gnanaskandan, Mahesh (bb0540) 2015; 70 Chizhov, Takayama (bb0515) 2004; 47 Xiao, Honma, Kono (bb0160) 2005; 48 Ma, Chahine, Hsiao (bb0565) 2015; 128 Thompson, Lee, Gupta (bb0485) 1991 Umemura, Kawabata, Fau Sasaki, Sasaki (bb0330) 2005; 52 Lacaze, Misdariis, Ruiz, Oefelein (bb0530) 2015; 35 W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence, Phys Fluids 6. Tryggvason, Scardovelli, Zaleski (bb0270) 2011 Adams, Schmidt (bb0280) 2013 Xiao, Ii, Chen (bb0170) 2011; 230 Scardovelli, Zaleski (bb0145) 1999; 31 Shukla, Pantano, Freund (bb0175) 2010; 229 Li, Sun, Zhi, Dong (bb0265) 2012; 28 Lesser (bb0505) 1981; 377 Puckett, Saltzman (bb0185) 1992; 60 Liu, Shao, Shang (bb0445) 2012 Ardekani, Dabiri, Rangel (bb0130) 2009; 21 Örley, Trummler, Hickel, Mihatsch, Schmidt, Adams (bb0535) 2015; 27 G. H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: ICMF 2001, 4th Int. Conf. on Multiphase Flows, New Orleans, USA, 2001. Francois, Shyy (bb0095) 2003; 44 Kubota, Kato, Yamaguchi (bb0395) 1992; 240 Mitra, Sathe, Doroodchi, Utikar, Shah, Pareek (bb0105) 2013; 100 J. Dumond, F. Magagnato, A. Class, Stochastic-field cavitation model, Phys Fluids 25(7). doi McBride, Sanford (bb0490) 1992 Saurel, Petitpas, Abgrall (bb0630) 2008; 607 Sanada, Ando, Colonius (bb0520) 2011; 7 Moukalled, Mangani, Darwish (bb0620) 2015; Vol. 113 Marek, Aniszewski, Boguslawski (bb0155) 2008; 12 Field, Lesser, Dear (bb0050) 1985; 401 Chahine, Kapahi, Choi, Hsiao (bb0340) 2016; 29 Hirt, Nichols (bb0070) 1981; 39 Fuster, T. (bb0415) 2011; 688 Norman, Winkler (bb0180) 1986 Yarin (bb0015) 2006; 38 Giannadakis, Gavaises, Arcoumanis (bb0400) 2008; 616 Youngs (bb0075) 1984 Brennen (bb0570) 1995 Yuan (bb0420) 2005; 72 Field, Camus, Tinguely, Obreschkow, Farhat (bb0060) 2012; 290291 D. P. Garrick, W. A. Hagen, J. D. Regele, An interface capturing scheme for modeling atomization in compressible flows, J Comput Phys doi Lauer, Hu, Hickel, Adams (bb0315) 2012; 69 S. Adami, J. Kaiser, N. Adams, I. Bermejo-Moreno, Numerical modeling of shock waves in biomedicine, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, pp. 15–24. Fukai, Shiiba, Yamamoto, Miyatake, Poulikakos, Megaridis (bb0090) 1995; 7 Popinet (bb0210) 2003; 190 W. Yuan, G. Schnerr, Cavitation in injection nozzles - effect of injection pressure fluctuations, in: CAV2001, 4th Int. Symposium on Cavitation, Pasadena, USA, 2001. Abgrall, Saurel (bb0625) 2003; 186 Johnsen, Colonius (bb0305) 2009; 629 Hsiao, Chahine, Liu (bb0555) 2003; 125 Coralic, Colonius (bb0465) 2013; 40 Lauterborn, Bolle (bb0225) 1975; 72 Hawker, Ventikos (bb0320) 2009 Zwart, Gerber, Belamri (bb0550) 2004 Bourg (bb0455) 2008 Philipp, Lauterborn (bb0230) 1998; 361 Yokoi (bb0150) 2007; 226 Senocak (bb0360) 2002; 176 Saurel, Abgrall (bb0195) 1999; 21 Heymann (bb0500) 1969; 40 Toro (10.1016/j.cis.2018.08.004_bb0610) 2009 Rossinelli (10.1016/j.cis.2018.08.004_bb0290) 2013 Zhang (10.1016/j.cis.2018.08.004_bb0240) 1993; 257 Guillard (10.1016/j.cis.2018.08.004_bb0600) 1999; 28 Ardekani (10.1016/j.cis.2018.08.004_bb0130) 2009; 21 Wagner (10.1016/j.cis.2018.08.004_bb0640) 2002; 31 Lauterborn (10.1016/j.cis.2018.08.004_bb0225) 1975; 72 Ma (10.1016/j.cis.2018.08.004_bb0560) 2015; 656 10.1016/j.cis.2018.08.004_bb0575 Yarin (10.1016/j.cis.2018.08.004_bb0030) 2017 10.1016/j.cis.2018.08.004_bb0215 Fuster (10.1016/j.cis.2018.08.004_bb0415) 2011; 688 Jamaluddin (10.1016/j.cis.2018.08.004_bb0405) 2011; 677 Sanada (10.1016/j.cis.2018.08.004_bb0520) 2011; 7 Hickel (10.1016/j.cis.2018.08.004_bb0345) 2011 Senocak (10.1016/j.cis.2018.08.004_bb0360) 2002; 176 Rudman (10.1016/j.cis.2018.08.004_bb0080) 1997; 24 Yokoi (10.1016/j.cis.2018.08.004_bb0150) 2007; 226 Gnanaskandan (10.1016/j.cis.2018.08.004_bb0540) 2015; 70 Liu (10.1016/j.cis.2018.08.004_bb0445) 2012 Li (10.1016/j.cis.2018.08.004_bb0265) 2012; 28 Lauer (10.1016/j.cis.2018.08.004_bb0315) 2012; 69 Lu (10.1016/j.cis.2018.08.004_bb0435) 2012 Fukai (10.1016/j.cis.2018.08.004_bb0035) 1993; 5 Harlow (10.1016/j.cis.2018.08.004_bb0065) 1967; 38 Lacaze (10.1016/j.cis.2018.08.004_bb0530) 2015; 35 Chahine (10.1016/j.cis.2018.08.004_bb0275) 2014 Matsumoto (10.1016/j.cis.2018.08.004_bb0380) 1998 Parker (10.1016/j.cis.2018.08.004_bb0140) 1992 Curtiss (10.1016/j.cis.2018.08.004_bb0260) 2013; 730 Hawker (10.1016/j.cis.2018.08.004_bb0320) 2009 Saurel (10.1016/j.cis.2018.08.004_bb0195) 1999; 21 Akhatov (10.1016/j.cis.2018.08.004_bb0235) 2001; 13 Franc (10.1016/j.cis.2018.08.004_bb0335) 2012; 274-275 Munz (10.1016/j.cis.2018.08.004_bb0595) 2003; 32 Guo (10.1016/j.cis.2018.08.004_bb0040) 2016; 28 Lesser (10.1016/j.cis.2018.08.004_bb0505) 1981; 377 Hsiao (10.1016/j.cis.2018.08.004_bb0555) 2003; 125 Malgarinos (10.1016/j.cis.2018.08.004_bb0135) 2017; 156 Xiao (10.1016/j.cis.2018.08.004_bb0170) 2011; 230 Popinet (10.1016/j.cis.2018.08.004_bb0210) 2003; 190 Roisman (10.1016/j.cis.2018.08.004_bb0120) 2008; 322 Pöhl (10.1016/j.cis.2018.08.004_bb0285) 2014; 330–331 10.1016/j.cis.2018.08.004_bb0470 Shukla (10.1016/j.cis.2018.08.004_bb0175) 2010; 229 Örley (10.1016/j.cis.2018.08.004_bb0535) 2015; 27 Adams (10.1016/j.cis.2018.08.004_bb0280) 2013 Andrade (10.1016/j.cis.2018.08.004_bb0025) 2013; 54 Philipp (10.1016/j.cis.2018.08.004_bb0230) 1998; 361 Kyriazis (10.1016/j.cis.2018.08.004_bb0480) 2017; 93 Niu (10.1016/j.cis.2018.08.004_bb0525) 2016; 134135 Li (10.1016/j.cis.2018.08.004_bb0295) 2014; 24 Field (10.1016/j.cis.2018.08.004_bb0055) 1989; 65 Yuan (10.1016/j.cis.2018.08.004_bb0420) 2005; 72 Maitre (10.1016/j.cis.2018.08.004_bb0325) 2006 Tamura (10.1016/j.cis.2018.08.004_bb0390) 2001 Rein (10.1016/j.cis.2018.08.004_bb0005) 1993; 12 Mitra (10.1016/j.cis.2018.08.004_bb0105) 2013; 100 Schmidt (10.1016/j.cis.2018.08.004_bb0615) 2008 Kunz (10.1016/j.cis.2018.08.004_bb0355) 2000; 29 10.1016/j.cis.2018.08.004_bb0370 Youngs (10.1016/j.cis.2018.08.004_bb0075) 1984 Field (10.1016/j.cis.2018.08.004_bb0050) 1985; 401 10.1016/j.cis.2018.08.004_bb0495 Crane (10.1016/j.cis.2018.08.004_bb0010) 2004; 218 Zhou (10.1016/j.cis.2018.08.004_bb0045) 2008; 49 Francois (10.1016/j.cis.2018.08.004_bb0095) 2003; 44 Saurel (10.1016/j.cis.2018.08.004_bb0630) 2008; 607 Ando (10.1016/j.cis.2018.08.004_bb0410) 2011; 37 Marengo (10.1016/j.cis.2018.08.004_bb0125) 2011; 16 Zhang (10.1016/j.cis.2018.08.004_bb0250) 2009; 36 Nagrath (10.1016/j.cis.2018.08.004_bb0310) 2006; 215 Falcucci (10.1016/j.cis.2018.08.004_bb0460) 2013; 13 Coralic (10.1016/j.cis.2018.08.004_bb0465) 2013; 40 Norman (10.1016/j.cis.2018.08.004_bb0180) 1986 Xiao (10.1016/j.cis.2018.08.004_bb0160) 2005; 48 Brennen (10.1016/j.cis.2018.08.004_bb0570) 1995 Zhangrui (10.1016/j.cis.2018.08.004_bb0255) 2013; 83 Miller (10.1016/j.cis.2018.08.004_bb0190) 1996; 128 Bussmann (10.1016/j.cis.2018.08.004_bb0115) 1999; 11 Chahine (10.1016/j.cis.2018.08.004_bb0340) 2016; 29 van der Heul (10.1016/j.cis.2018.08.004_bb0590) 2000 Giannadakis (10.1016/j.cis.2018.08.004_bb0400) 2008; 616 Puckett (10.1016/j.cis.2018.08.004_bb0185) 1992; 60 Singhal (10.1016/j.cis.2018.08.004_bb0375) 2002; 124 Greenshields (10.1016/j.cis.2018.08.004_bb0545) 2015 Marek (10.1016/j.cis.2018.08.004_bb0155) 2008; 12 Meister (10.1016/j.cis.2018.08.004_bb0605) 1999; 60 Aniszewski (10.1016/j.cis.2018.08.004_bb0085) 2014; 97 Koop (10.1016/j.cis.2018.08.004_bb0475) 2008 10.1016/j.cis.2018.08.004_bb0385 Hirt (10.1016/j.cis.2018.08.004_bb0070) 1981; 39 Lemmon (10.1016/j.cis.2018.08.004_bb0645) 2005 Abgrall (10.1016/j.cis.2018.08.004_bb0625) 2003; 186 Berchiche (10.1016/j.cis.2018.08.004_bb0350) 2002; 124 Thompson (10.1016/j.cis.2018.08.004_bb0485) 1991 Kubota (10.1016/j.cis.2018.08.004_bb0395) 1992; 240 Scardovelli (10.1016/j.cis.2018.08.004_bb0145) 1999; 31 Umemura (10.1016/j.cis.2018.08.004_bb0330) 2005; 52 Fukai (10.1016/j.cis.2018.08.004_bb0090) 1995; 7 Field (10.1016/j.cis.2018.08.004_bb0060) 2012; 290291 Šikalo (10.1016/j.cis.2018.08.004_bb0100) 2005; 17 Ma (10.1016/j.cis.2018.08.004_bb0565) 2015; 128 Koukouvinis (10.1016/j.cis.2018.08.004_bb0580) 2017; 18 Franc (10.1016/j.cis.2018.08.004_bb0585) 2005 Chizhov (10.1016/j.cis.2018.08.004_bb0515) 2004; 47 Yarin (10.1016/j.cis.2018.08.004_bb0015) 2006; 38 Heymann (10.1016/j.cis.2018.08.004_bb0500) 1969; 40 10.1016/j.cis.2018.08.004_bb0205 Moukalled (10.1016/j.cis.2018.08.004_bb0620) 2015; Vol. 113 Haller (10.1016/j.cis.2018.08.004_bb0510) 2002; 92 Varas (10.1016/j.cis.2018.08.004_bb0450) 2009; 36 Bourg (10.1016/j.cis.2018.08.004_bb0455) 2008 Pasandideh-Fard (10.1016/j.cis.2018.08.004_bb0110) 2001; 22 Martin (10.1016/j.cis.2018.08.004_bb0020) 2008; 105 Tryggvason (10.1016/j.cis.2018.08.004_bb0270) 2011 Koukouvinis (10.1016/j.cis.2018.08.004_bb0635) 2016 Alajbegovic (10.1016/j.cis.2018.08.004_bb0365) 1999 Plesset (10.1016/j.cis.2018.08.004_bb0220) 1971; 47 Shin (10.1016/j.cis.2018.08.004_bb0300) 2010 Moss (10.1016/j.cis.2018.08.004_bb0425) 2000; 456 Johnsen (10.1016/j.cis.2018.08.004_bb0305) 2009; 629 10.1016/j.cis.2018.08.004_bb0165 Buttenbender (10.1016/j.cis.2018.08.004_bb0430) 2012 10.1016/j.cis.2018.08.004_bb0440 Zwart (10.1016/j.cis.2018.08.004_bb0550) 2004 McBride (10.1016/j.cis.2018.08.004_bb0490) 1992 10.1016/j.cis.2018.08.004_bb0200 Zhang (10.1016/j.cis.2018.08.004_bb0245) 1994 |
References_xml | – volume: 70 start-page: 22 year: 2015 end-page: 34 ident: bb0540 article-title: A numerical method to simulate turbulent cavitating flows publication-title: Int J Multiphase Flow – year: 1995 ident: bb0570 article-title: Cavitation and Bubble Dynamics – reference: S. Adami, J. Kaiser, N. Adams, I. Bermejo-Moreno, Numerical modeling of shock waves in biomedicine, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, pp. 15–24. – volume: 49 start-page: 1606 year: 2008 end-page: 1615 ident: bb0045 article-title: Water drop erosion on turbine blades: Numerical framework and applications publication-title: Mater Trans – volume: 607 start-page: 313 year: 2008 end-page: 350 ident: bb0630 article-title: Modelling phase transition in metastable liquids: application to cavitating and flashing flows publication-title: J Fluid Mech – reference: G. H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: ICMF 2001, 4th Int. Conf. on Multiphase Flows, New Orleans, USA, 2001. – volume: 21 start-page: 093302 year: 2009 ident: bb0130 article-title: Deformation of a droplet in a particulate shear flow publication-title: Phys Fluids – year: 2017 ident: bb0030 article-title: Collision Phenomena in Liquids and Solids – volume: 124 start-page: 601 year: 2002 end-page: 606 ident: bb0350 article-title: A cavitation erosion model for ductile materials publication-title: J Fluids Eng – year: 1991 ident: bb0485 article-title: Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000k, Tech. rep – year: 21 May 2015 ident: bb0545 article-title: OpenFOAM - The Open Source CFD Toolbox - User Guide, OpenFOAM Foundation Ltd – volume: 72 start-page: 391 year: 1975 end-page: 399 ident: bb0225 article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary publication-title: J Fluid Mech – year: 1998 ident: bb0380 article-title: Numerical study of cavitating flow structure on a hydrofoil publication-title: 4th KSME-JSME Fluids Eng Conf., Pusan, Korea – volume: 134135 start-page: 196 year: 2016 end-page: 214 ident: bb0525 article-title: Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model publication-title: Comput Fluids – volume: 69 start-page: 1 year: 2012 end-page: 19 ident: bb0315 article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics publication-title: Comput Fluids – volume: 229 start-page: 7411 year: 2010 end-page: 7439 ident: bb0175 article-title: An interface capturing method for the simulation of multi-phase compressible flows publication-title: J Comput Phys – volume: 28 start-page: 51 year: 2012 end-page: 65 ident: bb0265 article-title: A boundary element method for the simulation of non-spherical bubbles and the interactions near a free surface publication-title: Acta Mech. Sinica – volume: 44 start-page: 119 year: 2003 end-page: 143 ident: bb0095 article-title: Computations of drop dynamics with the immersed boundary method, part 2: drop impact and heat transfer publication-title: Numeric Heat Transf Part B – year: 2011 ident: bb0345 article-title: Implicit large eddy simulation of cavitation in micro channel flows, WIMRC 3rd International Cavitation Forum 2011 – volume: 176 start-page: 363 year: 2002 end-page: 383 ident: bb0360 article-title: A pressure-based method for turbulent cavitating flow computations publication-title: J Comput Phys – volume: 105 start-page: 012001 year: 2008 ident: bb0020 article-title: Inkjet printing - the physics of manipulating liquid jets and drops publication-title: J Phys Conf Ser – volume: 730 start-page: 245 year: 2013 end-page: 272 ident: bb0260 article-title: Ultrasonic cavitation near a tissue layer publication-title: J. Fluid Mech. – year: 1992 ident: bb0490 article-title: Computer program for calculating and fitting thermodynamic functions, Tech. rep., United States – start-page: 187 year: 1986 end-page: 221 ident: bb0180 article-title: 2-D Eulerian Hydrodynamics with Fluid Interfaces, Self-Gravity and Rotation, Springer Netherlands, Dordrecht – year: 2013 ident: bb0290 article-title: 11pflop/s simulations of cloud cavitation collapse publication-title: SC '13 Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, no. 3 – volume: 48 start-page: 1023 year: 2005 end-page: 1040 ident: bb0160 article-title: A simple algebraic interface capturing scheme using hyperbolic tangent function publication-title: Int J Num Meth Fluids – year: 2004 ident: bb0550 article-title: A two-phase flow model for predicting cavitation dynamics publication-title: ICMF 2004 International Conference on Multiphase Flow – volume: 29 start-page: 849 year: 2000 end-page: 875 ident: bb0355 article-title: A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction publication-title: Comput Fluids – volume: 32 start-page: 173 year: 2003 end-page: 196 ident: bb0595 article-title: The extension of incompressible flow solvers to the weakly compressible regime publication-title: Comput Fluids – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bb0070 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J Comput Phys – volume: 12 start-page: 25565 year: 2008 ident: bb0155 article-title: Simplified volume of fluid method (svof) for two-phase flows publication-title: TASK Q – volume: 322 start-page: 183 year: 2008 end-page: 191 ident: bb0120 article-title: Drop impact onto a dry surface: Role of the dynamic contact angle publication-title: Colloids Surf A Physicochem Eng Asp – volume: 31 start-page: 387535 year: 2002 ident: bb0640 article-title: The iapws formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J Phys Chem Ref Data Monogr – volume: 100 start-page: 105 year: 2013 end-page: 119 ident: bb0105 article-title: Droplet impact dynamics on a spherical particle publication-title: Chemical Engineering Science – volume: 16 start-page: 292 year: 2011 end-page: 302 ident: bb0125 article-title: Drop collisions with simple and complex surfaces publication-title: Curr Opin Colloid Interface Sci – volume: 7 start-page: 236 year: 1995 end-page: 247 ident: bb0090 article-title: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling publication-title: Phys Fluids – reference: G. H. Schnerr, I. H. Sezal, S. J. Schmidt, Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics, Phys Fluids 20 (4) (2008) 040703. arXiv: – volume: 97 start-page: 52 year: 2014 end-page: 73 ident: bb0085 article-title: Volume of fluid (VOF) type advection methods in two-phase flow: a comparative study publication-title: Comput Fluids – volume: 257 start-page: 147 year: 1993 end-page: 181 ident: bb0240 article-title: The final stage of the collapse of a cavitation bubble near a rigid wall publication-title: J Fluid Mech – volume: 7 start-page: 329 year: 2011 end-page: 340 ident: bb0520 article-title: A computational study of high-speed droplet impact publication-title: Fluid Dyn Mater Process – reference: T. Marić, H. Marschall, D. Bothe, vofoam - a geometrical volume of fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using openfoam (arXiv:1305.3417). arXiv:1305.3417v1. – year: 1999 ident: bb0365 article-title: Calculation of transient cavitation in nozzle using the two-fluid model publication-title: 12th ILASS-America, USA – volume: 230 start-page: 7086 year: 2011 end-page: 7092 ident: bb0170 article-title: Revisit to the {THINC} scheme: a simple algebraic {VOF} algorithm publication-title: J Comput Phys – volume: 40 start-page: 5113 year: 1969 end-page: 5122 ident: bb0500 article-title: High speed impact between a liquid drop and a solid surface publication-title: J Appl Phys – volume: 290291 start-page: 154 year: 2012 end-page: 160 ident: bb0060 article-title: Cavitation in impacted drops and jets and the effect on erosion damage thresholds publication-title: Wear – year: 2008 ident: bb0615 article-title: Riemann techniques for the simulation of compressible liquid flows with phase-transistion at all mach numbers - shock and wave dynamics in cavitating 3-d micro and macro systems, no. 1238 publication-title: 46th AIAA Aerospace Sciences Meeting and Exhibit – volume: 27 start-page: 86 year: 2015 end-page: 101 ident: bb0535 article-title: Large-eddy simulation of cavitating nozzle flow and primary jet break-up publication-title: Phys Fluids – year: 1984 ident: bb0075 article-title: An interface tracking method for a 3D Eulerian hydrodynamics code publication-title: Technical Report 44/92/35 – volume: 36 start-page: 295 year: 2009 end-page: 305 ident: bb0250 article-title: The dynamic behavior of a gas bubble near a wall publication-title: Ocean Eng. – volume: 125 start-page: 53 year: 2003 end-page: 60 ident: bb0555 article-title: Scaling effect on prediction of cavitation inception in a line vortex flow publication-title: J Fluids Eng – volume: 40 start-page: 64 year: 2013 end-page: 74 ident: bb0465 article-title: Shock-induced collapse of a bubble inside a deformable vessel publication-title: Eur J Mech B Fluids – volume: 29 start-page: 528 year: 2016 end-page: 549 ident: bb0340 article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse publication-title: Ultrason Sonochem – year: 2008 ident: bb0475 article-title: Numerical simulation of unsteady three-dimensional sheet cavitation – volume: 60 start-page: 256 year: 1999 end-page: 271 ident: bb0605 article-title: Asymptotic single and multiple scale expansions in the low mach number limit publication-title: SIAM J Appl Math – volume: 215 start-page: 98 year: 2006 end-page: 132 ident: bb0310 article-title: Hydrodynamic simulation of air bubble implosion using a level set approach publication-title: J. Comput. Phys – reference: J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, R Soc Open Sci 3 (11). doi: – volume: 128 start-page: 64 year: 2015 end-page: 81 ident: bb0565 article-title: Spherical bubble dynamics in a bubbly medium using an eulerlagrange model publication-title: Chem Eng Sci – volume: 11 start-page: 1406 year: 1999 end-page: 1417 ident: bb0115 article-title: On a three-dimensional volume tracking model of droplet impact publication-title: Phys Fluids – reference: D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn Res 41 (6). URL – volume: 83 start-page: 1715 year: 2013 end-page: 1737 ident: bb0255 article-title: Numerical analysis of gas bubbles in close proximity to a movable or deformable body publication-title: Arch. Appl. Mech. – volume: 377 start-page: 289 year: 1981 end-page: 308 ident: bb0505 article-title: Analytic solutions of liquid-drop impact problems publication-title: Proceed R Soc Lond A – volume: 65 start-page: 533 year: 1989 end-page: 540 ident: bb0055 article-title: The effects of target compliance on liquid drop impact publication-title: J Appl Phys – volume: 35 start-page: 1603 year: 2015 end-page: 1611 ident: bb0530 article-title: Analysis of high-pressure diesel fuel injection processes using les with real-fluid thermodynamics and transport publication-title: Proc Combust Inst – volume: 190 start-page: 572 year: 2003 end-page: 600 ident: bb0210 article-title: Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries publication-title: J Comput Phys – start-page: 235 year: 2013 end-page: 256 ident: bb0280 article-title: Shocks in cavitating flows publication-title: Bubble Dynamics and Shock Waves – volume: 226 start-page: 1985 year: 2007 end-page: 2002 ident: bb0150 article-title: Efficient implementation of {THINC} scheme: a simple and practical smoothed {VOF} algorithm publication-title: J Comput Phys – volume: 18 start-page: 333350 year: 2017 ident: bb0580 article-title: Performance of turbulence and cavitation models in prediction of incipient and developed cavitation publication-title: Int J Engine Res – start-page: 1 year: 2016 end-page: 12 ident: bb0635 article-title: Compressible simulations of bubble dynamics with central-upwind schemes publication-title: Int J Comput Fluid Dyn – volume: 24 start-page: 317 year: 2014 end-page: 324 ident: bb0295 article-title: Investigation on the collapse behavior of a cavitation bubble near a conical rigid boundary publication-title: Shock Waves – volume: 92 start-page: 2821 year: 2002 end-page: 2828 ident: bb0510 article-title: Computational study of high-speed liquid droplet impact publication-title: J Appl Phys – year: 2012 ident: bb0435 article-title: Generation and transport of bubble clouds in high-intensity focused ultrasonic fields publication-title: CAV2012, Singapore – year: 2005 ident: bb0645 article-title: Ch. Thermophysical properties of fluid systems publication-title: NIST Chemistry WebBook, NIST Standard Reference Database Number 69 – volume: 38 start-page: 3855 year: 1967 end-page: 3866 ident: bb0065 article-title: The splash of a liquid drop publication-title: J Appl Phys – volume: 629 start-page: 231 year: 2009 end-page: 262 ident: bb0305 article-title: Numerical simulations of non-spherical bubble collapse publication-title: J. Fluid Mech. – year: 1992 ident: bb0140 article-title: Two and three dimensional Eulerian simulation of fluid flow with material interfaces publication-title: Technical Report – start-page: 913 year: 2010 end-page: 915 ident: bb0300 article-title: Numerical simulation of cavitation bubble collapse near wall publication-title: Computational Fluid Dynamics 2010 – reference: W. Yuan, G. Schnerr, Cavitation in injection nozzles - effect of injection pressure fluctuations, in: CAV2001, 4th Int. Symposium on Cavitation, Pasadena, USA, 2001. – volume: 456 start-page: 2983 year: 2000 end-page: 2994 ident: bb0425 article-title: A new damping mechanism in strongly collapsing bubbles publication-title: Proc R Soc Lond A – year: 2009 ident: bb0610 article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction – volume: 38 start-page: 159 year: 2006 end-page: 192 ident: bb0015 article-title: Drop impact dynamics: splashing, spreading, receding publication-title: bouncing, Ann Rev Fluid Mech – volume: 12 start-page: 61 year: 1993 end-page: 93 ident: bb0005 article-title: Phenomena of liquid drop impact on solid and liquid surfaces publication-title: Fluid Dyn Res – reference: . URL – volume: 47 start-page: 1391 year: 2004 end-page: 1401 ident: bb0515 article-title: The impact of compressible liquid droplet on hot rigid surface publication-title: Int J Heat Mass Transf – volume: 37 start-page: 596 year: 2011 end-page: 608 ident: bb0410 article-title: Numerical simulation of shock propagation in a polydisperse bubbly liquid publication-title: Int J Multiphase Flow – volume: 5 start-page: 2588 year: 1993 end-page: 2599 ident: bb0035 article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface publication-title: Phys Fluids A – volume: 361 start-page: 75 year: 1998 end-page: 116 ident: bb0230 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J Fluid Mech – volume: 274-275 start-page: 248 year: 2012 end-page: 259 ident: bb0335 article-title: Material and velocity effects on cavitation erosion pitting publication-title: Wear – year: 2001 ident: bb0390 article-title: Cavitating flow simulations based on the bubble dynamics publication-title: CAV2001, USA – volume: 72 start-page: 1 year: 2005 end-page: 14 ident: bb0420 article-title: Sonochemical effects on single-bubble sonoluminescence publication-title: Phys Rev E – year: 2008 ident: bb0455 article-title: Development of the distributed points method with application to cavitating flow – year: 2012 ident: bb0445 article-title: SPH modeling of supercavity induced by underwater high speed objects publication-title: 8th International Symposium on Cavitation, Singapore, 13th–16th August, 2012 – volume: 60 start-page: 84 year: 1992 end-page: 93 ident: bb0185 article-title: A 3d adaptive mesh refinement algorithm for multimaterial gas dynamics publication-title: Phys D – volume: 688 start-page: 352 year: 2011 end-page: 389 ident: bb0415 article-title: Modelling bubble clusters in compressible liquids publication-title: J Fluid Mech – volume: 31 start-page: 567 year: 1999 end-page: 603 ident: bb0145 article-title: Direct numerical simulation of free-surface and interfacial flow publication-title: Annu Rev Fluid Mech – volume: 240 start-page: 59 year: 1992 end-page: 96 ident: bb0395 article-title: A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section publication-title: J Fluid Mech – year: 2012 ident: bb0430 article-title: The influence of imposed strain rate and circulation on bubble and cloud dynamics publication-title: CAV2012, Singapore – year: 2000 ident: bb0590 article-title: Efficient computation of flow with cavitation by compressible pressure correction – start-page: 123 year: 2014 end-page: 161 ident: bb0275 article-title: Modeling of cavitation dynamics and interaction with material publication-title: Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction – reference: , doi: – volume: 128 start-page: 134 year: 1996 end-page: 164 ident: bb0190 article-title: A high-order godunov method for multiple condensed phases publication-title: J Comput Phys – reference: J. Dumond, F. Magagnato, A. Class, Stochastic-field cavitation model, Phys Fluids 25(7). doi: – volume: 124 start-page: 617 year: 2002 end-page: 624 ident: bb0375 article-title: Mathematical basis and validation of the full cavitation model publication-title: J Fluids Eng – volume: 401 start-page: 225 year: 1985 end-page: 249 ident: bb0050 article-title: Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems publication-title: Proceed R Soc Lond A – year: 2006 ident: bb0325 article-title: Review of the numerical methods for free interfaces publication-title: Tech. rep., Laboratoire mixte de l’ Ecole Polytechnique et du CNRS – volume: 21 start-page: 1115 year: 1999 end-page: 1145 ident: bb0195 article-title: A simple method for compressible multifluid flows publication-title: SIAM J Sci Comp – volume: 186 start-page: 361 year: 2003 end-page: 396 ident: bb0625 article-title: Discrete equations for physical and numerical compressible multiphase mixtures publication-title: J Comput Phys – start-page: 429 year: 1994 end-page: 436 ident: bb0245 article-title: The behavior of a cavitation bubble near a rigid wall publication-title: Bubble Dynamics and Interface Phenomena – volume: 28 start-page: 63 year: 1999 end-page: 86 ident: bb0600 article-title: On the behaviour of upwind schemes in the low mach number limit publication-title: Comput Fluids – volume: 28 start-page: 073303 year: 2016 ident: bb0040 article-title: Investigation of drop impact on dry and wet surfaces with consideration of surrounding air publication-title: Phys Fluids – year: 2011 ident: bb0270 article-title: Direct Numerical Simulations of Gas-Liquid Multiphase Flows – year: 2009 ident: bb0320 article-title: Shock/gas bubble interactions in infinite and finite volumes of liquid, in: 2nd Micro and Nano Flows Conference, West London, UK – volume: 330–331 start-page: 618 year: 2014 end-page: 628 ident: bb0285 article-title: Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element-assisted pit analysis and numerical investigation of the elasto-plastic deformation of metalic materials publication-title: Wear – volume: 36 start-page: 363 year: 2009 end-page: 374 ident: bb0450 article-title: Numerical modelling of the hydrodynamic ram phenomenon publication-title: Int J Impact Eng – volume: 13 start-page: 685 year: 2013 end-page: 695 ident: bb0460 article-title: Lattice boltzmann simulation of cavitating flows publication-title: Commun Comput Phys – volume: 47 start-page: 283 year: 1971 end-page: 290 ident: bb0220 article-title: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary publication-title: J Fluid Mech – volume: 156 start-page: 43 year: 2017 end-page: 53 ident: bb0135 article-title: Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a fluid catalytic cracking reactor, part ii: 3d simulations publication-title: Fuel Process Technol – volume: 218 start-page: 859 year: 2004 end-page: 870 ident: bb0010 article-title: Droplet deposition in steam turbines publication-title: Proceed Inst Mech Eng Part C – volume: 17 start-page: 062103 year: 2005 ident: bb0100 article-title: Dynamic contact angle of spreading droplets: Experiments and simulations publication-title: Phys Fluids – volume: 22 start-page: 201 year: 2001 end-page: 210 ident: bb0110 article-title: Cooling effectiveness of a water drop impinging on a hot surface publication-title: Int J Heat Fluid Flow – volume: 677 start-page: 305 year: 2011 end-page: 341 ident: bb0405 article-title: The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy publication-title: J Fluid Mech – volume: 13 start-page: 2805 year: 2001 end-page: 2819 ident: bb0235 article-title: Collapse and rebound of a laser-induced cavitation bubble publication-title: Phys Fluids – volume: 616 start-page: 153 year: 2008 end-page: 193 ident: bb0400 article-title: Modelling of cavitation in diesel injector nozzles publication-title: J Fluid Mech – reference: D. P. Garrick, W. A. Hagen, J. D. Regele, An interface capturing scheme for modeling atomization in compressible flows, J Comput Phys doi: – volume: 52 start-page: 1690 year: 2005 end-page: 1698 ident: bb0330 article-title: In vivo acceleration of ultrasonic tissue heating by microbubble agent publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – reference: . – volume: 656 start-page: 012160 year: 2015 ident: bb0560 article-title: Modelling cavitating flows using an Eulerian-Lagrangian approach and a nucleation model publication-title: J Phys Conf Ser – year: 2005 ident: bb0585 article-title: Fundamentals of Cavitation – volume: 54 start-page: 397 year: 2013 end-page: 405 ident: bb0025 article-title: Drop impact behavior on food using spray coating: Fundamentals and applications publication-title: Food Res Int – volume: 24 start-page: 671 year: 1997 end-page: 691 ident: bb0080 article-title: Volume-tracking methods for interfacial flow calculations publication-title: Int J Num Meth Fluids – volume: Vol. 113 year: 2015 ident: bb0620 article-title: The Finite Volume Method in Computational Fluid Dynamics, An Advanced Introduction with Open-FOAM and Matlab – volume: 93 start-page: 158 year: 2017 end-page: 177 ident: bb0480 article-title: Numerical investigation of bubble dynamics using tabulated data publication-title: Int J Multiphase Flow – reference: W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence, Phys Fluids 6. – volume: 7 start-page: 329 issue: 4 year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0520 article-title: A computational study of high-speed droplet impact publication-title: Fluid Dyn Mater Process – volume: 49 start-page: 1606 issue: 7 year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0045 article-title: Water drop erosion on turbine blades: Numerical framework and applications publication-title: Mater Trans doi: 10.2320/matertrans.MRA2008025 – volume: 36 start-page: 363 issue: 3 year: 2009 ident: 10.1016/j.cis.2018.08.004_bb0450 article-title: Numerical modelling of the hydrodynamic ram phenomenon publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.07.020 – volume: 176 start-page: 363 issue: 2 year: 2002 ident: 10.1016/j.cis.2018.08.004_bb0360 article-title: A pressure-based method for turbulent cavitating flow computations publication-title: J Comput Phys doi: 10.1006/jcph.2002.6992 – volume: 124 start-page: 617 issue: 3 year: 2002 ident: 10.1016/j.cis.2018.08.004_bb0375 article-title: Mathematical basis and validation of the full cavitation model publication-title: J Fluids Eng doi: 10.1115/1.1486223 – year: 1999 ident: 10.1016/j.cis.2018.08.004_bb0365 article-title: Calculation of transient cavitation in nozzle using the two-fluid model – ident: 10.1016/j.cis.2018.08.004_bb0385 – volume: 48 start-page: 1023 issue: 9 year: 2005 ident: 10.1016/j.cis.2018.08.004_bb0160 article-title: A simple algebraic interface capturing scheme using hyperbolic tangent function publication-title: Int J Num Meth Fluids doi: 10.1002/fld.975 – volume: 37 start-page: 596 year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0410 article-title: Numerical simulation of shock propagation in a polydisperse bubbly liquid publication-title: Int J Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2011.03.007 – volume: 40 start-page: 5113 issue: 13 year: 1969 ident: 10.1016/j.cis.2018.08.004_bb0500 article-title: High speed impact between a liquid drop and a solid surface publication-title: J Appl Phys doi: 10.1063/1.1657361 – volume: 13 start-page: 2805 issue: 10 year: 2001 ident: 10.1016/j.cis.2018.08.004_bb0235 article-title: Collapse and rebound of a laser-induced cavitation bubble publication-title: Phys Fluids doi: 10.1063/1.1401810 – volume: 72 start-page: 1 year: 2005 ident: 10.1016/j.cis.2018.08.004_bb0420 article-title: Sonochemical effects on single-bubble sonoluminescence publication-title: Phys Rev E doi: 10.1103/PhysRevE.72.046309 – volume: 31 start-page: 567 issue: 1 year: 1999 ident: 10.1016/j.cis.2018.08.004_bb0145 article-title: Direct numerical simulation of free-surface and interfacial flow publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.31.1.567 – volume: 92 start-page: 2821 issue: 5 year: 2002 ident: 10.1016/j.cis.2018.08.004_bb0510 article-title: Computational study of high-speed liquid droplet impact publication-title: J Appl Phys doi: 10.1063/1.1495533 – volume: 5 start-page: 2588 issue: 11 year: 1993 ident: 10.1016/j.cis.2018.08.004_bb0035 article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface publication-title: Phys Fluids A doi: 10.1063/1.858724 – volume: 629 start-page: 231 year: 2009 ident: 10.1016/j.cis.2018.08.004_bb0305 article-title: Numerical simulations of non-spherical bubble collapse – volume: 361 start-page: 75 year: 1998 ident: 10.1016/j.cis.2018.08.004_bb0230 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J Fluid Mech doi: 10.1017/S0022112098008738 – ident: 10.1016/j.cis.2018.08.004_bb0200 doi: 10.1098/rsos.160405 – volume: 156 start-page: 43 year: 2017 ident: 10.1016/j.cis.2018.08.004_bb0135 article-title: Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a fluid catalytic cracking reactor, part ii: 3d simulations publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2016.09.012 – year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0455 – volume: 656 start-page: 012160 issue: 1 year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0560 article-title: Modelling cavitating flows using an Eulerian-Lagrangian approach and a nucleation model publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/656/1/012160 – year: 1984 ident: 10.1016/j.cis.2018.08.004_bb0075 article-title: An interface tracking method for a 3D Eulerian hydrodynamics code – ident: 10.1016/j.cis.2018.08.004_bb0440 doi: 10.1063/1.4813813 – volume: 54 start-page: 397 issue: 1 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0025 article-title: Drop impact behavior on food using spray coating: Fundamentals and applications publication-title: Food Res Int doi: 10.1016/j.foodres.2013.07.042 – volume: 322 start-page: 183 issue: 1 year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0120 article-title: Drop impact onto a dry surface: Role of the dynamic contact angle publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2008.03.005 – volume: 52 start-page: 1690 issue: 10 year: 2005 ident: 10.1016/j.cis.2018.08.004_bb0330 article-title: In vivo acceleration of ultrasonic tissue heating by microbubble agent publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/TUFFC.2005.1561623 – year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0270 – volume: 40 start-page: 64 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0465 article-title: Shock-induced collapse of a bubble inside a deformable vessel publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2013.01.003 – volume: 16 start-page: 292 issue: 4 year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0125 article-title: Drop collisions with simple and complex surfaces publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/j.cocis.2011.06.009 – volume: 32 start-page: 173 year: 2003 ident: 10.1016/j.cis.2018.08.004_bb0595 article-title: The extension of incompressible flow solvers to the weakly compressible regime publication-title: Comput Fluids doi: 10.1016/S0045-7930(02)00010-5 – year: 2009 ident: 10.1016/j.cis.2018.08.004_bb0320 – volume: 60 start-page: 84 issue: 1 year: 1992 ident: 10.1016/j.cis.2018.08.004_bb0185 article-title: A 3d adaptive mesh refinement algorithm for multimaterial gas dynamics publication-title: Phys D doi: 10.1016/0167-2789(92)90228-F – volume: 330–331 start-page: 618 year: 2014 ident: 10.1016/j.cis.2018.08.004_bb0285 article-title: Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element-assisted pit analysis and numerical investigation of the elasto-plastic deformation of metalic materials – volume: 65 start-page: 533 issue: 2 year: 1989 ident: 10.1016/j.cis.2018.08.004_bb0055 article-title: The effects of target compliance on liquid drop impact publication-title: J Appl Phys doi: 10.1063/1.343136 – volume: 274-275 start-page: 248 year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0335 article-title: Material and velocity effects on cavitation erosion pitting publication-title: Wear doi: 10.1016/j.wear.2011.09.006 – volume: 240 start-page: 59 year: 1992 ident: 10.1016/j.cis.2018.08.004_bb0395 article-title: A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section publication-title: J Fluid Mech doi: 10.1017/S002211209200003X – volume: 35 start-page: 1603 issue: 2 year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0530 article-title: Analysis of high-pressure diesel fuel injection processes using les with real-fluid thermodynamics and transport publication-title: Proc Combust Inst doi: 10.1016/j.proci.2014.06.072 – volume: 27 start-page: 86 issue: 8 year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0535 article-title: Large-eddy simulation of cavitating nozzle flow and primary jet break-up publication-title: Phys Fluids doi: 10.1063/1.4928701 – volume: 83 start-page: 1715 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0255 article-title: Numerical analysis of gas bubbles in close proximity to a movable or deformable body – year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0445 article-title: SPH modeling of supercavity induced by underwater high speed objects – volume: 401 start-page: 225 issue: 1821 year: 1985 ident: 10.1016/j.cis.2018.08.004_bb0050 article-title: Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems publication-title: Proceed R Soc Lond A doi: 10.1098/rspa.1985.0096 – volume: 128 start-page: 64 year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0565 article-title: Spherical bubble dynamics in a bubbly medium using an eulerlagrange model publication-title: Chem Eng Sci doi: 10.1016/j.ces.2015.01.056 – year: 2009 ident: 10.1016/j.cis.2018.08.004_bb0610 – volume: 100 start-page: 105 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0105 article-title: Droplet impact dynamics on a spherical particle – volume: 677 start-page: 305 year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0405 article-title: The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy publication-title: J Fluid Mech doi: 10.1017/jfm.2011.85 – year: 1991 ident: 10.1016/j.cis.2018.08.004_bb0485 – volume: 134135 start-page: 196 year: 2016 ident: 10.1016/j.cis.2018.08.004_bb0525 article-title: Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model publication-title: Comput Fluids doi: 10.1016/j.compfluid.2016.05.018 – volume: 190 start-page: 572 issue: 2 year: 2003 ident: 10.1016/j.cis.2018.08.004_bb0210 article-title: Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00298-5 – ident: 10.1016/j.cis.2018.08.004_bb0575 doi: 10.1063/1.2911039 – volume: 377 start-page: 289 issue: 1770 year: 1981 ident: 10.1016/j.cis.2018.08.004_bb0505 article-title: Analytic solutions of liquid-drop impact problems publication-title: Proceed R Soc Lond A doi: 10.1098/rspa.1981.0125 – volume: 229 start-page: 7411 issue: 19 year: 2010 ident: 10.1016/j.cis.2018.08.004_bb0175 article-title: An interface capturing method for the simulation of multi-phase compressible flows publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.06.025 – year: 1992 ident: 10.1016/j.cis.2018.08.004_bb0490 – volume: 44 start-page: 119 issue: 2 year: 2003 ident: 10.1016/j.cis.2018.08.004_bb0095 article-title: Computations of drop dynamics with the immersed boundary method, part 2: drop impact and heat transfer publication-title: Numeric Heat Transf Part B doi: 10.1080/713836348 – year: 2005 ident: 10.1016/j.cis.2018.08.004_bb0645 article-title: Ch. Thermophysical properties of fluid systems – volume: 97 start-page: 52 year: 2014 ident: 10.1016/j.cis.2018.08.004_bb0085 article-title: Volume of fluid (VOF) type advection methods in two-phase flow: a comparative study publication-title: Comput Fluids doi: 10.1016/j.compfluid.2014.03.027 – ident: 10.1016/j.cis.2018.08.004_bb0370 – ident: 10.1016/j.cis.2018.08.004_bb0215 doi: 10.1088/0169-5983/41/6/065001 – year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0615 article-title: Riemann techniques for the simulation of compressible liquid flows with phase-transistion at all mach numbers - shock and wave dynamics in cavitating 3-d micro and macro systems, no. 1238 – volume: 218 start-page: 859 issue: 8 year: 2004 ident: 10.1016/j.cis.2018.08.004_bb0010 article-title: Droplet deposition in steam turbines publication-title: Proceed Inst Mech Eng Part C doi: 10.1243/0954406041474200 – volume: 47 start-page: 283 year: 1971 ident: 10.1016/j.cis.2018.08.004_bb0220 article-title: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary publication-title: J Fluid Mech doi: 10.1017/S0022112071001058 – volume: 38 start-page: 159 issue: 1 year: 2006 ident: 10.1016/j.cis.2018.08.004_bb0015 article-title: Drop impact dynamics: splashing, spreading, receding publication-title: bouncing, Ann Rev Fluid Mech doi: 10.1146/annurev.fluid.38.050304.092144 – volume: 105 start-page: 012001 issue: 1 year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0020 article-title: Inkjet printing - the physics of manipulating liquid jets and drops publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/105/1/012001 – volume: 24 start-page: 317 year: 2014 ident: 10.1016/j.cis.2018.08.004_bb0295 article-title: Investigation on the collapse behavior of a cavitation bubble near a conical rigid boundary publication-title: Shock Waves doi: 10.1007/s00193-013-0482-3 – volume: 28 start-page: 51 year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0265 article-title: A boundary element method for the simulation of non-spherical bubbles and the interactions near a free surface – volume: 69 start-page: 1 year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0315 article-title: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics publication-title: Comput Fluids doi: 10.1016/j.compfluid.2012.07.020 – year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0290 article-title: 11pflop/s simulations of cloud cavitation collapse – year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0545 – volume: 607 start-page: 313 year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0630 article-title: Modelling phase transition in metastable liquids: application to cavitating and flashing flows publication-title: J Fluid Mech doi: 10.1017/S0022112008002061 – volume: 730 start-page: 245 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0260 article-title: Ultrasonic cavitation near a tissue layer – volume: 24 start-page: 671 issue: 7 year: 1997 ident: 10.1016/j.cis.2018.08.004_bb0080 article-title: Volume-tracking methods for interfacial flow calculations publication-title: Int J Num Meth Fluids doi: 10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9 – year: 2005 ident: 10.1016/j.cis.2018.08.004_bb0585 – volume: Vol. 113 year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0620 – volume: 230 start-page: 7086 issue: 19 year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0170 article-title: Revisit to the {THINC} scheme: a simple algebraic {VOF} algorithm publication-title: J Comput Phys doi: 10.1016/j.jcp.2011.06.012 – volume: 186 start-page: 361 issue: 2 year: 2003 ident: 10.1016/j.cis.2018.08.004_bb0625 article-title: Discrete equations for physical and numerical compressible multiphase mixtures publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00011-1 – start-page: 123 year: 2014 ident: 10.1016/j.cis.2018.08.004_bb0275 article-title: Modeling of cavitation dynamics and interaction with material – volume: 11 start-page: 1406 issue: 6 year: 1999 ident: 10.1016/j.cis.2018.08.004_bb0115 article-title: On a three-dimensional volume tracking model of droplet impact publication-title: Phys Fluids doi: 10.1063/1.870005 – volume: 7 start-page: 236 issue: 2 year: 1995 ident: 10.1016/j.cis.2018.08.004_bb0090 article-title: Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling publication-title: Phys Fluids doi: 10.1063/1.868622 – volume: 13 start-page: 685 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0460 article-title: Lattice boltzmann simulation of cavitating flows publication-title: Commun Comput Phys doi: 10.4208/cicp.291011.270112s – volume: 12 start-page: 25565 year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0155 article-title: Simplified volume of fluid method (svof) for two-phase flows publication-title: TASK Q – volume: 125 start-page: 53 issue: 1 year: 2003 ident: 10.1016/j.cis.2018.08.004_bb0555 article-title: Scaling effect on prediction of cavitation inception in a line vortex flow publication-title: J Fluids Eng doi: 10.1115/1.1521956 – volume: 70 start-page: 22 year: 2015 ident: 10.1016/j.cis.2018.08.004_bb0540 article-title: A numerical method to simulate turbulent cavitating flows publication-title: Int J Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2014.11.009 – start-page: 1 year: 2016 ident: 10.1016/j.cis.2018.08.004_bb0635 article-title: Compressible simulations of bubble dynamics with central-upwind schemes publication-title: Int J Comput Fluid Dyn – year: 1998 ident: 10.1016/j.cis.2018.08.004_bb0380 article-title: Numerical study of cavitating flow structure on a hydrofoil – volume: 290291 start-page: 154 year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0060 article-title: Cavitation in impacted drops and jets and the effect on erosion damage thresholds publication-title: Wear doi: 10.1016/j.wear.2012.03.006 – year: 2017 ident: 10.1016/j.cis.2018.08.004_bb0030 – year: 2006 ident: 10.1016/j.cis.2018.08.004_bb0325 article-title: Review of the numerical methods for free interfaces – volume: 60 start-page: 256 year: 1999 ident: 10.1016/j.cis.2018.08.004_bb0605 article-title: Asymptotic single and multiple scale expansions in the low mach number limit publication-title: SIAM J Appl Math doi: 10.1137/S0036139998343198 – volume: 31 start-page: 387535 issue: 2 year: 2002 ident: 10.1016/j.cis.2018.08.004_bb0640 article-title: The iapws formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J Phys Chem Ref Data Monogr – year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0345 – volume: 128 start-page: 134 issue: 1 year: 1996 ident: 10.1016/j.cis.2018.08.004_bb0190 article-title: A high-order godunov method for multiple condensed phases publication-title: J Comput Phys doi: 10.1006/jcph.1996.0200 – start-page: 235 year: 2013 ident: 10.1016/j.cis.2018.08.004_bb0280 article-title: Shocks in cavitating flows – year: 1995 ident: 10.1016/j.cis.2018.08.004_bb0570 – volume: 12 start-page: 61 year: 1993 ident: 10.1016/j.cis.2018.08.004_bb0005 article-title: Phenomena of liquid drop impact on solid and liquid surfaces publication-title: Fluid Dyn Res doi: 10.1016/0169-5983(93)90106-K – volume: 28 start-page: 073303 issue: 7 year: 2016 ident: 10.1016/j.cis.2018.08.004_bb0040 article-title: Investigation of drop impact on dry and wet surfaces with consideration of surrounding air publication-title: Phys Fluids doi: 10.1063/1.4958694 – volume: 93 start-page: 158 year: 2017 ident: 10.1016/j.cis.2018.08.004_bb0480 article-title: Numerical investigation of bubble dynamics using tabulated data publication-title: Int J Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.04.004 – ident: 10.1016/j.cis.2018.08.004_bb0470 – volume: 616 start-page: 153 year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0400 article-title: Modelling of cavitation in diesel injector nozzles publication-title: J Fluid Mech doi: 10.1017/S0022112008003777 – volume: 215 start-page: 98 year: 2006 ident: 10.1016/j.cis.2018.08.004_bb0310 article-title: Hydrodynamic simulation of air bubble implosion using a level set approach – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.cis.2018.08.004_bb0070 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J Comput Phys doi: 10.1016/0021-9991(81)90145-5 – ident: 10.1016/j.cis.2018.08.004_bb0165 – start-page: 187 year: 1986 ident: 10.1016/j.cis.2018.08.004_bb0180 – start-page: 429 year: 1994 ident: 10.1016/j.cis.2018.08.004_bb0245 article-title: The behavior of a cavitation bubble near a rigid wall – volume: 22 start-page: 201 issue: 2 year: 2001 ident: 10.1016/j.cis.2018.08.004_bb0110 article-title: Cooling effectiveness of a water drop impinging on a hot surface publication-title: Int J Heat Fluid Flow doi: 10.1016/S0142-727X(00)00086-2 – volume: 29 start-page: 849 year: 2000 ident: 10.1016/j.cis.2018.08.004_bb0355 article-title: A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction publication-title: Comput Fluids doi: 10.1016/S0045-7930(99)00039-0 – volume: 21 start-page: 1115 issue: 3 year: 1999 ident: 10.1016/j.cis.2018.08.004_bb0195 article-title: A simple method for compressible multifluid flows publication-title: SIAM J Sci Comp doi: 10.1137/S1064827597323749 – volume: 28 start-page: 63 year: 1999 ident: 10.1016/j.cis.2018.08.004_bb0600 article-title: On the behaviour of upwind schemes in the low mach number limit publication-title: Comput Fluids doi: 10.1016/S0045-7930(98)00017-6 – volume: 257 start-page: 147 year: 1993 ident: 10.1016/j.cis.2018.08.004_bb0240 article-title: The final stage of the collapse of a cavitation bubble near a rigid wall publication-title: J Fluid Mech doi: 10.1017/S0022112093003027 – volume: 17 start-page: 062103 issue: 6 year: 2005 ident: 10.1016/j.cis.2018.08.004_bb0100 article-title: Dynamic contact angle of spreading droplets: Experiments and simulations publication-title: Phys Fluids doi: 10.1063/1.1928828 – volume: 36 start-page: 295 year: 2009 ident: 10.1016/j.cis.2018.08.004_bb0250 article-title: The dynamic behavior of a gas bubble near a wall – year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0430 article-title: The influence of imposed strain rate and circulation on bubble and cloud dynamics – volume: 38 start-page: 3855 issue: 10 year: 1967 ident: 10.1016/j.cis.2018.08.004_bb0065 article-title: The splash of a liquid drop publication-title: J Appl Phys doi: 10.1063/1.1709031 – year: 2004 ident: 10.1016/j.cis.2018.08.004_bb0550 article-title: A two-phase flow model for predicting cavitation dynamics – year: 2008 ident: 10.1016/j.cis.2018.08.004_bb0475 – volume: 72 start-page: 391 issue: 2 year: 1975 ident: 10.1016/j.cis.2018.08.004_bb0225 article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary publication-title: J Fluid Mech doi: 10.1017/S0022112075003448 – volume: 124 start-page: 601 year: 2002 ident: 10.1016/j.cis.2018.08.004_bb0350 article-title: A cavitation erosion model for ductile materials publication-title: J Fluids Eng doi: 10.1115/1.1486474 – volume: 18 start-page: 333350 issue: 4 year: 2017 ident: 10.1016/j.cis.2018.08.004_bb0580 article-title: Performance of turbulence and cavitation models in prediction of incipient and developed cavitation publication-title: Int J Engine Res doi: 10.1177/1468087416658604 – ident: 10.1016/j.cis.2018.08.004_bb0495 doi: 10.1063/1.868124 – volume: 47 start-page: 1391 issue: 67 year: 2004 ident: 10.1016/j.cis.2018.08.004_bb0515 article-title: The impact of compressible liquid droplet on hot rigid surface publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2003.05.001 – ident: 10.1016/j.cis.2018.08.004_bb0205 – volume: 226 start-page: 1985 issue: 2 year: 2007 ident: 10.1016/j.cis.2018.08.004_bb0150 article-title: Efficient implementation of {THINC} scheme: a simple and practical smoothed {VOF} algorithm publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.06.020 – year: 2000 ident: 10.1016/j.cis.2018.08.004_bb0590 – volume: 456 start-page: 2983 year: 2000 ident: 10.1016/j.cis.2018.08.004_bb0425 article-title: A new damping mechanism in strongly collapsing bubbles publication-title: Proc R Soc Lond A doi: 10.1098/rspa.2000.0649 – volume: 688 start-page: 352 year: 2011 ident: 10.1016/j.cis.2018.08.004_bb0415 article-title: Modelling bubble clusters in compressible liquids publication-title: J Fluid Mech doi: 10.1017/jfm.2011.380 – year: 2001 ident: 10.1016/j.cis.2018.08.004_bb0390 article-title: Cavitating flow simulations based on the bubble dynamics – volume: 21 start-page: 093302 issue: 9 year: 2009 ident: 10.1016/j.cis.2018.08.004_bb0130 article-title: Deformation of a droplet in a particulate shear flow publication-title: Phys Fluids doi: 10.1063/1.3205446 – year: 2012 ident: 10.1016/j.cis.2018.08.004_bb0435 article-title: Generation and transport of bubble clouds in high-intensity focused ultrasonic fields – year: 1992 ident: 10.1016/j.cis.2018.08.004_bb0140 article-title: Two and three dimensional Eulerian simulation of fluid flow with material interfaces – volume: 29 start-page: 528 year: 2016 ident: 10.1016/j.cis.2018.08.004_bb0340 article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2015.04.026 – start-page: 913 year: 2010 ident: 10.1016/j.cis.2018.08.004_bb0300 article-title: Numerical simulation of cavitation bubble collapse near wall |
SSID | ssj0002575 |
Score | 2.432217 |
SecondaryResourceType | review_article |
Snippet | The impact of liquid droplets on solid surfaces at conditions inducing cavitation inside their volume has rarely been addressed in the literature. A review is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 46 |
SubjectTerms | Approximate Riemann solvers Cavitation Drop impact OpenFOAM |
Title | Modelling cavitation during drop impact on solid surfaces |
URI | https://dx.doi.org/10.1016/j.cis.2018.08.004 https://www.ncbi.nlm.nih.gov/pubmed/30195460 https://www.proquest.com/docview/2101916103 |
Volume | 260 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ahLG-lLXd2qxbcKFPBa-ypUjWYwkL2QJ9KC3tm7E-DBklCfko9KV_--4sOVBY-7An40OHxel8-gnd3Q_g3DBVSauJ36XCA0rGbIqoukhVxSWXxrCiarItruX4Tvx-GDzswLCthaG0yhj7Q0xvonWUXEZrXi6mU6rxZdTrXaJTEo4pdqGbcy0HHehe_ZqMr7cBGb0yEBngyZkU2svNJs3LTqlpd1Y0jTwjXds_tqe34GezDY0-wX7Ej8lVmOIB7PjZIXwIjJLPh_Bx2BK4obTJ7rSrI9DEeNY0305s9RS7ciehQjFxy_kiCcWSCUrRF6cuWW2WNSVrfYa70c_b4TiNnAmp5ZqtU8WFF0UmlJPC88IUuvLCuYFUNZfKKUQ4hoomlfJGFzpXtaB_nparRpNr_gU6s_nMn0CS55nlSmunrRfCsEohmNKuzl1mclsPesBaU5U2Tp14LR7LNnPsD8pXJVm3JK5LJnpwsVVZhG4a7w0Wrf3LVy5RYrR_T-2sXasSDU73H9XMzzc4CBUQDWeM9-A4LOJ2FpwKJ4VkX__vo6ewR28hy-8bdNbLjf-OaGVt-rD74yXrR5-k5-TmfvIXs9HmVA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR367PCp6Eatpkk-Yoi7I-TwreSvMorMjusg_Bi7_dmaZVBPXgdZrQMJlOvtBv5gM4NkwV0mrSdynwgpIwGyOqzmJVcMmlMSwrKrbFvew-iuun9tMMdJpaGKJV1rk_5PQqW9eWs9qbZ8Nej2p8GfV6lxiUhGOyWZgXba6I13f6_sXzwJgMMgZ4b6bhza_NiuRle9SyO8mqNp61WNsPh9Nv4LM6hC5XYLlGj9F5WOAqzPj-GiwEPcm3NVjsNPJtaK24nXa8Dpr0zqrW25EtXuue3FGoT4zcaDCMQqlkhFaMxJ6LxtNRSVStDXi8vHjodONaMSG2XLNJrLjwIkuEclJ4nplMF14415aq5FI5hfjGUMmkUt7oTKeqFPTF02aV6HDNN2GuP-j7bYjSNLFcae209UIYViiEUtqVqUtMast2C1jjqtzWSydVi5e84Y09o32ck3dzUrpkogUnn1OGoZfGX4NF4__8W0DkmOv_mnbU7FWODqe_H0XfD6Y4CCcgFk4Yb8FW2MTPVXAqmxSS7fzvpYew2H24u81vr-5vdmGJngS-3x7MTUZTv4-4ZWIOqrj8AG7t5Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+cavitation+during+drop+impact+on+solid+surfaces&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Kyriazis%2C+Nikolaos&rft.au=Koukouvinis%2C+Phoevos&rft.au=Gavaises%2C+Manolis&rft.date=2018-10-01&rft.issn=0001-8686&rft.volume=260&rft.spage=46&rft.epage=64&rft_id=info:doi/10.1016%2Fj.cis.2018.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cis_2018_08_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon |