Part-guided Relational Transformers for Fine-grained Visual Recognition

Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; p. 1
Main Authors Zhao, Yifan, Li, Jia, Chen, Xiaowu, Tian, Yonghong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach.
AbstractList Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e. , constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach.
Author Zhao, Yifan
Li, Jia
Chen, Xiaowu
Tian, Yonghong
Author_xml – sequence: 1
  givenname: Yifan
  surname: Zhao
  fullname: Zhao, Yifan
– sequence: 2
  givenname: Jia
  surname: Li
  fullname: Li, Jia
– sequence: 3
  givenname: Xiaowu
  surname: Chen
  fullname: Chen, Xiaowu
– sequence: 4
  givenname: Yonghong
  surname: Tian
  fullname: Tian, Yonghong
BookMark eNpdkMFLwzAUh4NMcJveBS8FL146X5KmbY4y3BwMHGN6DWn6OjK6dibtwf_e1A0PHh6_d_h-D943IaOmbZCQewozSkE-71abGQNGZ5yyNJFwRcZUJjQGSNgo7CCyOKOJvCET7w8ANBE0HZPlRrsu3ve2xDLaYq072za6jnZON75q3RGdj0JGC9tgvHc6RBl9Wt8HaIum3Td2qNyS60rXHu8uOSUfi9fd_C1evy9X85d1bLiELha5EDxBYFIbpJXBrDQZZjIpZCo4oDF5UWpechBMFkLoUtJMC5liWeQMGZ-Sp_Pdk2u_evSdOlpvsK51g23vFRMyh0xwOaCP_9BD27vw3C8lGYTJAgVnyrjWe4eVOjl71O5bUVCDWRXMqsGsupgNlYdzxSLiHy7TYDfP-Q_4n3W3
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s11042_023_17786_5
crossref_primary_10_1016_j_patcog_2023_109882
crossref_primary_10_23919_transcom_2023EBP3102
crossref_primary_10_1016_j_eja_2023_126884
crossref_primary_10_3390_app13031640
crossref_primary_10_1016_j_media_2023_102931
crossref_primary_10_1016_j_neucom_2023_02_053
crossref_primary_10_1016_j_engappai_2024_108248
crossref_primary_10_1016_j_imavis_2024_104923
crossref_primary_10_1007_s11263_023_01873_z
crossref_primary_10_1007_s11633_022_1404_6
crossref_primary_10_3390_electronics12122635
crossref_primary_10_1007_s11042_023_15991_w
crossref_primary_10_1016_j_neunet_2023_01_050
crossref_primary_10_1109_TMM_2023_3244340
Cites_doi 10.1109/CVPR.2016.319
10.1109/CVPR42600.2020.00977
10.1109/CVPR.2017.688
10.1109/CVPR.2009.5206848
10.1109/CVPR.2018.00813
10.1109/ICCVW.2013.77
10.1016/j.patcog.2017.10.002
10.1109/CVPR.2006.68
10.1007/978-3-030-01270-0_49
10.1007/978-3-030-58565-5_10
10.1109/CVPR.2016.41
10.1109/TIP.2017.2774041
10.1007/978-3-030-58452-8_13
10.1007/s11263-017-1048-0
10.1007/978-3-319-10590-1_54
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7299194
10.1109/CVPR.2015.7298658
10.1109/CVPR.2018.00436
10.1109/TIP.2017.2688133
10.1609/aaai.v34i07.6712
10.1609/aaai.v34i07.7016
10.1109/CVPR.2017.476
10.1109/ICCV.2019.00969
10.1109/ICCV.2019.00670
10.1109/ICCV.2017.229
10.1109/ICCV.2019.00833
10.1007/978-3-030-01270-0_35
10.1109/ICCV.2015.136
10.1109/CVPR46437.2021.01625
10.1109/ICCV.2017.557
10.1109/T-C.1971.223290
10.1109/TIP.2020.2973812
10.1109/CVPR46437.2021.01483
10.1109/CVPR.2018.00117
10.1109/CVPR42600.2020.00869
10.1109/CVPR.2011.5995368
10.1007/978-3-030-01240-3_4
10.1109/CVPR.2019.00315
10.1109/CVPR.2019.00515
10.1109/ICCV.2019.00842
10.1109/CVPR42600.2020.01048
10.1109/ICCV.2017.74
10.1109/CVPR.2016.132
10.1109/ICCV.2015.170
10.1007/978-3-030-01219-9_22
10.1109/CVPR.2019.00412
10.1007/978-3-030-01258-8_5
10.18653/v1/P19-1285
10.1109/CVPR.2017.743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3126490
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (Online service)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 10_1109_TIP_2021_3126490
9614988
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61825101; 61922006
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
53G
5VS
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c390t-585534e029ace1fce7dc7e794b96530ecc8bda3d30529b55ad917a596edb82e23
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Wed Dec 04 07:51:31 EST 2024
Thu Oct 10 20:08:55 EDT 2024
Fri Dec 06 04:50:00 EST 2024
Wed Jun 26 19:25:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-585534e029ace1fce7dc7e794b96530ecc8bda3d30529b55ad917a596edb82e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3976-6500
0000-0002-2978-5935
0000-0002-4346-8696
0000-0002-5691-013X
PQID 2599209927
PQPubID 85429
PageCount 1
ParticipantIDs ieee_primary_9614988
crossref_primary_10_1109_TIP_2021_3126490
proquest_miscellaneous_2598075392
proquest_journals_2599209927
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References he (ref61) 2021
ref13
ref12
ref59
ref15
ref14
ref52
ref54
ref10
ref17
ref16
ref19
ref18
abel (ref34) 2018; 126
yang (ref23) 2018
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
liu (ref57) 2021
ref49
ref8
yuan (ref58) 2021
ref7
ref9
ref3
xiao (ref35) 2015
ref6
ref5
ref40
ref37
zhu (ref55) 2020
ref36
ref31
yao (ref27) 2012
ref33
ref32
vaswani (ref24) 2017
ref2
ref39
ref38
choromanski (ref53) 2020
maji (ref4) 2013
liu (ref66) 2016
xie (ref60) 2021
wah (ref1) 2011
ref68
ref67
ref26
ref25
ref64
ref20
ref63
ref22
ref21
ref28
dubey (ref11) 2018
ref29
dosovitskiy (ref56) 2020
he (ref30) 2017
chen (ref50) 2019
ref62
cordonnier (ref65) 2020
References_xml – year: 2020
  ident: ref65
  article-title: On the relationship between self-attention and convolutional layers
  publication-title: Proc Int Conf Learn Represent (ICLR)
  contributor:
    fullname: cordonnier
– ident: ref25
  doi: 10.1109/CVPR.2016.319
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00977
– start-page: 4075
  year: 2017
  ident: ref30
  article-title: Weakly supervised learning of part selection model with spatial constraints for fine-grained image classification
  publication-title: Proc 31st AAAI Conf Artif Intell
  contributor:
    fullname: he
– year: 2020
  ident: ref56
  article-title: An image is worth $16\times16$ words: Transformers for image recognition at scale
  publication-title: Proc Int Conf Learn Represent (ICLR)
  contributor:
    fullname: dosovitskiy
– year: 2020
  ident: ref55
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
  publication-title: arXiv 2010 04159
  contributor:
    fullname: zhu
– year: 2021
  ident: ref57
  article-title: Swin transformer: Hierarchical vision transformer using shifted Windows
  publication-title: arXiv 2103 14030
  contributor:
    fullname: liu
– ident: ref37
  doi: 10.1109/CVPR.2017.688
– ident: ref63
  doi: 10.1109/CVPR.2009.5206848
– ident: ref44
  doi: 10.1109/CVPR.2018.00813
– ident: ref3
  doi: 10.1109/ICCVW.2013.77
– ident: ref31
  doi: 10.1016/j.patcog.2017.10.002
– ident: ref28
  doi: 10.1109/CVPR.2006.68
– ident: ref10
  doi: 10.1007/978-3-030-01270-0_49
– start-page: 637
  year: 2018
  ident: ref11
  article-title: Maximum-entropy fine grained classification
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
  contributor:
    fullname: dubey
– ident: ref43
  doi: 10.1007/978-3-030-58565-5_10
– ident: ref12
  doi: 10.1109/CVPR.2016.41
– ident: ref41
  doi: 10.1109/TIP.2017.2774041
– ident: ref54
  doi: 10.1007/978-3-030-58452-8_13
– volume: 126
  start-page: 476
  year: 2018
  ident: ref34
  article-title: Do semantic parts emerge in convolutional neural networks?
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1048-0
  contributor:
    fullname: abel
– year: 2021
  ident: ref61
  article-title: TransFG: A transformer architecture for fine-grained recognition
  publication-title: arXiv 2103 07976
  contributor:
    fullname: he
– ident: ref29
  doi: 10.1007/978-3-319-10590-1_54
– ident: ref67
  doi: 10.1109/CVPR.2016.90
– ident: ref33
  doi: 10.1109/CVPR.2015.7299194
– year: 2016
  ident: ref66
  article-title: Fully convolutional attention networks for fine-grained recognition
  publication-title: arXiv 1603 06765
  contributor:
    fullname: liu
– ident: ref2
  doi: 10.1109/CVPR.2015.7298658
– ident: ref6
  doi: 10.1109/CVPR.2018.00436
– ident: ref40
  doi: 10.1109/TIP.2017.2688133
– year: 2021
  ident: ref58
  article-title: Tokens-to-token ViT: Training vision transformers from scratch on ImageNet
  publication-title: arXiv 2101 11986
  contributor:
    fullname: yuan
– ident: ref9
  doi: 10.1609/aaai.v34i07.6712
– ident: ref51
  doi: 10.1609/aaai.v34i07.7016
– ident: ref21
  doi: 10.1109/CVPR.2017.476
– ident: ref49
  doi: 10.1109/ICCV.2019.00969
– year: 2020
  ident: ref53
  article-title: Rethinking attention with performers
  publication-title: Proc Int Conf Learn Represent (ICLR)
  contributor:
    fullname: choromanski
– ident: ref38
  doi: 10.1109/ICCV.2019.00670
– start-page: 420
  year: 2018
  ident: ref23
  article-title: Learning to navigate for fine-grained classification
  publication-title: Proc Eur Conf Comput Vis (ECCV)
  contributor:
    fullname: yang
– ident: ref15
  doi: 10.1109/ICCV.2017.229
– ident: ref47
  doi: 10.1109/ICCV.2019.00833
– start-page: 3466
  year: 2012
  ident: ref27
  article-title: A codebook-free and annotation-free approach for fine-grained image categorization
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: yao
– ident: ref13
  doi: 10.1007/978-3-030-01270-0_35
– ident: ref36
  doi: 10.1109/ICCV.2015.136
– ident: ref59
  doi: 10.1109/CVPR46437.2021.01625
– ident: ref46
  doi: 10.1109/ICCV.2017.557
– ident: ref62
  doi: 10.1109/T-C.1971.223290
– start-page: 5998
  year: 2017
  ident: ref24
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: vaswani
– ident: ref45
  doi: 10.1109/TIP.2020.2973812
– start-page: 5157
  year: 2019
  ident: ref50
  article-title: Destruction and construction learning for fine-grained image recognition
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR)
  contributor:
    fullname: chen
– ident: ref42
  doi: 10.1109/CVPR46437.2021.01483
– ident: ref19
  doi: 10.1109/CVPR.2018.00117
– year: 2021
  ident: ref60
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: arXiv 2105 15203
  contributor:
    fullname: xie
– ident: ref20
  doi: 10.1109/CVPR42600.2020.00869
– ident: ref26
  doi: 10.1109/CVPR.2011.5995368
– ident: ref22
  doi: 10.1007/978-3-030-01240-3_4
– ident: ref18
  doi: 10.1109/CVPR.2019.00315
– ident: ref8
  doi: 10.1109/CVPR.2019.00515
– ident: ref7
  doi: 10.1109/ICCV.2019.00842
– year: 2011
  ident: ref1
  article-title: The caltech-UCSD birds-200-2011 dataset
  contributor:
    fullname: wah
– year: 2013
  ident: ref4
  article-title: Fine-grained visual classification of aircraft
  publication-title: arXiv 1306 5151
  contributor:
    fullname: maji
– ident: ref48
  doi: 10.1109/CVPR42600.2020.01048
– ident: ref68
  doi: 10.1109/ICCV.2017.74
– ident: ref17
  doi: 10.1109/CVPR.2016.132
– ident: ref5
  doi: 10.1109/ICCV.2015.170
– ident: ref16
  doi: 10.1007/978-3-030-01219-9_22
– ident: ref32
  doi: 10.1109/CVPR.2019.00412
– ident: ref52
  doi: 10.1007/978-3-030-01258-8_5
– start-page: 842
  year: 2015
  ident: ref35
  article-title: The application of two-level attention models in deep convolutional neural network for fine-grained image classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
  contributor:
    fullname: xiao
– ident: ref64
  doi: 10.18653/v1/P19-1285
– ident: ref14
  doi: 10.1109/CVPR.2017.743
SSID ssj0014516
Score 2.519725
Snippet Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Correlation
Costs
Embedding
Feature extraction
Fine-grained visual recognition
Modules
Natural language processing
Object recognition
Part discovery
Relationship
Semantics
Task analysis
Transformers
Visualization
Title Part-guided Relational Transformers for Fine-grained Visual Recognition
URI https://ieeexplore.ieee.org/document/9614988
https://www.proquest.com/docview/2599209927
https://search.proquest.com/docview/2598075392
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSsNAcGh70oPVVjFaJYIXwW3TZJPNHkWsVagUaaW3kH2kFCEV21z8emfzoqgHTwlkdrPszOzM7LwArpM4HgpJExLwUBCqTRAA9SQRHlI0DRLFpElOnrwE4zl9XviLBtzWuTBa6zz4TPfNa-7LV2uZmauyAUdZwsOwCU3GWZGrVXsMTMPZ3LPpM8IQrHJJOnwwe5qiIegO0T5F8W9O3x0RlPdU-XUQ59Jl1IZJta4iqOS9n21FX379KNn434UfwkGpZtp3BV0cQUOnHWiXKqddMvSmA_s79Qi78DhFQiLLbKUQqAqTw2lmlXaLuqKNT3uEY8jSdJdAwLfVJkOg1yoUaZ0ew3z0MLsfk7LTApEed7YEbQbfo9pxeSz1MJGaKck0sqrgge85iOZQqNhTnvELCt-PFVp5sc8DrUToatc7gVa6TvUp2EokTNBQDI1LH5WVUFGZ8FgFTkhVEHALbqrNjz6KghpRbog4PEJERQZRUYkoC7pmL2u4chst6FXYikqO20RoxnGTBuwyC67qz8grxgESp3qd5TCm9jKqhGd_z3wOe-b_xRVLD1rbz0xfoNKxFZc5tX0DFWvULQ
link.rule.ids 315,781,785,797,27929,27930,54763
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSDKGisotbEi4kLpd0-9miMCAqEGDDcmu6jhJgUI_Tir3e2D2LUg6c26XSz2ZnZ_WbnBXAdR1GHCxoTjwWcUKWDAKgjCHdQoqkXS1_o5OThyOtN6dPMnVXgdpMLo5TKgs9US79mvny5FKm-KmszPEtYEGzBtktRL_JsrY3PQLeczXybrk98JCydkhZrT_pjNAXtDlqoCAD0_vvtEMq6qvzairPzpVuDYTmzPKzkrZWueUt8_ija-N-pH8B-ATTNu1wyDqGikjrUCtBpFiq9qsPet4qEDXgcoyiRebqQSFQGyuEwkxLfIlo08Wl28R8y1_0lkPB1sUqR6KUMRlomRzDtPkzue6TotUCEw6w1QavBdaiybBYJ1YmF8qXwFSorZ57rWMjogMvIkY72DHLXjSTaeZHLPCV5YCvbOYZqskzUCZiSxz6nAe9opz7ClUBSEbNIelZApecxA27KxQ_f85IaYWaKWCxERoWaUWHBKAMaei03dMUyGtAsuRUWOrcK0ZBjOhHY9g242nxGbdEukChRyzSj0dWXERSe_j3yJez0JsNBOOiPns9gV88lv3BpQnX9kapzhCBrfpFJ3hdeJ9d7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Part-Guided+Relational+Transformers+for+Fine-Grained+Visual+Recognition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhao%2C+Yifan&rft.au=Li%2C+Jia&rft.au=Chen%2C+Xiaowu&rft.au=Tian%2C+Yonghong&rft.date=2021-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=30&rft.spage=9470&rft.epage=9481&rft_id=info:doi/10.1109%2FTIP.2021.3126490&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2021_3126490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon