Biochar Particle Size and Post-Pyrolysis Mechanical Processing Affect Soil pH, Water Retention Capacity, and Plant Performance

It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchang...

Full description

Saved in:
Bibliographic Details
Published inSoil systems Vol. 3; no. 1; p. 14
Main Authors Liao, Wenxi, Thomas, Sean C.
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06–0.5 mm and 2–4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%–258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates.
AbstractList It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06–0.5 mm and 2–4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%–258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates.
It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06⁻0.5 mm and 2⁻4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%⁻258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates.
Author Liao, Wenxi
Thomas, Sean C.
Author_xml – sequence: 1
  givenname: Wenxi
  orcidid: 0000-0001-6600-4395
  surname: Liao
  fullname: Liao, Wenxi
– sequence: 2
  givenname: Sean C.
  orcidid: 0000-0002-0686-2483
  surname: Thomas
  fullname: Thomas, Sean C.
BookMark eNp9UU1PFTEUbQwkIvIHXHXpgsF-DTNd4osCCcYJaFw297W3WDKvfbZlMS747RQfMUYTV7e5Pefce859RfZiikjIG85OpNTsXUlhLkupuCmScca4ekEORD_wbhxGvffH-yU5KuWOMSa4YoM6PSAP70Oy3yHTCXINdkZ6E34ihejolErtpiWneSmh0E_YcDFYmOmUk8VSQrylZ96jrfSmrUC3F8f0G1TM9BorxhpSpCvYgg11Od5JzhArnTD7lDcQLb4m-x7mgkfP9ZB8_fjhy-qiu_p8frk6u-psM1g75QW2hZnrnTwdtUSrQOleDGqtvVtL5bhcgxoc11KMtn31nPtB6tEzJp2Vh-Ryp-sS3JltDhvIi0kQzK9Gyrfm2b_pldBra20bwhUfBAxilEy1xPrBAeim9Xantc3pxz2WajahWJybN0z3xQgl-dgzPbIGFTuozamUjP73aM7M0-3Mv7drpPEvUgsQntKsGcL8P-oj9kGlFQ
CitedBy_id crossref_primary_10_1002_cjce_25087
crossref_primary_10_1007_s42773_020_00054_2
crossref_primary_10_1039_D3EW00068K
crossref_primary_10_1007_s40034_021_00213_5
crossref_primary_10_1016_j_gce_2023_03_002
crossref_primary_10_3389_fagro_2021_731184
crossref_primary_10_3390_microorganisms10122310
crossref_primary_10_1007_s42729_025_02328_9
crossref_primary_10_1016_j_jhazmat_2020_123644
crossref_primary_10_1071_FP23257
crossref_primary_10_1016_j_rhisph_2020_100184
crossref_primary_10_3390_pr12081603
crossref_primary_10_1016_j_mtcomm_2021_102912
crossref_primary_10_1007_s42773_024_00323_4
crossref_primary_10_1016_j_biortech_2020_123157
crossref_primary_10_1021_acs_est_3c04185
crossref_primary_10_1007_s42773_022_00186_7
crossref_primary_10_3389_fmicb_2023_1190716
crossref_primary_10_1016_j_scitotenv_2019_134645
crossref_primary_10_1016_j_scitotenv_2020_138742
crossref_primary_10_1007_s10668_024_05061_y
crossref_primary_10_1016_j_scitotenv_2021_152638
crossref_primary_10_3390_agronomy12092036
crossref_primary_10_1016_j_ufug_2022_127652
crossref_primary_10_1007_s42773_021_00089_z
crossref_primary_10_1016_j_scitotenv_2022_154815
crossref_primary_10_1007_s42247_022_00442_3
crossref_primary_10_1007_s42773_023_00252_8
crossref_primary_10_1021_acs_iecr_4c01624
crossref_primary_10_1016_j_jenvman_2023_119324
crossref_primary_10_1016_j_crgsc_2024_100409
crossref_primary_10_1061__ASCE_MT_1943_5533_0003915
crossref_primary_10_3390_agronomy13051394
crossref_primary_10_1016_j_jobe_2024_109272
crossref_primary_10_1016_j_biortech_2021_125102
crossref_primary_10_1016_j_cemconcomp_2023_105117
crossref_primary_10_1371_journal_pone_0288291
crossref_primary_10_3390_soilsystems8040114
crossref_primary_10_1007_s42729_021_00597_8
crossref_primary_10_1016_j_mset_2020_10_012
crossref_primary_10_3390_plants13111492
crossref_primary_10_1038_s41598_023_33466_8
crossref_primary_10_1016_j_resconrec_2023_107081
crossref_primary_10_3390_agronomy11112309
crossref_primary_10_3390_designs6050069
crossref_primary_10_1007_s42773_021_00115_0
crossref_primary_10_1016_j_jenvman_2024_123272
crossref_primary_10_1007_s42773_023_00287_x
crossref_primary_10_1016_j_scitotenv_2024_171302
crossref_primary_10_3390_su16166869
crossref_primary_10_3390_agronomy12061314
crossref_primary_10_1515_pac_2023_0101
crossref_primary_10_3390_su16010414
crossref_primary_10_1016_j_biortech_2022_128423
crossref_primary_10_1002_er_6092
crossref_primary_10_1038_s43586_024_00297_4
crossref_primary_10_3390_c9030067
crossref_primary_10_1080_26895293_2022_2080282
crossref_primary_10_1080_00103624_2019_1679162
crossref_primary_10_1007_s13399_021_01346_8
crossref_primary_10_1016_j_still_2021_104992
crossref_primary_10_1016_j_jenvman_2022_115506
crossref_primary_10_1016_j_matpr_2022_11_494
crossref_primary_10_1007_s10163_021_01255_y
crossref_primary_10_1016_j_still_2022_105579
crossref_primary_10_3390_nano12183251
crossref_primary_10_1038_s41598_024_83372_w
crossref_primary_10_3390_agronomy12081768
crossref_primary_10_1016_j_ecoleng_2021_106391
crossref_primary_10_1007_s13399_022_02795_5
crossref_primary_10_1016_j_mtchem_2025_102646
crossref_primary_10_1007_s42729_024_01668_2
crossref_primary_10_1016_j_cej_2020_125100
crossref_primary_10_1590_1983_40632023v5375742
crossref_primary_10_3390_soilsystems4040069
crossref_primary_10_2478_ahr_2022_0016
crossref_primary_10_1016_j_agee_2021_107517
crossref_primary_10_1016_j_envpol_2022_120632
crossref_primary_10_1007_s11056_024_10074_6
crossref_primary_10_1016_j_clema_2022_100162
crossref_primary_10_1111_gcbb_12765
crossref_primary_10_3390_agronomy12020311
crossref_primary_10_1002_bbb_2497
crossref_primary_10_3390_app14083472
crossref_primary_10_1071_SR19296
crossref_primary_10_1080_23249676_2023_2261368
crossref_primary_10_1111_ejss_13138
crossref_primary_10_3390_agronomy9090531
crossref_primary_10_1002_saj2_20130
crossref_primary_10_1016_j_scitotenv_2021_151259
crossref_primary_10_1039_D2RA01211A
crossref_primary_10_1016_j_electacta_2021_139469
Cites_doi 10.1016/j.mineng.2008.05.009
10.1017/S0043174500072593
10.1016/j.ces.2006.05.012
10.1371/journal.pone.0179079
10.1016/j.fcr.2016.07.014
10.4141/cjps88-127
10.1080/10643389.2014.924180
10.1016/j.scitotenv.2016.08.190
10.1016/j.biombioe.2013.12.010
10.1111/gcbb.12037
10.1021/ie201309r
10.1007/s11104-010-0464-5
10.1016/j.envpol.2011.07.023
10.1002/jpln.201200639
10.1080/02726359808906786
10.1614/WS-05-127R.1
10.7717/peerj.2385
10.1002/ldr.2906
10.1016/j.jaap.2015.05.006
10.1371/journal.pone.0176884
10.1111/gcbb.12026
10.1016/S1002-0160(15)30058-8
10.1111/gcbb.12211
10.2134/agronj2010.0188
10.1016/j.geoderma.2013.03.003
10.1111/ejss.12081
10.1016/j.chemosphere.2013.12.024
10.3390/soilsystems3020026
10.1080/00103624.2017.1383414
10.1016/j.chemosphere.2018.08.106
10.4324/9780203762264
10.1111/sum.12102
10.1093/jexbot/51.345.659
10.1016/j.eja.2013.11.003
10.1016/0165-2370(87)80015-3
10.2135/cssaspecpub24.c3
10.1017/S0043174500076281
10.1016/j.jenvman.2013.05.057
10.1007/s11356-015-4885-9
10.1016/j.biortech.2010.11.018
10.1002/eco.160
10.1080/00288233.1997.9513265
10.1016/j.jhazmat.2010.04.103
10.1016/j.jhydrol.2015.12.007
10.1080/03650340.2016.1193785
10.1111/ejss.12107
10.1002/ecs2.1933
10.1007/s11056-015-9491-7
10.1016/j.biombioe.2015.11.012
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/soilsystems3010014
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2571-8789
ExternalDocumentID oai_doaj_org_article_5429bccc3ec14172a72830421457daa9
10_3390_soilsystems3010014
GroupedDBID AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IAO
MODMG
M~E
OK1
OZF
7S9
L.6
ID FETCH-LOGICAL-c390t-4f2e4070d5d36893ec4a495274b9fdb34d13ba47d19328c495511f7398f003dc3
IEDL.DBID DOA
ISSN 2571-8789
IngestDate Wed Aug 27 01:29:19 EDT 2025
Fri Jul 11 04:06:26 EDT 2025
Tue Jul 01 02:33:34 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-4f2e4070d5d36893ec4a495274b9fdb34d13ba47d19328c495511f7398f003dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0686-2483
0000-0001-6600-4395
OpenAccessLink https://doaj.org/article/5429bccc3ec14172a72830421457daa9
PQID 2431850980
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_5429bccc3ec14172a72830421457daa9
proquest_miscellaneous_2431850980
crossref_primary_10_3390_soilsystems3010014
crossref_citationtrail_10_3390_soilsystems3010014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Soil systems
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ibrahim (ref_37) 2017; 63
Thomas (ref_33) 1999; 80
Maxwell (ref_31) 2000; 51
Aghaie (ref_44) 2013; 4
Thomas (ref_12) 2013; 129
ref_14
Yuan (ref_34) 2011; 102
Novak (ref_5) 2009; 3
ref_52
Beesley (ref_7) 2011; 159
Dwari (ref_56) 2009; 22
Karkanis (ref_42) 2011; 5
Xie (ref_18) 2015; 45
Rees (ref_8) 2014; 65
Abel (ref_40) 2013; 202–203
Zheng (ref_17) 2010; 181
Higashiyama (ref_57) 1998; 16
Xiao (ref_26) 2016; 196
Basso (ref_25) 2013; 5
Mollinedo (ref_9) 2015; 114
Zhang (ref_28) 2010; 3
Gray (ref_41) 2014; 61
Baronti (ref_10) 2014; 53
Liu (ref_27) 2016; 533
Lim (ref_36) 2017; 5
Gale (ref_48) 2017; 8
Atkinson (ref_4) 2010; 337
Brockhoff (ref_50) 2010; 102
Sun (ref_38) 2014; 177
Gale (ref_11) 2016; 4
ref_35
Trifunovic (ref_13) 2018; 29
Chen (ref_16) 2017; 574
Jaafar (ref_39) 2015; 25
Ouyang (ref_24) 2013; 13
He (ref_58) 2018; 212
Bruun (ref_21) 2014; 30
Liu (ref_22) 2016; 23
Ulyett (ref_23) 2014; 65
Patterson (ref_43) 1989; 37
Kaudal (ref_55) 2016; 84
Houlbrooke (ref_51) 1997; 40
Biederman (ref_2) 2013; 5
Regnier (ref_32) 1993; 41
Sigua (ref_15) 2014; 103
Khumalo (ref_54) 2006; 61
Thomas (ref_3) 2015; 46
Warwick (ref_46) 1988; 68
ref_47
Hlabangana (ref_53) 2018; 25
Nagy (ref_45) 2014; 63
Sackett (ref_29) 2015; 7
Esmaeelnejad (ref_49) 2017; 48
ref_1
Sun (ref_19) 2012; 51
(ref_20) 1987; 12
ref_6
Barker (ref_30) 2006; 54
References_xml – volume: 22
  start-page: 119
  year: 2009
  ident: ref_56
  article-title: Fine coal preparation using novel tribo-electrostatic separator
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2008.05.009
– volume: 37
  start-page: 658
  year: 1989
  ident: ref_43
  article-title: Competition of spurred anoda (Anoda cristata) and velvetleaf (Abutilon theophrasti) with cotton (Gossypium hirsutum) during simulated drought and recovery
  publication-title: Weed Sci.
  doi: 10.1017/S0043174500072593
– volume: 61
  start-page: 5969
  year: 2006
  ident: ref_54
  article-title: The application of the attainable region analysis to comminution
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.05.012
– ident: ref_14
  doi: 10.1371/journal.pone.0179079
– volume: 196
  start-page: 284
  year: 2016
  ident: ref_26
  article-title: Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.07.014
– volume: 68
  start-page: 1069
  year: 1988
  ident: ref_46
  article-title: The biology of Canadian weeds. 90. Abutilon theophrasti
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps88-127
– volume: 45
  start-page: 939
  year: 2015
  ident: ref_18
  article-title: Characteristics and applications of biochar for environmental remediation: A Review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2014.924180
– volume: 574
  start-page: 24
  year: 2017
  ident: ref_16
  article-title: Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.08.190
– volume: 80
  start-page: 1552
  year: 1999
  ident: ref_33
  article-title: Early vs. asymptotic growth responses of herbaceous plants to elevated CO2
  publication-title: Ecology
– volume: 61
  start-page: 196
  year: 2014
  ident: ref_41
  article-title: Water uptake in biochars: The roles of porosity and hydrophobicity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.12.010
– volume: 5
  start-page: 202
  year: 2013
  ident: ref_2
  article-title: Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 3
  start-page: 195
  year: 2009
  ident: ref_5
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Ann. Environ. Sci.
– volume: 51
  start-page: 3587
  year: 2012
  ident: ref_19
  article-title: Multiple controls on the chemical and physical structure of biochars
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201309r
– volume: 337
  start-page: 1
  year: 2010
  ident: ref_4
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 159
  start-page: 3269
  year: 2011
  ident: ref_7
  article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 177
  start-page: 26
  year: 2014
  ident: ref_38
  article-title: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200639
– volume: 16
  start-page: 77
  year: 1998
  ident: ref_57
  article-title: Recent progress in electrostatic separation technology
  publication-title: Part. Sci. Technol.
  doi: 10.1080/02726359808906786
– volume: 54
  start-page: 354
  year: 2006
  ident: ref_30
  article-title: Effect of nitrogen addition on the comparative productivity of corn and velvetleaf (Abutilon theophrasti)
  publication-title: Weed Sci.
  doi: 10.1614/WS-05-127R.1
– volume: 4
  start-page: e2385
  year: 2016
  ident: ref_11
  article-title: Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds
  publication-title: PeerJ
  doi: 10.7717/peerj.2385
– volume: 29
  start-page: 884
  year: 2018
  ident: ref_13
  article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2906
– volume: 25
  start-page: 79
  year: 2018
  ident: ref_53
  article-title: Effect of ball and feed particle size distribution on the milling efficiency of a ball mill: An attainable region approach
  publication-title: S. Afr. J. Chem. Eng.
– volume: 114
  start-page: 100
  year: 2015
  ident: ref_9
  article-title: Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2015.05.006
– ident: ref_35
  doi: 10.1371/journal.pone.0176884
– volume: 5
  start-page: 132
  year: 2013
  ident: ref_25
  article-title: Assessing potential of biochar for increasing water-holding capacity of sandy soils
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12026
– volume: 25
  start-page: 770
  year: 2015
  ident: ref_39
  article-title: Soil microbial responses to biochars varying in particle size, surface and pore properties
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30058-8
– ident: ref_52
– volume: 7
  start-page: 1062
  year: 2015
  ident: ref_29
  article-title: Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12211
– volume: 102
  start-page: 1627
  year: 2010
  ident: ref_50
  article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0188
– volume: 202–203
  start-page: 183
  year: 2013
  ident: ref_40
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– volume: 65
  start-page: 96
  year: 2014
  ident: ref_23
  article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils: Biochar impacts on nitrogen and water dynamics
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12081
– volume: 103
  start-page: 313
  year: 2014
  ident: ref_15
  article-title: Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.12.024
– ident: ref_6
  doi: 10.3390/soilsystems3020026
– volume: 4
  start-page: 2323
  year: 2013
  ident: ref_44
  article-title: Role of phosphorus in maize (Zea mays L.) competitiveness against velvetleaf (Abutilon theophrasti)
  publication-title: Int. J. Agron. Plant Prod.
– volume: 48
  start-page: 1710
  year: 2017
  ident: ref_49
  article-title: Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: An incubation study
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2017.1383414
– volume: 212
  start-page: 385
  year: 2018
  ident: ref_58
  article-title: Particle size dependence of the physicochemical properties of biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.106
– ident: ref_1
  doi: 10.4324/9780203762264
– volume: 30
  start-page: 109
  year: 2014
  ident: ref_21
  article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12102
– volume: 51
  start-page: 659
  year: 2000
  ident: ref_31
  article-title: Chlorophyll fluorescence—A practical guide
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/51.345.659
– volume: 53
  start-page: 38
  year: 2014
  ident: ref_10
  article-title: Impact of biochar application on plant water relations in Vitis vinifera (L.)
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2013.11.003
– volume: 12
  start-page: 61
  year: 1987
  ident: ref_20
  article-title: Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/0165-2370(87)80015-3
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_36
  article-title: Influence of biochar particle size and shape on soil hydraulic properties
  publication-title: J. Environ. Sci. Eng.
– ident: ref_47
  doi: 10.2135/cssaspecpub24.c3
– volume: 41
  start-page: 541
  year: 1993
  ident: ref_32
  article-title: Compensatory responses of common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti) to partial shading
  publication-title: Weed Sci.
  doi: 10.1017/S0043174500076281
– volume: 129
  start-page: 62
  year: 2013
  ident: ref_12
  article-title: Biochar mitigates negative effects of salt additions on two herbaceous plant species
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.05.057
– volume: 23
  start-page: 995
  year: 2016
  ident: ref_22
  article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4885-9
– volume: 102
  start-page: 3488
  year: 2011
  ident: ref_34
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 5
  start-page: 369
  year: 2011
  ident: ref_42
  article-title: Architectural plasticity, photosynthesis and growth responses of velvetleaf (Abutilon theophrasti Medicus) plants to water stress in a semi-arid environment
  publication-title: Aust. J. Crop Sci.
– volume: 3
  start-page: 497
  year: 2010
  ident: ref_28
  article-title: Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size
  publication-title: Ecohydrology
  doi: 10.1002/eco.160
– volume: 40
  start-page: 429
  year: 1997
  ident: ref_51
  article-title: A study of the effects of soil bulk density on root and shoot growth of different ryegrass lines
  publication-title: N. Z. J. Agric. Res.
  doi: 10.1080/00288233.1997.9513265
– volume: 181
  start-page: 121
  year: 2010
  ident: ref_17
  article-title: Sorption properties of greenwaste biochar for two triazine pesticides
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.04.103
– volume: 533
  start-page: 461
  year: 2016
  ident: ref_27
  article-title: Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.007
– volume: 13
  start-page: 991
  year: 2013
  ident: ref_24
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 63
  start-page: 185
  year: 2017
  ident: ref_37
  article-title: Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: Influence of particle size and application depth
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2016.1193785
– volume: 65
  start-page: 149
  year: 2014
  ident: ref_8
  article-title: Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase: Heavy metal mobility in biochar-amended soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12107
– volume: 8
  start-page: e01933
  year: 2017
  ident: ref_48
  article-title: Comparative responses of early-successional plants to charcoal soil amendments
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1933
– volume: 63
  start-page: 275
  year: 2014
  ident: ref_45
  article-title: Sprouting of velvetleaf (Abutilon theohrasti Medic.) influenced by N, P and K fertilizers
  publication-title: 13th Alps-Adria Sci. Workshop
– volume: 46
  start-page: 931
  year: 2015
  ident: ref_3
  article-title: Biochar and forest restoration: A review and meta-analysis of tree growth responses
  publication-title: New For.
  doi: 10.1007/s11056-015-9491-7
– volume: 84
  start-page: 49
  year: 2016
  ident: ref_55
  article-title: An examination of physical and chemical properties of urban biochar for use as growing media substrate
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2015.11.012
SSID ssj0002140746
Score 2.4072645
Snippet It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 14
SubjectTerms Abutilon theophrasti
biochar
grinding
growth performance
liming
Lolium multiflorum
mixing
particle geometry
particle size
plant growth
sand
sieving
soil pH
soil treatment
soil water
soil water retention
water holding capacity
water retention
water storage
Title Biochar Particle Size and Post-Pyrolysis Mechanical Processing Affect Soil pH, Water Retention Capacity, and Plant Performance
URI https://www.proquest.com/docview/2431850980
https://doaj.org/article/5429bccc3ec14172a72830421457daa9
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXK3izoUl2m8exLZYiVIq12FvYV6RQkpK2Bz34253JprVS0IuXHLK7yWZmducbsvMNIXeRDkLXBNoJ4sg43OCSAr_hBEwJyT2jpMYE5_5T0Bvxx3FzvFHqC8-EWXpgK7gG1lOSSilmlMfB24oQKas4EmyHWogydQ983kYwhXswNGMhDZslwyCub8zzydSSI8_BpjEy-OGJSsL-rf24dDLdQ3JQoUPasrM6IjsmOyb7rbeiYsgwJ-SzPckxVYoOqrnT4eTDUJFpioV3ncF7kZc0I7RvMKsXlUCrdABwU7RVHuCgQ5gonfXq9BXAZkGfETujjmgHvKcCaF63j5yC5OngO7vglIy6Dy-dnlMVUXAUfPbC4alvQBaubmoWADgxigsIiiAYlXGqJePaY1LwUCOSixQ0AQRLQxZHKSx4rdgZ2c3yzJwTCkpMFcQrvgngGrMo9APpAWQBgG5gcI14K4EmqmIYx0IX0wQiDVRCsq2EGrlfj5lZfo1fe7dRT-ueyI1d3gCLSSqpJ39ZTI3crrScwFrCHyQiM_lynvgcc8ndOHIv_uNFl2QP4FVsT6xdkd1FsTTXAGEW8qa01i9hWe_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+Particle+Size+and+Post-Pyrolysis+Mechanical+Processing+Affect+Soil+pH%2C+Water+Retention+Capacity%2C+and+Plant+Performance&rft.jtitle=Soil+systems&rft.au=Wenxi+Liao&rft.au=Sean+C.+Thomas&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2571-8789&rft.volume=3&rft.issue=1&rft.spage=14&rft_id=info:doi/10.3390%2Fsoilsystems3010014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5429bccc3ec14172a72830421457daa9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon