Biochar Particle Size and Post-Pyrolysis Mechanical Processing Affect Soil pH, Water Retention Capacity, and Plant Performance
It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchang...
Saved in:
Published in | Soil systems Vol. 3; no. 1; p. 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06–0.5 mm and 2–4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%–258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates. |
---|---|
AbstractList | It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06–0.5 mm and 2–4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%–258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates. It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06⁻0.5 mm and 2⁻4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%⁻258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates. |
Author | Liao, Wenxi Thomas, Sean C. |
Author_xml | – sequence: 1 givenname: Wenxi orcidid: 0000-0001-6600-4395 surname: Liao fullname: Liao, Wenxi – sequence: 2 givenname: Sean C. orcidid: 0000-0002-0686-2483 surname: Thomas fullname: Thomas, Sean C. |
BookMark | eNp9UU1PFTEUbQwkIvIHXHXpgsF-DTNd4osCCcYJaFw297W3WDKvfbZlMS747RQfMUYTV7e5Pefce859RfZiikjIG85OpNTsXUlhLkupuCmScca4ekEORD_wbhxGvffH-yU5KuWOMSa4YoM6PSAP70Oy3yHTCXINdkZ6E34ihejolErtpiWneSmh0E_YcDFYmOmUk8VSQrylZ96jrfSmrUC3F8f0G1TM9BorxhpSpCvYgg11Od5JzhArnTD7lDcQLb4m-x7mgkfP9ZB8_fjhy-qiu_p8frk6u-psM1g75QW2hZnrnTwdtUSrQOleDGqtvVtL5bhcgxoc11KMtn31nPtB6tEzJp2Vh-Ryp-sS3JltDhvIi0kQzK9Gyrfm2b_pldBra20bwhUfBAxilEy1xPrBAeim9Xantc3pxz2WajahWJybN0z3xQgl-dgzPbIGFTuozamUjP73aM7M0-3Mv7drpPEvUgsQntKsGcL8P-oj9kGlFQ |
CitedBy_id | crossref_primary_10_1002_cjce_25087 crossref_primary_10_1007_s42773_020_00054_2 crossref_primary_10_1039_D3EW00068K crossref_primary_10_1007_s40034_021_00213_5 crossref_primary_10_1016_j_gce_2023_03_002 crossref_primary_10_3389_fagro_2021_731184 crossref_primary_10_3390_microorganisms10122310 crossref_primary_10_1007_s42729_025_02328_9 crossref_primary_10_1016_j_jhazmat_2020_123644 crossref_primary_10_1071_FP23257 crossref_primary_10_1016_j_rhisph_2020_100184 crossref_primary_10_3390_pr12081603 crossref_primary_10_1016_j_mtcomm_2021_102912 crossref_primary_10_1007_s42773_024_00323_4 crossref_primary_10_1016_j_biortech_2020_123157 crossref_primary_10_1021_acs_est_3c04185 crossref_primary_10_1007_s42773_022_00186_7 crossref_primary_10_3389_fmicb_2023_1190716 crossref_primary_10_1016_j_scitotenv_2019_134645 crossref_primary_10_1016_j_scitotenv_2020_138742 crossref_primary_10_1007_s10668_024_05061_y crossref_primary_10_1016_j_scitotenv_2021_152638 crossref_primary_10_3390_agronomy12092036 crossref_primary_10_1016_j_ufug_2022_127652 crossref_primary_10_1007_s42773_021_00089_z crossref_primary_10_1016_j_scitotenv_2022_154815 crossref_primary_10_1007_s42247_022_00442_3 crossref_primary_10_1007_s42773_023_00252_8 crossref_primary_10_1021_acs_iecr_4c01624 crossref_primary_10_1016_j_jenvman_2023_119324 crossref_primary_10_1016_j_crgsc_2024_100409 crossref_primary_10_1061__ASCE_MT_1943_5533_0003915 crossref_primary_10_3390_agronomy13051394 crossref_primary_10_1016_j_jobe_2024_109272 crossref_primary_10_1016_j_biortech_2021_125102 crossref_primary_10_1016_j_cemconcomp_2023_105117 crossref_primary_10_1371_journal_pone_0288291 crossref_primary_10_3390_soilsystems8040114 crossref_primary_10_1007_s42729_021_00597_8 crossref_primary_10_1016_j_mset_2020_10_012 crossref_primary_10_3390_plants13111492 crossref_primary_10_1038_s41598_023_33466_8 crossref_primary_10_1016_j_resconrec_2023_107081 crossref_primary_10_3390_agronomy11112309 crossref_primary_10_3390_designs6050069 crossref_primary_10_1007_s42773_021_00115_0 crossref_primary_10_1016_j_jenvman_2024_123272 crossref_primary_10_1007_s42773_023_00287_x crossref_primary_10_1016_j_scitotenv_2024_171302 crossref_primary_10_3390_su16166869 crossref_primary_10_3390_agronomy12061314 crossref_primary_10_1515_pac_2023_0101 crossref_primary_10_3390_su16010414 crossref_primary_10_1016_j_biortech_2022_128423 crossref_primary_10_1002_er_6092 crossref_primary_10_1038_s43586_024_00297_4 crossref_primary_10_3390_c9030067 crossref_primary_10_1080_26895293_2022_2080282 crossref_primary_10_1080_00103624_2019_1679162 crossref_primary_10_1007_s13399_021_01346_8 crossref_primary_10_1016_j_still_2021_104992 crossref_primary_10_1016_j_jenvman_2022_115506 crossref_primary_10_1016_j_matpr_2022_11_494 crossref_primary_10_1007_s10163_021_01255_y crossref_primary_10_1016_j_still_2022_105579 crossref_primary_10_3390_nano12183251 crossref_primary_10_1038_s41598_024_83372_w crossref_primary_10_3390_agronomy12081768 crossref_primary_10_1016_j_ecoleng_2021_106391 crossref_primary_10_1007_s13399_022_02795_5 crossref_primary_10_1016_j_mtchem_2025_102646 crossref_primary_10_1007_s42729_024_01668_2 crossref_primary_10_1016_j_cej_2020_125100 crossref_primary_10_1590_1983_40632023v5375742 crossref_primary_10_3390_soilsystems4040069 crossref_primary_10_2478_ahr_2022_0016 crossref_primary_10_1016_j_agee_2021_107517 crossref_primary_10_1016_j_envpol_2022_120632 crossref_primary_10_1007_s11056_024_10074_6 crossref_primary_10_1016_j_clema_2022_100162 crossref_primary_10_1111_gcbb_12765 crossref_primary_10_3390_agronomy12020311 crossref_primary_10_1002_bbb_2497 crossref_primary_10_3390_app14083472 crossref_primary_10_1071_SR19296 crossref_primary_10_1080_23249676_2023_2261368 crossref_primary_10_1111_ejss_13138 crossref_primary_10_3390_agronomy9090531 crossref_primary_10_1002_saj2_20130 crossref_primary_10_1016_j_scitotenv_2021_151259 crossref_primary_10_1039_D2RA01211A crossref_primary_10_1016_j_electacta_2021_139469 |
Cites_doi | 10.1016/j.mineng.2008.05.009 10.1017/S0043174500072593 10.1016/j.ces.2006.05.012 10.1371/journal.pone.0179079 10.1016/j.fcr.2016.07.014 10.4141/cjps88-127 10.1080/10643389.2014.924180 10.1016/j.scitotenv.2016.08.190 10.1016/j.biombioe.2013.12.010 10.1111/gcbb.12037 10.1021/ie201309r 10.1007/s11104-010-0464-5 10.1016/j.envpol.2011.07.023 10.1002/jpln.201200639 10.1080/02726359808906786 10.1614/WS-05-127R.1 10.7717/peerj.2385 10.1002/ldr.2906 10.1016/j.jaap.2015.05.006 10.1371/journal.pone.0176884 10.1111/gcbb.12026 10.1016/S1002-0160(15)30058-8 10.1111/gcbb.12211 10.2134/agronj2010.0188 10.1016/j.geoderma.2013.03.003 10.1111/ejss.12081 10.1016/j.chemosphere.2013.12.024 10.3390/soilsystems3020026 10.1080/00103624.2017.1383414 10.1016/j.chemosphere.2018.08.106 10.4324/9780203762264 10.1111/sum.12102 10.1093/jexbot/51.345.659 10.1016/j.eja.2013.11.003 10.1016/0165-2370(87)80015-3 10.2135/cssaspecpub24.c3 10.1017/S0043174500076281 10.1016/j.jenvman.2013.05.057 10.1007/s11356-015-4885-9 10.1016/j.biortech.2010.11.018 10.1002/eco.160 10.1080/00288233.1997.9513265 10.1016/j.jhazmat.2010.04.103 10.1016/j.jhydrol.2015.12.007 10.1080/03650340.2016.1193785 10.1111/ejss.12107 10.1002/ecs2.1933 10.1007/s11056-015-9491-7 10.1016/j.biombioe.2015.11.012 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/soilsystems3010014 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2571-8789 |
ExternalDocumentID | oai_doaj_org_article_5429bccc3ec14172a72830421457daa9 10_3390_soilsystems3010014 |
GroupedDBID | AADQD AAFWJ AAHBH AAYXX ADBBV AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ IAO MODMG M~E OK1 OZF 7S9 L.6 |
ID | FETCH-LOGICAL-c390t-4f2e4070d5d36893ec4a495274b9fdb34d13ba47d19328c495511f7398f003dc3 |
IEDL.DBID | DOA |
ISSN | 2571-8789 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Fri Jul 11 04:06:26 EDT 2025 Tue Jul 01 02:33:34 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-4f2e4070d5d36893ec4a495274b9fdb34d13ba47d19328c495511f7398f003dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0686-2483 0000-0001-6600-4395 |
OpenAccessLink | https://doaj.org/article/5429bccc3ec14172a72830421457daa9 |
PQID | 2431850980 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5429bccc3ec14172a72830421457daa9 proquest_miscellaneous_2431850980 crossref_primary_10_3390_soilsystems3010014 crossref_citationtrail_10_3390_soilsystems3010014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Soil systems |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ibrahim (ref_37) 2017; 63 Thomas (ref_33) 1999; 80 Maxwell (ref_31) 2000; 51 Aghaie (ref_44) 2013; 4 Thomas (ref_12) 2013; 129 ref_14 Yuan (ref_34) 2011; 102 Novak (ref_5) 2009; 3 ref_52 Beesley (ref_7) 2011; 159 Dwari (ref_56) 2009; 22 Karkanis (ref_42) 2011; 5 Xie (ref_18) 2015; 45 Rees (ref_8) 2014; 65 Abel (ref_40) 2013; 202–203 Zheng (ref_17) 2010; 181 Higashiyama (ref_57) 1998; 16 Xiao (ref_26) 2016; 196 Basso (ref_25) 2013; 5 Mollinedo (ref_9) 2015; 114 Zhang (ref_28) 2010; 3 Gray (ref_41) 2014; 61 Baronti (ref_10) 2014; 53 Liu (ref_27) 2016; 533 Lim (ref_36) 2017; 5 Gale (ref_48) 2017; 8 Atkinson (ref_4) 2010; 337 Brockhoff (ref_50) 2010; 102 Sun (ref_38) 2014; 177 Gale (ref_11) 2016; 4 ref_35 Trifunovic (ref_13) 2018; 29 Chen (ref_16) 2017; 574 Jaafar (ref_39) 2015; 25 Ouyang (ref_24) 2013; 13 He (ref_58) 2018; 212 Bruun (ref_21) 2014; 30 Liu (ref_22) 2016; 23 Ulyett (ref_23) 2014; 65 Patterson (ref_43) 1989; 37 Kaudal (ref_55) 2016; 84 Houlbrooke (ref_51) 1997; 40 Biederman (ref_2) 2013; 5 Regnier (ref_32) 1993; 41 Sigua (ref_15) 2014; 103 Khumalo (ref_54) 2006; 61 Thomas (ref_3) 2015; 46 Warwick (ref_46) 1988; 68 ref_47 Hlabangana (ref_53) 2018; 25 Nagy (ref_45) 2014; 63 Sackett (ref_29) 2015; 7 Esmaeelnejad (ref_49) 2017; 48 ref_1 Sun (ref_19) 2012; 51 (ref_20) 1987; 12 ref_6 Barker (ref_30) 2006; 54 |
References_xml | – volume: 22 start-page: 119 year: 2009 ident: ref_56 article-title: Fine coal preparation using novel tribo-electrostatic separator publication-title: Miner. Eng. doi: 10.1016/j.mineng.2008.05.009 – volume: 37 start-page: 658 year: 1989 ident: ref_43 article-title: Competition of spurred anoda (Anoda cristata) and velvetleaf (Abutilon theophrasti) with cotton (Gossypium hirsutum) during simulated drought and recovery publication-title: Weed Sci. doi: 10.1017/S0043174500072593 – volume: 61 start-page: 5969 year: 2006 ident: ref_54 article-title: The application of the attainable region analysis to comminution publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.05.012 – ident: ref_14 doi: 10.1371/journal.pone.0179079 – volume: 196 start-page: 284 year: 2016 ident: ref_26 article-title: Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.07.014 – volume: 68 start-page: 1069 year: 1988 ident: ref_46 article-title: The biology of Canadian weeds. 90. Abutilon theophrasti publication-title: Can. J. Plant Sci. doi: 10.4141/cjps88-127 – volume: 45 start-page: 939 year: 2015 ident: ref_18 article-title: Characteristics and applications of biochar for environmental remediation: A Review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2014.924180 – volume: 574 start-page: 24 year: 2017 ident: ref_16 article-title: Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.08.190 – volume: 80 start-page: 1552 year: 1999 ident: ref_33 article-title: Early vs. asymptotic growth responses of herbaceous plants to elevated CO2 publication-title: Ecology – volume: 61 start-page: 196 year: 2014 ident: ref_41 article-title: Water uptake in biochars: The roles of porosity and hydrophobicity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.12.010 – volume: 5 start-page: 202 year: 2013 ident: ref_2 article-title: Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – volume: 3 start-page: 195 year: 2009 ident: ref_5 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Ann. Environ. Sci. – volume: 51 start-page: 3587 year: 2012 ident: ref_19 article-title: Multiple controls on the chemical and physical structure of biochars publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201309r – volume: 337 start-page: 1 year: 2010 ident: ref_4 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 159 start-page: 3269 year: 2011 ident: ref_7 article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 177 start-page: 26 year: 2014 ident: ref_38 article-title: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200639 – volume: 16 start-page: 77 year: 1998 ident: ref_57 article-title: Recent progress in electrostatic separation technology publication-title: Part. Sci. Technol. doi: 10.1080/02726359808906786 – volume: 54 start-page: 354 year: 2006 ident: ref_30 article-title: Effect of nitrogen addition on the comparative productivity of corn and velvetleaf (Abutilon theophrasti) publication-title: Weed Sci. doi: 10.1614/WS-05-127R.1 – volume: 4 start-page: e2385 year: 2016 ident: ref_11 article-title: Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds publication-title: PeerJ doi: 10.7717/peerj.2385 – volume: 29 start-page: 884 year: 2018 ident: ref_13 article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2906 – volume: 25 start-page: 79 year: 2018 ident: ref_53 article-title: Effect of ball and feed particle size distribution on the milling efficiency of a ball mill: An attainable region approach publication-title: S. Afr. J. Chem. Eng. – volume: 114 start-page: 100 year: 2015 ident: ref_9 article-title: Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.05.006 – ident: ref_35 doi: 10.1371/journal.pone.0176884 – volume: 5 start-page: 132 year: 2013 ident: ref_25 article-title: Assessing potential of biochar for increasing water-holding capacity of sandy soils publication-title: GCB Bioenergy doi: 10.1111/gcbb.12026 – volume: 25 start-page: 770 year: 2015 ident: ref_39 article-title: Soil microbial responses to biochars varying in particle size, surface and pore properties publication-title: Pedosphere doi: 10.1016/S1002-0160(15)30058-8 – ident: ref_52 – volume: 7 start-page: 1062 year: 2015 ident: ref_29 article-title: Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest publication-title: GCB Bioenergy doi: 10.1111/gcbb.12211 – volume: 102 start-page: 1627 year: 2010 ident: ref_50 article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar publication-title: Agron. J. doi: 10.2134/agronj2010.0188 – volume: 202–203 start-page: 183 year: 2013 ident: ref_40 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.003 – volume: 65 start-page: 96 year: 2014 ident: ref_23 article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils: Biochar impacts on nitrogen and water dynamics publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12081 – volume: 103 start-page: 313 year: 2014 ident: ref_15 article-title: Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.024 – ident: ref_6 doi: 10.3390/soilsystems3020026 – volume: 4 start-page: 2323 year: 2013 ident: ref_44 article-title: Role of phosphorus in maize (Zea mays L.) competitiveness against velvetleaf (Abutilon theophrasti) publication-title: Int. J. Agron. Plant Prod. – volume: 48 start-page: 1710 year: 2017 ident: ref_49 article-title: Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: An incubation study publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2017.1383414 – volume: 212 start-page: 385 year: 2018 ident: ref_58 article-title: Particle size dependence of the physicochemical properties of biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.106 – ident: ref_1 doi: 10.4324/9780203762264 – volume: 30 start-page: 109 year: 2014 ident: ref_21 article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention publication-title: Soil Use Manag. doi: 10.1111/sum.12102 – volume: 51 start-page: 659 year: 2000 ident: ref_31 article-title: Chlorophyll fluorescence—A practical guide publication-title: J. Exp. Bot. doi: 10.1093/jexbot/51.345.659 – volume: 53 start-page: 38 year: 2014 ident: ref_10 article-title: Impact of biochar application on plant water relations in Vitis vinifera (L.) publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2013.11.003 – volume: 12 start-page: 61 year: 1987 ident: ref_20 article-title: Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/0165-2370(87)80015-3 – volume: 5 start-page: 8 year: 2017 ident: ref_36 article-title: Influence of biochar particle size and shape on soil hydraulic properties publication-title: J. Environ. Sci. Eng. – ident: ref_47 doi: 10.2135/cssaspecpub24.c3 – volume: 41 start-page: 541 year: 1993 ident: ref_32 article-title: Compensatory responses of common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti) to partial shading publication-title: Weed Sci. doi: 10.1017/S0043174500076281 – volume: 129 start-page: 62 year: 2013 ident: ref_12 article-title: Biochar mitigates negative effects of salt additions on two herbaceous plant species publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.05.057 – volume: 23 start-page: 995 year: 2016 ident: ref_22 article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4885-9 – volume: 102 start-page: 3488 year: 2011 ident: ref_34 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 5 start-page: 369 year: 2011 ident: ref_42 article-title: Architectural plasticity, photosynthesis and growth responses of velvetleaf (Abutilon theophrasti Medicus) plants to water stress in a semi-arid environment publication-title: Aust. J. Crop Sci. – volume: 3 start-page: 497 year: 2010 ident: ref_28 article-title: Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size publication-title: Ecohydrology doi: 10.1002/eco.160 – volume: 40 start-page: 429 year: 1997 ident: ref_51 article-title: A study of the effects of soil bulk density on root and shoot growth of different ryegrass lines publication-title: N. Z. J. Agric. Res. doi: 10.1080/00288233.1997.9513265 – volume: 181 start-page: 121 year: 2010 ident: ref_17 article-title: Sorption properties of greenwaste biochar for two triazine pesticides publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.04.103 – volume: 533 start-page: 461 year: 2016 ident: ref_27 article-title: Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.12.007 – volume: 13 start-page: 991 year: 2013 ident: ref_24 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nutr. – volume: 63 start-page: 185 year: 2017 ident: ref_37 article-title: Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: Influence of particle size and application depth publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2016.1193785 – volume: 65 start-page: 149 year: 2014 ident: ref_8 article-title: Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase: Heavy metal mobility in biochar-amended soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12107 – volume: 8 start-page: e01933 year: 2017 ident: ref_48 article-title: Comparative responses of early-successional plants to charcoal soil amendments publication-title: Ecosphere doi: 10.1002/ecs2.1933 – volume: 63 start-page: 275 year: 2014 ident: ref_45 article-title: Sprouting of velvetleaf (Abutilon theohrasti Medic.) influenced by N, P and K fertilizers publication-title: 13th Alps-Adria Sci. Workshop – volume: 46 start-page: 931 year: 2015 ident: ref_3 article-title: Biochar and forest restoration: A review and meta-analysis of tree growth responses publication-title: New For. doi: 10.1007/s11056-015-9491-7 – volume: 84 start-page: 49 year: 2016 ident: ref_55 article-title: An examination of physical and chemical properties of urban biochar for use as growing media substrate publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2015.11.012 |
SSID | ssj0002140746 |
Score | 2.4072645 |
Snippet | It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 14 |
SubjectTerms | Abutilon theophrasti biochar grinding growth performance liming Lolium multiflorum mixing particle geometry particle size plant growth sand sieving soil pH soil treatment soil water soil water retention water holding capacity water retention water storage |
Title | Biochar Particle Size and Post-Pyrolysis Mechanical Processing Affect Soil pH, Water Retention Capacity, and Plant Performance |
URI | https://www.proquest.com/docview/2431850980 https://doaj.org/article/5429bccc3ec14172a72830421457daa9 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXK3izoUl2m8exLZYiVIq12FvYV6RQkpK2Bz34253JprVS0IuXHLK7yWZmducbsvMNIXeRDkLXBNoJ4sg43OCSAr_hBEwJyT2jpMYE5_5T0Bvxx3FzvFHqC8-EWXpgK7gG1lOSSilmlMfB24oQKas4EmyHWogydQ983kYwhXswNGMhDZslwyCub8zzydSSI8_BpjEy-OGJSsL-rf24dDLdQ3JQoUPasrM6IjsmOyb7rbeiYsgwJ-SzPckxVYoOqrnT4eTDUJFpioV3ncF7kZc0I7RvMKsXlUCrdABwU7RVHuCgQ5gonfXq9BXAZkGfETujjmgHvKcCaF63j5yC5OngO7vglIy6Dy-dnlMVUXAUfPbC4alvQBaubmoWADgxigsIiiAYlXGqJePaY1LwUCOSixQ0AQRLQxZHKSx4rdgZ2c3yzJwTCkpMFcQrvgngGrMo9APpAWQBgG5gcI14K4EmqmIYx0IX0wQiDVRCsq2EGrlfj5lZfo1fe7dRT-ueyI1d3gCLSSqpJ39ZTI3crrScwFrCHyQiM_lynvgcc8ndOHIv_uNFl2QP4FVsT6xdkd1FsTTXAGEW8qa01i9hWe_Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+Particle+Size+and+Post-Pyrolysis+Mechanical+Processing+Affect+Soil+pH%2C+Water+Retention+Capacity%2C+and+Plant+Performance&rft.jtitle=Soil+systems&rft.au=Wenxi+Liao&rft.au=Sean+C.+Thomas&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2571-8789&rft.volume=3&rft.issue=1&rft.spage=14&rft_id=info:doi/10.3390%2Fsoilsystems3010014&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5429bccc3ec14172a72830421457daa9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-8789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-8789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-8789&client=summon |