LayerCAM: Exploring Hierarchical Class Activation Maps for Localization

The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest. These discovered object regions have been widely used for weakly-supervised tasks. However, due to the small spatial resolution of the final...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; pp. 5875 - 5888
Main Authors Jiang, Peng-Tao, Zhang, Chang-Bin, Hou, Qibin, Cheng, Ming-Ming, Wei, Yunchao
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest. These discovered object regions have been widely used for weakly-supervised tasks. However, due to the small spatial resolution of the final convolutional layer, such class activation maps often locate coarse regions of the target objects, limiting the performance of weakly-supervised tasks that need pixel-accurate object locations. Thus, we aim to generate more fine-grained object localization information from the class activation maps to locate the target objects more accurately. In this paper, by rethinking the relationships between the feature maps and their corresponding gradients, we propose a simple yet effective method, called LayerCAM. It can produce reliable class activation maps for different layers of CNN. This property enables us to collect object localization information from coarse (rough spatial localization) to fine (precise fine-grained details) levels. We further integrate them into a high-quality class activation map, where the object-related pixels can be better highlighted. To evaluate the quality of the class activation maps produced by LayerCAM, we apply them to weakly-supervised object localization and semantic segmentation. Experiments demonstrate that the class activation maps generated by our method are more effective and reliable than those by the existing attention methods. The code will be made publicly available.
AbstractList The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest. These discovered object regions have been widely used for weakly-supervised tasks. However, due to the small spatial resolution of the final convolutional layer, such class activation maps often locate coarse regions of the target objects, limiting the performance of weakly-supervised tasks that need pixel-accurate object locations. Thus, we aim to generate more fine-grained object localization information from the class activation maps to locate the target objects more accurately. In this paper, by rethinking the relationships between the feature maps and their corresponding gradients, we propose a simple yet effective method, called LayerCAM. It can produce reliable class activation maps for different layers of CNN. This property enables us to collect object localization information from coarse (rough spatial localization) to fine (precise fine-grained details) levels. We further integrate them into a high-quality class activation map, where the object-related pixels can be better highlighted. To evaluate the quality of the class activation maps produced by LayerCAM, we apply them to weakly-supervised object localization and semantic segmentation. Experiments demonstrate that the class activation maps generated by our method are more effective and reliable than those by the existing attention methods. The code will be made publicly available.
The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest. These discovered object regions have been widely used for weakly-supervised tasks. However, due to the small spatial resolution of the final convolutional layer, such class activation maps often locate coarse regions of the target objects, limiting the performance of weakly-supervised tasks that need pixel-accurate object locations. Thus, we aim to generate more fine-grained object localization information from the class activation maps to locate the target objects more accurately. In this paper, by rethinking the relationships between the feature maps and their corresponding gradients, we propose a simple yet effective method, called LayerCAM. It can produce reliable class activation maps for different layers of CNN. This property enables us to collect object localization information from coarse (rough spatial localization) to fine (precise fine-grained details) levels. We further integrate them into a high-quality class activation map, where the object-related pixels can be better highlighted. To evaluate the quality of the class activation maps produced by LayerCAM, we apply them to weakly-supervised object localization and semantic segmentation. Experiments demonstrate that the class activation maps generated by our method are more effective and reliable than those by the existing attention methods. The code will be made publicly available.The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest. These discovered object regions have been widely used for weakly-supervised tasks. However, due to the small spatial resolution of the final convolutional layer, such class activation maps often locate coarse regions of the target objects, limiting the performance of weakly-supervised tasks that need pixel-accurate object locations. Thus, we aim to generate more fine-grained object localization information from the class activation maps to locate the target objects more accurately. In this paper, by rethinking the relationships between the feature maps and their corresponding gradients, we propose a simple yet effective method, called LayerCAM. It can produce reliable class activation maps for different layers of CNN. This property enables us to collect object localization information from coarse (rough spatial localization) to fine (precise fine-grained details) levels. We further integrate them into a high-quality class activation map, where the object-related pixels can be better highlighted. To evaluate the quality of the class activation maps produced by LayerCAM, we apply them to weakly-supervised object localization and semantic segmentation. Experiments demonstrate that the class activation maps generated by our method are more effective and reliable than those by the existing attention methods. The code will be made publicly available.
Author Zhang, Chang-Bin
Jiang, Peng-Tao
Cheng, Ming-Ming
Hou, Qibin
Wei, Yunchao
Author_xml – sequence: 1
  givenname: Peng-Tao
  orcidid: 0000-0002-1786-4943
  surname: Jiang
  fullname: Jiang, Peng-Tao
  email: cmm@nankai.edu.cn
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 2
  givenname: Chang-Bin
  orcidid: 0000-0003-0043-8240
  surname: Zhang
  fullname: Zhang, Chang-Bin
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 3
  givenname: Qibin
  orcidid: 0000-0002-8388-8708
  surname: Hou
  fullname: Hou, Qibin
  organization: Department of Electrical and Computer Engineering, NUS, Singapore
– sequence: 4
  givenname: Ming-Ming
  orcidid: 0000-0001-5550-8758
  surname: Cheng
  fullname: Cheng, Ming-Ming
  organization: TKLNDST, CS, Nankai University, Tianjin, China
– sequence: 5
  givenname: Yunchao
  orcidid: 0000-0002-2812-8781
  surname: Wei
  fullname: Wei, Yunchao
  organization: Institute of Information Science, Beijing Jiaotong University, Beijing, China
BookMark eNp9kLtPwzAQhy0EohTYkVgisbCk-J2YrarKQ2oFQ5kj1z6DUYiLnSLKX0_6EEMHJp983-_u9PXRYRMaQOiC4AEhWN3MHp8HFFMyYLhUirMDdEIUJznGnB52NRZFXhCueqif0jvGhAsij1GPcSJkB56g-4leQRwNp7fZ-HtRh-ib1-zBQ9TRvHmj62xU65SyoWn9l259aLKpXqTMhZhNQtf3P5vfM3TkdJ3gfPeeope78Wz0kE-e7h9Hw0lumMJtzoACFYZgUjornGaFKTUvWFk4ADsn2Fph7dwZJQvLoRAa5lYLKrl0zlLKTtH1du4ihs8lpLb68MlAXesGwjJVVHDOJSn5Gr3aQ9_DMjbddWtKSsVkyTsKbykTQ0oRXLWI_kPHVUVwtZZcdZKrteRqJ7mLyL2I8e3GQhu1r_8LXm6DHgD-9iguKZeM_QKOLYke
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TASLP_2024_3492793
crossref_primary_10_1109_TCC_2024_3398609
crossref_primary_10_1016_j_neucom_2023_126919
crossref_primary_10_1016_j_cose_2024_103746
crossref_primary_10_1016_j_eswa_2024_123732
crossref_primary_10_1016_j_inffus_2024_102355
crossref_primary_10_3390_drones8100523
crossref_primary_10_1016_j_asoc_2023_111094
crossref_primary_10_1109_OJITS_2024_3507917
crossref_primary_10_1109_ACCESS_2024_3506334
crossref_primary_10_3390_app14167073
crossref_primary_10_1080_01431161_2023_2297175
crossref_primary_10_1109_TMM_2022_3152388
crossref_primary_10_1007_s13349_025_00908_y
crossref_primary_10_1145_3649458
crossref_primary_10_1016_j_neunet_2025_107346
crossref_primary_10_1007_s11069_023_06145_0
crossref_primary_10_3390_s23063176
crossref_primary_10_1145_3583777
crossref_primary_10_1093_nar_gkad801
crossref_primary_10_1016_j_knosys_2024_112602
crossref_primary_10_1109_JBHI_2024_3365051
crossref_primary_10_1186_s12916_022_02469_z
crossref_primary_10_3390_info14120642
crossref_primary_10_1007_s10278_024_01090_1
crossref_primary_10_1016_j_bspc_2023_105871
crossref_primary_10_1016_j_bspc_2024_106466
crossref_primary_10_1016_j_compbiomed_2022_106467
crossref_primary_10_1109_JBHI_2023_3248139
crossref_primary_10_1109_JBHI_2024_3354712
crossref_primary_10_3389_fcomp_2024_1438126
crossref_primary_10_1109_TCAD_2024_3468016
crossref_primary_10_1109_TGRS_2022_3207171
crossref_primary_10_1002_jmri_29245
crossref_primary_10_1109_TNNLS_2024_3359269
crossref_primary_10_1109_JSEN_2024_3457312
crossref_primary_10_1016_j_matchar_2024_113701
crossref_primary_10_1038_s41598_024_84836_9
crossref_primary_10_1109_ACCESS_2022_3188394
crossref_primary_10_1016_j_saa_2024_125626
crossref_primary_10_1167_tvst_13_4_8
crossref_primary_10_1038_s41598_023_43871_8
crossref_primary_10_1016_j_ymssp_2024_111364
crossref_primary_10_1109_TDSC_2023_3315064
crossref_primary_10_1097_ICO_0000000000003701
crossref_primary_10_1109_ACCESS_2021_3116034
crossref_primary_10_1155_2024_2864052
crossref_primary_10_1038_s41598_023_42946_w
crossref_primary_10_1016_j_eswa_2024_123756
crossref_primary_10_1016_j_patcog_2024_110517
crossref_primary_10_1007_s42235_024_00600_9
crossref_primary_10_1109_TIM_2023_3315392
crossref_primary_10_3390_rs16142640
crossref_primary_10_1109_JSTARS_2024_3520361
crossref_primary_10_3390_jmse12101885
crossref_primary_10_1016_j_bbe_2023_10_001
crossref_primary_10_1088_1742_6596_2650_1_012025
crossref_primary_10_1016_j_ins_2025_122046
crossref_primary_10_1016_j_wear_2023_205205
crossref_primary_10_1016_j_asej_2024_102722
crossref_primary_10_3389_fpls_2022_864486
crossref_primary_10_1016_j_media_2024_103288
crossref_primary_10_1016_j_patcog_2025_111358
crossref_primary_10_1088_1361_6501_ad4fb4
crossref_primary_10_1093_ehjdh_ztac014
crossref_primary_10_1109_TITS_2024_3420409
crossref_primary_10_1016_j_eswa_2024_123501
crossref_primary_10_1016_j_eswa_2024_123625
crossref_primary_10_1016_j_imavis_2024_104988
crossref_primary_10_1016_j_jag_2025_104385
crossref_primary_10_1007_s10489_024_06168_5
crossref_primary_10_1109_JBHI_2024_3373438
crossref_primary_10_1109_JBHI_2024_3482001
crossref_primary_10_1016_j_imavis_2025_105468
crossref_primary_10_1109_MGRS_2024_3467001
crossref_primary_10_1016_j_knosys_2024_112390
crossref_primary_10_1109_TIFS_2024_3518072
crossref_primary_10_3390_bioengineering12010082
crossref_primary_10_1109_TIP_2024_3364536
crossref_primary_10_1007_s00371_023_03112_5
crossref_primary_10_1111_coin_12660
crossref_primary_10_1109_JSTARS_2024_3469209
crossref_primary_10_1016_j_neucom_2023_126250
crossref_primary_10_1109_TGRS_2024_3507274
crossref_primary_10_1109_TCSVT_2023_3268997
crossref_primary_10_1016_j_cose_2023_103265
crossref_primary_10_1109_TIV_2023_3339673
crossref_primary_10_3389_fcomp_2022_1036934
crossref_primary_10_1109_TIP_2023_3346295
crossref_primary_10_1109_ACCESS_2022_3219879
crossref_primary_10_1016_j_jag_2023_103287
crossref_primary_10_1007_s11760_024_03757_2
crossref_primary_10_1016_j_apenergy_2024_123311
crossref_primary_10_1007_s00521_022_07428_6
crossref_primary_10_1016_j_nicl_2023_103441
crossref_primary_10_1109_TMM_2023_3331572
crossref_primary_10_1016_j_compbiomed_2023_107881
crossref_primary_10_1007_s12559_024_10387_w
crossref_primary_10_3389_fncom_2022_1054421
crossref_primary_10_1016_j_neunet_2023_01_009
crossref_primary_10_1007_s00371_025_03803_1
crossref_primary_10_3390_app142311208
crossref_primary_10_1145_3721129
crossref_primary_10_1016_j_engappai_2023_106333
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_1016_j_pss_2023_105802
crossref_primary_10_1016_j_jafr_2024_101148
crossref_primary_10_1016_j_engappai_2023_107542
crossref_primary_10_1038_s41598_024_81587_5
crossref_primary_10_1016_j_engappai_2024_108456
crossref_primary_10_1017_hpl_2023_85
crossref_primary_10_1016_j_cviu_2024_104078
crossref_primary_10_1016_j_engappai_2024_108458
crossref_primary_10_1109_TCSVT_2024_3418979
crossref_primary_10_1038_s41598_023_29665_y
crossref_primary_10_1080_02713683_2022_2138917
crossref_primary_10_3390_electronics13010186
crossref_primary_10_1016_j_autcon_2024_105355
crossref_primary_10_1016_j_bspc_2023_105668
crossref_primary_10_1016_j_engappai_2024_109431
crossref_primary_10_1016_j_ipm_2023_103608
crossref_primary_10_1016_j_csl_2023_101600
crossref_primary_10_1016_j_imavis_2024_105062
crossref_primary_10_1109_TCSVT_2024_3361463
crossref_primary_10_1007_s00521_023_09185_6
crossref_primary_10_3390_diagnostics14171900
crossref_primary_10_1007_s11265_025_01948_9
crossref_primary_10_1109_TCSVT_2024_3405998
crossref_primary_10_1109_ACCESS_2024_3405788
crossref_primary_10_1002_mp_16378
crossref_primary_10_3390_jimaging8080215
crossref_primary_10_1007_s11633_023_1455_3
crossref_primary_10_1080_17686733_2023_2167459
crossref_primary_10_1109_JBHI_2023_3329231
crossref_primary_10_3103_S1060992X22030043
crossref_primary_10_3390_math12172668
crossref_primary_10_1109_JIOT_2024_3395466
crossref_primary_10_1007_s10845_024_02446_8
crossref_primary_10_1016_j_image_2024_117150
crossref_primary_10_1016_j_eswa_2024_126023
crossref_primary_10_1109_ACCESS_2022_3206379
crossref_primary_10_1007_s11263_022_01746_x
crossref_primary_10_1016_j_patcog_2023_109550
crossref_primary_10_1109_TIM_2024_3382737
crossref_primary_10_1109_TMLCN_2024_3454019
crossref_primary_10_1007_s11760_025_03866_6
crossref_primary_10_1016_j_neunet_2024_107097
crossref_primary_10_1109_TPAMI_2024_3353528
crossref_primary_10_1007_s00138_024_01567_7
crossref_primary_10_1088_1742_6596_2919_1_012045
crossref_primary_10_5334_jcaa_163
crossref_primary_10_1109_TMI_2024_3459910
crossref_primary_10_1016_j_eswa_2023_120898
crossref_primary_10_1016_j_patcog_2022_108724
crossref_primary_10_3390_agriculture14071125
crossref_primary_10_1016_j_isprsjprs_2023_08_017
crossref_primary_10_1016_j_isci_2024_111558
crossref_primary_10_1016_j_ejmp_2025_104954
crossref_primary_10_1109_TFUZZ_2023_3318086
crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_1016_j_patcog_2024_111221
crossref_primary_10_1109_TCDS_2023_3238181
crossref_primary_10_3390_math10244765
crossref_primary_10_3390_electronics12122697
crossref_primary_10_3390_electronics12234846
crossref_primary_10_1016_j_atech_2024_100730
crossref_primary_10_1016_j_jag_2023_103244
crossref_primary_10_3390_ijgi11030205
crossref_primary_10_1109_JSEN_2024_3430009
crossref_primary_10_1016_j_compeleceng_2024_109871
crossref_primary_10_1109_TIM_2023_3261939
crossref_primary_10_1016_j_knosys_2024_112204
crossref_primary_10_3390_plants13172444
crossref_primary_10_3390_app122412961
crossref_primary_10_1109_TIP_2023_3275913
crossref_primary_10_1016_j_eswa_2024_124775
crossref_primary_10_26599_TST_2024_9010182
crossref_primary_10_3390_electronics12092027
crossref_primary_10_1002_ird3_113
crossref_primary_10_1109_JSEN_2023_3298777
crossref_primary_10_1109_TPAMI_2024_3380604
crossref_primary_10_1016_j_wear_2025_205875
crossref_primary_10_3390_rs16050804
crossref_primary_10_1080_1206212X_2024_2404082
crossref_primary_10_15212_npt_2024_0007
crossref_primary_10_1093_eurheartj_ehad782
crossref_primary_10_3390_jimaging9100199
crossref_primary_10_1016_j_bspc_2023_104812
crossref_primary_10_1007_s11263_025_02347_0
crossref_primary_10_1016_j_measurement_2023_113708
crossref_primary_10_1109_TIP_2023_3336170
crossref_primary_10_1038_s41598_024_79701_8
crossref_primary_10_3389_fpls_2023_1128399
crossref_primary_10_5909_JBE_2024_29_2_198
crossref_primary_10_1016_j_compbiomed_2023_107332
crossref_primary_10_1016_j_compbiomed_2022_106065
crossref_primary_10_1109_IOTM_001_2400101
crossref_primary_10_1109_TIFS_2024_3402385
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_1016_j_compbiomed_2024_108042
crossref_primary_10_1016_j_patcog_2023_109760
crossref_primary_10_1007_s10489_024_05916_x
crossref_primary_10_1016_j_neucom_2021_11_084
crossref_primary_10_1109_TMM_2022_3184486
crossref_primary_10_32604_cmc_2024_058932
crossref_primary_10_1016_j_neunet_2024_106350
crossref_primary_10_1145_3674837
crossref_primary_10_1016_j_bspc_2022_104213
crossref_primary_10_1016_j_engappai_2025_110364
crossref_primary_10_1016_j_eswa_2022_118888
crossref_primary_10_1109_TETCI_2024_3358184
crossref_primary_10_1145_3705301
crossref_primary_10_3390_app14104124
crossref_primary_10_1016_j_engappai_2023_106991
crossref_primary_10_3390_app15010379
crossref_primary_10_1016_j_ins_2022_10_013
crossref_primary_10_3390_rs15235534
crossref_primary_10_1371_journal_pone_0303278
crossref_primary_10_3390_aerospace11060488
crossref_primary_10_1109_TIM_2024_3425490
crossref_primary_10_1038_s41598_025_93196_x
crossref_primary_10_1016_j_knosys_2022_109474
crossref_primary_10_1109_TCSVT_2022_3186307
crossref_primary_10_3389_fpls_2022_1037655
crossref_primary_10_1016_j_patcog_2022_109298
crossref_primary_10_1145_3654665
crossref_primary_10_3390_computers10090117
crossref_primary_10_1007_s40747_024_01678_8
crossref_primary_10_1007_s10489_023_04956_z
crossref_primary_10_1109_TAFFC_2023_3288885
crossref_primary_10_1016_j_patrec_2024_06_024
crossref_primary_10_1049_ipr2_12377
crossref_primary_10_1002_pld3_70047
crossref_primary_10_1109_TIFS_2024_3372797
crossref_primary_10_1371_journal_pone_0309126
crossref_primary_10_1016_j_cmpb_2024_108041
crossref_primary_10_1109_JSAC_2022_3221998
crossref_primary_10_3390_app12199484
crossref_primary_10_1016_j_compbiomed_2024_108502
crossref_primary_10_1016_j_cviu_2024_104101
crossref_primary_10_1016_j_jbi_2024_104673
crossref_primary_10_1109_TMI_2022_3222541
crossref_primary_10_1007_s11760_024_03486_6
crossref_primary_10_1109_LGRS_2023_3318375
crossref_primary_10_3390_jimaging10080186
crossref_primary_10_1016_j_aquaculture_2022_739175
crossref_primary_10_1016_j_jksuci_2023_101901
crossref_primary_10_3390_s24092695
crossref_primary_10_3390_computation11060113
crossref_primary_10_3390_s23115201
crossref_primary_10_5194_hess_28_4085_2024
crossref_primary_10_1016_j_patter_2024_101057
crossref_primary_10_1016_j_clinimag_2024_110101
crossref_primary_10_1016_j_watres_2024_123076
crossref_primary_10_1155_2021_2921737
crossref_primary_10_1016_j_displa_2022_102339
crossref_primary_10_1039_D3AN01797D
crossref_primary_10_1016_j_neuroimage_2023_120164
crossref_primary_10_1109_TIM_2022_3224526
crossref_primary_10_1016_j_cviu_2023_103886
crossref_primary_10_3390_app13031711
crossref_primary_10_1109_ACCESS_2023_3235332
crossref_primary_10_1016_j_asoc_2024_112374
crossref_primary_10_3390_rs16071249
crossref_primary_10_3389_fnbot_2024_1490198
crossref_primary_10_1016_j_media_2025_103552
crossref_primary_10_1109_TIM_2025_3548240
crossref_primary_10_1007_s10278_023_00791_3
crossref_primary_10_1016_j_aap_2024_107636
crossref_primary_10_15212_RADSCI_2022_0002
crossref_primary_10_1016_j_eswa_2024_124489
crossref_primary_10_1016_j_patcog_2024_110677
crossref_primary_10_1038_s41598_024_68056_9
crossref_primary_10_3390_drones8060240
crossref_primary_10_1016_j_compag_2025_110107
crossref_primary_10_1016_j_patcog_2025_111607
crossref_primary_10_1007_s11263_024_02282_6
crossref_primary_10_1109_TIP_2024_3356174
crossref_primary_10_1109_ACCESS_2024_3423697
crossref_primary_10_1021_acs_jpclett_4c03650
crossref_primary_10_1016_j_neucom_2021_10_072
crossref_primary_10_1109_TIM_2025_3547122
crossref_primary_10_1016_j_cie_2025_111024
crossref_primary_10_3390_app132212219
crossref_primary_10_3390_rs15184554
crossref_primary_10_1109_TAI_2023_3333310
crossref_primary_10_1615_CritRevOncog_2023050852
crossref_primary_10_3390_bioengineering10080887
crossref_primary_10_3390_electronics12234751
crossref_primary_10_1007_s11571_023_09993_5
crossref_primary_10_1007_s11760_024_03320_z
crossref_primary_10_1016_j_jag_2024_103878
crossref_primary_10_1109_TASLP_2024_3364100
crossref_primary_10_3389_fpls_2024_1418201
crossref_primary_10_1080_15230406_2024_2392795
crossref_primary_10_1016_j_cobme_2024_100567
crossref_primary_10_1109_ACCESS_2024_3486311
crossref_primary_10_1109_JSSC_2023_3346913
crossref_primary_10_1038_s41440_024_01938_7
crossref_primary_10_1109_JIOT_2024_3462954
crossref_primary_10_3390_rs14133230
crossref_primary_10_1088_1361_6501_ad8592
crossref_primary_10_1109_TKDE_2024_3443888
crossref_primary_10_1145_3674981
crossref_primary_10_3390_plants11233327
crossref_primary_10_1016_j_neucom_2024_128137
crossref_primary_10_1109_ACCESS_2023_3319068
crossref_primary_10_1038_s42256_023_00776_5
Cites_doi 10.1007/978-3-030-01258-8_37
10.1109/TPAMI.2020.2966453
10.1109/CVPR.2018.00144
10.1007/s11263-014-0733-5
10.1007/s11263-015-0816-y
10.1109/TIP.2019.2926748
10.1109/TPAMI.2021.3063611
10.1109/CVPR.2017.106
10.1109/ICCV.2017.382
10.1109/WACV45572.2020.9093566
10.1007/978-3-540-88682-2_16
10.1109/TII.2020.2985159
10.1109/CVPR.2017.770
10.1109/ICCV.2015.164
10.1007/s11263-017-1059-x
10.1109/CVPR.2017.687
10.1109/TPAMI.2019.2938758
10.1109/CVPR42600.2020.01011
10.1007/s11432-020-3097-4
10.1109/CVPR.2017.457
10.1109/CVPR.2016.382
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2016.2644615
10.1109/TIP.2015.2396361
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2019.00154
10.1109/ICCV.2019.00216
10.1109/CVPR.2016.319
10.1109/CVPR.2018.00960
10.1007/s11063-019-10124-7
10.1109/ICCV.2017.381
10.1109/TIP.2019.2901393
10.1109/CVPR.2018.00399
10.1109/CVPR.2019.00232
10.1109/TCYB.2019.2936503
10.1109/CVPR.2016.80
10.1109/CVPR.2019.00230
10.1109/ICCV.2019.00669
10.1109/CVPR.2014.49
10.5244/C.31.20
10.1109/TII.2020.3008021
10.5244/C.30.52
10.1109/TPAMI.2019.2899839
10.1109/CVPR42600.2020.00895
10.1109/TII.2018.2828811
10.1109/CVPR42600.2020.00431
10.5244/C.30.87
10.1109/CVPR.2017.549
10.1109/TPAMI.2018.2840724
10.1109/CVPR.2016.90
10.1109/TIP.2014.2344433
10.1109/TPAMI.2016.2645157
10.1109/CVPR.2014.309
10.1109/TPAMI.2016.2537320
10.1109/ICCV.2019.00754
10.1109/CVPR.2018.00759
10.1109/CVPR.2018.00523
10.1109/TPAMI.2016.2552172
10.1109/TPAMI.2016.2535231
10.1109/TII.2019.2958826
10.1109/CVPR.2016.308
10.1007/978-3-030-58536-5_21
10.1109/CVPR.2017.239
10.1109/CVPR.2017.634
10.1109/ICCV.2011.6126343
10.24963/ijcai.2018/120
10.1109/CVPR.2017.660
10.1109/CVPRW50498.2020.00020
10.1109/CVPR.2018.00733
10.1109/TPAMI.2020.2985395
10.1007/978-3-319-46448-0_2
10.1109/ICCV.2017.204
10.1109/ICCV.2015.209
10.1007/s11263-019-01228-7
10.1007/978-3-319-46454-1_22
10.1007/s11432-020-3065-4
10.1007/978-3-030-01237-3_8
10.1109/TMM.2013.2293424
10.1109/TIP.2019.2930874
10.1109/CVPR.2019.01268
10.1109/WACV.2018.00097
10.1109/CVPR.2017.243
10.1109/CVPR42600.2020.00886
10.1109/TPAMI.2015.2392769
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3089943
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5888
ExternalDocumentID 10_1109_TIP_2021_3089943
9462463
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 61922046
  funderid: 10.13039/501100001809
– fundername: Science and Technology Innovation Project from Chinese Ministry of Education
– fundername: Fundamental Research Funds for the Central Universities (Nankai University)
  grantid: 63213090
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100400
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c390t-3e2e25c1018fd5fa37c8a47387feedb10dd5ddbfc967d4e75aebda52646ffd223
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 05:43:54 EDT 2025
Mon Jun 30 10:19:08 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Tue Jul 01 02:03:26 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-3e2e25c1018fd5fa37c8a47387feedb10dd5ddbfc967d4e75aebda52646ffd223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5550-8758
0000-0002-8388-8708
0000-0002-2812-8781
0000-0003-0043-8240
0000-0002-1786-4943
PMID 34156941
PQID 2546693684
PQPubID 85429
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIP_2021_3089943
proquest_miscellaneous_2544461842
crossref_citationtrail_10_1109_TIP_2021_3089943
proquest_journals_2546693684
ieee_primary_9462463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
simonyan (ref11) 2014
ref52
ref55
boykov (ref88) 2001; 1
ref54
ref51
ref50
li (ref81) 2020
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
wang (ref44) 2021
papandreou (ref71) 2015
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref39
ref38
springenberg (ref12) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
hou (ref6) 2018
ref13
ref15
ref14
ref97
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
simonyan (ref10) 2015
ref86
paszke (ref96) 2019
ref85
ref87
ref82
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
hou (ref30) 2017
ref76
ref2
ref1
ref70
ref73
ref72
meng (ref29) 2020
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
wieler (ref89) 2007
ref62
ref61
References_xml – ident: ref60
  doi: 10.1007/978-3-030-01258-8_37
– ident: ref25
  doi: 10.1109/TPAMI.2020.2966453
– ident: ref8
  doi: 10.1109/CVPR.2018.00144
– ident: ref86
  doi: 10.1007/s11263-014-0733-5
– ident: ref87
  doi: 10.1007/s11263-015-0816-y
– ident: ref69
  doi: 10.1109/TIP.2019.2926748
– ident: ref31
  doi: 10.1109/TPAMI.2021.3063611
– ident: ref37
  doi: 10.1109/CVPR.2017.106
– ident: ref61
  doi: 10.1109/ICCV.2017.382
– ident: ref26
  doi: 10.1109/WACV45572.2020.9093566
– start-page: 1742
  year: 2015
  ident: ref71
  article-title: Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
  publication-title: Proc Int Conf Comput Vis
– ident: ref50
  doi: 10.1007/978-3-540-88682-2_16
– ident: ref84
  doi: 10.1109/TII.2020.2985159
– ident: ref75
  doi: 10.1109/CVPR.2017.770
– ident: ref43
  doi: 10.1109/ICCV.2015.164
– ident: ref34
  doi: 10.1007/s11263-017-1059-x
– ident: ref74
  doi: 10.1109/CVPR.2017.687
– ident: ref17
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref22
  doi: 10.1109/CVPR42600.2020.01011
– ident: ref97
  doi: 10.1007/s11432-020-3097-4
– ident: ref54
  doi: 10.1109/CVPR.2017.457
– ident: ref47
  doi: 10.1109/CVPR.2016.382
– ident: ref94
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref90
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref59
  doi: 10.1109/TIP.2015.2396361
– ident: ref13
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref40
  doi: 10.1109/CVPR.2019.00154
– ident: ref78
  doi: 10.1109/ICCV.2019.00216
– ident: ref1
  doi: 10.1109/CVPR.2016.319
– year: 2015
  ident: ref12
  article-title: Striving for simplicity: The all convolutional net
  publication-title: Proc Int Conf Learn Represent Workshop
– ident: ref4
  doi: 10.1109/CVPR.2018.00960
– ident: ref56
  doi: 10.1007/s11063-019-10124-7
– ident: ref63
  doi: 10.1109/ICCV.2017.381
– ident: ref67
  doi: 10.1109/TIP.2019.2901393
– ident: ref35
  doi: 10.1109/CVPR.2018.00399
– ident: ref23
  doi: 10.1109/CVPR.2019.00232
– ident: ref46
  doi: 10.1109/TCYB.2019.2936503
– ident: ref39
  doi: 10.1109/CVPR.2016.80
– year: 2019
  ident: ref96
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref52
  doi: 10.1109/CVPR.2019.00230
– ident: ref62
  doi: 10.1109/ICCV.2019.00669
– ident: ref92
  doi: 10.1109/CVPR.2014.49
– year: 2021
  ident: ref44
  article-title: Hierarchical human semantic parsing with comprehensive part-relation modeling
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref95
  doi: 10.5244/C.31.20
– ident: ref83
  doi: 10.1109/TII.2020.3008021
– year: 2007
  ident: ref89
  article-title: Weakly supervised learning for industrial optical inspection
  publication-title: Proc DAGM Symp
– volume: 1
  start-page: 105
  year: 2001
  ident: ref88
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images
  publication-title: Proc Int Conf Comput Vis
– ident: ref55
  doi: 10.5244/C.30.52
– year: 2015
  ident: ref10
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref9
  doi: 10.1109/TPAMI.2019.2899839
– ident: ref45
  doi: 10.1109/CVPR42600.2020.00895
– ident: ref85
  doi: 10.1109/TII.2018.2828811
– ident: ref73
  doi: 10.1109/CVPR42600.2020.00431
– year: 2014
  ident: ref11
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: Proc Int Conf Learn Represent
– ident: ref19
  doi: 10.5244/C.30.87
– ident: ref91
  doi: 10.1109/CVPR.2017.549
– ident: ref24
  doi: 10.1109/TPAMI.2018.2840724
– start-page: 263
  year: 2017
  ident: ref30
  article-title: Bottom-up top-down cues for weakly-supervised semantic segmentation
  publication-title: Proc Int Workshop Energy Minimization Methods Comput Vis Pattern Recognit
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref68
  doi: 10.1109/TIP.2014.2344433
– ident: ref65
  doi: 10.1109/TPAMI.2016.2645157
– ident: ref49
  doi: 10.1109/CVPR.2014.309
– ident: ref57
  doi: 10.1109/TPAMI.2016.2537320
– ident: ref15
  doi: 10.1109/ICCV.2019.00754
– ident: ref76
  doi: 10.1109/CVPR.2018.00759
– ident: ref5
  doi: 10.1109/CVPR.2018.00523
– ident: ref70
  doi: 10.1109/TPAMI.2016.2552172
– ident: ref48
  doi: 10.1109/TPAMI.2016.2535231
– ident: ref82
  doi: 10.1109/TII.2019.2958826
– ident: ref21
  doi: 10.1109/CVPR.2016.308
– ident: ref79
  doi: 10.1007/978-3-030-58536-5_21
– ident: ref7
  doi: 10.1109/CVPR.2017.239
– ident: ref18
  doi: 10.1109/CVPR.2017.634
– start-page: 515
  year: 2020
  ident: ref29
  article-title: Weakly supervised 3D object detection from LiDAR point cloud
  publication-title: Proc Eur Conf Comput Vis
– ident: ref93
  doi: 10.1109/ICCV.2011.6126343
– ident: ref58
  doi: 10.24963/ijcai.2018/120
– ident: ref41
  doi: 10.1109/CVPR.2017.660
– year: 2020
  ident: ref81
  article-title: Group-wise semantic mining for weakly supervised semantic segmentation
  publication-title: arXiv 2012 05007
– ident: ref33
  doi: 10.1109/CVPRW50498.2020.00020
– ident: ref77
  doi: 10.1109/CVPR.2018.00733
– ident: ref28
  doi: 10.1109/TPAMI.2020.2985395
– ident: ref38
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref53
  doi: 10.1109/ICCV.2017.204
– ident: ref72
  doi: 10.1109/ICCV.2015.209
– ident: ref2
  doi: 10.1007/s11263-019-01228-7
– ident: ref51
  doi: 10.1007/978-3-319-46454-1_22
– ident: ref80
  doi: 10.1007/s11432-020-3065-4
– ident: ref14
  doi: 10.1007/978-3-030-01237-3_8
– ident: ref64
  doi: 10.1109/TMM.2013.2293424
– ident: ref66
  doi: 10.1109/TIP.2019.2930874
– ident: ref32
  doi: 10.1109/CVPR.2019.01268
– start-page: 549
  year: 2018
  ident: ref6
  article-title: Self-erasing network for integral object attention
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref3
  doi: 10.1109/WACV.2018.00097
– ident: ref20
  doi: 10.1109/CVPR.2017.243
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00886
– ident: ref27
  doi: 10.1109/TPAMI.2015.2392769
– ident: ref42
  doi: 10.1109/CVPR.2017.549
SSID ssj0014516
Score 2.7266836
Snippet The class activation maps are generated from the final convolutional layer of CNN. They can highlight discriminative object regions for the class of interest....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5875
SubjectTerms class activation maps
Convolution
Feature maps
Image segmentation
Localization
Location awareness
Pixels
Reliability
Semantic segmentation
Semantics
Spatial resolution
Task analysis
Weakly-supervised object localization
Title LayerCAM: Exploring Hierarchical Class Activation Maps for Localization
URI https://ieeexplore.ieee.org/document/9462463
https://www.proquest.com/docview/2546693684
https://www.proquest.com/docview/2544461842
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQgtioSAjcUEiu0n8irmtKsqCuohDK_UW-TGRUKvdit299NfX4zgRLyFukeI87LE938x45gN4y0WDTkosGu8UeaviPugpk0s2wZVd1VWB8p2XX9XiUny5kld78H7MhUHEdPgMp3SZYvlh7XfkKpsZoWqh-D7sR8Otz9UaIwZEOJsim1IXOsL-ISRZmtnF52_REKyrKacYlyDqHE52ixHVL9oo0av8sScnRXN2CMvhF_vzJdfT3dZN_d1v1Rv_tw-P4VFGnGzeT5EnsIerIzjM6JPltb05goc_lSY8hk_nNoLx0_nyAxuP6bHFd0pXTuwpNyzRabK5H_jR2NLebljEwOyc9GPO73wKl2cfL04XRSZdKDw35bbgWGMtPRXy6oLsLNe-sULzRndRnbqqDEGG4DpvlA4CtbTogpURV6muCxFsPIOD1XqFz4E5q0xlsDQhCFG6ypWoNUeUxteeOzuB2TD4rc8VyYkY46ZNlklp2ii5liTXZslN4N34xG1fjeMfbY9p9Md2eeAncDLIt83LddMSKYAyXDViAm_G23GhUfTErnC9S22i6RwN4vrF39_8Eh7Q93v_zAkcbH_s8FVELFv3Ok3Vexip5dI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLSgLhQwEhckspvEr5jbqqJsYVNx2Eq9RX5MJNRqt-ruXvrraztOxEuIW6TYkTNje77xeOYDeE9ZhYZzzCprRDit8vugDZlcvHImb4u2cCHfuT4Xswv29ZJf7sDHIRcGEePlMxyHxxjLdyu7DUdlE8VEyQR9AA-93edFl601xAwC5WyMbXKZSQ_8-6BkriaLs-_eFSyLMQ1RLhbIc2jwXBQrfrFHkWDlj105mprTfaj7QXY3TK7G240Z27vf6jf-7188hScJc5JpN0mewQ4uD2A_4U-SVvf6APZ-Kk54CF_m2sPxk2n9iQwX9cjsR0hYjvwp1yQSapKp7RnSSK1v1sSjYDIPFjJleD6Hi9PPi5NZlmgXMktVvskollhyG0p5tY63mkpbaSZpJVtvUE2RO8edM61VQjqGkms0TnOPrETbOg83XsDucrXEIyBGC1UozJVzjOWmMDlKSRG5sqWlRo9g0gu_sakmeaDGuG6ib5KrxmuuCZprkuZG8GHocdPV4_hH28Mg_aFdEvwIjnv9NmnBrptACyAUFRUbwbvhtV9qIX6il7jaxjbeefYucfny719-C49mi3rezM_Ov72Cx2Es3WnNMexubrf42uOXjXkTp-09PoDpGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LayerCAM%3A+Exploring+Hierarchical+Class+Activation+Maps+for+Localization&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jiang%2C+Peng-Tao&rft.au=Zhang%2C+Chang-Bin&rft.au=Hou%2C+Qibin&rft.au=Cheng%2C+Ming-Ming&rft.date=2021&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=30&rft.spage=5875&rft.epage=5888&rft_id=info:doi/10.1109%2FTIP.2021.3089943&rft_id=info%3Apmid%2F34156941&rft.externalDocID=9462463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon