Effects of Multiple Doses of Dichloroacetate on GSTZ1 Expression and Activity in Liver and Extrahepatic Tissues of Young and Adult Rats

Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquire...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 48; no. 11; pp. 1217 - 1223
Main Authors Squirewell, Edwin J, Smeltz, Marci G, Rowland-Faux, Laura, Horne, Lloyd P, Stacpoole, Peter W, James, Margaret O
Format Journal Article
LanguageEnglish
Published United States The American Society for Pharmacology and Experimental Therapeutics 01.11.2020
Online AccessGet full text

Cover

Loading…
Abstract Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.
AbstractList Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.
Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues.
Author Horne, Lloyd P
Rowland-Faux, Laura
Smeltz, Marci G
Squirewell, Edwin J
Stacpoole, Peter W
James, Margaret O
Author_xml – sequence: 1
  givenname: Edwin J
  surname: Squirewell
  fullname: Squirewell, Edwin J
  organization: Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
– sequence: 2
  givenname: Marci G
  surname: Smeltz
  fullname: Smeltz, Marci G
  organization: Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
– sequence: 3
  givenname: Laura
  surname: Rowland-Faux
  fullname: Rowland-Faux, Laura
  organization: Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
– sequence: 4
  givenname: Lloyd P
  surname: Horne
  fullname: Horne, Lloyd P
  organization: Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
– sequence: 5
  givenname: Peter W
  surname: Stacpoole
  fullname: Stacpoole, Peter W
  organization: Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida
– sequence: 6
  givenname: Margaret O
  orcidid: 0000-0001-8778-9427
  surname: James
  fullname: James, Margaret O
  email: mojames@ufl.edu
  organization: Departments of Medicinal Chemistry (E.J.S., M.G.S., L.R.-F., M.O.J.), Medicine (L.P.H., P.W.S.), and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida mojames@ufl.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32873593$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1v1DAQtVAR3S5cOSIfuWTxR5zEF6SqXQrSVpVgkYCL5diTrlE2Drazan8Bfxu3aSt6GunNmzdv5p2go8EPgNBbSlaUsvKD3dsVZWRFCKEle4EWVDBaECJ_HKFFLqSQQlTH6CTG33eUkstX6JizpuZC8gX6u-46MCli3-HLqU9u7AGf-wj3yLkzu94Hrw0knQD7AV982_6ieH0zBojRZUAPFp-a5A4u3WI34I07QLhH1zcp6B2MOjmDty7GaVb96afhep6zeSX-qlN8jV52uo_w5qEu0fdP6-3Z52JzdfHl7HRTGC5JKrglbUObkhhaNRbaurFEtJUBkKYSlOpGWF42HDrWVIzpuq5aAE6ZKEVNwfAl-jjrjlO7B2tgyB57NQa31-FWee3U887gduraH1QtGinz-5bo_YNA8H_yQUntXTTQ93oAP0XF8ocrns3KTF3NVBN8jAG6pzWUqLv0VE5P5fTUnF4eePe_uSf6Y1z8H37GmWI
CitedBy_id crossref_primary_10_1016_j_bcp_2023_115818
crossref_primary_10_1124_dmd_120_000330
crossref_primary_10_2147_IJN_S439728
Cites_doi 10.1016/S0378-4347(97)00404-0
10.1021/tx990085l
10.2217/pgs-2015-0012
10.1016/0076-6879(79)55005-8
10.1289/ehp.119-a155
10.1016/j.ymgme.2013.03.019
10.1016/bs.irn.2019.05.003
10.1021/acs.chemrestox.9b00207
10.1124/dmd.30.6.616
10.1016/j.nut.2005.04.002
10.1016/j.cbi.2014.02.015
10.1159/000015145
10.3109/03602532.2010.549132
10.1016/j.bcp.2018.04.001
10.1124/jpet.110.173195
10.1177/0091270011405664
10.1016/S0300-483X(96)03510-X
10.1007/s002470050114
10.1093/toxsci/kfi070
10.1007/BF01065191
10.1006/taap.2001.9250
10.1006/taap.1997.8232
10.1016/j.mito.2017.11.003
10.1021/tx980144f
10.1177/0091270006292627
10.1212/01.wnl.0000196641.05913.27
10.1002/jcph.1009
10.1016/j.bcp.2013.06.022
10.1097/NEN.0b013e3181b40217
10.1042/bj3280929
10.1002/prp2.526
10.1124/jpet.107.134593
10.1016/0272-0590(91)90118-N
10.2307/3434142
10.1016/j.tox.2007.12.010
10.1016/j.pharmthera.2016.10.018
10.1016/S0021-9258(19)42083-8
10.1097/00000542-199604000-00012
10.1021/es00109a006
10.1124/dmd.111.041533
10.1021/tx025503s
10.1021/tx990175q
10.1016/j.bcp.2020.113835
10.1006/bbrc.1999.1287
ContentType Journal Article
Copyright Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.
Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics 2020
Copyright_xml – notice: Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.
– notice: Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics 2020
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1124/dmd.120.000142
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Effect of DCA Doses on GSTZ1 Expression and Activity in Rats
EISSN 1521-009X
EndPage 1223
ExternalDocumentID 10_1124_dmd_120_000142
32873593
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM099871
GroupedDBID ---
.GJ
0R~
18M
2WC
4.4
53G
5GY
5RE
5VS
ABJNI
ABSQV
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AERNN
AFFNX
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FRP
GX1
H13
HZ~
IH2
INIJC
KQ8
LSO
NPM
O9-
OK1
P2P
R0Z
RHF
RHI
RPT
SJN
TR2
VH1
W2D
W8F
WH7
WOQ
YCJ
YHG
ZGI
ZXP
~KM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c390t-3d0b81840c168deb78d05b6cee9c6511a85d3483ef28622a776bee31254571ec3
ISSN 0090-9556
IngestDate Tue Sep 17 21:23:59 EDT 2024
Fri Aug 16 23:07:16 EDT 2024
Fri Aug 23 02:56:49 EDT 2024
Sat Sep 28 08:30:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-3d0b81840c168deb78d05b6cee9c6511a85d3483ef28622a776bee31254571ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8778-9427
OpenAccessLink https://dmd.aspetjournals.org/content/dmd/48/11/1217.full.pdf
PMID 32873593
PQID 2439633909
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589944
proquest_miscellaneous_2439633909
crossref_primary_10_1124_dmd_120_000142
pubmed_primary_32873593
PublicationCentury 2000
PublicationDate 2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Drug metabolism and disposition
PublicationTitleAlternate Drug Metab Dispos
PublicationYear 2020
Publisher The American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: The American Society for Pharmacology and Experimental Therapeutics
References 2020102110350507000_48.11.1217.20
2020102110350507000_48.11.1217.43
2020102110350507000_48.11.1217.22
2020102110350507000_48.11.1217.44
James (2020102110350507000_48.11.1217.17) 2017; 170
2020102110350507000_48.11.1217.23
Mangal (2020102110350507000_48.11.1217.28) 2018; 58
2020102110350507000_48.11.1217.24
Li (2020102110350507000_48.11.1217.25) 2008; 245
James (2020102110350507000_48.11.1217.19) 1998; 26
Board (2020102110350507000_48.11.1217.6) 2001; 29
2020102110350507000_48.11.1217.1
2020102110350507000_48.11.1217.2
2020102110350507000_48.11.1217.3
2020102110350507000_48.11.1217.4
Miller (2020102110350507000_48.11.1217.29) 1983; 17
2020102110350507000_48.11.1217.9
2020102110350507000_48.11.1217.47
2020102110350507000_48.11.1217.26
2020102110350507000_48.11.1217.48
2020102110350507000_48.11.1217.27
2020102110350507000_48.11.1217.5
2020102110350507000_48.11.1217.7
Jahn (2020102110350507000_48.11.1217.16) 2018; 152
Smeltz (2020102110350507000_48.11.1217.37) 2019; 32
Calcutt (2020102110350507000_48.11.1217.8) 2009; 68
2020102110350507000_48.11.1217.30
2020102110350507000_48.11.1217.31
2020102110350507000_48.11.1217.10
2020102110350507000_48.11.1217.32
Tian (2020102110350507000_48.11.1217.42) 2019; 7
2020102110350507000_48.11.1217.11
2020102110350507000_48.11.1217.33
2020102110350507000_48.11.1217.12
2020102110350507000_48.11.1217.34
Uno (2020102110350507000_48.11.1217.46) 2020; 174
2020102110350507000_48.11.1217.13
2020102110350507000_48.11.1217.35
Kankotia (2020102110350507000_48.11.1217.21) 2014; 1846
Uno (2020102110350507000_48.11.1217.45) 2013; 86
James (2020102110350507000_48.11.1217.18) 2016; 17
2020102110350507000_48.11.1217.36
2020102110350507000_48.11.1217.38
Habig (2020102110350507000_48.11.1217.14) 1974; 249
2020102110350507000_48.11.1217.39
Stacpoole (2020102110350507000_48.11.1217.41) 2018; 42
(2020102110350507000_48.11.1217.15) 2014; 106
Stacpoole (2020102110350507000_48.11.1217.40) 2019; 145
References_xml – ident: 2020102110350507000_48.11.1217.47
  doi: 10.1016/S0378-4347(97)00404-0
– ident: 2020102110350507000_48.11.1217.2
  doi: 10.1021/tx990085l
– volume: 17
  start-page: 743
  year: 2016
  ident: 2020102110350507000_48.11.1217.18
  article-title: Pharmacogenetic considerations with dichloroacetate dosing
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs-2015-0012
  contributor:
    fullname: James
– ident: 2020102110350507000_48.11.1217.12
  doi: 10.1016/0076-6879(79)55005-8
– volume: 26
  start-page: 1134
  year: 1998
  ident: 2020102110350507000_48.11.1217.19
  article-title: Pharmacokinetics and metabolism of [14C]dichloroacetate in male Sprague-Dawley rats. Identification of glycine conjugates, including hippurate, as urinary metabolites of dichloroacetate
  publication-title: Drug Metab Dispos
  contributor:
    fullname: James
– ident: 2020102110350507000_48.11.1217.38
  doi: 10.1289/ehp.119-a155
– ident: 2020102110350507000_48.11.1217.1
  doi: 10.1016/j.ymgme.2013.03.019
– volume: 145
  start-page: 211
  year: 2019
  ident: 2020102110350507000_48.11.1217.40
  article-title: Dichloroacetate-induced peripheral neuropathy
  publication-title: Int Rev Neurobiol
  doi: 10.1016/bs.irn.2019.05.003
  contributor:
    fullname: Stacpoole
– volume: 32
  start-page: 2042
  year: 2019
  ident: 2020102110350507000_48.11.1217.37
  article-title: Mitochondrial glutathione transferase zeta 1 is inactivated more rapidly by dichloroacetate than the cytosolic enzyme in adult and juvenile rat liver
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.9b00207
  contributor:
    fullname: Smeltz
– ident: 2020102110350507000_48.11.1217.23
  doi: 10.1124/dmd.30.6.616
– ident: 2020102110350507000_48.11.1217.31
  doi: 10.1016/j.nut.2005.04.002
– ident: 2020102110350507000_48.11.1217.48
  doi: 10.1016/j.cbi.2014.02.015
– ident: 2020102110350507000_48.11.1217.3
  doi: 10.1159/000015145
– ident: 2020102110350507000_48.11.1217.4
  doi: 10.3109/03602532.2010.549132
– volume: 152
  start-page: 236
  year: 2018
  ident: 2020102110350507000_48.11.1217.16
  article-title: Regulation of dichloroacetate biotransformation in rat liver and extrahepatic tissues by GSTZ1 expression and chloride concentration
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2018.04.001
  contributor:
    fullname: Jahn
– ident: 2020102110350507000_48.11.1217.27
  doi: 10.1124/jpet.110.173195
– ident: 2020102110350507000_48.11.1217.36
  doi: 10.1177/0091270011405664
– volume: 29
  start-page: 544
  year: 2001
  ident: 2020102110350507000_48.11.1217.6
  article-title: Identification of novel glutathione transferases and polymorphic variants by expressed sequence tag database analysis
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Board
– ident: 2020102110350507000_48.11.1217.10
  doi: 10.1016/S0300-483X(96)03510-X
– ident: 2020102110350507000_48.11.1217.30
  doi: 10.1007/s002470050114
– ident: 2020102110350507000_48.11.1217.32
  doi: 10.1093/toxsci/kfi070
– ident: 2020102110350507000_48.11.1217.7
  doi: 10.1007/BF01065191
– ident: 2020102110350507000_48.11.1217.33
  doi: 10.1006/taap.2001.9250
– ident: 2020102110350507000_48.11.1217.13
  doi: 10.1006/taap.1997.8232
– volume: 42
  start-page: 59
  year: 2018
  ident: 2020102110350507000_48.11.1217.41
  article-title: Development of a novel observer reported outcome tool as the primary efficacy outcome measure for a rare disease randomized controlled trial
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2017.11.003
  contributor:
    fullname: Stacpoole
– ident: 2020102110350507000_48.11.1217.43
  doi: 10.1021/tx980144f
– ident: 2020102110350507000_48.11.1217.20
  doi: 10.1177/0091270006292627
– ident: 2020102110350507000_48.11.1217.22
  doi: 10.1212/01.wnl.0000196641.05913.27
– volume: 58
  start-page: 212
  year: 2018
  ident: 2020102110350507000_48.11.1217.28
  article-title: Model informed dose optimization of dichloroacetate for the treatment of congenital lactic acidosis in children
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.1009
  contributor:
    fullname: Mangal
– volume: 86
  start-page: 679
  year: 2013
  ident: 2020102110350507000_48.11.1217.45
  article-title: Systematic identification and characterization of glutathione S-transferases in cynomolgus macaque
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2013.06.022
  contributor:
    fullname: Uno
– volume: 68
  start-page: 985
  year: 2009
  ident: 2020102110350507000_48.11.1217.8
  article-title: Peripheral neuropathy in rats exposed to dichloroacetate
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e3181b40217
  contributor:
    fullname: Calcutt
– ident: 2020102110350507000_48.11.1217.5
  doi: 10.1042/bj3280929
– volume: 7
  start-page: e00526
  year: 2019
  ident: 2020102110350507000_48.11.1217.42
  article-title: GSTZ1 genotypes correlate with dichloroacetate pharmacokinetics and chronic side effects in multiple myeloma patients in a pilot phase 2 clinical trial
  publication-title: Pharmacol Res Perspect
  doi: 10.1002/prp2.526
  contributor:
    fullname: Tian
– ident: 2020102110350507000_48.11.1217.35
  doi: 10.1124/jpet.107.134593
– ident: 2020102110350507000_48.11.1217.11
  doi: 10.1016/0272-0590(91)90118-N
– ident: 2020102110350507000_48.11.1217.39
  doi: 10.2307/3434142
– volume: 245
  start-page: 35
  year: 2008
  ident: 2020102110350507000_48.11.1217.25
  article-title: Quantitative evaluation of dichloroacetic acid kinetics in human--a physiologically based pharmacokinetic modeling investigation
  publication-title: Toxicology
  doi: 10.1016/j.tox.2007.12.010
  contributor:
    fullname: Li
– volume: 170
  start-page: 166
  year: 2017
  ident: 2020102110350507000_48.11.1217.17
  article-title: Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2016.10.018
  contributor:
    fullname: James
– volume: 249
  start-page: 7130
  year: 1974
  ident: 2020102110350507000_48.11.1217.14
  article-title: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)42083-8
  contributor:
    fullname: Habig
– volume: 1846
  start-page: 617
  year: 2014
  ident: 2020102110350507000_48.11.1217.21
  article-title: Dichloroacetate and cancer: new home for an orphan drug?
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Kankotia
– ident: 2020102110350507000_48.11.1217.34
  doi: 10.1097/00000542-199604000-00012
– volume: 17
  start-page: 150
  year: 1983
  ident: 2020102110350507000_48.11.1217.29
  article-title: Characterization of nonvolatile aqueous chlorination products of humic substances
  publication-title: Environ Sci Technol
  doi: 10.1021/es00109a006
  contributor:
    fullname: Miller
– ident: 2020102110350507000_48.11.1217.26
  doi: 10.1124/dmd.111.041533
– ident: 2020102110350507000_48.11.1217.24
  doi: 10.1021/tx025503s
– ident: 2020102110350507000_48.11.1217.44
  doi: 10.1021/tx990175q
– volume: 106
  start-page: 1
  year: 2014
  ident: 2020102110350507000_48.11.1217.15
  article-title: Trichloroethylene, tetrachloroethylene, and some other chlorinated agents
  publication-title: IARC Monogr Eval Carcinog Risks Hum
– volume: 174
  start-page: 113835
  year: 2020
  ident: 2020102110350507000_48.11.1217.46
  article-title: Systematic characterization of glutathione S-transferases in common marmosets
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2020.113835
  contributor:
    fullname: Uno
– ident: 2020102110350507000_48.11.1217.9
  doi: 10.1006/bbrc.1999.1287
SSID ssj0014439
Score 2.3970537
Snippet Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate....
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1217
Title Effects of Multiple Doses of Dichloroacetate on GSTZ1 Expression and Activity in Liver and Extrahepatic Tissues of Young and Adult Rats
URI https://www.ncbi.nlm.nih.gov/pubmed/32873593
https://search.proquest.com/docview/2439633909
https://pubmed.ncbi.nlm.nih.gov/PMC7589944
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFcadsICOh8dClNLZze5xotzIYqkYnTbxEseOwSCWZ1lZb-QP8OX4Ux5dc2u1h8BJVTuykPV-Pz3G-8xmhd67gWcIJ_JEC33eYR6UTER44vgh5JlwZZFqO4firPz5lR2feWafzp8VaWi54X_y6ta7kf6wKbWBXVSX7D5atB4UG-Az2hSNYGI53svGoIWMcV8TAYTk3OrLDXJxDMl4mQjEKpXorcPht-t1V6saG_Gp4yPvCbiCRF5Chw2-gW0fXC3BD8kILuk61dfSo2juYfkq5o3eSGCmoKsAdXi5_qG2pAVuzav-NNK-5YfWCjiIgy4qRPUqv4OZH_Wa5R870PrOqlEjkvcP6zEl5paiYzkGyvK7KuuuJZVza9dkvs3KV9ib99pIG5K9uvaRh3XQ0cCLPsxrZ1jMTuGig992tXTcL2xB1W47YJaYk1E7qLjFVzTcnDMLAyunPtO8SRfKDjJE0U2NFB9iYMWseo86gCIuhfwz9Y9P_HrpPwO1p0sCnz_U7LcaoScbsl7MSotD_w_r910OkG3nPJn23FQ9NH6GHNpHB-waVj1FHFk_Q7sQooa_28LQp7Jvv4V08aTTSV0_RbwtdXGa4gi7W0FUtG9DFZYE1dHEDXQwowBV0cV5gDV3d2oYuttBVo2romn4KulhB9xk6PRhNP44duyeII2g0WDg0HfBQrUoI1w9TyYMwHXjch1AvEj4kD0nopZSFVGYEcnWSBIHPpaQQxjMvcKWgz9FWURbyJcJBlEKAyDhRGpI-S_WgnuAeS8IoI0EXva_MEF8Y6Zf4doN30dvKSjF4Z_XKLSlkuZzHBGzuU3jyqIteGKvVY1ESBtSLaBcFa_asL1DK7-tnivxcK8BDkh9FjL268xNuowfNH20HbS0ul_I1RNML_kaD9C_tzM3F
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Multiple+Doses+of+Dichloroacetate+on+GSTZ1+Expression+and+Activity+in+Liver+and+Extrahepatic+Tissues+of+Young+and+Adult+Rats&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Squirewell%2C+Edwin+J.&rft.au=Smeltz%2C+Marci+G.&rft.au=Rowland-Faux%2C+Laura&rft.au=Horne%2C+Lloyd+P.&rft.date=2020-11-01&rft.issn=0090-9556&rft.eissn=1521-009X&rft.volume=48&rft.issue=11&rft.spage=1217&rft.epage=1223&rft_id=info:doi/10.1124%2Fdmd.120.000142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1124_dmd_120_000142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon