Electrical impedance tomography of complex conductivity distributions with noncircular boundary

Electrical impedance tomography (EIT) uses low-frequency current and voltage measurements made on the boundary of a body to compute the conductivity distribution within the body. Since the permittivity distribution inside the body also contributes significantly to the measured voltages, the present...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 44; no. 11; pp. 1051 - 1060
Main Authors Jain, H., Isaacson, D., Edic, P.M., Newell, J.C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.1997
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrical impedance tomography (EIT) uses low-frequency current and voltage measurements made on the boundary of a body to compute the conductivity distribution within the body. Since the permittivity distribution inside the body also contributes significantly to the measured voltages, the present reconstruction algorithm images complex conductivity distributions. A finite element model (FEM) is used to solve the forward problem, using a 6017-node mesh for a piecewise-linear potential distribution. The finite element solution using this mesh is compared with the analytical solution for a homogeneous field and a maximum error of 0.05% is observed in the voltage distribution. The boundary element method (BEM) is also used to generate the voltage data for inhomogeneous conductivity distributions inside regions with noncircular boundaries. An iterative reconstruction algorithm is described for approximating both the conductivity and permittivity distributions from this data. The results for an off-centered inhomogeneity showed a 35% improvement in contrast from that seen with only one iteration, for both the conductivity and the permittivity values. It is also shown that a significant improvement in images results from accurately modeling a noncircular boundary. Both static and difference images are distorted by assuming a circular boundary and the amount of distortion increases significantly as the boundary shape becomes more elliptical. For a homogeneous field in an elliptical body with axis ratio of 0.73, an image reconstructed assuming the boundary to be circular has an artifact at the center of the image with an error of 20%. This error increased to 37% when the axis ratio was 0.64. A reconstruction algorithm which used a mesh with the same axis ratio as the elliptical boundary reduced the error in the conductivity values to within 0.5% of the actual values.
AbstractList Electrical impedance tomography (EIT) uses low-frequency current and voltage measurements made on the boundary of a body to compute the conductivity distribution within the body. Since the permittivity distribution inside the body also contributes significantly to the measured voltages, the present reconstruction algorithm images complex conductivity distributions. A finite element model (FEM) is used to solve the forward problem, using a 6017-node mesh for a piecewise-linear potential distribution. The finite element solution using this mesh is compared with the analytical solution for a homogeneous field and a maximum error of 0.05% is observed in the voltage distribution. The boundary element method (BEM) is also used to generate the voltage data for inhomogeneous conductivity distributions inside regions with noncircular boundaries. An iterative reconstruction algorithm is described for approximating both the conductivity and permittivity distributions from this data. The results for an off-centered inhomogeneity showed a 35% improvement in contrast from that seen with only one iteration, for both the conductivity and the permittivity values. It is also shown that a significant improvement in images results from accurately modeling a noncircular boundary. Both static and difference images are distorted by assuming a circular boundary and the amount of distortion increases significantly as the boundary shape becomes more elliptical. For a homogeneous field in an elliptical body with axis ratio of 0.73, an image reconstructed assuming the boundary to be circular has an artifact at the center of the image with an error of 20%. This error increased to 37% when the axis ratio was 0.64. A reconstruction algorithm which used a mesh with the same axis ratio as the elliptical boundary reduced the error in the conductivity values to within 0.5% of the actual values
Electrical impedance tomography (EIT) uses low-frequency current and voltage measurements made on the boundary of a body to compute the conductivity distribution within the body. Since the permittivity distribution inside the body also contributes significantly to the measured voltages, the present reconstruction algorithm images complex conductivity distributions. A finite element model (FEM) is used to solve the forward problem, using a 6017-node mesh for a piecewise-linear potential distribution. The finite element solution using this mesh is compared with the analytical solution for a homogeneous field and a maximum error of 0.05% is observed in the voltage distribution. The boundary element method (BEM) is also used to generate the voltage data for inhomogeneous conductivity distributions inside regions with noncircular boundaries. An iterative reconstruction algorithm is described for approximating both the conductivity and permittivity distributions from this data. The results for an off-centered inhomogeneity showed a 35% improvement in contrast from that seen with only one iteration, for both the conductivity and the permittivity values. It is also shown that a significant improvement in images results from accurately modeling a noncircular boundary. Both static and difference images are distorted by assuming a circular boundary and the amount of distortion increases significantly as the boundary shape becomes more elliptical. For a homogeneous field in an elliptical body with axis ratio of 0.73, an image reconstructed assuming the boundary to be circular has an artifact at the center of the image with an error of 20%. This error increased to 37% when the axis ratio was 0.64. A reconstruction algorithm which used a mesh with the same axis ratio as the elliptical boundary reduced the error in the conductivity values to within 0.5% of the actual values.
Author Newell, J.C.
Jain, H.
Isaacson, D.
Edic, P.M.
Author_xml – sequence: 1
  givenname: H.
  surname: Jain
  fullname: Jain, H.
  email: newelj@rpi.edu
  organization: Dept. of Biomed. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
– sequence: 2
  givenname: D.
  surname: Isaacson
  fullname: Isaacson, D.
– sequence: 3
  givenname: P.M.
  surname: Edic
  fullname: Edic, P.M.
– sequence: 4
  givenname: J.C.
  surname: Newell
  fullname: Newell, J.C.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2045156$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9353984$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LwzAYh4NMdJsevApCDyJ4qOazSY4ifsHAi55LmiYaaZuatOr-ezNWdt3pR_g9efOGZwFmne8MAGcI3iAE5W3KgiJC8AGYI8ZEjhlBMzCHEIlcYkmPwSLGr3SkghZH4EgSRqSgc1A-NEYPwWnVZK7tTa06bbLBt_4jqP5znXmbad_2jflL2dWjHtyPG9ZZ7WK6Vo2D813Mft3wmaWltAt6bFTIKj92tQrrE3BoVRPN6ZRL8P748Hb_nK9en17u71a5JhIOOWHCasJVLWpMkYUEQ8yllZWiFgttqKZCEVwxzRnn3FqkSMUY5oWsOaOQLMHVdm4f_Pdo4lC2LmrTNKozfowll4QXgtO9IBaEpG3QfhBhIUSxAa-3oA4-xmBs2QfXpr-XCJYbPZvc6knsxTR0rFpT78jJR-ovp17FpMSGpMPFHYYhZYgVCTvfYs4Ys2unN_4BD4ChrQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_3934_ipi_2013_7_217
crossref_primary_10_1109_TMI_2009_2021611
crossref_primary_10_1109_79_962276
crossref_primary_10_1109_TBME_2003_820335
crossref_primary_10_1137_08072142X
crossref_primary_10_1016_S1474_6670_17_33475_4
crossref_primary_10_1088_0266_5611_28_7_075004
crossref_primary_10_1016_j_nucengdes_2015_04_023
crossref_primary_10_1088_0967_3334_28_7_S08
crossref_primary_10_1109_TMI_2017_2695893
crossref_primary_10_1088_0967_3334_23_1_309
crossref_primary_10_1109_TMI_2002_800588
crossref_primary_10_1109_TMI_2012_2237389
crossref_primary_10_1108_02644400010352270
crossref_primary_10_1016_j_medengphy_2007_03_007
crossref_primary_10_1088_0266_5611_19_4_309
crossref_primary_10_1088_0957_0233_12_8_308
crossref_primary_10_1088_0967_3334_29_8_006
crossref_primary_10_1109_JERM_2019_2893217
crossref_primary_10_1109_TMI_2010_2073716
crossref_primary_10_1016_S1053_8119_03_00301_X
crossref_primary_10_1088_0967_3334_32_5_007
crossref_primary_10_1038_nrneurol_2012_150
crossref_primary_10_1109_TMI_2006_879957
crossref_primary_10_1088_0967_3334_28_7_S11
crossref_primary_10_1109_JSEN_2020_2987534
crossref_primary_10_1109_TMI_2002_800573
crossref_primary_10_1109_TBME_2006_886839
crossref_primary_10_1515_JIIP_2009_026
crossref_primary_10_3390_s20185436
crossref_primary_10_1088_0266_5611_28_9_095005
crossref_primary_10_1088_0967_3334_34_6_609
crossref_primary_10_1137_S0036144598333613
crossref_primary_10_1002_1097_0207_20010210_50_4_809__AID_NME52_3_0_CO_2_5
crossref_primary_10_1109_TBME_2006_890139
crossref_primary_10_1097_CCM_0b013e3181958d2f
crossref_primary_10_1088_0031_9155_50_11_016
crossref_primary_10_1088_0266_5611_14_6_010
crossref_primary_10_1088_0967_3334_21_1_303
crossref_primary_10_3390_s21072507
crossref_primary_10_1155_2013_432121
crossref_primary_10_4134_BKMS_2012_49_6_1291
crossref_primary_10_1109_TCI_2021_3132190
crossref_primary_10_1088_0266_5611_32_10_105001
crossref_primary_10_1088_1361_6579_aa63d7
Cites_doi 10.1109/10.412652
10.1088/0266-5611/8/1/005
10.1109/TBME.1984.325305
10.1109/TBME.1985.325438
10.1002/ima.1850020203
10.1109/IEMBS.1991.684184
10.1109/10.341825
10.1109/42.491419
10.1109/10.35300
10.1109/TMI.1986.4307752
10.1109/10.486286
10.1109/10.686798
10.1109/TBME.1987.326056
10.1109/TBME.1985.325526
10.1109/TE.1970.4320571
10.1109/42.232242
10.1109/TBME.1987.326032
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
DOI 10.1109/10.641332
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1060
ExternalDocumentID 307277
10_1109_10_641332
9353984
2045156
641332
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AASAJ
AAYJJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RIL
RNS
TAE
TN5
VH1
VJK
X7M
XFK
ZGI
ZXP
08R
AAUGY
ABPTK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c390t-358fc37ad8d241f0320279f9ba4f28ce4c48a32b5c75777ff1a3b552769d75403
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Sat Aug 17 01:36:52 EDT 2024
Fri Aug 16 09:16:44 EDT 2024
Fri Aug 16 10:45:12 EDT 2024
Fri Aug 23 01:24:53 EDT 2024
Sat Sep 28 07:38:25 EDT 2024
Sun Oct 29 17:07:07 EDT 2023
Wed Jun 26 19:27:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Electrical conductivity
Electrical properties
Potential distribution
Iterative method
Boundary condition
Image reconstruction
Finite element method
Algorithm performance
Tomography
Technique
Permittivity
Comparative study
Boundary element method
Electrical impedance
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-358fc37ad8d241f0320279f9ba4f28ce4c48a32b5c75777ff1a3b552769d75403
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 9353984
PQID 21288861
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_79376874
proquest_miscellaneous_28333581
pascalfrancis_primary_2045156
pubmed_primary_9353984
proquest_miscellaneous_21288861
crossref_primary_10_1109_10_641332
ieee_primary_641332
PublicationCentury 1900
PublicationDate 1997-11-01
PublicationDateYYYYMMDD 1997-11-01
PublicationDate_xml – month: 11
  year: 1997
  text: 1997-11-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 1997
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref16
ref19
ref18
ref7
(ref8) 1994
ref4
duff (ref5) 1986
ref3
ref6
gipson (ref9) 1987
sabonnadiere (ref17) 1987
References_xml – ident: ref6
  doi: 10.1109/10.412652
– ident: ref4
  doi: 10.1088/0266-5611/8/1/005
– ident: ref20
  doi: 10.1109/TBME.1984.325305
– ident: ref14
  doi: 10.1109/TBME.1985.325438
– ident: ref2
  doi: 10.1002/ima.1850020203
– ident: ref12
  doi: 10.1109/IEMBS.1991.684184
– ident: ref18
  doi: 10.1109/10.341825
– ident: ref16
  doi: 10.1109/42.491419
– year: 1987
  ident: ref17
  publication-title: Finite element methods in CAD Electrical and magnetic fields
  contributor:
    fullname: sabonnadiere
– ident: ref3
  doi: 10.1109/10.35300
– ident: ref11
  doi: 10.1109/TMI.1986.4307752
– ident: ref15
  doi: 10.1109/10.486286
– year: 1986
  ident: ref5
  publication-title: Direct Methods for Sparse Matrices
  contributor:
    fullname: duff
– ident: ref7
  doi: 10.1109/10.686798
– ident: ref10
  doi: 10.1109/TBME.1987.326056
– ident: ref13
  doi: 10.1109/TBME.1985.325526
– ident: ref1
  doi: 10.1109/TE.1970.4320571
– ident: ref19
  doi: 10.1109/42.232242
– year: 1994
  ident: ref8
  publication-title: User s Guide
– year: 1987
  ident: ref9
  publication-title: Boundary Element Fundamentals Basic Concepts and Recent Developments in the Poisson Equation
  contributor:
    fullname: gipson
– ident: ref21
  doi: 10.1109/TBME.1987.326032
SSID ssj0014846
Score 1.8096315
Snippet Electrical impedance tomography (EIT) uses low-frequency current and voltage measurements made on the boundary of a body to compute the conductivity...
SourceID proquest
crossref
pubmed
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1051
SubjectTerms Algorithms
Biological and medical sciences
Boundary element method
Boundary element methods
Conductivity measurement
Distributed computing
Electric Conductivity
Electric Impedance
Finite element method
Finite element methods
Fourier Analysis
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Impedance
Investigative techniques, diagnostic techniques (general aspects)
Iterative methods
Mathematical models
Medical sciences
Miscellaneous. Technology
Models, Theoretical
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Permittivity
Permittivity measurement
Piecewise linear techniques
Reconstruction algorithms
Tomography
Tomography - methods
Voltage measurement
Title Electrical impedance tomography of complex conductivity distributions with noncircular boundary
URI https://ieeexplore.ieee.org/document/641332
https://www.ncbi.nlm.nih.gov/pubmed/9353984
https://search.proquest.com/docview/21288861
https://search.proquest.com/docview/28333581
https://search.proquest.com/docview/79376874
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB6sUNGH_rhWvFptKL7uNbvJbpJHEUUEfarg25JkEyilt-VuD6p_fWeSvaOWWnxK2M2STTJJJpmZ7wM4Udp62VlbOO6JwszVhfaqLBrFSx9M7WxNAc7XN83lrby6q-9GnO0UCxNCSM5nYUbZZMvver-iq7IvDa64AtfbF5pXOVRrYzCQOsfk8BLnb2XkCCJUckPrQv5wF14aUQuj5aNNKLGqkE-kXWK3xMxn8bTCmTaei9c5onuZ8ArJ3-T7bDW4mX_4C83xmW16A69GBZSdZol5C1thPoG9P2AJJ7BzPRrc30F7nmhyaCTZN9SwOxISNvQ_RqRr1keWvNLDL0znBB6b2ChYR4C8I5fWktFtL5v32ORF8ntlLrE5Le7fw-3F-dezy2LkZCi8MHwoRK2jF8p2usO9Pyb6dWWicVbGSvsgvdRWVK72qlZKxVha4QjlrTGdQu1Q7MM2VhcOgEURUd-TznLylIvadp5XHvVLj1kZxBQ-rwep_ZmhN9p0ZOGG0txxU5hQn24KrJ8ePRrNzWsC38cT6xQ-rUe3xelENhI7D_1q2eJOrrVuyv-U0EIQaNzTJQhysNFKTmE_C86m-lH8Pvzzpw9hN2HjpkDHj7A9LFbhCDWewR0nWf8ND7z_Sg
link.rule.ids 315,786,790,802,27955,27956,55107
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fbxQhEJ6YGrU--OO06WlrifF1T_ZgF3hsmjZX7fWpTfq2ARYSY7w1d3uJ9q93BvYu1ljjE2SXDQsMzAAz3wfwQWnrZWtt4bgnCjNXFdqrsqgVL30wlbMVBTjPL-vZtfx0U90MONspFiaEkJzPwoSy6S6_7fyajso-1rjiClxvH6Ka5yoHa22vDKTOUTm8xBk8NXKAESq5oZUhf7oLj4yohNHyjhpKvCrkFWlX2DExM1rcb3Im1XP2PMd0rxJiIXmcfJ2sezfxt3_gOf5nq17As8EEZcdZZl7Cg7AYwdPfgAlH8Hg-XLm_guY0EeXQWLIvaGO3JCas774NWNesiyz5pYcfmC4IPjbxUbCWIHkHNq0Vo_Netuiwycvk-cpc4nNa_nwN12enVyezYmBlKLwwvC9EpaMXyra6Re0fEwG7MtE4K-NU-yC91FZMXeVVpZSKsbTCEc5bbVqF9qHYgx2sLuwDiyKixSed5eQrF7VtPZ96tDA9ZmUQY3i_GaTmewbfaNKmhRtKc8eNYUR9ui2weXp4ZzS3rwl-H_esYzjajG6DE4puSewidOtVg7pca12X_yihhSDYuPtLEOhgrZUcw14WnG31g_i9-etPH8GT2dX8ork4v_z8FnYTUm4KezyAnX65Dodo__TuXZL7X59sAq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+impedance+tomography+of+complex+conductivity+distributions+with+noncircular+boundary&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Jain%2C+Hemant&rft.au=Isaacson%2C+David&rft.au=Edic%2C+Peter+M&rft.au=Newell%2C+Jonathan+C&rft.date=1997-11-01&rft.issn=0018-9294&rft.volume=44&rft.issue=11&rft.spage=1051&rft.epage=1060&rft_id=info:doi/10.1109%2F10.641332&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=307277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon