Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood

[Display omitted] Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots a...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 60; pp. 275 - 290
Main Authors Liang, Xiaojun, Chernysh, Irina, Purohit, Prashant K., Weisel, John W.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.09.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials.
AbstractList Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials.Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials.The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials.STATEMENT OF SIGNIFICANCEThe objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials.
Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials.
[Display omitted] Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials.
Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials.
Author Liang, Xiaojun
Chernysh, Irina
Purohit, Prashant K.
Weisel, John W.
Author_xml – sequence: 1
  givenname: Xiaojun
  surname: Liang
  fullname: Liang, Xiaojun
  organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Irina
  surname: Chernysh
  fullname: Chernysh, Irina
  organization: Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 3
  givenname: Prashant K.
  surname: Purohit
  fullname: Purohit, Prashant K.
  email: purohit@seas.upenn.edu
  organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: John W.
  surname: Weisel
  fullname: Weisel, John W.
  organization: Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28694237$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEUhYPM4Dz0H4gUuHFhtbmVrqTKxYAMPgYGdKHrkEpu7DSpSpmklFnNXzc93T6YxQgXknvynUu454wcTWFCQp4BXQEF_nq7UjoPLqwaCmJFSwE8IqfQia4WLe-Oyl2sm1pQDifkLKUtpayDpntMTpqO9-uGiVNy-3mjElY5qim57MKUKrNEN32rdBjniCkVrVKTqQz-qwRbaR9yqmwMYzV7ldFjrucQ4q5Lo3r1V41Obw7q3aifm-CxGnwI5gk5tsonfHo4z8nX9---XH6srz99uLp8e11r1tNcN0i5oqqhAigqY3umGFuDML2C1lgurBhQcdtTZoeeNwMtD6qjiKxvrWXsnLzcz51j-L5gynJ0SaP3asKwJAk9iJ5D23QFfXEP3YYlTuV3hWq7ljNoaaGeH6hlGNHIObpRxRv5e7UFWO8BHUNKEe0fBKjcJSi3cp-g3CUoaSmAYntzz6ZdVrtkSkbO_898sTdjWeUPh1Em7XDSaFxEnaUJ7uEBvwD2vLr9
CitedBy_id crossref_primary_10_1016_j_actbio_2019_05_068
crossref_primary_10_3390_math12020267
crossref_primary_10_1016_j_jmbbm_2025_106886
crossref_primary_10_1016_j_jmps_2024_105750
crossref_primary_10_1007_s10856_024_06775_1
crossref_primary_10_1016_j_carbpol_2023_121058
crossref_primary_10_1098_rspa_2020_0643
crossref_primary_10_1016_j_jmbbm_2024_106508
crossref_primary_10_1016_j_ijsolstr_2023_112597
crossref_primary_10_1016_j_jmbbm_2020_103699
crossref_primary_10_1016_j_plrev_2018_02_005
crossref_primary_10_1016_j_jmps_2023_105392
crossref_primary_10_1039_D4SM01223B
crossref_primary_10_1126_sciadv_adh1265
crossref_primary_10_1007_s10439_023_03181_6
crossref_primary_10_1016_j_jbiomech_2021_110816
crossref_primary_10_1016_j_engfracmech_2022_108330
crossref_primary_10_1126_sciadv_abc0496
crossref_primary_10_1016_j_cobme_2022_100369
crossref_primary_10_1080_02286203_2021_2015818
crossref_primary_10_1016_j_eml_2021_101576
crossref_primary_10_1016_j_jmbbm_2023_105901
crossref_primary_10_1016_j_jmbbm_2022_105465
crossref_primary_10_1016_j_eml_2022_101757
crossref_primary_10_1016_j_mechmat_2019_103155
crossref_primary_10_1039_D4SM00042K
crossref_primary_10_1177_15910199241230364
crossref_primary_10_1016_j_actbio_2022_09_063
Cites_doi 10.1016/j.bpc.2004.07.029
10.1016/S0006-3495(76)85658-5
10.1016/j.biomaterials.2014.04.056
10.1073/pnas.0504120102
10.1016/j.cossms.2011.05.002
10.1016/j.actamat.2003.12.028
10.1055/s-0036-1571342
10.1016/j.bpj.2016.06.034
10.1098/rsif.2015.0320
10.1002/cm.970020504
10.1182/blood-2013-08-523860
10.1103/PhysRevLett.99.208103
10.1016/S0006-3495(79)85238-8
10.1088/0957-4484/24/25/255707
10.1016/j.jmps.2015.08.013
10.1161/hh0402.105095
10.1007/BF00366667
10.1098/rsif.2008.0327
10.1007/s11340-007-9037-9
10.1160/TH10-03-0161
10.1080/19447024608659279
10.1016/0045-7825(84)90062-8
10.1126/science.1172484
10.1016/j.ijsolstr.2017.06.025
10.1103/PhysRevLett.95.178102
10.1021/nn300376j
10.1007/s12013-007-9001-4
10.1160/TH09-03-0199
10.1385/CBB:38:1:55
10.1073/pnas.0904565106
10.1016/j.jmps.2003.09.019
10.1111/j.1538-7836.2005.01365.x
10.1016/j.jbiomech.2008.09.002
10.1002/adfm.201200676
ContentType Journal Article
Copyright 2017 Acta Materialia Inc.
Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Sep 15, 2017
Copyright_xml – notice: 2017 Acta Materialia Inc.
– notice: Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Sep 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.actbio.2017.07.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 290
ExternalDocumentID 28694237
10_1016_j_actbio_2017_07_011
S1742706117304385
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SEW
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c390t-2e06a0a20710eadf93a33417d9a15df67f7bea6f903fb962b09a1a80ee395ff33
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Mon Jul 21 11:18:34 EDT 2025
Wed Aug 13 04:50:15 EDT 2025
Mon Jul 21 06:02:37 EDT 2025
Thu Apr 24 23:00:32 EDT 2025
Tue Jul 01 01:17:15 EDT 2025
Fri Feb 23 02:39:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Platelet poor plasma clots
Platelet rich plasma clots
Red blood cells
Whole blood clots
Phase transitions
Fibrin network
Language English
License Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-2e06a0a20710eadf93a33417d9a15df67f7bea6f903fb962b09a1a80ee395ff33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28694237
PQID 1958563150
PQPubID 2045286
PageCount 16
ParticipantIDs proquest_miscellaneous_1917961528
proquest_journals_1958563150
pubmed_primary_28694237
crossref_primary_10_1016_j_actbio_2017_07_011
crossref_citationtrail_10_1016_j_actbio_2017_07_011
elsevier_sciencedirect_doi_10_1016_j_actbio_2017_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Notbohm, Lesman, Rosakis, Tirrell, Ravichandran (b0015) 2015; 12
Huisman, van Dillen, Onck, Van der Giessen (b0125) 2007; 99
Kim, Liang, Litvinov, Weisel, Alber, Purohit (b0060) 2015
Litvinov, Weisel (b0240) 2016; 42
Wen, Janmey (b0200) 2011; 15
Van Wyk (b0135) 1946; 37
Raney, Fraternali, Daraio (b0190) 2013; 24
Rosakis, Notbohm, Ravichandran (b0035) 2015; 85
B.E. Vos, L.C. Liebrand, M. Vahabi, A. Biebricher, G.J.L. Wuite, E.J.G. Peterman, N.A. Kurniawan, F.C. MacKintosh, G.H. Koenderink, Programming filamentous network mechanics by compression, 2016, arXiv:1612:08601 preprint.
Diamond (b0020) 1999; 1
Maschmann, Ehlert, Park, Mollenhauer, Maruyama, Hart, Baur (b0180) 2012; 22
Litvinov, Weisel (b0235) 2016; 60–61
Noailly, Van Oosterwyck, Wilson, Quinn, Ito (b0025) 2008; 41
Gersh, Nagaswami, Weisel (b0095) 2009; 102
Collet, Shuman, Ledger, Lee, Weisel (b0030) 2005; 102
Collet, Montalescot, Lesty, Weisel (b0080) 2002; 90
Kim, Litvinov, Weisel, Alber (b0055) 2014; 35
Vorjohann, Fish, Biron-Andreani, Nagaswami, Weisel, Boulot, Neerman-Arbez (b0105) 2010; 104
Shah, Janmey (b0085) 1997; 36
Liang, Shin, Magagosc, Jiang, Park, Hart, Turner, Ginola, Purohit (b0175) 2017
Guthold, Liu, Sparks, Jawerth, Peng, Falvo, Lord (b0040) 2007; 49
Jen, McIntire (b0195) 1982; 2
Kurniawan, Vos, Biebricher, Wuite, Peterman, Koenderink (b0170) 2016; 111
Weisel (b0010) 2004; 112
Dao, Lim, Suresh (b0140) 2003; 51
Evans, Hochmuth (b0160) 1976; 16
Toll (b0130) 1998; 38
Janmey, Winer, Weisel (b0045) 2009; 6
Simo, Pister (b0150) 1984; 46
Brown, Litvinov, Discher, Purohit, Weisel (b0050) 2009; 325
Gibson, Ashby (b0065) 1999
Onck, Koeman, Van Dillen, Van der Giessen (b0120) 2005; 95
Lim, Dao, Suresh, Sow, Chew (b0145) 2004; 52
Cines, Lebedeva, Nagaswami, Hayes, Massefski, Litvinov, Weisel (b0100) 2014; 123
Mosesson (b0005) 2005; 3
Maskarinec, Franck, Tirrell, Ravichandran (b0115) 2009; 106
Pathak, Lim, Pour Shahid Saeed Abadi, Graham, Cola, Greer (b0185) 2012; 6
Burstein, Lewi (b0090) 1952; 146
Hochmuth, Worthy, Evans (b0165) 1979; 26
Franck, Hong, Maskarinec, Tirrell, Ravichandran (b0110) 2007; 47
Abeyaratne, Knowles (b0070) 2006
Carr (b0245) 2003; 38
Kim, Litvinov, Chen, Chen, Weisel, Alber (b0075) 2016
Vos, Vahabi, Kurniawan, Doi, Koenderink, MacKintosh, Bonn (b0230) 2016; 117
Ogden (b0155) 1997
Shah (10.1016/j.actbio.2017.07.011_b0085) 1997; 36
Maskarinec (10.1016/j.actbio.2017.07.011_b0115) 2009; 106
Kurniawan (10.1016/j.actbio.2017.07.011_b0170) 2016; 111
Notbohm (10.1016/j.actbio.2017.07.011_b0015) 2015; 12
Onck (10.1016/j.actbio.2017.07.011_b0120) 2005; 95
Rosakis (10.1016/j.actbio.2017.07.011_b0035) 2015; 85
Jen (10.1016/j.actbio.2017.07.011_b0195) 1982; 2
Guthold (10.1016/j.actbio.2017.07.011_b0040) 2007; 49
Huisman (10.1016/j.actbio.2017.07.011_b0125) 2007; 99
Vorjohann (10.1016/j.actbio.2017.07.011_b0105) 2010; 104
Pathak (10.1016/j.actbio.2017.07.011_b0185) 2012; 6
Toll (10.1016/j.actbio.2017.07.011_b0130) 1998; 38
Liang (10.1016/j.actbio.2017.07.011_b0175) 2017
Gibson (10.1016/j.actbio.2017.07.011_b0065) 1999
Kim (10.1016/j.actbio.2017.07.011_b0055) 2014; 35
Ogden (10.1016/j.actbio.2017.07.011_b0155) 1997
Collet (10.1016/j.actbio.2017.07.011_b0080) 2002; 90
Simo (10.1016/j.actbio.2017.07.011_b0150) 1984; 46
Cines (10.1016/j.actbio.2017.07.011_b0100) 2014; 123
Gersh (10.1016/j.actbio.2017.07.011_b0095) 2009; 102
Weisel (10.1016/j.actbio.2017.07.011_b0010) 2004; 112
Brown (10.1016/j.actbio.2017.07.011_b0050) 2009; 325
Litvinov (10.1016/j.actbio.2017.07.011_b0235) 2016; 60–61
Maschmann (10.1016/j.actbio.2017.07.011_b0180) 2012; 22
Raney (10.1016/j.actbio.2017.07.011_b0190) 2013; 24
Mosesson (10.1016/j.actbio.2017.07.011_b0005) 2005; 3
Wen (10.1016/j.actbio.2017.07.011_b0200) 2011; 15
Collet (10.1016/j.actbio.2017.07.011_b0030) 2005; 102
Abeyaratne (10.1016/j.actbio.2017.07.011_b0070) 2006
Evans (10.1016/j.actbio.2017.07.011_b0160) 1976; 16
Diamond (10.1016/j.actbio.2017.07.011_b0020) 1999; 1
Dao (10.1016/j.actbio.2017.07.011_b0140) 2003; 51
Hochmuth (10.1016/j.actbio.2017.07.011_b0165) 1979; 26
Van Wyk (10.1016/j.actbio.2017.07.011_b0135) 1946; 37
Janmey (10.1016/j.actbio.2017.07.011_b0045) 2009; 6
Franck (10.1016/j.actbio.2017.07.011_b0110) 2007; 47
Burstein (10.1016/j.actbio.2017.07.011_b0090) 1952; 146
Kim (10.1016/j.actbio.2017.07.011_b0060) 2015
Carr (10.1016/j.actbio.2017.07.011_b0245) 2003; 38
10.1016/j.actbio.2017.07.011_b0250
Noailly (10.1016/j.actbio.2017.07.011_b0025) 2008; 41
Lim (10.1016/j.actbio.2017.07.011_b0145) 2004; 52
Vos (10.1016/j.actbio.2017.07.011_b0230) 2016; 117
Kim (10.1016/j.actbio.2017.07.011_b0075) 2016
Litvinov (10.1016/j.actbio.2017.07.011_b0240) 2016; 42
References_xml – volume: 46
  start-page: 201
  year: 1984
  end-page: 215
  ident: b0150
  article-title: Remarks on rate constitutive equations for finite deformation problems: computational implications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 117
  year: 2016
  ident: b0230
  article-title: Porosity governs normal stresses in polymer gels
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 427
  year: 1999
  end-page: 461
  ident: b0020
  article-title: Engineering design of optimal strategies for blood clot dissolution
  publication-title: Annu. Rev. Biochem.
– year: 2016
  ident: b0075
  article-title: Compression-induced structural and mechanical changes of fibrin-collagen composites
  publication-title: Matrix Biol.
– volume: 60–61
  start-page: 110
  year: 2016
  end-page: 123
  ident: b0235
  article-title: Fibrin mechanical properties and their structural origins
  publication-title: Matrix Biol.
– volume: 15
  start-page: 177
  year: 2011
  end-page: 182
  ident: b0200
  article-title: Polymer physics of the cytoskeleton
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 2
  start-page: 445
  year: 1982
  end-page: 455
  ident: b0195
  article-title: The structural properties and contractile force of a clot
  publication-title: Cell Motil.
– volume: 35
  start-page: 6739
  year: 2014
  end-page: 6749
  ident: b0055
  article-title: Structural basis for the nonlinear mechanics of fibrin networks under compression
  publication-title: Biomater.
– year: 2017
  ident: b0175
  article-title: Compression and recovery of carbon nanotube foams described as a phase transition
  publication-title: Int. J. Solids Struct.
– volume: 112
  start-page: 267
  year: 2004
  end-page: 276
  ident: b0010
  article-title: The mechanical properties of fibrin for basic scientists and clinicians
  publication-title: Biophys. Chem.
– volume: 36
  start-page: 262
  year: 1997
  end-page: 268
  ident: b0085
  article-title: Strain hardening of fibrin gels and plasma clots
  publication-title: Rheol. Acta
– volume: 90
  start-page: 428
  year: 2002
  end-page: 434
  ident: b0080
  article-title: A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots
  publication-title: Circulation Res.
– volume: 102
  start-page: 1169
  year: 2009
  ident: b0095
  article-title: Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes
  publication-title: J. Thromb. Haemost.
– volume: 104
  start-page: 990
  year: 2010
  ident: b0105
  article-title: Hypodysfibrinogenaemia due to production of mutant fibrinogen alpha-chains lacking fibrinopeptide A and polymerisation knob ‘A’
  publication-title: J. Thromb. Haemost.
– volume: 16
  start-page: 1
  year: 1976
  end-page: 11
  ident: b0160
  article-title: Membrane viscoelasticity
  publication-title: Biophys. J.
– volume: 99
  start-page: 208103
  year: 2007
  ident: b0125
  article-title: Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 9133
  year: 2005
  end-page: 9137
  ident: b0030
  article-title: The elasticity of an individual fibrin fiber in a clot
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 146
  start-page: 829
  year: 1952
  ident: b0090
  article-title: Platelets and structure of the plasma clot; the mode of action of platelets during retraction
  publication-title: C.R. Seances Soc. Biol. Fil.
– volume: 38
  start-page: 1337
  year: 1998
  end-page: 1350
  ident: b0130
  article-title: Packing mechanics of fiber reinforcements
  publication-title: Polym. Eeg. Sci.
– start-page: 1
  year: 2015
  end-page: 16
  ident: b0060
  article-title: Foam-like compression behavior of fibrin networks
  publication-title: Biomech. Model. Mechanobiol.
– year: 1999
  ident: b0065
  article-title: Cellular Solids: Structure and Properties
– volume: 123
  start-page: 1596
  year: 2014
  end-page: 1603
  ident: b0100
  article-title: Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin
  publication-title: Blood
– year: 2006
  ident: b0070
  article-title: Evolution of Phase Transitions: A Continuum Theory
– volume: 26
  start-page: 101
  year: 1979
  end-page: 114
  ident: b0165
  article-title: Red cell extensional recovery and the determination of membrane viscosity
  publication-title: Biophys. J.
– volume: 111
  start-page: 1026
  year: 2016
  end-page: 1034
  ident: b0170
  article-title: Fibrin networks support recurring mechanical loads by adapting their structure across multiple scales
  publication-title: Biophys. J.
– volume: 52
  start-page: 1837
  year: 2004
  end-page: 1845
  ident: b0145
  article-title: Large deformation of living cells using laser traps
  publication-title: Acta Mater.
– volume: 22
  start-page: 4686
  year: 2012
  end-page: 4695
  ident: b0180
  article-title: Visualizing strain evolution and coordinated buckling within CNT arrays by in situ digital image correlation
  publication-title: Adv. Funct. Mater.
– volume: 95
  start-page: 178102
  year: 2005
  ident: b0120
  article-title: Alternative explanation of stiffening in cross-linked semiflexible networks
  publication-title: Phys. Rev. Lett.
– volume: 38
  start-page: 55
  year: 2003
  end-page: 78
  ident: b0245
  article-title: Development of platelet contractile force as a research and clinical measure of platelet function
  publication-title: Cell Biochem. Biophys.
– volume: 85
  start-page: 16
  year: 2015
  end-page: 32
  ident: b0035
  article-title: A model for compression-weakening materials and the elastic fields due to contractile cells
  publication-title: J. Mech. Phys. Solids
– volume: 49
  start-page: 165
  year: 2007
  end-page: 181
  ident: b0040
  article-title: A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers
  publication-title: Cell Biochem. Biophys.
– volume: 325
  start-page: 741
  year: 2009
  end-page: 744
  ident: b0050
  article-title: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water
  publication-title: Sci.
– volume: 3
  start-page: 1894
  year: 2005
  end-page: 1904
  ident: b0005
  article-title: Fibrinogen and fibrin structure and functions
  publication-title: J. Thromb. Haemost.
– volume: 106
  start-page: 22108
  year: 2009
  end-page: 22113
  ident: b0115
  article-title: Quantifying cellular traction forces in three dimensions
  publication-title: Proc. Natl. Acad. Sci.
– volume: 12
  start-page: 20150320
  year: 2015
  ident: b0015
  article-title: Microbuckling of fibrin provides a mechanism for cell mechanosensing
  publication-title: J. R. Soc. Interface
– volume: 41
  start-page: 3265
  year: 2008
  end-page: 3269
  ident: b0025
  article-title: A poroviscoelastic description of fibrin gels
  publication-title: J. Biomech.
– volume: 6
  start-page: 2189
  year: 2012
  end-page: 2197
  ident: b0185
  article-title: Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in-situ study
  publication-title: ACS Nano
– volume: 47
  start-page: 427
  year: 2007
  end-page: 438
  ident: b0110
  article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation
  publication-title: Exp. Mech.
– reference: B.E. Vos, L.C. Liebrand, M. Vahabi, A. Biebricher, G.J.L. Wuite, E.J.G. Peterman, N.A. Kurniawan, F.C. MacKintosh, G.H. Koenderink, Programming filamentous network mechanics by compression, 2016, arXiv:1612:08601 preprint.
– volume: 6
  start-page: 1
  year: 2009
  end-page: 10
  ident: b0045
  article-title: Fibrin gels and their clinical and bioengineering applications
  publication-title: J. R. Soc. Interface
– volume: 37
  start-page: T285
  year: 1946
  end-page: T292
  ident: b0135
  article-title: Note on the compressibility of wool
  publication-title: J. Text. Inst. Trans.
– volume: 51
  start-page: 2259
  year: 2003
  end-page: 2280
  ident: b0140
  article-title: Mechanics of the human red blood cell deformed by optical tweezers
  publication-title: J. Mech. Phys. Solids
– year: 1997
  ident: b0155
  article-title: Non-linear Elastic Deformations
– volume: 24
  start-page: 255707
  year: 2013
  ident: b0190
  article-title: Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays
  publication-title: Nanotechnol.
– volume: 42
  start-page: 333
  year: 2016
  end-page: 343
  ident: b0240
  article-title: What is the biological and clinical relevance of fibrin?
  publication-title: Semin. Thromb. Hemost.
– volume: 60–61
  start-page: 110
  year: 2016
  ident: 10.1016/j.actbio.2017.07.011_b0235
  article-title: Fibrin mechanical properties and their structural origins
  publication-title: Matrix Biol.
– volume: 112
  start-page: 267
  issue: 2
  year: 2004
  ident: 10.1016/j.actbio.2017.07.011_b0010
  article-title: The mechanical properties of fibrin for basic scientists and clinicians
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2004.07.029
– volume: 16
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.actbio.2017.07.011_b0160
  article-title: Membrane viscoelasticity
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(76)85658-5
– volume: 35
  start-page: 6739
  issue: 25
  year: 2014
  ident: 10.1016/j.actbio.2017.07.011_b0055
  article-title: Structural basis for the nonlinear mechanics of fibrin networks under compression
  publication-title: Biomater.
  doi: 10.1016/j.biomaterials.2014.04.056
– volume: 102
  start-page: 9133
  issue: 26
  year: 2005
  ident: 10.1016/j.actbio.2017.07.011_b0030
  article-title: The elasticity of an individual fibrin fiber in a clot
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504120102
– volume: 15
  start-page: 177
  issue: 5
  year: 2011
  ident: 10.1016/j.actbio.2017.07.011_b0200
  article-title: Polymer physics of the cytoskeleton
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2011.05.002
– volume: 52
  start-page: 1837
  issue: 7
  year: 2004
  ident: 10.1016/j.actbio.2017.07.011_b0145
  article-title: Large deformation of living cells using laser traps
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.12.028
– volume: 1
  start-page: 427
  issue: 1
  year: 1999
  ident: 10.1016/j.actbio.2017.07.011_b0020
  article-title: Engineering design of optimal strategies for blood clot dissolution
  publication-title: Annu. Rev. Biochem.
– volume: 42
  start-page: 333
  issue: 4
  year: 2016
  ident: 10.1016/j.actbio.2017.07.011_b0240
  article-title: What is the biological and clinical relevance of fibrin?
  publication-title: Semin. Thromb. Hemost.
  doi: 10.1055/s-0036-1571342
– volume: 111
  start-page: 1026
  issue: 5
  year: 2016
  ident: 10.1016/j.actbio.2017.07.011_b0170
  article-title: Fibrin networks support recurring mechanical loads by adapting their structure across multiple scales
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.06.034
– ident: 10.1016/j.actbio.2017.07.011_b0250
– volume: 12
  start-page: 20150320
  issue: 108
  year: 2015
  ident: 10.1016/j.actbio.2017.07.011_b0015
  article-title: Microbuckling of fibrin provides a mechanism for cell mechanosensing
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0320
– volume: 2
  start-page: 445
  issue: 5
  year: 1982
  ident: 10.1016/j.actbio.2017.07.011_b0195
  article-title: The structural properties and contractile force of a clot
  publication-title: Cell Motil.
  doi: 10.1002/cm.970020504
– volume: 123
  start-page: 1596
  issue: 10
  year: 2014
  ident: 10.1016/j.actbio.2017.07.011_b0100
  article-title: Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin
  publication-title: Blood
  doi: 10.1182/blood-2013-08-523860
– volume: 38
  start-page: 1337
  issue: 8
  year: 1998
  ident: 10.1016/j.actbio.2017.07.011_b0130
  article-title: Packing mechanics of fiber reinforcements
  publication-title: Polym. Eeg. Sci.
– volume: 99
  start-page: 208103
  issue: 20
  year: 2007
  ident: 10.1016/j.actbio.2017.07.011_b0125
  article-title: Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.208103
– volume: 26
  start-page: 101
  issue: 1
  year: 1979
  ident: 10.1016/j.actbio.2017.07.011_b0165
  article-title: Red cell extensional recovery and the determination of membrane viscosity
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(79)85238-8
– volume: 24
  start-page: 255707
  issue: 25
  year: 2013
  ident: 10.1016/j.actbio.2017.07.011_b0190
  article-title: Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays
  publication-title: Nanotechnol.
  doi: 10.1088/0957-4484/24/25/255707
– start-page: 1
  year: 2015
  ident: 10.1016/j.actbio.2017.07.011_b0060
  article-title: Foam-like compression behavior of fibrin networks
  publication-title: Biomech. Model. Mechanobiol.
– volume: 85
  start-page: 16
  year: 2015
  ident: 10.1016/j.actbio.2017.07.011_b0035
  article-title: A model for compression-weakening materials and the elastic fields due to contractile cells
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2015.08.013
– volume: 90
  start-page: 428
  issue: 4
  year: 2002
  ident: 10.1016/j.actbio.2017.07.011_b0080
  article-title: A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots
  publication-title: Circulation Res.
  doi: 10.1161/hh0402.105095
– year: 1997
  ident: 10.1016/j.actbio.2017.07.011_b0155
– volume: 36
  start-page: 262
  issue: 3
  year: 1997
  ident: 10.1016/j.actbio.2017.07.011_b0085
  article-title: Strain hardening of fibrin gels and plasma clots
  publication-title: Rheol. Acta
  doi: 10.1007/BF00366667
– volume: 6
  start-page: 1
  issue: 30
  year: 2009
  ident: 10.1016/j.actbio.2017.07.011_b0045
  article-title: Fibrin gels and their clinical and bioengineering applications
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2008.0327
– volume: 47
  start-page: 427
  issue: 3
  year: 2007
  ident: 10.1016/j.actbio.2017.07.011_b0110
  article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-007-9037-9
– volume: 104
  start-page: 990
  issue: 5
  year: 2010
  ident: 10.1016/j.actbio.2017.07.011_b0105
  article-title: Hypodysfibrinogenaemia due to production of mutant fibrinogen alpha-chains lacking fibrinopeptide A and polymerisation knob ‘A’
  publication-title: J. Thromb. Haemost.
  doi: 10.1160/TH10-03-0161
– volume: 37
  start-page: T285
  issue: 12
  year: 1946
  ident: 10.1016/j.actbio.2017.07.011_b0135
  article-title: Note on the compressibility of wool
  publication-title: J. Text. Inst. Trans.
  doi: 10.1080/19447024608659279
– volume: 46
  start-page: 201
  issue: 2
  year: 1984
  ident: 10.1016/j.actbio.2017.07.011_b0150
  article-title: Remarks on rate constitutive equations for finite deformation problems: computational implications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(84)90062-8
– volume: 325
  start-page: 741
  issue: 5941
  year: 2009
  ident: 10.1016/j.actbio.2017.07.011_b0050
  article-title: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water
  publication-title: Sci.
  doi: 10.1126/science.1172484
– year: 2016
  ident: 10.1016/j.actbio.2017.07.011_b0075
  article-title: Compression-induced structural and mechanical changes of fibrin-collagen composites
  publication-title: Matrix Biol.
– year: 2017
  ident: 10.1016/j.actbio.2017.07.011_b0175
  article-title: Compression and recovery of carbon nanotube foams described as a phase transition
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.06.025
– volume: 117
  issue: 21
  year: 2016
  ident: 10.1016/j.actbio.2017.07.011_b0230
  article-title: Porosity governs normal stresses in polymer gels
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 178102
  issue: 17
  year: 2005
  ident: 10.1016/j.actbio.2017.07.011_b0120
  article-title: Alternative explanation of stiffening in cross-linked semiflexible networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.178102
– volume: 6
  start-page: 2189
  issue: 3
  year: 2012
  ident: 10.1016/j.actbio.2017.07.011_b0185
  article-title: Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in-situ study
  publication-title: ACS Nano
  doi: 10.1021/nn300376j
– volume: 49
  start-page: 165
  issue: 3
  year: 2007
  ident: 10.1016/j.actbio.2017.07.011_b0040
  article-title: A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-007-9001-4
– year: 2006
  ident: 10.1016/j.actbio.2017.07.011_b0070
– volume: 102
  start-page: 1169
  issue: 6
  year: 2009
  ident: 10.1016/j.actbio.2017.07.011_b0095
  article-title: Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes
  publication-title: J. Thromb. Haemost.
  doi: 10.1160/TH09-03-0199
– volume: 38
  start-page: 55
  issue: 1
  year: 2003
  ident: 10.1016/j.actbio.2017.07.011_b0245
  article-title: Development of platelet contractile force as a research and clinical measure of platelet function
  publication-title: Cell Biochem. Biophys.
  doi: 10.1385/CBB:38:1:55
– volume: 106
  start-page: 22108
  issue: 52
  year: 2009
  ident: 10.1016/j.actbio.2017.07.011_b0115
  article-title: Quantifying cellular traction forces in three dimensions
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0904565106
– year: 1999
  ident: 10.1016/j.actbio.2017.07.011_b0065
– volume: 51
  start-page: 2259
  issue: 11
  year: 2003
  ident: 10.1016/j.actbio.2017.07.011_b0140
  article-title: Mechanics of the human red blood cell deformed by optical tweezers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2003.09.019
– volume: 3
  start-page: 1894
  issue: 8
  year: 2005
  ident: 10.1016/j.actbio.2017.07.011_b0005
  article-title: Fibrinogen and fibrin structure and functions
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2005.01365.x
– volume: 41
  start-page: 3265
  issue: 15
  year: 2008
  ident: 10.1016/j.actbio.2017.07.011_b0025
  article-title: A poroviscoelastic description of fibrin gels
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.09.002
– volume: 146
  start-page: 829
  issue: 11–12
  year: 1952
  ident: 10.1016/j.actbio.2017.07.011_b0090
  article-title: Platelets and structure of the plasma clot; the mode of action of platelets during retraction
  publication-title: C.R. Seances Soc. Biol. Fil.
– volume: 22
  start-page: 4686
  issue: 22
  year: 2012
  ident: 10.1016/j.actbio.2017.07.011_b0180
  article-title: Visualizing strain evolution and coordinated buckling within CNT arrays by in situ digital image correlation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200676
SSID ssj0038128
Score 2.3884935
Snippet [Display omitted] Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart...
Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 275
SubjectTerms Biomaterials
Biomedical materials
Bleeding
Blood clots
Blood Coagulation
Blood Platelets - chemistry
Blood Platelets - metabolism
Blood vessels
Compression
Correlation analysis
Decompression
Elasticity
Erythrocytes
Erythrocytes - chemistry
Erythrocytes - metabolism
Fibers
Fibrin
Fibrin network
Heart
Heart attacks
Human behavior
Humans
Ischemia
Mechanical properties
Models, Biological
Phase transitions
Plasmas (physics)
Platelet poor plasma clots
Platelet rich plasma clots
Platelet-Rich Plasma - chemistry
Platelet-Rich Plasma - metabolism
Platelets
Red blood cells
Scanning electron microscopy
Scanning transmission electron microscopy
Stress-strain curves
Stress-strain relationships
Stroke
Studies
Surgical implants
Whole blood clots
Title Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood
URI https://dx.doi.org/10.1016/j.actbio.2017.07.011
https://www.ncbi.nlm.nih.gov/pubmed/28694237
https://www.proquest.com/docview/1958563150
https://www.proquest.com/docview/1917961528
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6t4FIOVWmBbnnISBwJ68SJEx8RAm1bsUJqkbhZTmJrt9omKzaoN_jrzDjJAocVUqVc_Iosz3jmc_LNGOCEO4SdBZ5UM6PwgEJbKiuzJOA-OZpLnCvpg_71RI5v4x93yd0ALvpYGKJVdra_teneWnc1o241R4vZbPQLsXSUojsKUUljkVGgeRynpOVnjyuaBzokf78qdQ6odx8-5zlepmjyGYUAhqlP4RmG69zTOvjp3dDVJ_jY4Ud23k5xGwa2-gxbr7IKfoGnmym6JtaQF2oJWawNRmTEH295rxUzVclK-7qmdqyY182SUcgJW8wRhaJQg0Vd31Np-decvtSi-Zx2tf5V_-ieXeZp8Dtwe3X5-2IcdPcsBIVQvAkiy6XhJiK0gYrllDACnVtaKhMmpZOpS3NrpFNcuFzJKOfYYDJurVAoTCF2YaOqK_sVWMqtskJICr-N4xLtRYb2M4mksSq2Ih-C6JdXF10ScroLY657ttkf3QpFk1A0xycMhxCsRi3aJBzv9E97yek3yqTRT7wz8qAXtO4281JTPp5ECoTOQzheNeM2pH8rprL1A_VBy4boMMqGsNcqyGqqUSYVsY--_fe09uEDlYinEiYHsNHcP9hDBENNfuS1_Qg2z7__HE-eAXE1Ch0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQ9IOiDbnnUSBybrhMnTnxECLRQQJUAiZvlJLZYtCQrNogb_evMOMkCB4SElEtsJ7Ey45nPyTczADvcIewscKeaGYUbFFpSWZklAffJ0VziXEkf9E9O5egiPrpMLhdgr4-FIVplZ_tbm-6tddcy7N7mcDoeD88QS0cpuqMQlTQWWfIBluhZVMbgz8Oc54EeyRdYpdEBDe_j5zzJyxRNPqYYwDD1OTzD8DX_9Br-9H7oYAWWOwDJdts5rsKCrb7A52dpBb_C_39X6JtYQ26oZWSxNhqREYG8Jb5WzFQlK-3zltqxYlI3M0YxJ2w6QRiKUg2mdX1LZ7Mb8_upFe3nVdfqb3VPhXaZ58F_g4uD_fO9UdAVWggKoXgTRJZLw01EcAM1yylhBHq3tFQmTEonU5fm1kinuHC5klHOscNk3FqhUJpCfIfFqq7sD2Apt8oKISn-No5LNBgZGtAkksaq2Ip8AKJ_vbrospBTMYyJ7ulm17oViiahaI5HGA4gmF81bbNwvDE-7SWnX2iTRkfxxpUbvaB1t5pnmhLyJFIgdh7A9rwb1yH9XDGVre9oDJo2hIdRNoC1VkHmU40yqYh-9PPd0_oFH0fnJ8f6-PD07zp8oh4irYTJBiw2t3d2E5FRk295zX8EaCULqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+transitions+during+compression+and+decompression+of+clots+from+platelet-poor+plasma%2C+platelet-rich+plasma+and+whole+blood&rft.jtitle=Acta+biomaterialia&rft.au=Liang%2C+Xiaojun&rft.au=Chernysh%2C+Irina&rft.au=Purohit%2C+Prashant+K.&rft.au=Weisel%2C+John+W.&rft.date=2017-09-15&rft.issn=1742-7061&rft.volume=60&rft.spage=275&rft.epage=290&rft_id=info:doi/10.1016%2Fj.actbio.2017.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2017_07_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon