Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood
[Display omitted] Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots a...
Saved in:
Published in | Acta biomaterialia Vol. 60; pp. 275 - 290 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.09.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials.
The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials. |
---|---|
AbstractList | Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials.Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials.The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials.STATEMENT OF SIGNIFICANCEThe objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials. Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. [Display omitted] Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials. Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due to muscle contraction, platelet retraction and hydrodynamic flow varies under various pathophysiological conditions and could inform the design of fibrin based biomaterials. |
Author | Liang, Xiaojun Chernysh, Irina Purohit, Prashant K. Weisel, John W. |
Author_xml | – sequence: 1 givenname: Xiaojun surname: Liang fullname: Liang, Xiaojun organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 2 givenname: Irina surname: Chernysh fullname: Chernysh, Irina organization: Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 3 givenname: Prashant K. surname: Purohit fullname: Purohit, Prashant K. email: purohit@seas.upenn.edu organization: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 4 givenname: John W. surname: Weisel fullname: Weisel, John W. organization: Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28694237$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFDEUhYPM4Dz0H4gUuHFhtbmVrqTKxYAMPgYGdKHrkEpu7DSpSpmklFnNXzc93T6YxQgXknvynUu454wcTWFCQp4BXQEF_nq7UjoPLqwaCmJFSwE8IqfQia4WLe-Oyl2sm1pQDifkLKUtpayDpntMTpqO9-uGiVNy-3mjElY5qim57MKUKrNEN32rdBjniCkVrVKTqQz-qwRbaR9yqmwMYzV7ldFjrucQ4q5Lo3r1V41Obw7q3aifm-CxGnwI5gk5tsonfHo4z8nX9---XH6srz99uLp8e11r1tNcN0i5oqqhAigqY3umGFuDML2C1lgurBhQcdtTZoeeNwMtD6qjiKxvrWXsnLzcz51j-L5gynJ0SaP3asKwJAk9iJ5D23QFfXEP3YYlTuV3hWq7ljNoaaGeH6hlGNHIObpRxRv5e7UFWO8BHUNKEe0fBKjcJSi3cp-g3CUoaSmAYntzz6ZdVrtkSkbO_898sTdjWeUPh1Em7XDSaFxEnaUJ7uEBvwD2vLr9 |
CitedBy_id | crossref_primary_10_1016_j_actbio_2019_05_068 crossref_primary_10_3390_math12020267 crossref_primary_10_1016_j_jmbbm_2025_106886 crossref_primary_10_1016_j_jmps_2024_105750 crossref_primary_10_1007_s10856_024_06775_1 crossref_primary_10_1016_j_carbpol_2023_121058 crossref_primary_10_1098_rspa_2020_0643 crossref_primary_10_1016_j_jmbbm_2024_106508 crossref_primary_10_1016_j_ijsolstr_2023_112597 crossref_primary_10_1016_j_jmbbm_2020_103699 crossref_primary_10_1016_j_plrev_2018_02_005 crossref_primary_10_1016_j_jmps_2023_105392 crossref_primary_10_1039_D4SM01223B crossref_primary_10_1126_sciadv_adh1265 crossref_primary_10_1007_s10439_023_03181_6 crossref_primary_10_1016_j_jbiomech_2021_110816 crossref_primary_10_1016_j_engfracmech_2022_108330 crossref_primary_10_1126_sciadv_abc0496 crossref_primary_10_1016_j_cobme_2022_100369 crossref_primary_10_1080_02286203_2021_2015818 crossref_primary_10_1016_j_eml_2021_101576 crossref_primary_10_1016_j_jmbbm_2023_105901 crossref_primary_10_1016_j_jmbbm_2022_105465 crossref_primary_10_1016_j_eml_2022_101757 crossref_primary_10_1016_j_mechmat_2019_103155 crossref_primary_10_1039_D4SM00042K crossref_primary_10_1177_15910199241230364 crossref_primary_10_1016_j_actbio_2022_09_063 |
Cites_doi | 10.1016/j.bpc.2004.07.029 10.1016/S0006-3495(76)85658-5 10.1016/j.biomaterials.2014.04.056 10.1073/pnas.0504120102 10.1016/j.cossms.2011.05.002 10.1016/j.actamat.2003.12.028 10.1055/s-0036-1571342 10.1016/j.bpj.2016.06.034 10.1098/rsif.2015.0320 10.1002/cm.970020504 10.1182/blood-2013-08-523860 10.1103/PhysRevLett.99.208103 10.1016/S0006-3495(79)85238-8 10.1088/0957-4484/24/25/255707 10.1016/j.jmps.2015.08.013 10.1161/hh0402.105095 10.1007/BF00366667 10.1098/rsif.2008.0327 10.1007/s11340-007-9037-9 10.1160/TH10-03-0161 10.1080/19447024608659279 10.1016/0045-7825(84)90062-8 10.1126/science.1172484 10.1016/j.ijsolstr.2017.06.025 10.1103/PhysRevLett.95.178102 10.1021/nn300376j 10.1007/s12013-007-9001-4 10.1160/TH09-03-0199 10.1385/CBB:38:1:55 10.1073/pnas.0904565106 10.1016/j.jmps.2003.09.019 10.1111/j.1538-7836.2005.01365.x 10.1016/j.jbiomech.2008.09.002 10.1002/adfm.201200676 |
ContentType | Journal Article |
Copyright | 2017 Acta Materialia Inc. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Sep 15, 2017 |
Copyright_xml | – notice: 2017 Acta Materialia Inc. – notice: Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Sep 15, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.actbio.2017.07.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 290 |
ExternalDocumentID | 28694237 10_1016_j_actbio_2017_07_011 S1742706117304385 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ABYKQ ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SEW SSH CGR CUY CVF ECM EFKBS EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c390t-2e06a0a20710eadf93a33417d9a15df67f7bea6f903fb962b09a1a80ee395ff33 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Mon Jul 21 11:18:34 EDT 2025 Wed Aug 13 04:50:15 EDT 2025 Mon Jul 21 06:02:37 EDT 2025 Thu Apr 24 23:00:32 EDT 2025 Tue Jul 01 01:17:15 EDT 2025 Fri Feb 23 02:39:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Platelet poor plasma clots Platelet rich plasma clots Red blood cells Whole blood clots Phase transitions Fibrin network |
Language | English |
License | Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-2e06a0a20710eadf93a33417d9a15df67f7bea6f903fb962b09a1a80ee395ff33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28694237 |
PQID | 1958563150 |
PQPubID | 2045286 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1917961528 proquest_journals_1958563150 pubmed_primary_28694237 crossref_primary_10_1016_j_actbio_2017_07_011 crossref_citationtrail_10_1016_j_actbio_2017_07_011 elsevier_sciencedirect_doi_10_1016_j_actbio_2017_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-15 |
PublicationDateYYYYMMDD | 2017-09-15 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Notbohm, Lesman, Rosakis, Tirrell, Ravichandran (b0015) 2015; 12 Huisman, van Dillen, Onck, Van der Giessen (b0125) 2007; 99 Kim, Liang, Litvinov, Weisel, Alber, Purohit (b0060) 2015 Litvinov, Weisel (b0240) 2016; 42 Wen, Janmey (b0200) 2011; 15 Van Wyk (b0135) 1946; 37 Raney, Fraternali, Daraio (b0190) 2013; 24 Rosakis, Notbohm, Ravichandran (b0035) 2015; 85 B.E. Vos, L.C. Liebrand, M. Vahabi, A. Biebricher, G.J.L. Wuite, E.J.G. Peterman, N.A. Kurniawan, F.C. MacKintosh, G.H. Koenderink, Programming filamentous network mechanics by compression, 2016, arXiv:1612:08601 preprint. Diamond (b0020) 1999; 1 Maschmann, Ehlert, Park, Mollenhauer, Maruyama, Hart, Baur (b0180) 2012; 22 Litvinov, Weisel (b0235) 2016; 60–61 Noailly, Van Oosterwyck, Wilson, Quinn, Ito (b0025) 2008; 41 Gersh, Nagaswami, Weisel (b0095) 2009; 102 Collet, Shuman, Ledger, Lee, Weisel (b0030) 2005; 102 Collet, Montalescot, Lesty, Weisel (b0080) 2002; 90 Kim, Litvinov, Weisel, Alber (b0055) 2014; 35 Vorjohann, Fish, Biron-Andreani, Nagaswami, Weisel, Boulot, Neerman-Arbez (b0105) 2010; 104 Shah, Janmey (b0085) 1997; 36 Liang, Shin, Magagosc, Jiang, Park, Hart, Turner, Ginola, Purohit (b0175) 2017 Guthold, Liu, Sparks, Jawerth, Peng, Falvo, Lord (b0040) 2007; 49 Jen, McIntire (b0195) 1982; 2 Kurniawan, Vos, Biebricher, Wuite, Peterman, Koenderink (b0170) 2016; 111 Weisel (b0010) 2004; 112 Dao, Lim, Suresh (b0140) 2003; 51 Evans, Hochmuth (b0160) 1976; 16 Toll (b0130) 1998; 38 Janmey, Winer, Weisel (b0045) 2009; 6 Simo, Pister (b0150) 1984; 46 Brown, Litvinov, Discher, Purohit, Weisel (b0050) 2009; 325 Gibson, Ashby (b0065) 1999 Onck, Koeman, Van Dillen, Van der Giessen (b0120) 2005; 95 Lim, Dao, Suresh, Sow, Chew (b0145) 2004; 52 Cines, Lebedeva, Nagaswami, Hayes, Massefski, Litvinov, Weisel (b0100) 2014; 123 Mosesson (b0005) 2005; 3 Maskarinec, Franck, Tirrell, Ravichandran (b0115) 2009; 106 Pathak, Lim, Pour Shahid Saeed Abadi, Graham, Cola, Greer (b0185) 2012; 6 Burstein, Lewi (b0090) 1952; 146 Hochmuth, Worthy, Evans (b0165) 1979; 26 Franck, Hong, Maskarinec, Tirrell, Ravichandran (b0110) 2007; 47 Abeyaratne, Knowles (b0070) 2006 Carr (b0245) 2003; 38 Kim, Litvinov, Chen, Chen, Weisel, Alber (b0075) 2016 Vos, Vahabi, Kurniawan, Doi, Koenderink, MacKintosh, Bonn (b0230) 2016; 117 Ogden (b0155) 1997 Shah (10.1016/j.actbio.2017.07.011_b0085) 1997; 36 Maskarinec (10.1016/j.actbio.2017.07.011_b0115) 2009; 106 Kurniawan (10.1016/j.actbio.2017.07.011_b0170) 2016; 111 Notbohm (10.1016/j.actbio.2017.07.011_b0015) 2015; 12 Onck (10.1016/j.actbio.2017.07.011_b0120) 2005; 95 Rosakis (10.1016/j.actbio.2017.07.011_b0035) 2015; 85 Jen (10.1016/j.actbio.2017.07.011_b0195) 1982; 2 Guthold (10.1016/j.actbio.2017.07.011_b0040) 2007; 49 Huisman (10.1016/j.actbio.2017.07.011_b0125) 2007; 99 Vorjohann (10.1016/j.actbio.2017.07.011_b0105) 2010; 104 Pathak (10.1016/j.actbio.2017.07.011_b0185) 2012; 6 Toll (10.1016/j.actbio.2017.07.011_b0130) 1998; 38 Liang (10.1016/j.actbio.2017.07.011_b0175) 2017 Gibson (10.1016/j.actbio.2017.07.011_b0065) 1999 Kim (10.1016/j.actbio.2017.07.011_b0055) 2014; 35 Ogden (10.1016/j.actbio.2017.07.011_b0155) 1997 Collet (10.1016/j.actbio.2017.07.011_b0080) 2002; 90 Simo (10.1016/j.actbio.2017.07.011_b0150) 1984; 46 Cines (10.1016/j.actbio.2017.07.011_b0100) 2014; 123 Gersh (10.1016/j.actbio.2017.07.011_b0095) 2009; 102 Weisel (10.1016/j.actbio.2017.07.011_b0010) 2004; 112 Brown (10.1016/j.actbio.2017.07.011_b0050) 2009; 325 Litvinov (10.1016/j.actbio.2017.07.011_b0235) 2016; 60–61 Maschmann (10.1016/j.actbio.2017.07.011_b0180) 2012; 22 Raney (10.1016/j.actbio.2017.07.011_b0190) 2013; 24 Mosesson (10.1016/j.actbio.2017.07.011_b0005) 2005; 3 Wen (10.1016/j.actbio.2017.07.011_b0200) 2011; 15 Collet (10.1016/j.actbio.2017.07.011_b0030) 2005; 102 Abeyaratne (10.1016/j.actbio.2017.07.011_b0070) 2006 Evans (10.1016/j.actbio.2017.07.011_b0160) 1976; 16 Diamond (10.1016/j.actbio.2017.07.011_b0020) 1999; 1 Dao (10.1016/j.actbio.2017.07.011_b0140) 2003; 51 Hochmuth (10.1016/j.actbio.2017.07.011_b0165) 1979; 26 Van Wyk (10.1016/j.actbio.2017.07.011_b0135) 1946; 37 Janmey (10.1016/j.actbio.2017.07.011_b0045) 2009; 6 Franck (10.1016/j.actbio.2017.07.011_b0110) 2007; 47 Burstein (10.1016/j.actbio.2017.07.011_b0090) 1952; 146 Kim (10.1016/j.actbio.2017.07.011_b0060) 2015 Carr (10.1016/j.actbio.2017.07.011_b0245) 2003; 38 10.1016/j.actbio.2017.07.011_b0250 Noailly (10.1016/j.actbio.2017.07.011_b0025) 2008; 41 Lim (10.1016/j.actbio.2017.07.011_b0145) 2004; 52 Vos (10.1016/j.actbio.2017.07.011_b0230) 2016; 117 Kim (10.1016/j.actbio.2017.07.011_b0075) 2016 Litvinov (10.1016/j.actbio.2017.07.011_b0240) 2016; 42 |
References_xml | – volume: 46 start-page: 201 year: 1984 end-page: 215 ident: b0150 article-title: Remarks on rate constitutive equations for finite deformation problems: computational implications publication-title: Comput. Methods Appl. Mech. Eng. – volume: 117 year: 2016 ident: b0230 article-title: Porosity governs normal stresses in polymer gels publication-title: Phys. Rev. Lett. – volume: 1 start-page: 427 year: 1999 end-page: 461 ident: b0020 article-title: Engineering design of optimal strategies for blood clot dissolution publication-title: Annu. Rev. Biochem. – year: 2016 ident: b0075 article-title: Compression-induced structural and mechanical changes of fibrin-collagen composites publication-title: Matrix Biol. – volume: 60–61 start-page: 110 year: 2016 end-page: 123 ident: b0235 article-title: Fibrin mechanical properties and their structural origins publication-title: Matrix Biol. – volume: 15 start-page: 177 year: 2011 end-page: 182 ident: b0200 article-title: Polymer physics of the cytoskeleton publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 2 start-page: 445 year: 1982 end-page: 455 ident: b0195 article-title: The structural properties and contractile force of a clot publication-title: Cell Motil. – volume: 35 start-page: 6739 year: 2014 end-page: 6749 ident: b0055 article-title: Structural basis for the nonlinear mechanics of fibrin networks under compression publication-title: Biomater. – year: 2017 ident: b0175 article-title: Compression and recovery of carbon nanotube foams described as a phase transition publication-title: Int. J. Solids Struct. – volume: 112 start-page: 267 year: 2004 end-page: 276 ident: b0010 article-title: The mechanical properties of fibrin for basic scientists and clinicians publication-title: Biophys. Chem. – volume: 36 start-page: 262 year: 1997 end-page: 268 ident: b0085 article-title: Strain hardening of fibrin gels and plasma clots publication-title: Rheol. Acta – volume: 90 start-page: 428 year: 2002 end-page: 434 ident: b0080 article-title: A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots publication-title: Circulation Res. – volume: 102 start-page: 1169 year: 2009 ident: b0095 article-title: Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes publication-title: J. Thromb. Haemost. – volume: 104 start-page: 990 year: 2010 ident: b0105 article-title: Hypodysfibrinogenaemia due to production of mutant fibrinogen alpha-chains lacking fibrinopeptide A and polymerisation knob ‘A’ publication-title: J. Thromb. Haemost. – volume: 16 start-page: 1 year: 1976 end-page: 11 ident: b0160 article-title: Membrane viscoelasticity publication-title: Biophys. J. – volume: 99 start-page: 208103 year: 2007 ident: b0125 article-title: Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior publication-title: Phys. Rev. Lett. – volume: 102 start-page: 9133 year: 2005 end-page: 9137 ident: b0030 article-title: The elasticity of an individual fibrin fiber in a clot publication-title: Proc. Natl. Acad. Sci. USA – volume: 146 start-page: 829 year: 1952 ident: b0090 article-title: Platelets and structure of the plasma clot; the mode of action of platelets during retraction publication-title: C.R. Seances Soc. Biol. Fil. – volume: 38 start-page: 1337 year: 1998 end-page: 1350 ident: b0130 article-title: Packing mechanics of fiber reinforcements publication-title: Polym. Eeg. Sci. – start-page: 1 year: 2015 end-page: 16 ident: b0060 article-title: Foam-like compression behavior of fibrin networks publication-title: Biomech. Model. Mechanobiol. – year: 1999 ident: b0065 article-title: Cellular Solids: Structure and Properties – volume: 123 start-page: 1596 year: 2014 end-page: 1603 ident: b0100 article-title: Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin publication-title: Blood – year: 2006 ident: b0070 article-title: Evolution of Phase Transitions: A Continuum Theory – volume: 26 start-page: 101 year: 1979 end-page: 114 ident: b0165 article-title: Red cell extensional recovery and the determination of membrane viscosity publication-title: Biophys. J. – volume: 111 start-page: 1026 year: 2016 end-page: 1034 ident: b0170 article-title: Fibrin networks support recurring mechanical loads by adapting their structure across multiple scales publication-title: Biophys. J. – volume: 52 start-page: 1837 year: 2004 end-page: 1845 ident: b0145 article-title: Large deformation of living cells using laser traps publication-title: Acta Mater. – volume: 22 start-page: 4686 year: 2012 end-page: 4695 ident: b0180 article-title: Visualizing strain evolution and coordinated buckling within CNT arrays by in situ digital image correlation publication-title: Adv. Funct. Mater. – volume: 95 start-page: 178102 year: 2005 ident: b0120 article-title: Alternative explanation of stiffening in cross-linked semiflexible networks publication-title: Phys. Rev. Lett. – volume: 38 start-page: 55 year: 2003 end-page: 78 ident: b0245 article-title: Development of platelet contractile force as a research and clinical measure of platelet function publication-title: Cell Biochem. Biophys. – volume: 85 start-page: 16 year: 2015 end-page: 32 ident: b0035 article-title: A model for compression-weakening materials and the elastic fields due to contractile cells publication-title: J. Mech. Phys. Solids – volume: 49 start-page: 165 year: 2007 end-page: 181 ident: b0040 article-title: A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers publication-title: Cell Biochem. Biophys. – volume: 325 start-page: 741 year: 2009 end-page: 744 ident: b0050 article-title: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water publication-title: Sci. – volume: 3 start-page: 1894 year: 2005 end-page: 1904 ident: b0005 article-title: Fibrinogen and fibrin structure and functions publication-title: J. Thromb. Haemost. – volume: 106 start-page: 22108 year: 2009 end-page: 22113 ident: b0115 article-title: Quantifying cellular traction forces in three dimensions publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 20150320 year: 2015 ident: b0015 article-title: Microbuckling of fibrin provides a mechanism for cell mechanosensing publication-title: J. R. Soc. Interface – volume: 41 start-page: 3265 year: 2008 end-page: 3269 ident: b0025 article-title: A poroviscoelastic description of fibrin gels publication-title: J. Biomech. – volume: 6 start-page: 2189 year: 2012 end-page: 2197 ident: b0185 article-title: Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in-situ study publication-title: ACS Nano – volume: 47 start-page: 427 year: 2007 end-page: 438 ident: b0110 article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation publication-title: Exp. Mech. – reference: B.E. Vos, L.C. Liebrand, M. Vahabi, A. Biebricher, G.J.L. Wuite, E.J.G. Peterman, N.A. Kurniawan, F.C. MacKintosh, G.H. Koenderink, Programming filamentous network mechanics by compression, 2016, arXiv:1612:08601 preprint. – volume: 6 start-page: 1 year: 2009 end-page: 10 ident: b0045 article-title: Fibrin gels and their clinical and bioengineering applications publication-title: J. R. Soc. Interface – volume: 37 start-page: T285 year: 1946 end-page: T292 ident: b0135 article-title: Note on the compressibility of wool publication-title: J. Text. Inst. Trans. – volume: 51 start-page: 2259 year: 2003 end-page: 2280 ident: b0140 article-title: Mechanics of the human red blood cell deformed by optical tweezers publication-title: J. Mech. Phys. Solids – year: 1997 ident: b0155 article-title: Non-linear Elastic Deformations – volume: 24 start-page: 255707 year: 2013 ident: b0190 article-title: Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays publication-title: Nanotechnol. – volume: 42 start-page: 333 year: 2016 end-page: 343 ident: b0240 article-title: What is the biological and clinical relevance of fibrin? publication-title: Semin. Thromb. Hemost. – volume: 60–61 start-page: 110 year: 2016 ident: 10.1016/j.actbio.2017.07.011_b0235 article-title: Fibrin mechanical properties and their structural origins publication-title: Matrix Biol. – volume: 112 start-page: 267 issue: 2 year: 2004 ident: 10.1016/j.actbio.2017.07.011_b0010 article-title: The mechanical properties of fibrin for basic scientists and clinicians publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2004.07.029 – volume: 16 start-page: 1 issue: 1 year: 1976 ident: 10.1016/j.actbio.2017.07.011_b0160 article-title: Membrane viscoelasticity publication-title: Biophys. J. doi: 10.1016/S0006-3495(76)85658-5 – volume: 35 start-page: 6739 issue: 25 year: 2014 ident: 10.1016/j.actbio.2017.07.011_b0055 article-title: Structural basis for the nonlinear mechanics of fibrin networks under compression publication-title: Biomater. doi: 10.1016/j.biomaterials.2014.04.056 – volume: 102 start-page: 9133 issue: 26 year: 2005 ident: 10.1016/j.actbio.2017.07.011_b0030 article-title: The elasticity of an individual fibrin fiber in a clot publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504120102 – volume: 15 start-page: 177 issue: 5 year: 2011 ident: 10.1016/j.actbio.2017.07.011_b0200 article-title: Polymer physics of the cytoskeleton publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2011.05.002 – volume: 52 start-page: 1837 issue: 7 year: 2004 ident: 10.1016/j.actbio.2017.07.011_b0145 article-title: Large deformation of living cells using laser traps publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.12.028 – volume: 1 start-page: 427 issue: 1 year: 1999 ident: 10.1016/j.actbio.2017.07.011_b0020 article-title: Engineering design of optimal strategies for blood clot dissolution publication-title: Annu. Rev. Biochem. – volume: 42 start-page: 333 issue: 4 year: 2016 ident: 10.1016/j.actbio.2017.07.011_b0240 article-title: What is the biological and clinical relevance of fibrin? publication-title: Semin. Thromb. Hemost. doi: 10.1055/s-0036-1571342 – volume: 111 start-page: 1026 issue: 5 year: 2016 ident: 10.1016/j.actbio.2017.07.011_b0170 article-title: Fibrin networks support recurring mechanical loads by adapting their structure across multiple scales publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.06.034 – ident: 10.1016/j.actbio.2017.07.011_b0250 – volume: 12 start-page: 20150320 issue: 108 year: 2015 ident: 10.1016/j.actbio.2017.07.011_b0015 article-title: Microbuckling of fibrin provides a mechanism for cell mechanosensing publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0320 – volume: 2 start-page: 445 issue: 5 year: 1982 ident: 10.1016/j.actbio.2017.07.011_b0195 article-title: The structural properties and contractile force of a clot publication-title: Cell Motil. doi: 10.1002/cm.970020504 – volume: 123 start-page: 1596 issue: 10 year: 2014 ident: 10.1016/j.actbio.2017.07.011_b0100 article-title: Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin publication-title: Blood doi: 10.1182/blood-2013-08-523860 – volume: 38 start-page: 1337 issue: 8 year: 1998 ident: 10.1016/j.actbio.2017.07.011_b0130 article-title: Packing mechanics of fiber reinforcements publication-title: Polym. Eeg. Sci. – volume: 99 start-page: 208103 issue: 20 year: 2007 ident: 10.1016/j.actbio.2017.07.011_b0125 article-title: Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.208103 – volume: 26 start-page: 101 issue: 1 year: 1979 ident: 10.1016/j.actbio.2017.07.011_b0165 article-title: Red cell extensional recovery and the determination of membrane viscosity publication-title: Biophys. J. doi: 10.1016/S0006-3495(79)85238-8 – volume: 24 start-page: 255707 issue: 25 year: 2013 ident: 10.1016/j.actbio.2017.07.011_b0190 article-title: Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays publication-title: Nanotechnol. doi: 10.1088/0957-4484/24/25/255707 – start-page: 1 year: 2015 ident: 10.1016/j.actbio.2017.07.011_b0060 article-title: Foam-like compression behavior of fibrin networks publication-title: Biomech. Model. Mechanobiol. – volume: 85 start-page: 16 year: 2015 ident: 10.1016/j.actbio.2017.07.011_b0035 article-title: A model for compression-weakening materials and the elastic fields due to contractile cells publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.08.013 – volume: 90 start-page: 428 issue: 4 year: 2002 ident: 10.1016/j.actbio.2017.07.011_b0080 article-title: A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots publication-title: Circulation Res. doi: 10.1161/hh0402.105095 – year: 1997 ident: 10.1016/j.actbio.2017.07.011_b0155 – volume: 36 start-page: 262 issue: 3 year: 1997 ident: 10.1016/j.actbio.2017.07.011_b0085 article-title: Strain hardening of fibrin gels and plasma clots publication-title: Rheol. Acta doi: 10.1007/BF00366667 – volume: 6 start-page: 1 issue: 30 year: 2009 ident: 10.1016/j.actbio.2017.07.011_b0045 article-title: Fibrin gels and their clinical and bioengineering applications publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2008.0327 – volume: 47 start-page: 427 issue: 3 year: 2007 ident: 10.1016/j.actbio.2017.07.011_b0110 article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation publication-title: Exp. Mech. doi: 10.1007/s11340-007-9037-9 – volume: 104 start-page: 990 issue: 5 year: 2010 ident: 10.1016/j.actbio.2017.07.011_b0105 article-title: Hypodysfibrinogenaemia due to production of mutant fibrinogen alpha-chains lacking fibrinopeptide A and polymerisation knob ‘A’ publication-title: J. Thromb. Haemost. doi: 10.1160/TH10-03-0161 – volume: 37 start-page: T285 issue: 12 year: 1946 ident: 10.1016/j.actbio.2017.07.011_b0135 article-title: Note on the compressibility of wool publication-title: J. Text. Inst. Trans. doi: 10.1080/19447024608659279 – volume: 46 start-page: 201 issue: 2 year: 1984 ident: 10.1016/j.actbio.2017.07.011_b0150 article-title: Remarks on rate constitutive equations for finite deformation problems: computational implications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(84)90062-8 – volume: 325 start-page: 741 issue: 5941 year: 2009 ident: 10.1016/j.actbio.2017.07.011_b0050 article-title: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water publication-title: Sci. doi: 10.1126/science.1172484 – year: 2016 ident: 10.1016/j.actbio.2017.07.011_b0075 article-title: Compression-induced structural and mechanical changes of fibrin-collagen composites publication-title: Matrix Biol. – year: 2017 ident: 10.1016/j.actbio.2017.07.011_b0175 article-title: Compression and recovery of carbon nanotube foams described as a phase transition publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.06.025 – volume: 117 issue: 21 year: 2016 ident: 10.1016/j.actbio.2017.07.011_b0230 article-title: Porosity governs normal stresses in polymer gels publication-title: Phys. Rev. Lett. – volume: 95 start-page: 178102 issue: 17 year: 2005 ident: 10.1016/j.actbio.2017.07.011_b0120 article-title: Alternative explanation of stiffening in cross-linked semiflexible networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.178102 – volume: 6 start-page: 2189 issue: 3 year: 2012 ident: 10.1016/j.actbio.2017.07.011_b0185 article-title: Higher recovery and better energy dissipation at faster strain rates in carbon nanotube bundles: an in-situ study publication-title: ACS Nano doi: 10.1021/nn300376j – volume: 49 start-page: 165 issue: 3 year: 2007 ident: 10.1016/j.actbio.2017.07.011_b0040 article-title: A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-007-9001-4 – year: 2006 ident: 10.1016/j.actbio.2017.07.011_b0070 – volume: 102 start-page: 1169 issue: 6 year: 2009 ident: 10.1016/j.actbio.2017.07.011_b0095 article-title: Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes publication-title: J. Thromb. Haemost. doi: 10.1160/TH09-03-0199 – volume: 38 start-page: 55 issue: 1 year: 2003 ident: 10.1016/j.actbio.2017.07.011_b0245 article-title: Development of platelet contractile force as a research and clinical measure of platelet function publication-title: Cell Biochem. Biophys. doi: 10.1385/CBB:38:1:55 – volume: 106 start-page: 22108 issue: 52 year: 2009 ident: 10.1016/j.actbio.2017.07.011_b0115 article-title: Quantifying cellular traction forces in three dimensions publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0904565106 – year: 1999 ident: 10.1016/j.actbio.2017.07.011_b0065 – volume: 51 start-page: 2259 issue: 11 year: 2003 ident: 10.1016/j.actbio.2017.07.011_b0140 article-title: Mechanics of the human red blood cell deformed by optical tweezers publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2003.09.019 – volume: 3 start-page: 1894 issue: 8 year: 2005 ident: 10.1016/j.actbio.2017.07.011_b0005 article-title: Fibrinogen and fibrin structure and functions publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2005.01365.x – volume: 41 start-page: 3265 issue: 15 year: 2008 ident: 10.1016/j.actbio.2017.07.011_b0025 article-title: A poroviscoelastic description of fibrin gels publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.09.002 – volume: 146 start-page: 829 issue: 11–12 year: 1952 ident: 10.1016/j.actbio.2017.07.011_b0090 article-title: Platelets and structure of the plasma clot; the mode of action of platelets during retraction publication-title: C.R. Seances Soc. Biol. Fil. – volume: 22 start-page: 4686 issue: 22 year: 2012 ident: 10.1016/j.actbio.2017.07.011_b0180 article-title: Visualizing strain evolution and coordinated buckling within CNT arrays by in situ digital image correlation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200676 |
SSID | ssj0038128 |
Score | 2.3884935 |
Snippet | [Display omitted]
Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart... Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 275 |
SubjectTerms | Biomaterials Biomedical materials Bleeding Blood clots Blood Coagulation Blood Platelets - chemistry Blood Platelets - metabolism Blood vessels Compression Correlation analysis Decompression Elasticity Erythrocytes Erythrocytes - chemistry Erythrocytes - metabolism Fibers Fibrin Fibrin network Heart Heart attacks Human behavior Humans Ischemia Mechanical properties Models, Biological Phase transitions Plasmas (physics) Platelet poor plasma clots Platelet rich plasma clots Platelet-Rich Plasma - chemistry Platelet-Rich Plasma - metabolism Platelets Red blood cells Scanning electron microscopy Scanning transmission electron microscopy Stress-strain curves Stress-strain relationships Stroke Studies Surgical implants Whole blood clots |
Title | Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood |
URI | https://dx.doi.org/10.1016/j.actbio.2017.07.011 https://www.ncbi.nlm.nih.gov/pubmed/28694237 https://www.proquest.com/docview/1958563150 https://www.proquest.com/docview/1917961528 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6t4FIOVWmBbnnISBwJ68SJEx8RAm1bsUJqkbhZTmJrt9omKzaoN_jrzDjJAocVUqVc_Iosz3jmc_LNGOCEO4SdBZ5UM6PwgEJbKiuzJOA-OZpLnCvpg_71RI5v4x93yd0ALvpYGKJVdra_teneWnc1o241R4vZbPQLsXSUojsKUUljkVGgeRynpOVnjyuaBzokf78qdQ6odx8-5zlepmjyGYUAhqlP4RmG69zTOvjp3dDVJ_jY4Ud23k5xGwa2-gxbr7IKfoGnmym6JtaQF2oJWawNRmTEH295rxUzVclK-7qmdqyY182SUcgJW8wRhaJQg0Vd31Np-decvtSi-Zx2tf5V_-ieXeZp8Dtwe3X5-2IcdPcsBIVQvAkiy6XhJiK0gYrllDACnVtaKhMmpZOpS3NrpFNcuFzJKOfYYDJurVAoTCF2YaOqK_sVWMqtskJICr-N4xLtRYb2M4mksSq2Ih-C6JdXF10ScroLY657ttkf3QpFk1A0xycMhxCsRi3aJBzv9E97yek3yqTRT7wz8qAXtO4281JTPp5ECoTOQzheNeM2pH8rprL1A_VBy4boMMqGsNcqyGqqUSYVsY--_fe09uEDlYinEiYHsNHcP9hDBENNfuS1_Qg2z7__HE-eAXE1Ch0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQ9IOiDbnnUSBybrhMnTnxECLRQQJUAiZvlJLZYtCQrNogb_evMOMkCB4SElEtsJ7Ey45nPyTczADvcIewscKeaGYUbFFpSWZklAffJ0VziXEkf9E9O5egiPrpMLhdgr4-FIVplZ_tbm-6tddcy7N7mcDoeD88QS0cpuqMQlTQWWfIBluhZVMbgz8Oc54EeyRdYpdEBDe_j5zzJyxRNPqYYwDD1OTzD8DX_9Br-9H7oYAWWOwDJdts5rsKCrb7A52dpBb_C_39X6JtYQ26oZWSxNhqREYG8Jb5WzFQlK-3zltqxYlI3M0YxJ2w6QRiKUg2mdX1LZ7Mb8_upFe3nVdfqb3VPhXaZ58F_g4uD_fO9UdAVWggKoXgTRJZLw01EcAM1yylhBHq3tFQmTEonU5fm1kinuHC5klHOscNk3FqhUJpCfIfFqq7sD2Apt8oKISn-No5LNBgZGtAkksaq2Ip8AKJ_vbrospBTMYyJ7ulm17oViiahaI5HGA4gmF81bbNwvDE-7SWnX2iTRkfxxpUbvaB1t5pnmhLyJFIgdh7A9rwb1yH9XDGVre9oDJo2hIdRNoC1VkHmU40yqYh-9PPd0_oFH0fnJ8f6-PD07zp8oh4irYTJBiw2t3d2E5FRk295zX8EaCULqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+transitions+during+compression+and+decompression+of+clots+from+platelet-poor+plasma%2C+platelet-rich+plasma+and+whole+blood&rft.jtitle=Acta+biomaterialia&rft.au=Liang%2C+Xiaojun&rft.au=Chernysh%2C+Irina&rft.au=Purohit%2C+Prashant+K.&rft.au=Weisel%2C+John+W.&rft.date=2017-09-15&rft.issn=1742-7061&rft.volume=60&rft.spage=275&rft.epage=290&rft_id=info:doi/10.1016%2Fj.actbio.2017.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2017_07_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |