Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens

The permanent organs of grapevines ( L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 37; no. 2; pp. 127 - 142
Main Authors Garcia, Jadran F, Morales-Cruz, Abraham, Cochetel, Noé, Minio, Andrea, Figueroa-Balderas, Rosa, Rolshausen, Philippe E, Baumgartner, Kendra, Cantu, Dario
Format Journal Article
LanguageEnglish
Published United States American Phytopathological Society 01.02.2024
The American Phytopathological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The permanent organs of grapevines ( L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on , , and , causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of and . The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in and , glycosyltransferases in ). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
AbstractList The permanent organs of grapevines ( Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Graphic: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
The permanent organs of grapevines ( L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on , , and , causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of and . The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in and , glycosyltransferases in ). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence.
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Author Cochetel, Noé
Figueroa-Balderas, Rosa
Baumgartner, Kendra
Morales-Cruz, Abraham
Garcia, Jadran F
Minio, Andrea
Rolshausen, Philippe E
Cantu, Dario
Author_xml – sequence: 1
  givenname: Jadran F
  orcidid: 0000-0002-5883-4820
  surname: Garcia
  fullname: Garcia, Jadran F
  organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
– sequence: 2
  givenname: Abraham
  orcidid: 0000-0002-6122-2649
  surname: Morales-Cruz
  fullname: Morales-Cruz, Abraham
  organization: U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A
– sequence: 3
  givenname: Noé
  orcidid: 0000-0003-3395-9536
  surname: Cochetel
  fullname: Cochetel, Noé
  organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0003-2643-9209
  surname: Minio
  fullname: Minio, Andrea
  organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
– sequence: 5
  givenname: Rosa
  orcidid: 0000-0003-3321-1376
  surname: Figueroa-Balderas
  fullname: Figueroa-Balderas, Rosa
  organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
– sequence: 6
  givenname: Philippe E
  surname: Rolshausen
  fullname: Rolshausen, Philippe E
  organization: Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A
– sequence: 7
  givenname: Kendra
  surname: Baumgartner
  fullname: Baumgartner, Kendra
  organization: Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A
– sequence: 8
  givenname: Dario
  orcidid: 0000-0002-4858-1508
  surname: Cantu
  fullname: Cantu, Dario
  organization: Genome Center, University of California, Davis, Davis, CA, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37934016$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvEzEUhS1URNPCD2CDLLFhM-V67Hl4WaUPIrWiqgpb647HThxm7GB7IvHvmZC2C1ZXujrnu49zRk588IaQjwwuGEjx9f7hflWALEpeACtl8fiGLJgUvGgaqE_IAlopCijb8pScpbQFYLKuqnfklDeSC2D1guyWYdxhxOz2hj6gXxsfRqfpyie33uREnc-B5o2hVy5l53Wm1_swTNkFT4OlP12cBuO1oTeoc4iJXo7Br-ltxJ3ZO2_oU5z8rxmdN2GGp_fkrcUhmQ_P9Zz8uLl-Wn4r7r7frpaXd4XmEnJRSokddLq1FrEzAnqrBdPAetugrgCbBiXvrdUWhC7bnks0UFkGXW2qHvg5WR25fcCt2kU3YvyjAjr1rxHiWmHMTg9G9fMsLrjkVdXNX7FYQd_wDoVuamzgwPpyZO1i-D2ZlNXokjbDgN6EKamybWspStaUs_Tzf9JtmKKfL1UcuBQVk1LOKnZU6RhSisa-LshAHaJVh2gVSFVydYhWPc6eT8_kqRtN_-p4yZL_BWmuopE
Cites_doi 10.1371/journal.pone.0169103
10.4161/fly.19695
10.1186/1471-2164-13-185
10.1016/j.pmpp.2010.06.007
10.1093/molbev/msm088
10.1371/journal.ppat.1003037
10.1126/science.1134933
10.1016/j.phytochem.2015.01.012
10.1186/1471-2164-13-525
10.1094/PD-89-0867
10.1111/ddi.12030
10.1093/treephys/tpac133
10.1016/j.pmpp.2007.04.006
10.1016/j.mib.2014.11.016
10.3390/toxins3081038
10.1038/s41598-019-40965-0
10.1093/bioinformatics/btn013
10.1093/bioinformatics/bti310
10.1093/gigascience/giab008
10.1093/ve/vey016
10.1186/s13059-023-03133-2
10.1038/nature01554
10.1073/pnas.0907041107
10.3390/pathogens11091026
10.1186/s12915-022-01422-z
10.3390/plants11233382
10.1094/MPMI-05-20-0116-A
10.1016/j.wep.2016.11.001
10.1371/journal.pone.0121828
10.1186/s12864-021-08223-8
10.1038/s41467-021-27479-y
10.1186/1471-2180-14-117
10.21105/joss.01686
10.1186/s12915-020-0744-3
10.1128/genomeA.00228-13
10.1007/978-3-030-38281-0_13
10.1038/nrmicro2916
10.1093/bioinformatics/btr011
10.1016/j.gde.2019.07.006
10.1093/nar/gkab335
10.1111/mpp.12384
10.3389/fmicb.2018.01784
10.1093/bioinformatics/btu170
10.1093/nar/30.7.1575
10.1371/journal.pbio.2003583
10.1186/1471-2164-13-314
10.1186/s12575-015-0020-z
10.1038/nmeth.1923
10.1093/bioinformatics/btaa1022
10.1093/bioinformatics/btac743
10.1111/j.1365-3059.2011.02496.x
10.1371/journal.pgen.1010153
10.1093/gbe/evy192
10.1111/mpp.12491
10.1021/jf011215a
10.1371/journal.pgen.1000304
10.17352/sjggt.000003
10.1093/nar/gkv1344
10.1073/pnas.0506758102
10.1093/nar/gkh340
10.1186/s12915-017-0457-4
10.3390/toxins3121569
10.1186/s12915-023-01520-6
10.1093/nar/gkaa1004
10.1007/s13225-017-0385-1
10.1007/978-1-0716-2293-3_19
10.1093/bioinformatics/btv661
10.1146/annurev-genom-120219-080406
10.5344/ajev.2019.18075
10.1016/j.ympev.2014.04.024
10.1016/j.pbi.2020.04.009
10.1021/acs.jafc.8b00773
10.1186/s12864-015-1624-z
10.1186/s13059-020-1941-7
10.1093/bioinformatics/btz305
10.1002/cpbi.96
10.1094/PHYTO-04-14-0117-R
10.1371/journal.pone.0163344
10.1038/ng.195
10.1016/S0168-9525(02)02722-1
10.1534/genetics.115.180968
10.1016/j.pbi.2022.102195
10.1093/oxfordjournals.molbev.a026334
10.3389/fmicb.2021.652802
10.1101/gr.107524.110
10.1093/nar/gkad328
10.1038/s41598-019-56396-w
10.1038/s41467-020-14998-3
10.1094/PHYTO-98-2-0222
10.1038/s41579-018-0121-1
10.1371/journal.ppat.1006672
10.1093/bioinformatics/btp324
10.1038/s41586-018-0030-5
10.1016/j.funbio.2011.11.010
10.1016/j.bbapap.2010.06.020
10.1111/mec.12631
10.1371/journal.pgen.1000046
10.12688/f1000research.25424.1
10.1038/s41587-019-0036-z
10.1093/bioinformatics/btp352
10.1016/j.tig.2019.11.006
10.3390/ijms20143597
10.1021/jf0510236
10.1007/s10658-012-0110-6
10.1038/nmeth.2474
10.1111/j.1755-0238.2006.tb00049.x
10.1016/j.funeco.2014.09.002
10.1094/PDIS-93-7-0680
10.1093/molbev/msz189
10.1094/PHYTO-02-10-0040
10.1093/nar/gkr1293
10.1089/cmb.2012.0021
10.1038/nature04332
10.1094/PDIS-04-12-0357-RE
10.1016/j.bbrc.2012.02.101
10.1093/nar/gku557
10.1186/s13059-019-1832-y
10.1038/nmeth.3176
10.1093/gbe/evu132
10.1128/mBio.00457-18
10.5943/mycosphere/14/1/5
10.1111/mpp.12544
10.1002/0471250953.bi1112s47
10.1038/s41587-023-01793-w
10.1186/1471-2164-9-147
10.1093/bioinformatics/btm268
10.1371/journal.pone.0188766
10.1093/jxb/erac412
10.1093/molbev/msab199
ContentType Journal Article
Copyright Copyright American Phytopathological Society Feb 2024
Copyright_xml – notice: Copyright American Phytopathological Society Feb 2024
DBID NPM
AAYXX
CITATION
K9.
7X8
DOA
DOI 10.1094/MPMI-09-23-0129-R
DatabaseName PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 142
ExternalDocumentID oai_doaj_org_article_d99a3439355b401fa50d73ba4c76a700
10_1094_MPMI_09_23_0129_R
37934016
Genre Journal Article
GroupedDBID ---
123
29M
2WC
3V.
53G
7X2
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M0L
M1P
M7P
MVM
NPM
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
YCJ
~KM
AAYXX
CITATION
K9.
7X8
ID FETCH-LOGICAL-c390t-299ab0bc8ffaabe40dfc41c01df7ac50a77a93dffcf04c28d39ae05f10b6e5d03
IEDL.DBID DOA
ISSN 0894-0282
IngestDate Tue Oct 22 15:11:51 EDT 2024
Fri Aug 16 08:08:03 EDT 2024
Thu Oct 10 19:40:27 EDT 2024
Fri Aug 23 00:43:52 EDT 2024
Thu Oct 24 09:42:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genome evolution
fungal pangenomes
secondary metabolism
cell wall-degrading enzymes
comparative genomics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-299ab0bc8ffaabe40dfc41c01df7ac50a77a93dffcf04c28d39ae05f10b6e5d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3321-1376
0000-0003-3395-9536
0000-0003-2643-9209
0000-0002-5883-4820
0000-0002-6122-2649
0000-0002-4858-1508
OpenAccessLink https://doaj.org/article/d99a3439355b401fa50d73ba4c76a700
PMID 37934016
PQID 3039451999
PQPubID 37269
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_d99a3439355b401fa50d73ba4c76a700
proquest_miscellaneous_2886942172
proquest_journals_3039451999
crossref_primary_10_1094_MPMI_09_23_0129_R
pubmed_primary_37934016
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Paul
PublicationSubtitle MPMI
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2024
Publisher American Phytopathological Society
The American Phytopathological Society
Publisher_xml – name: American Phytopathological Society
– name: The American Phytopathological Society
References b10
b98
b97
b12
b11
b99
b14
b13
b16
b15
b18
b17
b19
b2
b3
b4
b5
b6
b7
b8
b9
b21
b20
b23
b22
b25
b24
b27
b26
b29
b28
b30
b32
b31
b34
b111
b33
b110
b36
b35
b38
b37
b39
McCarthy C. G. P. (b82) 2019; 5
b117
b116
b119
b118
b113
b112
b41
b40
b114
b43
b42
b45
b100
b44
b47
b46
b49
b48
RStudio Team (b108) 2022
b109
b106
b105
b107
b102
b52
b104
b51
b54
b131
b53
b130
b56
b133
b55
b132
b58
b57
b59
b61
b135
b60
Rambaut A. (b101) 2018
b134
b63
b62
b136
b65
b120
b64
b67
b122
b66
b121
b69
b68
b128
b127
b70
b129
b72
b124
b71
b123
b74
b126
b73
b125
b76
b75
b78
b77
b79
Abou-Mansour A. (b1) 2004; 43
b81
b80
b83
b85
b84
b87
b86
b89
b88
b90
b92
b91
b94
b93
b96
b95
References_xml – ident: b24
  doi: 10.1371/journal.pone.0169103
– ident: b30
  doi: 10.4161/fly.19695
– ident: b118
  doi: 10.1186/1471-2164-13-185
– ident: b74
  doi: 10.1016/j.pmpp.2010.06.007
– ident: b132
  doi: 10.1093/molbev/msm088
– ident: b93
  doi: 10.1371/journal.ppat.1003037
– ident: b107
  doi: 10.1126/science.1134933
– ident: b2
  doi: 10.1016/j.phytochem.2015.01.012
– ident: b87
  doi: 10.1186/1471-2164-13-525
– ident: b106
  doi: 10.1094/PD-89-0867
– ident: b110
  doi: 10.1111/ddi.12030
– ident: b18
  doi: 10.1093/treephys/tpac133
– ident: b20
  doi: 10.1016/j.pmpp.2007.04.006
– volume-title: RStudio: Integrated Development Environment for R
  year: 2022
  ident: b108
  contributor:
    fullname: RStudio Team
– ident: b126
  doi: 10.1016/j.mib.2014.11.016
– ident: b38
  doi: 10.3390/toxins3081038
– volume: 5
  start-page: e000243
  year: 2019
  ident: b82
  publication-title: Microb. Genom.
  contributor:
    fullname: McCarthy C. G. P.
– ident: b91
  doi: 10.1038/s41598-019-40965-0
– ident: b116
  doi: 10.1093/bioinformatics/btn013
– ident: b131
  doi: 10.1093/bioinformatics/bti310
– ident: b35
  doi: 10.1093/gigascience/giab008
– ident: b119
  doi: 10.1093/ve/vey016
– ident: b31
  doi: 10.1186/s13059-023-03133-2
– ident: b47
  doi: 10.1038/nature01554
– ident: b37
  doi: 10.1073/pnas.0907041107
– ident: b134
  doi: 10.3390/pathogens11091026
– ident: b113
  doi: 10.1186/s12915-022-01422-z
– ident: b104
  doi: 10.3390/plants11233382
– ident: b127
  doi: 10.1094/MPMI-05-20-0116-A
– ident: b62
  doi: 10.1016/j.wep.2016.11.001
– ident: b34
  doi: 10.1371/journal.pone.0121828
– ident: b61
  doi: 10.1186/s12864-021-08223-8
– ident: b85
  doi: 10.1038/s41467-021-27479-y
– ident: b28
  doi: 10.1186/1471-2180-14-117
– ident: b130
  doi: 10.21105/joss.01686
– ident: b9
  doi: 10.1186/s12915-020-0744-3
– ident: b15
  doi: 10.1128/genomeA.00228-13
– ident: b58
  doi: 10.1007/978-3-030-38281-0_13
– ident: b19
  doi: 10.1038/nrmicro2916
– ident: b77
  doi: 10.1093/bioinformatics/btr011
– ident: b114
  doi: 10.1016/j.gde.2019.07.006
– ident: b16
  doi: 10.1093/nar/gkab335
– ident: b125
  doi: 10.1111/mpp.12384
– ident: b80
  doi: 10.3389/fmicb.2018.01784
– ident: b17
  doi: 10.1093/bioinformatics/btu170
– ident: b42
  doi: 10.1093/nar/30.7.1575
– ident: b71
  doi: 10.1371/journal.pbio.2003583
– ident: b5
  doi: 10.1186/1471-2164-13-314
– ident: b86
  doi: 10.1186/s12575-015-0020-z
– volume-title: FigTree, a graphical viewer of phylogenetic trees
  year: 2018
  ident: b101
  contributor:
    fullname: Rambaut A.
– ident: b67
  doi: 10.1038/nmeth.1923
– ident: b84
  doi: 10.1093/bioinformatics/btaa1022
– ident: b49
  doi: 10.1093/bioinformatics/btac743
– ident: b123
  doi: 10.1111/j.1365-3059.2011.02496.x
– ident: b94
  doi: 10.1371/journal.pgen.1010153
– ident: b120
  doi: 10.1093/gbe/evy192
– ident: b79
  doi: 10.1111/mpp.12491
– ident: b88
  doi: 10.1021/jf011215a
– ident: b66
  doi: 10.1371/journal.pgen.1000304
– ident: b112
  doi: 10.17352/sjggt.000003
– ident: b44
  doi: 10.1093/nar/gkv1344
– ident: b121
  doi: 10.1073/pnas.0506758102
– ident: b39
  doi: 10.1093/nar/gkh340
– ident: b97
  doi: 10.1186/s12915-017-0457-4
– ident: b7
  doi: 10.3390/toxins3121569
– ident: b23
  doi: 10.1186/s12915-023-01520-6
– ident: b109
  doi: 10.1093/nar/gkaa1004
– ident: b72
  doi: 10.1007/s13225-017-0385-1
– ident: b29
  doi: 10.1007/978-1-0716-2293-3_19
– ident: b56
  doi: 10.1093/bioinformatics/btv661
– ident: b40
  doi: 10.1146/annurev-genom-120219-080406
– ident: b13
  doi: 10.5344/ajev.2019.18075
– ident: b14
  doi: 10.1016/j.ympev.2014.04.024
– ident: b8
  doi: 10.1016/j.pbi.2020.04.009
– ident: b78
  doi: 10.1021/acs.jafc.8b00773
– ident: b90
  doi: 10.1186/s12864-015-1624-z
– ident: b54
  doi: 10.1186/s13059-020-1941-7
– ident: b65
  doi: 10.1093/bioinformatics/btz305
– ident: b133
  doi: 10.1002/cpbi.96
– ident: b122
  doi: 10.1094/PHYTO-04-14-0117-R
– ident: b45
  doi: 10.1371/journal.pone.0163344
– ident: b57
  doi: 10.1038/ng.195
– ident: b60
  doi: 10.1016/S0168-9525(02)02722-1
– ident: b33
  doi: 10.1534/genetics.115.180968
– ident: b59
  doi: 10.1016/j.pbi.2022.102195
– ident: b22
  doi: 10.1093/oxfordjournals.molbev.a026334
– ident: b48
  doi: 10.3389/fmicb.2021.652802
– ident: b83
  doi: 10.1101/gr.107524.110
– ident: b136
  doi: 10.1093/nar/gkad328
– ident: b3
  doi: 10.1038/s41598-019-56396-w
– ident: b102
  doi: 10.1038/s41467-020-14998-3
– ident: b105
  doi: 10.1094/PHYTO-98-2-0222
– ident: b63
  doi: 10.1038/s41579-018-0121-1
– ident: b64
  doi: 10.1371/journal.ppat.1006672
– ident: b69
  doi: 10.1093/bioinformatics/btp324
– ident: b96
  doi: 10.1038/s41586-018-0030-5
– ident: b11
  doi: 10.1016/j.funbio.2011.11.010
– volume: 43
  start-page: 75
  year: 2004
  ident: b1
  publication-title: Phytopathol. Mediterr.
  contributor:
    fullname: Abou-Mansour A.
– ident: b32
  doi: 10.1016/j.bbapap.2010.06.020
– ident: b51
  doi: 10.1111/mec.12631
– ident: b43
  doi: 10.1371/journal.pgen.1000046
– ident: b99
  doi: 10.12688/f1000research.25424.1
– ident: b4
  doi: 10.1038/s41587-019-0036-z
– ident: b70
  doi: 10.1093/bioinformatics/btp352
– ident: b52
  doi: 10.1016/j.tig.2019.11.006
– ident: b81
  doi: 10.3390/ijms20143597
– ident: b75
  doi: 10.1021/jf0510236
– ident: b53
  doi: 10.1007/s10658-012-0110-6
– ident: b27
  doi: 10.1038/nmeth.2474
– ident: b68
  doi: 10.1111/j.1755-0238.2006.tb00049.x
– ident: b95
  doi: 10.1016/j.funeco.2014.09.002
– ident: b6
  doi: 10.1094/PDIS-93-7-0680
– ident: b36
  doi: 10.1093/molbev/msz189
– ident: b124
  doi: 10.1094/PHYTO-02-10-0040
– ident: b129
  doi: 10.1093/nar/gkr1293
– ident: b10
  doi: 10.1089/cmb.2012.0021
– ident: b92
  doi: 10.1038/nature04332
– ident: b12
  doi: 10.1094/PDIS-04-12-0357-RE
– ident: b135
  doi: 10.1016/j.bbrc.2012.02.101
– ident: b73
  doi: 10.1093/nar/gku557
– ident: b41
  doi: 10.1186/s13059-019-1832-y
– ident: b21
  doi: 10.1038/nmeth.3176
– ident: b25
  doi: 10.1093/gbe/evu132
– ident: b111
  doi: 10.1128/mBio.00457-18
– ident: b26
  doi: 10.5943/mycosphere/14/1/5
– ident: b89
  doi: 10.1111/mpp.12544
– ident: b100
  doi: 10.1002/0471250953.bi1112s47
– ident: b55
  doi: 10.1038/s41587-023-01793-w
– ident: b98
  doi: 10.1186/1471-2164-9-147
– ident: b46
  doi: 10.1093/bioinformatics/btm268
– ident: b117
  doi: 10.1371/journal.pone.0188766
– ident: b128
  doi: 10.1093/jxb/erac412
– ident: b76
  doi: 10.1093/molbev/msab199
SSID ssj0019655
Score 2.477923
Snippet The permanent organs of grapevines ( L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell...
The permanent organs of grapevines ( Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi...
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi...
SourceID doaj
proquest
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 127
SubjectTerms Body organs
Botryosphaeria
Carbohydrates
cell wall-degrading enzymes
Cell walls
comparative genomics
Damage
Dieback
Enzymes
Eutypa lata
fungal pangenomes
Fungi
Gene clusters
genome evolution
Genomes
Genomics
Grapevines
Metabolites
Neofusicoccum parvum
Nucleotides
Pathogens
Phaeoacremonium minimum
Polyketide synthase
Positive selection
secondary metabolism
Secondary metabolites
Signs and symptoms
Virulence
Virulence factors
Viticulture
Vitis vinifera
Title Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens
URI https://www.ncbi.nlm.nih.gov/pubmed/37934016
https://www.proquest.com/docview/3039451999
https://search.proquest.com/docview/2886942172
https://doaj.org/article/d99a3439355b401fa50d73ba4c76a700
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIOiDaP2KtmUFn4TQuexmN_t4tj1b4aSUVvq27KcWISmXXMH_3p1s7tSH4ouvm7AZZmYzM8zO70fI-1AjRoiXpePBl1xWsTQ8htLXEA14w6zEAeflF3F6xT9f19d_UH3hnbAMD5wVd-iVMozjAGltUy0QTQ1eMmu4k8JIyNU6qE0xNfUPlBj5TqFB4NtUVWz6mYofLs-XZ9jwr_AeUaXKi78i0gjcf3-2OUadxVPyZEoX6TyL-Yw8CO0ueTz_tpogM8IueZjpJH8-J7dHv6G86TlODYwzx_Ss7bEE7-lNO3Q0ZXz0GE926wZ6cje5Hu0i_XqzWo8zSHSRWXjoHKmI6Cec0LpL6Si9XK3bH2nr4XuXNu9fkKvFyeXRaTkxKpSOKRjKFHuMBeuaGI2xgYOPjs8czHyUxtVgpDSK-RhdBO6qxjNlAtRxBlaE2gN7SXbarg2vCY1WNJK5yMBYHkQ0PDiIopqlFZ_q3oJ82GhV32bgDJ0b3lyjCTQoXTGNJtAXBfmIet--iJjX40LyBD15gv6XJxRkb2M1PR3EXqcIrRBBR6mCvNs-TkcI-yKmDd2611XTCMWRqasgr7K1t5Kw9P9KHxNv_oeEb8mjKuVE-dL3HtkZVuuwn3KawR6M7vsL68jzZA
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Pangenomic+Insights+into+the+Distinct+Evolution+of+Virulence+Factors+Among+Grapevine+Trunk+Pathogens&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Garcia%2C+Jadran+F&rft.au=Morales-Cruz%2C+Abraham&rft.au=Cochetel%2C+No%C3%A9&rft.au=Minio%2C+Andrea&rft.date=2024-02-01&rft.pub=American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=37&rft.issue=2&rft.spage=127&rft_id=info:doi/10.1094%2FMPMI-09-23-0129-R&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon