Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens
The permanent organs of grapevines ( L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the...
Saved in:
Published in | Molecular plant-microbe interactions Vol. 37; no. 2; pp. 127 - 142 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Phytopathological Society
01.02.2024
The American Phytopathological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The permanent organs of grapevines (
L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on
,
, and
, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of
and
. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in
and
, glycosyltransferases in
). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license. |
---|---|
AbstractList | The permanent organs of grapevines ( Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence.
[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Graphic: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license. The permanent organs of grapevines ( L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on , , and , causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of and . The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in and , glycosyltransferases in ). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license. The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license. |
Author | Cochetel, Noé Figueroa-Balderas, Rosa Baumgartner, Kendra Morales-Cruz, Abraham Garcia, Jadran F Minio, Andrea Rolshausen, Philippe E Cantu, Dario |
Author_xml | – sequence: 1 givenname: Jadran F orcidid: 0000-0002-5883-4820 surname: Garcia fullname: Garcia, Jadran F organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A – sequence: 2 givenname: Abraham orcidid: 0000-0002-6122-2649 surname: Morales-Cruz fullname: Morales-Cruz, Abraham organization: U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A – sequence: 3 givenname: Noé orcidid: 0000-0003-3395-9536 surname: Cochetel fullname: Cochetel, Noé organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A – sequence: 4 givenname: Andrea orcidid: 0000-0003-2643-9209 surname: Minio fullname: Minio, Andrea organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A – sequence: 5 givenname: Rosa orcidid: 0000-0003-3321-1376 surname: Figueroa-Balderas fullname: Figueroa-Balderas, Rosa organization: Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A – sequence: 6 givenname: Philippe E surname: Rolshausen fullname: Rolshausen, Philippe E organization: Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A – sequence: 7 givenname: Kendra surname: Baumgartner fullname: Baumgartner, Kendra organization: Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A – sequence: 8 givenname: Dario orcidid: 0000-0002-4858-1508 surname: Cantu fullname: Cantu, Dario organization: Genome Center, University of California, Davis, Davis, CA, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37934016$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvEzEUhS1URNPCD2CDLLFhM-V67Hl4WaUPIrWiqgpb647HThxm7GB7IvHvmZC2C1ZXujrnu49zRk588IaQjwwuGEjx9f7hflWALEpeACtl8fiGLJgUvGgaqE_IAlopCijb8pScpbQFYLKuqnfklDeSC2D1guyWYdxhxOz2hj6gXxsfRqfpyie33uREnc-B5o2hVy5l53Wm1_swTNkFT4OlP12cBuO1oTeoc4iJXo7Br-ltxJ3ZO2_oU5z8rxmdN2GGp_fkrcUhmQ_P9Zz8uLl-Wn4r7r7frpaXd4XmEnJRSokddLq1FrEzAnqrBdPAetugrgCbBiXvrdUWhC7bnks0UFkGXW2qHvg5WR25fcCt2kU3YvyjAjr1rxHiWmHMTg9G9fMsLrjkVdXNX7FYQd_wDoVuamzgwPpyZO1i-D2ZlNXokjbDgN6EKamybWspStaUs_Tzf9JtmKKfL1UcuBQVk1LOKnZU6RhSisa-LshAHaJVh2gVSFVydYhWPc6eT8_kqRtN_-p4yZL_BWmuopE |
Cites_doi | 10.1371/journal.pone.0169103 10.4161/fly.19695 10.1186/1471-2164-13-185 10.1016/j.pmpp.2010.06.007 10.1093/molbev/msm088 10.1371/journal.ppat.1003037 10.1126/science.1134933 10.1016/j.phytochem.2015.01.012 10.1186/1471-2164-13-525 10.1094/PD-89-0867 10.1111/ddi.12030 10.1093/treephys/tpac133 10.1016/j.pmpp.2007.04.006 10.1016/j.mib.2014.11.016 10.3390/toxins3081038 10.1038/s41598-019-40965-0 10.1093/bioinformatics/btn013 10.1093/bioinformatics/bti310 10.1093/gigascience/giab008 10.1093/ve/vey016 10.1186/s13059-023-03133-2 10.1038/nature01554 10.1073/pnas.0907041107 10.3390/pathogens11091026 10.1186/s12915-022-01422-z 10.3390/plants11233382 10.1094/MPMI-05-20-0116-A 10.1016/j.wep.2016.11.001 10.1371/journal.pone.0121828 10.1186/s12864-021-08223-8 10.1038/s41467-021-27479-y 10.1186/1471-2180-14-117 10.21105/joss.01686 10.1186/s12915-020-0744-3 10.1128/genomeA.00228-13 10.1007/978-3-030-38281-0_13 10.1038/nrmicro2916 10.1093/bioinformatics/btr011 10.1016/j.gde.2019.07.006 10.1093/nar/gkab335 10.1111/mpp.12384 10.3389/fmicb.2018.01784 10.1093/bioinformatics/btu170 10.1093/nar/30.7.1575 10.1371/journal.pbio.2003583 10.1186/1471-2164-13-314 10.1186/s12575-015-0020-z 10.1038/nmeth.1923 10.1093/bioinformatics/btaa1022 10.1093/bioinformatics/btac743 10.1111/j.1365-3059.2011.02496.x 10.1371/journal.pgen.1010153 10.1093/gbe/evy192 10.1111/mpp.12491 10.1021/jf011215a 10.1371/journal.pgen.1000304 10.17352/sjggt.000003 10.1093/nar/gkv1344 10.1073/pnas.0506758102 10.1093/nar/gkh340 10.1186/s12915-017-0457-4 10.3390/toxins3121569 10.1186/s12915-023-01520-6 10.1093/nar/gkaa1004 10.1007/s13225-017-0385-1 10.1007/978-1-0716-2293-3_19 10.1093/bioinformatics/btv661 10.1146/annurev-genom-120219-080406 10.5344/ajev.2019.18075 10.1016/j.ympev.2014.04.024 10.1016/j.pbi.2020.04.009 10.1021/acs.jafc.8b00773 10.1186/s12864-015-1624-z 10.1186/s13059-020-1941-7 10.1093/bioinformatics/btz305 10.1002/cpbi.96 10.1094/PHYTO-04-14-0117-R 10.1371/journal.pone.0163344 10.1038/ng.195 10.1016/S0168-9525(02)02722-1 10.1534/genetics.115.180968 10.1016/j.pbi.2022.102195 10.1093/oxfordjournals.molbev.a026334 10.3389/fmicb.2021.652802 10.1101/gr.107524.110 10.1093/nar/gkad328 10.1038/s41598-019-56396-w 10.1038/s41467-020-14998-3 10.1094/PHYTO-98-2-0222 10.1038/s41579-018-0121-1 10.1371/journal.ppat.1006672 10.1093/bioinformatics/btp324 10.1038/s41586-018-0030-5 10.1016/j.funbio.2011.11.010 10.1016/j.bbapap.2010.06.020 10.1111/mec.12631 10.1371/journal.pgen.1000046 10.12688/f1000research.25424.1 10.1038/s41587-019-0036-z 10.1093/bioinformatics/btp352 10.1016/j.tig.2019.11.006 10.3390/ijms20143597 10.1021/jf0510236 10.1007/s10658-012-0110-6 10.1038/nmeth.2474 10.1111/j.1755-0238.2006.tb00049.x 10.1016/j.funeco.2014.09.002 10.1094/PDIS-93-7-0680 10.1093/molbev/msz189 10.1094/PHYTO-02-10-0040 10.1093/nar/gkr1293 10.1089/cmb.2012.0021 10.1038/nature04332 10.1094/PDIS-04-12-0357-RE 10.1016/j.bbrc.2012.02.101 10.1093/nar/gku557 10.1186/s13059-019-1832-y 10.1038/nmeth.3176 10.1093/gbe/evu132 10.1128/mBio.00457-18 10.5943/mycosphere/14/1/5 10.1111/mpp.12544 10.1002/0471250953.bi1112s47 10.1038/s41587-023-01793-w 10.1186/1471-2164-9-147 10.1093/bioinformatics/btm268 10.1371/journal.pone.0188766 10.1093/jxb/erac412 10.1093/molbev/msab199 |
ContentType | Journal Article |
Copyright | Copyright American Phytopathological Society Feb 2024 |
Copyright_xml | – notice: Copyright American Phytopathological Society Feb 2024 |
DBID | NPM AAYXX CITATION K9. 7X8 DOA |
DOI | 10.1094/MPMI-09-23-0129-R |
DatabaseName | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1943-7706 |
EndPage | 142 |
ExternalDocumentID | oai_doaj_org_article_d99a3439355b401fa50d73ba4c76a700 10_1094_MPMI_09_23_0129_R 37934016 |
Genre | Journal Article |
GroupedDBID | --- 123 29M 2WC 3V. 53G 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAYJJ ABDNZ ABRJW ABUWG ACGFO ACPRK ACYGS ADBBV AENEX AFKRA AFRAH ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C1A CCPQU CS3 D1J DIK DU5 E3Z EBS EJD F5P FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYO LK8 M0K M0L M1P M7P MVM NPM OK1 P2P PQQKQ PROAC PSQYO Q2X RPS S0X TR2 UKHRP YCJ ~KM AAYXX CITATION K9. 7X8 |
ID | FETCH-LOGICAL-c390t-299ab0bc8ffaabe40dfc41c01df7ac50a77a93dffcf04c28d39ae05f10b6e5d03 |
IEDL.DBID | DOA |
ISSN | 0894-0282 |
IngestDate | Tue Oct 22 15:11:51 EDT 2024 Fri Aug 16 08:08:03 EDT 2024 Thu Oct 10 19:40:27 EDT 2024 Fri Aug 23 00:43:52 EDT 2024 Thu Oct 24 09:42:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | genome evolution fungal pangenomes secondary metabolism cell wall-degrading enzymes comparative genomics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-299ab0bc8ffaabe40dfc41c01df7ac50a77a93dffcf04c28d39ae05f10b6e5d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3321-1376 0000-0003-3395-9536 0000-0003-2643-9209 0000-0002-5883-4820 0000-0002-6122-2649 0000-0002-4858-1508 |
OpenAccessLink | https://doaj.org/article/d99a3439355b401fa50d73ba4c76a700 |
PMID | 37934016 |
PQID | 3039451999 |
PQPubID | 37269 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d99a3439355b401fa50d73ba4c76a700 proquest_miscellaneous_2886942172 proquest_journals_3039451999 crossref_primary_10_1094_MPMI_09_23_0129_R pubmed_primary_37934016 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Paul |
PublicationSubtitle | MPMI |
PublicationTitle | Molecular plant-microbe interactions |
PublicationTitleAlternate | Mol Plant Microbe Interact |
PublicationYear | 2024 |
Publisher | American Phytopathological Society The American Phytopathological Society |
Publisher_xml | – name: American Phytopathological Society – name: The American Phytopathological Society |
References | b10 b98 b97 b12 b11 b99 b14 b13 b16 b15 b18 b17 b19 b2 b3 b4 b5 b6 b7 b8 b9 b21 b20 b23 b22 b25 b24 b27 b26 b29 b28 b30 b32 b31 b34 b111 b33 b110 b36 b35 b38 b37 b39 McCarthy C. G. P. (b82) 2019; 5 b117 b116 b119 b118 b113 b112 b41 b40 b114 b43 b42 b45 b100 b44 b47 b46 b49 b48 RStudio Team (b108) 2022 b109 b106 b105 b107 b102 b52 b104 b51 b54 b131 b53 b130 b56 b133 b55 b132 b58 b57 b59 b61 b135 b60 Rambaut A. (b101) 2018 b134 b63 b62 b136 b65 b120 b64 b67 b122 b66 b121 b69 b68 b128 b127 b70 b129 b72 b124 b71 b123 b74 b126 b73 b125 b76 b75 b78 b77 b79 Abou-Mansour A. (b1) 2004; 43 b81 b80 b83 b85 b84 b87 b86 b89 b88 b90 b92 b91 b94 b93 b96 b95 |
References_xml | – ident: b24 doi: 10.1371/journal.pone.0169103 – ident: b30 doi: 10.4161/fly.19695 – ident: b118 doi: 10.1186/1471-2164-13-185 – ident: b74 doi: 10.1016/j.pmpp.2010.06.007 – ident: b132 doi: 10.1093/molbev/msm088 – ident: b93 doi: 10.1371/journal.ppat.1003037 – ident: b107 doi: 10.1126/science.1134933 – ident: b2 doi: 10.1016/j.phytochem.2015.01.012 – ident: b87 doi: 10.1186/1471-2164-13-525 – ident: b106 doi: 10.1094/PD-89-0867 – ident: b110 doi: 10.1111/ddi.12030 – ident: b18 doi: 10.1093/treephys/tpac133 – ident: b20 doi: 10.1016/j.pmpp.2007.04.006 – volume-title: RStudio: Integrated Development Environment for R year: 2022 ident: b108 contributor: fullname: RStudio Team – ident: b126 doi: 10.1016/j.mib.2014.11.016 – ident: b38 doi: 10.3390/toxins3081038 – volume: 5 start-page: e000243 year: 2019 ident: b82 publication-title: Microb. Genom. contributor: fullname: McCarthy C. G. P. – ident: b91 doi: 10.1038/s41598-019-40965-0 – ident: b116 doi: 10.1093/bioinformatics/btn013 – ident: b131 doi: 10.1093/bioinformatics/bti310 – ident: b35 doi: 10.1093/gigascience/giab008 – ident: b119 doi: 10.1093/ve/vey016 – ident: b31 doi: 10.1186/s13059-023-03133-2 – ident: b47 doi: 10.1038/nature01554 – ident: b37 doi: 10.1073/pnas.0907041107 – ident: b134 doi: 10.3390/pathogens11091026 – ident: b113 doi: 10.1186/s12915-022-01422-z – ident: b104 doi: 10.3390/plants11233382 – ident: b127 doi: 10.1094/MPMI-05-20-0116-A – ident: b62 doi: 10.1016/j.wep.2016.11.001 – ident: b34 doi: 10.1371/journal.pone.0121828 – ident: b61 doi: 10.1186/s12864-021-08223-8 – ident: b85 doi: 10.1038/s41467-021-27479-y – ident: b28 doi: 10.1186/1471-2180-14-117 – ident: b130 doi: 10.21105/joss.01686 – ident: b9 doi: 10.1186/s12915-020-0744-3 – ident: b15 doi: 10.1128/genomeA.00228-13 – ident: b58 doi: 10.1007/978-3-030-38281-0_13 – ident: b19 doi: 10.1038/nrmicro2916 – ident: b77 doi: 10.1093/bioinformatics/btr011 – ident: b114 doi: 10.1016/j.gde.2019.07.006 – ident: b16 doi: 10.1093/nar/gkab335 – ident: b125 doi: 10.1111/mpp.12384 – ident: b80 doi: 10.3389/fmicb.2018.01784 – ident: b17 doi: 10.1093/bioinformatics/btu170 – ident: b42 doi: 10.1093/nar/30.7.1575 – ident: b71 doi: 10.1371/journal.pbio.2003583 – ident: b5 doi: 10.1186/1471-2164-13-314 – ident: b86 doi: 10.1186/s12575-015-0020-z – volume-title: FigTree, a graphical viewer of phylogenetic trees year: 2018 ident: b101 contributor: fullname: Rambaut A. – ident: b67 doi: 10.1038/nmeth.1923 – ident: b84 doi: 10.1093/bioinformatics/btaa1022 – ident: b49 doi: 10.1093/bioinformatics/btac743 – ident: b123 doi: 10.1111/j.1365-3059.2011.02496.x – ident: b94 doi: 10.1371/journal.pgen.1010153 – ident: b120 doi: 10.1093/gbe/evy192 – ident: b79 doi: 10.1111/mpp.12491 – ident: b88 doi: 10.1021/jf011215a – ident: b66 doi: 10.1371/journal.pgen.1000304 – ident: b112 doi: 10.17352/sjggt.000003 – ident: b44 doi: 10.1093/nar/gkv1344 – ident: b121 doi: 10.1073/pnas.0506758102 – ident: b39 doi: 10.1093/nar/gkh340 – ident: b97 doi: 10.1186/s12915-017-0457-4 – ident: b7 doi: 10.3390/toxins3121569 – ident: b23 doi: 10.1186/s12915-023-01520-6 – ident: b109 doi: 10.1093/nar/gkaa1004 – ident: b72 doi: 10.1007/s13225-017-0385-1 – ident: b29 doi: 10.1007/978-1-0716-2293-3_19 – ident: b56 doi: 10.1093/bioinformatics/btv661 – ident: b40 doi: 10.1146/annurev-genom-120219-080406 – ident: b13 doi: 10.5344/ajev.2019.18075 – ident: b14 doi: 10.1016/j.ympev.2014.04.024 – ident: b8 doi: 10.1016/j.pbi.2020.04.009 – ident: b78 doi: 10.1021/acs.jafc.8b00773 – ident: b90 doi: 10.1186/s12864-015-1624-z – ident: b54 doi: 10.1186/s13059-020-1941-7 – ident: b65 doi: 10.1093/bioinformatics/btz305 – ident: b133 doi: 10.1002/cpbi.96 – ident: b122 doi: 10.1094/PHYTO-04-14-0117-R – ident: b45 doi: 10.1371/journal.pone.0163344 – ident: b57 doi: 10.1038/ng.195 – ident: b60 doi: 10.1016/S0168-9525(02)02722-1 – ident: b33 doi: 10.1534/genetics.115.180968 – ident: b59 doi: 10.1016/j.pbi.2022.102195 – ident: b22 doi: 10.1093/oxfordjournals.molbev.a026334 – ident: b48 doi: 10.3389/fmicb.2021.652802 – ident: b83 doi: 10.1101/gr.107524.110 – ident: b136 doi: 10.1093/nar/gkad328 – ident: b3 doi: 10.1038/s41598-019-56396-w – ident: b102 doi: 10.1038/s41467-020-14998-3 – ident: b105 doi: 10.1094/PHYTO-98-2-0222 – ident: b63 doi: 10.1038/s41579-018-0121-1 – ident: b64 doi: 10.1371/journal.ppat.1006672 – ident: b69 doi: 10.1093/bioinformatics/btp324 – ident: b96 doi: 10.1038/s41586-018-0030-5 – ident: b11 doi: 10.1016/j.funbio.2011.11.010 – volume: 43 start-page: 75 year: 2004 ident: b1 publication-title: Phytopathol. Mediterr. contributor: fullname: Abou-Mansour A. – ident: b32 doi: 10.1016/j.bbapap.2010.06.020 – ident: b51 doi: 10.1111/mec.12631 – ident: b43 doi: 10.1371/journal.pgen.1000046 – ident: b99 doi: 10.12688/f1000research.25424.1 – ident: b4 doi: 10.1038/s41587-019-0036-z – ident: b70 doi: 10.1093/bioinformatics/btp352 – ident: b52 doi: 10.1016/j.tig.2019.11.006 – ident: b81 doi: 10.3390/ijms20143597 – ident: b75 doi: 10.1021/jf0510236 – ident: b53 doi: 10.1007/s10658-012-0110-6 – ident: b27 doi: 10.1038/nmeth.2474 – ident: b68 doi: 10.1111/j.1755-0238.2006.tb00049.x – ident: b95 doi: 10.1016/j.funeco.2014.09.002 – ident: b6 doi: 10.1094/PDIS-93-7-0680 – ident: b36 doi: 10.1093/molbev/msz189 – ident: b124 doi: 10.1094/PHYTO-02-10-0040 – ident: b129 doi: 10.1093/nar/gkr1293 – ident: b10 doi: 10.1089/cmb.2012.0021 – ident: b92 doi: 10.1038/nature04332 – ident: b12 doi: 10.1094/PDIS-04-12-0357-RE – ident: b135 doi: 10.1016/j.bbrc.2012.02.101 – ident: b73 doi: 10.1093/nar/gku557 – ident: b41 doi: 10.1186/s13059-019-1832-y – ident: b21 doi: 10.1038/nmeth.3176 – ident: b25 doi: 10.1093/gbe/evu132 – ident: b111 doi: 10.1128/mBio.00457-18 – ident: b26 doi: 10.5943/mycosphere/14/1/5 – ident: b89 doi: 10.1111/mpp.12544 – ident: b100 doi: 10.1002/0471250953.bi1112s47 – ident: b55 doi: 10.1038/s41587-023-01793-w – ident: b98 doi: 10.1186/1471-2164-9-147 – ident: b46 doi: 10.1093/bioinformatics/btm268 – ident: b117 doi: 10.1371/journal.pone.0188766 – ident: b128 doi: 10.1093/jxb/erac412 – ident: b76 doi: 10.1093/molbev/msab199 |
SSID | ssj0019655 |
Score | 2.477923 |
Snippet | The permanent organs of grapevines (
L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell... The permanent organs of grapevines ( Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi... The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi... |
SourceID | doaj proquest crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 127 |
SubjectTerms | Body organs Botryosphaeria Carbohydrates cell wall-degrading enzymes Cell walls comparative genomics Damage Dieback Enzymes Eutypa lata fungal pangenomes Fungi Gene clusters genome evolution Genomes Genomics Grapevines Metabolites Neofusicoccum parvum Nucleotides Pathogens Phaeoacremonium minimum Polyketide synthase Positive selection secondary metabolism Secondary metabolites Signs and symptoms Virulence Virulence factors Viticulture Vitis vinifera |
Title | Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37934016 https://www.proquest.com/docview/3039451999 https://search.proquest.com/docview/2886942172 https://doaj.org/article/d99a3439355b401fa50d73ba4c76a700 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIOiDaP2KtmUFn4TQuexmN_t4tj1b4aSUVvq27KcWISmXXMH_3p1s7tSH4ouvm7AZZmYzM8zO70fI-1AjRoiXpePBl1xWsTQ8htLXEA14w6zEAeflF3F6xT9f19d_UH3hnbAMD5wVd-iVMozjAGltUy0QTQ1eMmu4k8JIyNU6qE0xNfUPlBj5TqFB4NtUVWz6mYofLs-XZ9jwr_AeUaXKi78i0gjcf3-2OUadxVPyZEoX6TyL-Yw8CO0ueTz_tpogM8IueZjpJH8-J7dHv6G86TlODYwzx_Ss7bEE7-lNO3Q0ZXz0GE926wZ6cje5Hu0i_XqzWo8zSHSRWXjoHKmI6Cec0LpL6Si9XK3bH2nr4XuXNu9fkKvFyeXRaTkxKpSOKRjKFHuMBeuaGI2xgYOPjs8czHyUxtVgpDSK-RhdBO6qxjNlAtRxBlaE2gN7SXbarg2vCY1WNJK5yMBYHkQ0PDiIopqlFZ_q3oJ82GhV32bgDJ0b3lyjCTQoXTGNJtAXBfmIet--iJjX40LyBD15gv6XJxRkb2M1PR3EXqcIrRBBR6mCvNs-TkcI-yKmDd2611XTCMWRqasgr7K1t5Kw9P9KHxNv_oeEb8mjKuVE-dL3HtkZVuuwn3KawR6M7vsL68jzZA |
link.rule.ids | 315,783,787,867,2109,27938,27939 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Pangenomic+Insights+into+the+Distinct+Evolution+of+Virulence+Factors+Among+Grapevine+Trunk+Pathogens&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Garcia%2C+Jadran+F&rft.au=Morales-Cruz%2C+Abraham&rft.au=Cochetel%2C+No%C3%A9&rft.au=Minio%2C+Andrea&rft.date=2024-02-01&rft.pub=American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=37&rft.issue=2&rft.spage=127&rft_id=info:doi/10.1094%2FMPMI-09-23-0129-R&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon |