Anomalous localization in a kicked quasicrystal

Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibitin...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 20; no. 3; pp. 409 - 414
Main Authors Shimasaki, Toshihiko, Prichard, Max, Kondakci, H. Esat, Pagett, Jared E., Bai, Yifei, Dotti, Peter, Cao, Alec, Dardia, Anna R., Lu, Tsung-Cheng, Grover, Tarun, Weld, David M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1745-2473
1745-2481
DOI10.1038/s41567-023-02329-4

Cover

Abstract Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality. Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential.
AbstractList Abstract Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality.
Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality.
Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality.Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential.
Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality. Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential.
Author Bai, Yifei
Weld, David M.
Dotti, Peter
Cao, Alec
Lu, Tsung-Cheng
Shimasaki, Toshihiko
Dardia, Anna R.
Kondakci, H. Esat
Grover, Tarun
Prichard, Max
Pagett, Jared E.
Author_xml – sequence: 1
  givenname: Toshihiko
  orcidid: 0000-0003-2094-7894
  surname: Shimasaki
  fullname: Shimasaki, Toshihiko
  organization: Department of Physics, University of California
– sequence: 2
  givenname: Max
  surname: Prichard
  fullname: Prichard, Max
  organization: Department of Physics, University of California
– sequence: 3
  givenname: H. Esat
  orcidid: 0000-0002-2567-5587
  surname: Kondakci
  fullname: Kondakci, H. Esat
  organization: Department of Physics, University of California
– sequence: 4
  givenname: Jared E.
  orcidid: 0000-0001-9255-303X
  surname: Pagett
  fullname: Pagett, Jared E.
  organization: Department of Physics, University of California
– sequence: 5
  givenname: Yifei
  orcidid: 0009-0009-0535-4194
  surname: Bai
  fullname: Bai, Yifei
  organization: Department of Physics, University of California
– sequence: 6
  givenname: Peter
  orcidid: 0009-0007-6184-3991
  surname: Dotti
  fullname: Dotti, Peter
  organization: Department of Physics, University of California
– sequence: 7
  givenname: Alec
  orcidid: 0000-0002-6111-1375
  surname: Cao
  fullname: Cao, Alec
  organization: Department of Physics, University of California
– sequence: 8
  givenname: Anna R.
  orcidid: 0009-0006-8598-0141
  surname: Dardia
  fullname: Dardia, Anna R.
  organization: Department of Physics, University of California
– sequence: 9
  givenname: Tsung-Cheng
  orcidid: 0000-0001-9438-1067
  surname: Lu
  fullname: Lu, Tsung-Cheng
  organization: Perimeter Institute for Theoretical Physics
– sequence: 10
  givenname: Tarun
  surname: Grover
  fullname: Grover, Tarun
  organization: Department of Physics, University of California at San Diego
– sequence: 11
  givenname: David M.
  orcidid: 0000-0002-4574-9491
  surname: Weld
  fullname: Weld, David M.
  email: weld@ucsb.edu
  organization: Department of Physics, University of California
BackLink https://www.osti.gov/biblio/2281612$$D View this record in Osti.gov
BookMark eNp9kLtOwzAUhi1UJNrCCzBFMAd8S2KPVcVNqsQCs3Xq2OA2tVs7GcrTkzYIJIYO1vHwfefyT9DIB28Quib4jmAm7hMnRVnlmLLDozLnZ2hMKl7klAsy-v1X7AJNUlphzGlJ2Bjdz3zYQBO6lDVBQ-O-oHXBZ85nkK2dXps623WQnI771EJzic4tNMlc_dQpen98eJs_54vXp5f5bJFrJnGbE6s5cI0LyyU2hIoa66ofiUsLwPQSDMVQE2ukXurC1lSLmhtsKwmciyWwKboZ-obUOpW0a43-1MF7o1tFqSAloT10O0DbGHadSa1ahS76fi9FZVFKwYU8UGKgdAwpRWNV3-14ZRvBNYpgdchQDRmqPj91zFDxXqX_1G10G4j70xIbpNTD_sPEv61OWN-GIIWk
CitedBy_id crossref_primary_10_1103_PhysRevB_109_054202
crossref_primary_10_1103_PhysRevResearch_6_043049
crossref_primary_10_1103_PhysRevB_110_014106
crossref_primary_10_1038_s41567_023_02357_0
crossref_primary_10_1103_PhysRevB_111_014303
crossref_primary_10_1103_PhysRevResearch_6_L042038
Cites_doi 10.1103/PhysRevLett.110.190401
10.21468/SciPostPhys.12.1.027
10.1103/PhysRevB.105.024301
10.1103/PhysRevB.96.144301
10.1103/RevModPhys.80.1355
10.1103/PhysRevLett.109.106402
10.1038/nphys4020
10.1103/PhysRevLett.43.1954
10.1103/PhysRevB.106.054312
10.1103/PhysRevLett.101.255702
10.1103/PhysRevLett.65.3076
10.1103/PhysRevLett.126.106803
10.1103/PhysRevLett.120.160404
10.1103/PhysRevB.90.054303
10.1088/1361-6455/aabcdf
10.1103/PhysRevLett.123.025301
10.1038/s41567-021-01316-x
10.1103/PhysRevLett.69.3302
10.1038/nmat5017
10.1038/nature07071
10.1103/PhysRevLett.68.3826
10.1103/RevModPhys.91.021001
10.1016/j.physrep.2020.03.003
10.1103/PhysRevLett.129.186802
10.1103/PhysRevLett.87.066601
10.1103/PhysRevLett.114.160401
10.1103/PhysRevB.79.245122
10.1088/0034-4885/79/5/056001
10.1126/science.1183640
10.1080/00018732.2016.1198134
10.21468/SciPostPhys.4.5.025
10.1103/PhysRevLett.126.040603
10.1103/PhysRevLett.79.1959
10.1103/PhysRevLett.106.230403
10.1209/0295-5075/29/2/002
10.1088/0370-1298/68/10/304
10.1016/S0167-2789(98)00230-9
10.1103/PhysRevB.14.2239
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-023-02329-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
ProQuest Central Student

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 414
ExternalDocumentID 2281612
10_1038_s41567_023_02329_4
GrantInformation_xml – fundername: United States Department of Defense | U.S. Army (United States Army)
  grantid: W911NF1710323
  funderid: 100006751
– fundername: Perimeter Institute for Theoretical Physics
– fundername: United States Department of Defense | U.S. Air Force (United States Air Force)
  grantid: FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240
  funderid: 100006831
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO
  grantid: MURI W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323
  funderid: 100000183
– fundername: National Science Foundation (NSF)
  grantid: OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; MR1906325; DMR-1752417
  funderid: 100000001
– fundername: Eddleman Center for Quantum Innovation, Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240
  funderid: 100000181
– fundername: U.S. Department of Energy (DOE)
  funderid: 100000015
– fundername: Eddleman Center for Quantum Innovation
– fundername: Alfred P. Sloan Foundation
  funderid: 100000879
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
C6C
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAYJO
ABEEJ
ABGIJ
ABMYL
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AFNRJ
AGEZK
AGGBP
AGPPL
AHGBK
AJDOV
NYICJ
OTOTI
RSV
ID FETCH-LOGICAL-c390t-1fc4a4c05f490e128d0c742606faa3cbae20ad1fe9cbc5fd2c8d4e0f79a448ba3
IEDL.DBID C6C
ISSN 1745-2473
IngestDate Mon Mar 18 05:06:59 EDT 2024
Sat Aug 23 13:54:13 EDT 2025
Tue Jul 01 00:25:43 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 21 02:38:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-1fc4a4c05f490e128d0c742606faa3cbae20ad1fe9cbc5fd2c8d4e0f79a448ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0001-9438-1067
0000-0003-2094-7894
0009-0009-0535-4194
0009-0006-8598-0141
0009-0007-6184-3991
0000-0001-9255-303X
0000-0002-2567-5587
0000-0002-4574-9491
0000-0002-6111-1375
0000000320947894
000000019255303X
0000000261111375
0009000905354194
0009000685980141
0000000225675587
0000000194381067
0000000245749491
0009000761843991
OpenAccessLink https://www.nature.com/articles/s41567-023-02329-4
PQID 2956984892
PQPubID 27545
PageCount 6
ParticipantIDs osti_scitechconnect_2281612
proquest_journals_2956984892
crossref_citationtrail_10_1038_s41567_023_02329_4
crossref_primary_10_1038_s41567_023_02329_4
springer_journals_10_1038_s41567_023_02329_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: France
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Roy, Mishra, Tanatar, Basu (CR32) 2021; 126
Roy, Khaymovich, Das, Moessner (CR30) 2018; 4
Amin, Nagarajan, Pandit, Bid (CR8) 2022; 129
Borgonovi, Shepelyansky (CR24) 1995; 29
Richardella (CR6) 2010; 327
Roati (CR14) 2008; 453
Evers, Mirlin (CR5) 2008; 80
Hofstadter (CR12) 1976; 14
Qin, Yin, Chen (CR26) 2014; 90
Basov, Averitt, Hsieh (CR39) 2017; 16
Azbel (CR13) 1979; 43
An (CR19) 2021; 126
Deng, Ray, Sinha, Shlyapnikov, Santos (CR37) 2019; 123
Hamma, Castelnovo, Chamon (CR38) 2009; 79
Artuso, Borgonovi, Guarneri, Rebuzzini, Casati (CR21) 1992; 69
Bordia, Lüschen, Schneider, Knap, Bloch (CR17) 2017; 13
Lüschen (CR18) 2018; 120
Harper (CR11) 1955; 68
Chabé (CR7) 2008; 101
Leboeuf, Kurchan, Feingold, Arovas (CR23) 1990; 65
Prosen, Satija, Shah (CR25) 2001; 87
Liu, Xia, Longhi, Sanchez-Palencia (CR35) 2022; 12
Mori, Ikeda, Kaminishi, Ueda (CR4) 2018; 51
Čadež, Mondaini, Sacramento (CR27) 2017; 96
Kraus, Lahini, Ringel, Verbin, Zilberberg (CR16) 2012; 109
D’Alessio, Kafri, Polkovnikov, Rigol (CR1) 2016; 65
Gadway, Reeves, Krinner, Schneble (CR20) 2013; 110
Artuso, Casati, Shepelyansky (CR22) 1992; 68
Weitenberg, Simonet (CR9) 2021; 17
Ketzmerick, Kruse, Geisel (CR31) 1999; 131
Gogolin, Eisert (CR3) 2016; 79
Lucioni (CR15) 2011; 106
Ketzmerick, Kruse, Kraut, Geisel (CR29) 1997; 79
Sarkar, Ghosh, Sen, Sengupta (CR36) 2022; 105
Abanin, Altman, Bloch, Serbyn (CR2) 2019; 91
Zhang, Zhou, Hu, Chen (CR28) 2022; 106
Agarwal, Gopalakrishnan, Knap, Müller, Demler (CR33) 2015; 114
Gopalakrishnan, Parameswaran (CR34) 2020; 862
Aubry, André (CR10) 1980; 3
C Gogolin (2329_CR3) 2016; 79
T Mori (2329_CR4) 2018; 51
L D’Alessio (2329_CR1) 2016; 65
K Agarwal (2329_CR33) 2015; 114
KR Amin (2329_CR8) 2022; 129
T Liu (2329_CR35) 2022; 12
R Artuso (2329_CR22) 1992; 68
P Bordia (2329_CR17) 2017; 13
M Sarkar (2329_CR36) 2022; 105
S Gopalakrishnan (2329_CR34) 2020; 862
D Basov (2329_CR39) 2017; 16
F Borgonovi (2329_CR24) 1995; 29
YE Kraus (2329_CR16) 2012; 109
S Roy (2329_CR32) 2021; 126
C Weitenberg (2329_CR9) 2021; 17
PG Harper (2329_CR11) 1955; 68
T Čadež (2329_CR27) 2017; 96
J Chabé (2329_CR7) 2008; 101
MY Azbel (2329_CR13) 1979; 43
A Richardella (2329_CR6) 2010; 327
B Gadway (2329_CR20) 2013; 110
P Leboeuf (2329_CR23) 1990; 65
P Qin (2329_CR26) 2014; 90
A Hamma (2329_CR38) 2009; 79
E Lucioni (2329_CR15) 2011; 106
S Roy (2329_CR30) 2018; 4
G Roati (2329_CR14) 2008; 453
R Artuso (2329_CR21) 1992; 69
R Ketzmerick (2329_CR29) 1997; 79
T Prosen (2329_CR25) 2001; 87
R Ketzmerick (2329_CR31) 1999; 131
S Aubry (2329_CR10) 1980; 3
X Deng (2329_CR37) 2019; 123
F Evers (2329_CR5) 2008; 80
DA Abanin (2329_CR2) 2019; 91
DR Hofstadter (2329_CR12) 1976; 14
Y Zhang (2329_CR28) 2022; 106
HP Lüschen (2329_CR18) 2018; 120
FA An (2329_CR19) 2021; 126
References_xml – volume: 110
  start-page: 190401
  year: 2013
  ident: CR20
  article-title: Evidence for a quantum-to-classical transition in a pair of coupled quantum rotors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.190401
– volume: 12
  start-page: 27
  year: 2022
  ident: CR35
  article-title: Anomalous mobility edges in one-dimensional quasiperiodic models
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.027
– volume: 105
  start-page: 024301
  year: 2022
  ident: CR36
  article-title: Signatures of multifractality in a periodically driven interacting Aubry–André model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.024301
– volume: 96
  start-page: 144301
  year: 2017
  ident: CR27
  article-title: Dynamical localization and the effects of aperiodicity in Floquet systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.144301
– volume: 80
  start-page: 1355
  year: 2008
  ident: CR5
  article-title: Anderson transitions
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1355
– volume: 109
  start-page: 106402
  year: 2012
  ident: CR16
  article-title: Topological states and adiabatic pumping in quasicrystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.106402
– volume: 13
  start-page: 460
  year: 2017
  end-page: 464
  ident: CR17
  article-title: Periodically driving a many-body localized quantum system
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4020
– volume: 43
  start-page: 1954
  year: 1979
  ident: CR13
  article-title: Quantum particle in one-dimensional potentials with incommensurate periods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.43.1954
– volume: 106
  start-page: 054312
  year: 2022
  ident: CR28
  article-title: Localization, multifractality, and many-body localization in periodically kicked quasiperiodic lattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.054312
– volume: 101
  start-page: 255702
  year: 2008
  ident: CR7
  article-title: Experimental observation of the Anderson metal–insulator transition with atomic matter waves
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.255702
– volume: 65
  start-page: 3076
  year: 1990
  end-page: 3079
  ident: CR23
  article-title: Phase-space localization: topological aspects of quantum chaos
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.3076
– volume: 126
  start-page: 106803
  year: 2021
  ident: CR32
  article-title: Reentrant localization transition in a quasiperiodic chain
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.106803
– volume: 120
  start-page: 160404
  year: 2018
  ident: CR18
  article-title: Single-particle mobility edge in a one-dimensional quasiperiodic optical lattice
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.160404
– volume: 90
  start-page: 054303
  year: 2014
  ident: CR26
  article-title: Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.054303
– volume: 51
  start-page: 112001
  year: 2018
  ident: CR4
  article-title: Thermalization and prethermalization in isolated quantum systems: a theoretical overview
  publication-title: J. Phys. B
  doi: 10.1088/1361-6455/aabcdf
– volume: 123
  start-page: 025301
  year: 2019
  ident: CR37
  article-title: One-dimensional quasicrystals with power-law hopping
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.025301
– volume: 17
  start-page: 1342
  year: 2021
  end-page: 1348
  ident: CR9
  article-title: Tailoring quantum gases by Floquet engineering
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01316-x
– volume: 69
  start-page: 3302
  year: 1992
  ident: CR21
  article-title: Phase diagram in the kicked Harper model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.3302
– volume: 16
  start-page: 1077
  year: 2017
  end-page: 1088
  ident: CR39
  article-title: Towards properties on demand in quantum materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5017
– volume: 453
  start-page: 895
  year: 2008
  end-page: 898
  ident: CR14
  article-title: Anderson localization of a non-interacting Bose–Einstein condensate
  publication-title: Nature
  doi: 10.1038/nature07071
– volume: 68
  start-page: 3826
  year: 1992
  ident: CR22
  article-title: Fractal spectrum and anomalous diffusion in the kicked Harper model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3826
– volume: 91
  start-page: 021001
  year: 2019
  ident: CR2
  article-title: Colloquium: many-body localization, thermalization, and entanglement
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.021001
– volume: 862
  start-page: 1
  year: 2020
  end-page: 62
  ident: CR34
  article-title: Dynamics and transport at the threshold of many-body localization
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.03.003
– volume: 129
  start-page: 186802
  year: 2022
  ident: CR8
  article-title: Multifractal conductance fluctuations in high-mobility graphene in the integer quantum Hall regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.186802
– volume: 87
  start-page: 066601
  year: 2001
  ident: CR25
  article-title: Dimer decimation and intricately nested localized-ballistic phases of a kicked Harper model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.066601
– volume: 114
  start-page: 160401
  year: 2015
  ident: CR33
  article-title: Anomalous diffusion and Griffiths effects near the many-body localization transition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.160401
– volume: 3
  start-page: 18
  year: 1980
  ident: CR10
  article-title: Analyticity breaking and Anderson localization in incommensurate lattices
  publication-title: Ann. Isr. Phys. Soc
– volume: 79
  start-page: 245122
  year: 2009
  ident: CR38
  article-title: Toric-boson model: toward a topological quantum memory at finite temperature
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.245122
– volume: 79
  start-page: 056001
  year: 2016
  ident: CR3
  article-title: Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/5/056001
– volume: 327
  start-page: 665
  year: 2010
  end-page: 669
  ident: CR6
  article-title: Visualizing critical correlations near the metal–insulator transition in Ga Mn As
  publication-title: Science
  doi: 10.1126/science.1183640
– volume: 65
  start-page: 239
  year: 2016
  end-page: 362
  ident: CR1
  article-title: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2016.1198134
– volume: 4
  start-page: 25
  year: 2018
  ident: CR30
  article-title: Multifractality without fine-tuning in a Floquet quasiperiodic chain
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.4.5.025
– volume: 126
  start-page: 040603
  year: 2021
  ident: CR19
  article-title: Interactions and mobility edges: observing the generalized Aubry–André model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.040603
– volume: 79
  start-page: 1959
  year: 1997
  ident: CR29
  article-title: What determines the spreading of a wave packet?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1959
– volume: 106
  start-page: 230403
  year: 2011
  ident: CR15
  article-title: Observation of subdiffusion in a disordered interacting system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.230403
– volume: 29
  start-page: 117
  year: 1995
  end-page: 122
  ident: CR24
  article-title: Spectral variety in the kicked Harper model
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/29/2/002
– volume: 68
  start-page: 874
  year: 1955
  ident: CR11
  article-title: Single band motion of conduction electrons in a uniform magnetic field
  publication-title: Proc. Phys. Soc. Sec. A
  doi: 10.1088/0370-1298/68/10/304
– volume: 131
  start-page: 247
  year: 1999
  end-page: 253
  ident: CR31
  article-title: Efficient diagonalization of kicked quantum systems
  publication-title: Phys. D
  doi: 10.1016/S0167-2789(98)00230-9
– volume: 14
  start-page: 2239
  year: 1976
  end-page: 2249
  ident: CR12
  article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.2239
– volume: 79
  start-page: 245122
  year: 2009
  ident: 2329_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.245122
– volume: 65
  start-page: 239
  year: 2016
  ident: 2329_CR1
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2016.1198134
– volume: 106
  start-page: 230403
  year: 2011
  ident: 2329_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.230403
– volume: 106
  start-page: 054312
  year: 2022
  ident: 2329_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.054312
– volume: 14
  start-page: 2239
  year: 1976
  ident: 2329_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.2239
– volume: 79
  start-page: 1959
  year: 1997
  ident: 2329_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1959
– volume: 4
  start-page: 25
  year: 2018
  ident: 2329_CR30
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.4.5.025
– volume: 65
  start-page: 3076
  year: 1990
  ident: 2329_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.3076
– volume: 80
  start-page: 1355
  year: 2008
  ident: 2329_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1355
– volume: 131
  start-page: 247
  year: 1999
  ident: 2329_CR31
  publication-title: Phys. D
  doi: 10.1016/S0167-2789(98)00230-9
– volume: 126
  start-page: 106803
  year: 2021
  ident: 2329_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.106803
– volume: 453
  start-page: 895
  year: 2008
  ident: 2329_CR14
  publication-title: Nature
  doi: 10.1038/nature07071
– volume: 43
  start-page: 1954
  year: 1979
  ident: 2329_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.43.1954
– volume: 105
  start-page: 024301
  year: 2022
  ident: 2329_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.024301
– volume: 90
  start-page: 054303
  year: 2014
  ident: 2329_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.054303
– volume: 16
  start-page: 1077
  year: 2017
  ident: 2329_CR39
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5017
– volume: 129
  start-page: 186802
  year: 2022
  ident: 2329_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.186802
– volume: 69
  start-page: 3302
  year: 1992
  ident: 2329_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.3302
– volume: 79
  start-page: 056001
  year: 2016
  ident: 2329_CR3
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/5/056001
– volume: 110
  start-page: 190401
  year: 2013
  ident: 2329_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.190401
– volume: 101
  start-page: 255702
  year: 2008
  ident: 2329_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.255702
– volume: 120
  start-page: 160404
  year: 2018
  ident: 2329_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.160404
– volume: 96
  start-page: 144301
  year: 2017
  ident: 2329_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.144301
– volume: 327
  start-page: 665
  year: 2010
  ident: 2329_CR6
  publication-title: Science
  doi: 10.1126/science.1183640
– volume: 126
  start-page: 040603
  year: 2021
  ident: 2329_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.040603
– volume: 3
  start-page: 18
  year: 1980
  ident: 2329_CR10
  publication-title: Ann. Isr. Phys. Soc
– volume: 68
  start-page: 3826
  year: 1992
  ident: 2329_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3826
– volume: 109
  start-page: 106402
  year: 2012
  ident: 2329_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.106402
– volume: 87
  start-page: 066601
  year: 2001
  ident: 2329_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.066601
– volume: 123
  start-page: 025301
  year: 2019
  ident: 2329_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.025301
– volume: 51
  start-page: 112001
  year: 2018
  ident: 2329_CR4
  publication-title: J. Phys. B
  doi: 10.1088/1361-6455/aabcdf
– volume: 13
  start-page: 460
  year: 2017
  ident: 2329_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4020
– volume: 17
  start-page: 1342
  year: 2021
  ident: 2329_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01316-x
– volume: 114
  start-page: 160401
  year: 2015
  ident: 2329_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.160401
– volume: 91
  start-page: 021001
  year: 2019
  ident: 2329_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.021001
– volume: 29
  start-page: 117
  year: 1995
  ident: 2329_CR24
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/29/2/002
– volume: 12
  start-page: 27
  year: 2022
  ident: 2329_CR35
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.027
– volume: 862
  start-page: 1
  year: 2020
  ident: 2329_CR34
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.03.003
– volume: 68
  start-page: 874
  year: 1955
  ident: 2329_CR11
  publication-title: Proc. Phys. Soc. Sec. A
  doi: 10.1088/0370-1298/68/10/304
SSID ssj0042613
Score 2.5545044
Snippet Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in...
Abstract Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder,...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 409
SubjectTerms 639/766/119/2795
639/766/36/1125
639/766/483/3926
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Eigenvectors
Localization
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Phase diagrams
Phases
Physics
Physics and Astronomy
Quantum transport
Quasicrystals
Theoretical
Transport properties
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwHA46EbyIT6yb0oM3DWvzaJOTiDiHoCcHu4U0SWE4997B_95f2tQxQQ89NW3hy-P7fv29ELrJ8hJWhU2x5inFLAUDpTCcYUm5BuujELbqGfn6lvUH7GXIh-GH2zKEVTZnYnVQ26nx_8i7BIS8FExIcj-bY981yntXQwuNXbSXAtP4dS56z81J7K0DWidEckxYTkPSTEJFd-kNlxwDY_mLSMy2iKk1hQ22JTp_-Ukr-ukdocOgG-OHeqKP0Y6bnKD9Kn7TLE9RF8z4Tz0GMz6u2ClkV8ajSazjjxFsVRvP1xoGL75AD47P0KD39P7Yx6EXAjZUJiucloZpZhJeMpk4IBWbmNxXl89KrakptCOJtmnppAGsS0uMsMwlZS4BclFoeo5ak-nEXaDYp6O6THNrHGghraX3pQpudea9sIJHKG2AUCYUCvf9KsaqclhToWrwFACnKvAUi9DtzzOzukzGv6PbHl8FJO8r1Rof0mNWihAB-pNEqNPArsKGWqrN9EforpmKze2_v3X5_9va6ICATKmjyjqotVqs3RXIjFVxXa2lb01Vypk
  priority: 102
  providerName: ProQuest
Title Anomalous localization in a kicked quasicrystal
URI https://link.springer.com/article/10.1038/s41567-023-02329-4
https://www.proquest.com/docview/2956984892
https://www.osti.gov/biblio/2281612
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oRfAirlitZQ7eNDiTZZoc22IVwSKi4C1kkgyItS6tB_-9L5kZRVHBwzCHZLZvkrzv4y0BOMh7JY4KlxEjMkZ4hgKlsIITxYRB9VFIF_eMvBjnZzf8_FbcLgBtcmFi0H4saRmX6SY67HgWhEaPoIUJB1WEL8KSRF0XRvUwHzarb1AErEqCFITyHqsTZVImf7jHF2PUesRJ9YVofvONRpMzWoPVmism_ert1mHBTzdgOcZs2tkmHKN0fzATlO5JtEh1RmVyN01Mcn-H09Mlz68GO7-8IQecbMHN6OR6eEbq_Q-IZSqdk6y03HCbipKr1KMhcakNX5zmpTHMFsbT1Lis9MoivqWjVjru07KnEGZZGLYNrenj1O9AElJQfW6Esx75jzEq-E-lcCYPnlcp2pA1QGhbFwcPe1RMdHRSM6kr8DQCpyN4mrfh8OOap6o0xp-99wK-Gg17qE5rQxiPnWtKJXJO2oZOA7uuJ9FMU9RuSnKpsPmo-RWfzb8_a_d_3fdghSJVqSLLOtCav7z6faQa86ILi3J02oWl_mgwGON5cDK-vOrGEfcOaXHMMw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BogouqLRULFDIAU5gbeLYiXOoKlpAC_tQVYHEzXVsR0IsCZBdIf5Uf2PHeXQFEtw45BTHscbjmW88L4C9KM6QK0xAFA9CwgI0UFLNGUlCrtD6SIWpekaOxlH_kp1f8asF-NvmwriwylYmVoLaFNrdkfcoAvlEMJHQ73f3xHWNct7VtoVGzRYD-_SIJlv57ewY93ef0tOTi5990nQVIBrt-ykJMs0U0z7PWOJbFM_G17Gr0x5lSoU6VZb6ygSZTTSuOjNUC8Osn8UJLl6kKsR5F2GJuYzWDiz9OBn_-t3KfmePhHUKJieUxWGTpuOHolc6UykmqCPdQxPCnqnCToFH-hnMfeGZrRTe6UdYbZCqd1Sz1hos2PwTfKgiRnX5GXpHeXGrJsWs9Cp92ORzete5p7ybaxQOxrufKRz88IQIdLIOl-9Cpy_QyYvcboDnEmBtpLjRFtGXUonz3gpuVOT8voJ3IWgJIXVTmtx1yJjIykUeClkTTyLhZEU8ybpw8P-bu7owx5ujtxx9JcIKVxtXuyAiPZWUCkS8tAvbLdllc4RLOWe4Lhy2WzF__fq_Nt-ebReW-xejoRyejQdbsEIRJNUxbdvQmT7M7FcEOdN0p-EsD_68NzP_Az0fCy0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RrVr1UlEeYsuW5lBOYG3iR2IfqmoF3UJ5qIcicTOO7UiIbQJkVxV_rb-u4zxAVCo3DjnFceTxeOYbzwvgU5oVyBUuIUYkjPAEDZTcCk4UEwatj1y6pmfkyWl6cMa_n4vzJfjT58KEsMpeJjaC2lU23JGPKQJ5JblUdFx0YRE_9qdfrm9I6CAVPK19O42WRY783W803-rPh_u419uUTr_-3DsgXYcBYtHWn5OksNxwG4uCq9ijqHaxzULN9rQwhtnceBoblxReWVxB4aiVjvu4yBQuROaG4bwv4GXGMhUMPzn91muBYJmwNhlTEMoz1iXsxEyO62A0ZQS1ZXioIvyRUhxUeLgfAd5_fLSN6psuw9sOs0aTlsnewZIvV-BVEztq61UYT8rql5lVizpqNGOX2RldlpGJri5RTLjoZmFw8O0dYtHZGpw9C5XWYVBWpd-AKKTC-tQIZz3iMGNU8ONK4UwaPMBSDCHpCaFtV6Q89MqY6cZZzqRuiaeRcLohnuZD2Ln_5rot0fHk6M1AX40AI1TJtSGcyM41pRKxLx3CqCe77g5zrR9Ybwi7_VY8vP7_v94_PdtHeI0srI8PT4824Q1FtNQGt41gML9d-A-Idub5VsNWEVw8Nx__Bf5wDf0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalous+localization+in+a+kicked+quasicrystal&rft.jtitle=Nature+physics&rft.au=Shimasaki%2C+Toshihiko&rft.au=Prichard%2C+Max&rft.au=Kondakci%2C+H.+Esat&rft.au=Pagett%2C+Jared+E.&rft.date=2024-03-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=20&rft.issue=3&rft.spage=409&rft.epage=414&rft_id=info:doi/10.1038%2Fs41567-023-02329-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41567_023_02329_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon