Anomalous localization in a kicked quasicrystal
Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibitin...
Saved in:
Published in | Nature physics Vol. 20; no. 3; pp. 409 - 414 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1745-2473 1745-2481 |
DOI | 10.1038/s41567-023-02329-4 |
Cover
Abstract | Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality.
Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential. |
---|---|
AbstractList | Abstract
Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality. Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality. Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality.Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential. Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality. Phases of matter can host different transport behaviours, ranging from diffusion to localization. Anomalous transport has now been observed in an interacting Bose gas in a one-dimensional lattice subject to a pulsed incommensurate potential. |
Author | Bai, Yifei Weld, David M. Dotti, Peter Cao, Alec Lu, Tsung-Cheng Shimasaki, Toshihiko Dardia, Anna R. Kondakci, H. Esat Grover, Tarun Prichard, Max Pagett, Jared E. |
Author_xml | – sequence: 1 givenname: Toshihiko orcidid: 0000-0003-2094-7894 surname: Shimasaki fullname: Shimasaki, Toshihiko organization: Department of Physics, University of California – sequence: 2 givenname: Max surname: Prichard fullname: Prichard, Max organization: Department of Physics, University of California – sequence: 3 givenname: H. Esat orcidid: 0000-0002-2567-5587 surname: Kondakci fullname: Kondakci, H. Esat organization: Department of Physics, University of California – sequence: 4 givenname: Jared E. orcidid: 0000-0001-9255-303X surname: Pagett fullname: Pagett, Jared E. organization: Department of Physics, University of California – sequence: 5 givenname: Yifei orcidid: 0009-0009-0535-4194 surname: Bai fullname: Bai, Yifei organization: Department of Physics, University of California – sequence: 6 givenname: Peter orcidid: 0009-0007-6184-3991 surname: Dotti fullname: Dotti, Peter organization: Department of Physics, University of California – sequence: 7 givenname: Alec orcidid: 0000-0002-6111-1375 surname: Cao fullname: Cao, Alec organization: Department of Physics, University of California – sequence: 8 givenname: Anna R. orcidid: 0009-0006-8598-0141 surname: Dardia fullname: Dardia, Anna R. organization: Department of Physics, University of California – sequence: 9 givenname: Tsung-Cheng orcidid: 0000-0001-9438-1067 surname: Lu fullname: Lu, Tsung-Cheng organization: Perimeter Institute for Theoretical Physics – sequence: 10 givenname: Tarun surname: Grover fullname: Grover, Tarun organization: Department of Physics, University of California at San Diego – sequence: 11 givenname: David M. orcidid: 0000-0002-4574-9491 surname: Weld fullname: Weld, David M. email: weld@ucsb.edu organization: Department of Physics, University of California |
BackLink | https://www.osti.gov/biblio/2281612$$D View this record in Osti.gov |
BookMark | eNp9kLtOwzAUhi1UJNrCCzBFMAd8S2KPVcVNqsQCs3Xq2OA2tVs7GcrTkzYIJIYO1vHwfefyT9DIB28Quib4jmAm7hMnRVnlmLLDozLnZ2hMKl7klAsy-v1X7AJNUlphzGlJ2Bjdz3zYQBO6lDVBQ-O-oHXBZ85nkK2dXps623WQnI771EJzic4tNMlc_dQpen98eJs_54vXp5f5bJFrJnGbE6s5cI0LyyU2hIoa66ofiUsLwPQSDMVQE2ukXurC1lSLmhtsKwmciyWwKboZ-obUOpW0a43-1MF7o1tFqSAloT10O0DbGHadSa1ahS76fi9FZVFKwYU8UGKgdAwpRWNV3-14ZRvBNYpgdchQDRmqPj91zFDxXqX_1G10G4j70xIbpNTD_sPEv61OWN-GIIWk |
CitedBy_id | crossref_primary_10_1103_PhysRevB_109_054202 crossref_primary_10_1103_PhysRevResearch_6_043049 crossref_primary_10_1103_PhysRevB_110_014106 crossref_primary_10_1038_s41567_023_02357_0 crossref_primary_10_1103_PhysRevB_111_014303 crossref_primary_10_1103_PhysRevResearch_6_L042038 |
Cites_doi | 10.1103/PhysRevLett.110.190401 10.21468/SciPostPhys.12.1.027 10.1103/PhysRevB.105.024301 10.1103/PhysRevB.96.144301 10.1103/RevModPhys.80.1355 10.1103/PhysRevLett.109.106402 10.1038/nphys4020 10.1103/PhysRevLett.43.1954 10.1103/PhysRevB.106.054312 10.1103/PhysRevLett.101.255702 10.1103/PhysRevLett.65.3076 10.1103/PhysRevLett.126.106803 10.1103/PhysRevLett.120.160404 10.1103/PhysRevB.90.054303 10.1088/1361-6455/aabcdf 10.1103/PhysRevLett.123.025301 10.1038/s41567-021-01316-x 10.1103/PhysRevLett.69.3302 10.1038/nmat5017 10.1038/nature07071 10.1103/PhysRevLett.68.3826 10.1103/RevModPhys.91.021001 10.1016/j.physrep.2020.03.003 10.1103/PhysRevLett.129.186802 10.1103/PhysRevLett.87.066601 10.1103/PhysRevLett.114.160401 10.1103/PhysRevB.79.245122 10.1088/0034-4885/79/5/056001 10.1126/science.1183640 10.1080/00018732.2016.1198134 10.21468/SciPostPhys.4.5.025 10.1103/PhysRevLett.126.040603 10.1103/PhysRevLett.79.1959 10.1103/PhysRevLett.106.230403 10.1209/0295-5075/29/2/002 10.1088/0370-1298/68/10/304 10.1016/S0167-2789(98)00230-9 10.1103/PhysRevB.14.2239 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/s41567-023-02329-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 414 |
ExternalDocumentID | 2281612 10_1038_s41567_023_02329_4 |
GrantInformation_xml | – fundername: United States Department of Defense | U.S. Army (United States Army) grantid: W911NF1710323 funderid: 100006751 – fundername: Perimeter Institute for Theoretical Physics – fundername: United States Department of Defense | U.S. Air Force (United States Air Force) grantid: FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240 funderid: 100006831 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO grantid: MURI W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323; W911NF1710323 funderid: 100000183 – fundername: National Science Foundation (NSF) grantid: OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; OMA-2016245; MR1906325; DMR-1752417 funderid: 100000001 – fundername: Eddleman Center for Quantum Innovation, Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240; FA9550-20-1-0240 funderid: 100000181 – fundername: U.S. Department of Energy (DOE) funderid: 100000015 – fundername: Eddleman Center for Quantum Innovation – fundername: Alfred P. Sloan Foundation funderid: 100000879 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ C6C CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U AADEA AADWK AAEXX AAJMP AAYJO ABEEJ ABGIJ ABMYL ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AFNRJ AGEZK AGGBP AGPPL AHGBK AJDOV NYICJ OTOTI RSV |
ID | FETCH-LOGICAL-c390t-1fc4a4c05f490e128d0c742606faa3cbae20ad1fe9cbc5fd2c8d4e0f79a448ba3 |
IEDL.DBID | C6C |
ISSN | 1745-2473 |
IngestDate | Mon Mar 18 05:06:59 EDT 2024 Sat Aug 23 13:54:13 EDT 2025 Tue Jul 01 00:25:43 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Feb 21 02:38:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-1fc4a4c05f490e128d0c742606faa3cbae20ad1fe9cbc5fd2c8d4e0f79a448ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
ORCID | 0000-0001-9438-1067 0000-0003-2094-7894 0009-0009-0535-4194 0009-0006-8598-0141 0009-0007-6184-3991 0000-0001-9255-303X 0000-0002-2567-5587 0000-0002-4574-9491 0000-0002-6111-1375 0000000320947894 000000019255303X 0000000261111375 0009000905354194 0009000685980141 0000000225675587 0000000194381067 0000000245749491 0009000761843991 |
OpenAccessLink | https://www.nature.com/articles/s41567-023-02329-4 |
PQID | 2956984892 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_2281612 proquest_journals_2956984892 crossref_citationtrail_10_1038_s41567_023_02329_4 crossref_primary_10_1038_s41567_023_02329_4 springer_journals_10_1038_s41567_023_02329_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: France |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Roy, Mishra, Tanatar, Basu (CR32) 2021; 126 Roy, Khaymovich, Das, Moessner (CR30) 2018; 4 Amin, Nagarajan, Pandit, Bid (CR8) 2022; 129 Borgonovi, Shepelyansky (CR24) 1995; 29 Richardella (CR6) 2010; 327 Roati (CR14) 2008; 453 Evers, Mirlin (CR5) 2008; 80 Hofstadter (CR12) 1976; 14 Qin, Yin, Chen (CR26) 2014; 90 Basov, Averitt, Hsieh (CR39) 2017; 16 Azbel (CR13) 1979; 43 An (CR19) 2021; 126 Deng, Ray, Sinha, Shlyapnikov, Santos (CR37) 2019; 123 Hamma, Castelnovo, Chamon (CR38) 2009; 79 Artuso, Borgonovi, Guarneri, Rebuzzini, Casati (CR21) 1992; 69 Bordia, Lüschen, Schneider, Knap, Bloch (CR17) 2017; 13 Lüschen (CR18) 2018; 120 Harper (CR11) 1955; 68 Chabé (CR7) 2008; 101 Leboeuf, Kurchan, Feingold, Arovas (CR23) 1990; 65 Prosen, Satija, Shah (CR25) 2001; 87 Liu, Xia, Longhi, Sanchez-Palencia (CR35) 2022; 12 Mori, Ikeda, Kaminishi, Ueda (CR4) 2018; 51 Čadež, Mondaini, Sacramento (CR27) 2017; 96 Kraus, Lahini, Ringel, Verbin, Zilberberg (CR16) 2012; 109 D’Alessio, Kafri, Polkovnikov, Rigol (CR1) 2016; 65 Gadway, Reeves, Krinner, Schneble (CR20) 2013; 110 Artuso, Casati, Shepelyansky (CR22) 1992; 68 Weitenberg, Simonet (CR9) 2021; 17 Ketzmerick, Kruse, Geisel (CR31) 1999; 131 Gogolin, Eisert (CR3) 2016; 79 Lucioni (CR15) 2011; 106 Ketzmerick, Kruse, Kraut, Geisel (CR29) 1997; 79 Sarkar, Ghosh, Sen, Sengupta (CR36) 2022; 105 Abanin, Altman, Bloch, Serbyn (CR2) 2019; 91 Zhang, Zhou, Hu, Chen (CR28) 2022; 106 Agarwal, Gopalakrishnan, Knap, Müller, Demler (CR33) 2015; 114 Gopalakrishnan, Parameswaran (CR34) 2020; 862 Aubry, André (CR10) 1980; 3 C Gogolin (2329_CR3) 2016; 79 T Mori (2329_CR4) 2018; 51 L D’Alessio (2329_CR1) 2016; 65 K Agarwal (2329_CR33) 2015; 114 KR Amin (2329_CR8) 2022; 129 T Liu (2329_CR35) 2022; 12 R Artuso (2329_CR22) 1992; 68 P Bordia (2329_CR17) 2017; 13 M Sarkar (2329_CR36) 2022; 105 S Gopalakrishnan (2329_CR34) 2020; 862 D Basov (2329_CR39) 2017; 16 F Borgonovi (2329_CR24) 1995; 29 YE Kraus (2329_CR16) 2012; 109 S Roy (2329_CR32) 2021; 126 C Weitenberg (2329_CR9) 2021; 17 PG Harper (2329_CR11) 1955; 68 T Čadež (2329_CR27) 2017; 96 J Chabé (2329_CR7) 2008; 101 MY Azbel (2329_CR13) 1979; 43 A Richardella (2329_CR6) 2010; 327 B Gadway (2329_CR20) 2013; 110 P Leboeuf (2329_CR23) 1990; 65 P Qin (2329_CR26) 2014; 90 A Hamma (2329_CR38) 2009; 79 E Lucioni (2329_CR15) 2011; 106 S Roy (2329_CR30) 2018; 4 G Roati (2329_CR14) 2008; 453 R Artuso (2329_CR21) 1992; 69 R Ketzmerick (2329_CR29) 1997; 79 T Prosen (2329_CR25) 2001; 87 R Ketzmerick (2329_CR31) 1999; 131 S Aubry (2329_CR10) 1980; 3 X Deng (2329_CR37) 2019; 123 F Evers (2329_CR5) 2008; 80 DA Abanin (2329_CR2) 2019; 91 DR Hofstadter (2329_CR12) 1976; 14 Y Zhang (2329_CR28) 2022; 106 HP Lüschen (2329_CR18) 2018; 120 FA An (2329_CR19) 2021; 126 |
References_xml | – volume: 110 start-page: 190401 year: 2013 ident: CR20 article-title: Evidence for a quantum-to-classical transition in a pair of coupled quantum rotors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.190401 – volume: 12 start-page: 27 year: 2022 ident: CR35 article-title: Anomalous mobility edges in one-dimensional quasiperiodic models publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.027 – volume: 105 start-page: 024301 year: 2022 ident: CR36 article-title: Signatures of multifractality in a periodically driven interacting Aubry–André model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.024301 – volume: 96 start-page: 144301 year: 2017 ident: CR27 article-title: Dynamical localization and the effects of aperiodicity in Floquet systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.144301 – volume: 80 start-page: 1355 year: 2008 ident: CR5 article-title: Anderson transitions publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1355 – volume: 109 start-page: 106402 year: 2012 ident: CR16 article-title: Topological states and adiabatic pumping in quasicrystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.106402 – volume: 13 start-page: 460 year: 2017 end-page: 464 ident: CR17 article-title: Periodically driving a many-body localized quantum system publication-title: Nat. Phys. doi: 10.1038/nphys4020 – volume: 43 start-page: 1954 year: 1979 ident: CR13 article-title: Quantum particle in one-dimensional potentials with incommensurate periods publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.43.1954 – volume: 106 start-page: 054312 year: 2022 ident: CR28 article-title: Localization, multifractality, and many-body localization in periodically kicked quasiperiodic lattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.054312 – volume: 101 start-page: 255702 year: 2008 ident: CR7 article-title: Experimental observation of the Anderson metal–insulator transition with atomic matter waves publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.255702 – volume: 65 start-page: 3076 year: 1990 end-page: 3079 ident: CR23 article-title: Phase-space localization: topological aspects of quantum chaos publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.3076 – volume: 126 start-page: 106803 year: 2021 ident: CR32 article-title: Reentrant localization transition in a quasiperiodic chain publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.106803 – volume: 120 start-page: 160404 year: 2018 ident: CR18 article-title: Single-particle mobility edge in a one-dimensional quasiperiodic optical lattice publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.160404 – volume: 90 start-page: 054303 year: 2014 ident: CR26 article-title: Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.054303 – volume: 51 start-page: 112001 year: 2018 ident: CR4 article-title: Thermalization and prethermalization in isolated quantum systems: a theoretical overview publication-title: J. Phys. B doi: 10.1088/1361-6455/aabcdf – volume: 123 start-page: 025301 year: 2019 ident: CR37 article-title: One-dimensional quasicrystals with power-law hopping publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.025301 – volume: 17 start-page: 1342 year: 2021 end-page: 1348 ident: CR9 article-title: Tailoring quantum gases by Floquet engineering publication-title: Nat. Phys. doi: 10.1038/s41567-021-01316-x – volume: 69 start-page: 3302 year: 1992 ident: CR21 article-title: Phase diagram in the kicked Harper model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.3302 – volume: 16 start-page: 1077 year: 2017 end-page: 1088 ident: CR39 article-title: Towards properties on demand in quantum materials publication-title: Nat. Mater. doi: 10.1038/nmat5017 – volume: 453 start-page: 895 year: 2008 end-page: 898 ident: CR14 article-title: Anderson localization of a non-interacting Bose–Einstein condensate publication-title: Nature doi: 10.1038/nature07071 – volume: 68 start-page: 3826 year: 1992 ident: CR22 article-title: Fractal spectrum and anomalous diffusion in the kicked Harper model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3826 – volume: 91 start-page: 021001 year: 2019 ident: CR2 article-title: Colloquium: many-body localization, thermalization, and entanglement publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.021001 – volume: 862 start-page: 1 year: 2020 end-page: 62 ident: CR34 article-title: Dynamics and transport at the threshold of many-body localization publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.03.003 – volume: 129 start-page: 186802 year: 2022 ident: CR8 article-title: Multifractal conductance fluctuations in high-mobility graphene in the integer quantum Hall regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.186802 – volume: 87 start-page: 066601 year: 2001 ident: CR25 article-title: Dimer decimation and intricately nested localized-ballistic phases of a kicked Harper model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.066601 – volume: 114 start-page: 160401 year: 2015 ident: CR33 article-title: Anomalous diffusion and Griffiths effects near the many-body localization transition publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.160401 – volume: 3 start-page: 18 year: 1980 ident: CR10 article-title: Analyticity breaking and Anderson localization in incommensurate lattices publication-title: Ann. Isr. Phys. Soc – volume: 79 start-page: 245122 year: 2009 ident: CR38 article-title: Toric-boson model: toward a topological quantum memory at finite temperature publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.245122 – volume: 79 start-page: 056001 year: 2016 ident: CR3 article-title: Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/5/056001 – volume: 327 start-page: 665 year: 2010 end-page: 669 ident: CR6 article-title: Visualizing critical correlations near the metal–insulator transition in Ga Mn As publication-title: Science doi: 10.1126/science.1183640 – volume: 65 start-page: 239 year: 2016 end-page: 362 ident: CR1 article-title: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics publication-title: Adv. Phys. doi: 10.1080/00018732.2016.1198134 – volume: 4 start-page: 25 year: 2018 ident: CR30 article-title: Multifractality without fine-tuning in a Floquet quasiperiodic chain publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.4.5.025 – volume: 126 start-page: 040603 year: 2021 ident: CR19 article-title: Interactions and mobility edges: observing the generalized Aubry–André model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.040603 – volume: 79 start-page: 1959 year: 1997 ident: CR29 article-title: What determines the spreading of a wave packet? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1959 – volume: 106 start-page: 230403 year: 2011 ident: CR15 article-title: Observation of subdiffusion in a disordered interacting system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.230403 – volume: 29 start-page: 117 year: 1995 end-page: 122 ident: CR24 article-title: Spectral variety in the kicked Harper model publication-title: Europhys. Lett. doi: 10.1209/0295-5075/29/2/002 – volume: 68 start-page: 874 year: 1955 ident: CR11 article-title: Single band motion of conduction electrons in a uniform magnetic field publication-title: Proc. Phys. Soc. Sec. A doi: 10.1088/0370-1298/68/10/304 – volume: 131 start-page: 247 year: 1999 end-page: 253 ident: CR31 article-title: Efficient diagonalization of kicked quantum systems publication-title: Phys. D doi: 10.1016/S0167-2789(98)00230-9 – volume: 14 start-page: 2239 year: 1976 end-page: 2249 ident: CR12 article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.2239 – volume: 79 start-page: 245122 year: 2009 ident: 2329_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.245122 – volume: 65 start-page: 239 year: 2016 ident: 2329_CR1 publication-title: Adv. Phys. doi: 10.1080/00018732.2016.1198134 – volume: 106 start-page: 230403 year: 2011 ident: 2329_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.230403 – volume: 106 start-page: 054312 year: 2022 ident: 2329_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.054312 – volume: 14 start-page: 2239 year: 1976 ident: 2329_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.2239 – volume: 79 start-page: 1959 year: 1997 ident: 2329_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1959 – volume: 4 start-page: 25 year: 2018 ident: 2329_CR30 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.4.5.025 – volume: 65 start-page: 3076 year: 1990 ident: 2329_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.3076 – volume: 80 start-page: 1355 year: 2008 ident: 2329_CR5 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1355 – volume: 131 start-page: 247 year: 1999 ident: 2329_CR31 publication-title: Phys. D doi: 10.1016/S0167-2789(98)00230-9 – volume: 126 start-page: 106803 year: 2021 ident: 2329_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.106803 – volume: 453 start-page: 895 year: 2008 ident: 2329_CR14 publication-title: Nature doi: 10.1038/nature07071 – volume: 43 start-page: 1954 year: 1979 ident: 2329_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.43.1954 – volume: 105 start-page: 024301 year: 2022 ident: 2329_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.024301 – volume: 90 start-page: 054303 year: 2014 ident: 2329_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.054303 – volume: 16 start-page: 1077 year: 2017 ident: 2329_CR39 publication-title: Nat. Mater. doi: 10.1038/nmat5017 – volume: 129 start-page: 186802 year: 2022 ident: 2329_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.186802 – volume: 69 start-page: 3302 year: 1992 ident: 2329_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.3302 – volume: 79 start-page: 056001 year: 2016 ident: 2329_CR3 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/5/056001 – volume: 110 start-page: 190401 year: 2013 ident: 2329_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.190401 – volume: 101 start-page: 255702 year: 2008 ident: 2329_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.255702 – volume: 120 start-page: 160404 year: 2018 ident: 2329_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.160404 – volume: 96 start-page: 144301 year: 2017 ident: 2329_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.144301 – volume: 327 start-page: 665 year: 2010 ident: 2329_CR6 publication-title: Science doi: 10.1126/science.1183640 – volume: 126 start-page: 040603 year: 2021 ident: 2329_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.040603 – volume: 3 start-page: 18 year: 1980 ident: 2329_CR10 publication-title: Ann. Isr. Phys. Soc – volume: 68 start-page: 3826 year: 1992 ident: 2329_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3826 – volume: 109 start-page: 106402 year: 2012 ident: 2329_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.106402 – volume: 87 start-page: 066601 year: 2001 ident: 2329_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.066601 – volume: 123 start-page: 025301 year: 2019 ident: 2329_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.025301 – volume: 51 start-page: 112001 year: 2018 ident: 2329_CR4 publication-title: J. Phys. B doi: 10.1088/1361-6455/aabcdf – volume: 13 start-page: 460 year: 2017 ident: 2329_CR17 publication-title: Nat. Phys. doi: 10.1038/nphys4020 – volume: 17 start-page: 1342 year: 2021 ident: 2329_CR9 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01316-x – volume: 114 start-page: 160401 year: 2015 ident: 2329_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.160401 – volume: 91 start-page: 021001 year: 2019 ident: 2329_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.021001 – volume: 29 start-page: 117 year: 1995 ident: 2329_CR24 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/29/2/002 – volume: 12 start-page: 27 year: 2022 ident: 2329_CR35 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.1.027 – volume: 862 start-page: 1 year: 2020 ident: 2329_CR34 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.03.003 – volume: 68 start-page: 874 year: 1955 ident: 2329_CR11 publication-title: Proc. Phys. Soc. Sec. A doi: 10.1088/0370-1298/68/10/304 |
SSID | ssj0042613 |
Score | 2.5545044 |
Snippet | Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in... Abstract Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder,... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 409 |
SubjectTerms | 639/766/119/2795 639/766/36/1125 639/766/483/3926 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Eigenvectors Localization Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase diagrams Phases Physics Physics and Astronomy Quantum transport Quasicrystals Theoretical Transport properties |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwHA46EbyIT6yb0oM3DWvzaJOTiDiHoCcHu4U0SWE4997B_95f2tQxQQ89NW3hy-P7fv29ELrJ8hJWhU2x5inFLAUDpTCcYUm5BuujELbqGfn6lvUH7GXIh-GH2zKEVTZnYnVQ26nx_8i7BIS8FExIcj-bY981yntXQwuNXbSXAtP4dS56z81J7K0DWidEckxYTkPSTEJFd-kNlxwDY_mLSMy2iKk1hQ22JTp_-Ukr-ukdocOgG-OHeqKP0Y6bnKD9Kn7TLE9RF8z4Tz0GMz6u2ClkV8ajSazjjxFsVRvP1xoGL75AD47P0KD39P7Yx6EXAjZUJiucloZpZhJeMpk4IBWbmNxXl89KrakptCOJtmnppAGsS0uMsMwlZS4BclFoeo5ak-nEXaDYp6O6THNrHGghraX3pQpudea9sIJHKG2AUCYUCvf9KsaqclhToWrwFACnKvAUi9DtzzOzukzGv6PbHl8FJO8r1Rof0mNWihAB-pNEqNPArsKGWqrN9EforpmKze2_v3X5_9va6ICATKmjyjqotVqs3RXIjFVxXa2lb01Vypk priority: 102 providerName: ProQuest |
Title | Anomalous localization in a kicked quasicrystal |
URI | https://link.springer.com/article/10.1038/s41567-023-02329-4 https://www.proquest.com/docview/2956984892 https://www.osti.gov/biblio/2281612 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oRfAirlitZQ7eNDiTZZoc22IVwSKi4C1kkgyItS6tB_-9L5kZRVHBwzCHZLZvkrzv4y0BOMh7JY4KlxEjMkZ4hgKlsIITxYRB9VFIF_eMvBjnZzf8_FbcLgBtcmFi0H4saRmX6SY67HgWhEaPoIUJB1WEL8KSRF0XRvUwHzarb1AErEqCFITyHqsTZVImf7jHF2PUesRJ9YVofvONRpMzWoPVmism_ert1mHBTzdgOcZs2tkmHKN0fzATlO5JtEh1RmVyN01Mcn-H09Mlz68GO7-8IQecbMHN6OR6eEbq_Q-IZSqdk6y03HCbipKr1KMhcakNX5zmpTHMFsbT1Lis9MoivqWjVjru07KnEGZZGLYNrenj1O9AElJQfW6Esx75jzEq-E-lcCYPnlcp2pA1QGhbFwcPe1RMdHRSM6kr8DQCpyN4mrfh8OOap6o0xp-99wK-Gg17qE5rQxiPnWtKJXJO2oZOA7uuJ9FMU9RuSnKpsPmo-RWfzb8_a_d_3fdghSJVqSLLOtCav7z6faQa86ILi3J02oWl_mgwGON5cDK-vOrGEfcOaXHMMw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BogouqLRULFDIAU5gbeLYiXOoKlpAC_tQVYHEzXVsR0IsCZBdIf5Uf2PHeXQFEtw45BTHscbjmW88L4C9KM6QK0xAFA9CwgI0UFLNGUlCrtD6SIWpekaOxlH_kp1f8asF-NvmwriwylYmVoLaFNrdkfcoAvlEMJHQ73f3xHWNct7VtoVGzRYD-_SIJlv57ewY93ef0tOTi5990nQVIBrt-ykJMs0U0z7PWOJbFM_G17Gr0x5lSoU6VZb6ygSZTTSuOjNUC8Osn8UJLl6kKsR5F2GJuYzWDiz9OBn_-t3KfmePhHUKJieUxWGTpuOHolc6UykmqCPdQxPCnqnCToFH-hnMfeGZrRTe6UdYbZCqd1Sz1hos2PwTfKgiRnX5GXpHeXGrJsWs9Cp92ORzete5p7ybaxQOxrufKRz88IQIdLIOl-9Cpy_QyYvcboDnEmBtpLjRFtGXUonz3gpuVOT8voJ3IWgJIXVTmtx1yJjIykUeClkTTyLhZEU8ybpw8P-bu7owx5ujtxx9JcIKVxtXuyAiPZWUCkS8tAvbLdllc4RLOWe4Lhy2WzF__fq_Nt-ebReW-xejoRyejQdbsEIRJNUxbdvQmT7M7FcEOdN0p-EsD_68NzP_Az0fCy0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RrVr1UlEeYsuW5lBOYG3iR2IfqmoF3UJ5qIcicTOO7UiIbQJkVxV_rb-u4zxAVCo3DjnFceTxeOYbzwvgU5oVyBUuIUYkjPAEDZTcCk4UEwatj1y6pmfkyWl6cMa_n4vzJfjT58KEsMpeJjaC2lU23JGPKQJ5JblUdFx0YRE_9qdfrm9I6CAVPK19O42WRY783W803-rPh_u419uUTr_-3DsgXYcBYtHWn5OksNxwG4uCq9ijqHaxzULN9rQwhtnceBoblxReWVxB4aiVjvu4yBQuROaG4bwv4GXGMhUMPzn91muBYJmwNhlTEMoz1iXsxEyO62A0ZQS1ZXioIvyRUhxUeLgfAd5_fLSN6psuw9sOs0aTlsnewZIvV-BVEztq61UYT8rql5lVizpqNGOX2RldlpGJri5RTLjoZmFw8O0dYtHZGpw9C5XWYVBWpd-AKKTC-tQIZz3iMGNU8ONK4UwaPMBSDCHpCaFtV6Q89MqY6cZZzqRuiaeRcLohnuZD2Ln_5rot0fHk6M1AX40AI1TJtSGcyM41pRKxLx3CqCe77g5zrR9Ybwi7_VY8vP7_v94_PdtHeI0srI8PT4824Q1FtNQGt41gML9d-A-Idub5VsNWEVw8Nx__Bf5wDf0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalous+localization+in+a+kicked+quasicrystal&rft.jtitle=Nature+physics&rft.au=Shimasaki%2C+Toshihiko&rft.au=Prichard%2C+Max&rft.au=Kondakci%2C+H.+Esat&rft.au=Pagett%2C+Jared+E.&rft.date=2024-03-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=20&rft.issue=3&rft.spage=409&rft.epage=414&rft_id=info:doi/10.1038%2Fs41567-023-02329-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41567_023_02329_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |