Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization
Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of th...
Saved in:
Published in | Genes & development Vol. 28; no. 18; pp. 2027 - 2040 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
15.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells. |
---|---|
AbstractList | Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells. Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine–DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32 -null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32 , Nlp , and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells. Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Here, Emelyanov et al. identify Drosophila protamine chaperones that mediate the dissociation of protamine–DNA complexes. TAP/p32 is required for the removal of Drosophila protamine B, whereas NAP-1, NLP, and Nph share roles in removal of protamine A. Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine–DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32 -null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32 , Nlp , and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells. |
Author | Rabbani, Joshua Mehta, Monika Emelyanov, Alexander V Vershilova, Elena Fyodorov, Dmitry V Keogh, Michael C |
Author_xml | – sequence: 1 givenname: Alexander V surname: Emelyanov fullname: Emelyanov, Alexander V organization: Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA – sequence: 2 givenname: Joshua surname: Rabbani fullname: Rabbani, Joshua organization: Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA – sequence: 3 givenname: Monika surname: Mehta fullname: Mehta, Monika organization: Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA – sequence: 4 givenname: Elena surname: Vershilova fullname: Vershilova, Elena organization: Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA – sequence: 5 givenname: Michael C surname: Keogh fullname: Keogh, Michael C organization: Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA – sequence: 6 givenname: Dmitry V surname: Fyodorov fullname: Fyodorov, Dmitry V email: dmitry.fyodorov@einstein.yu.edu organization: Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA dmitry.fyodorov@einstein.yu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25228646$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUU1r3DAUFCWl2SS99lh07CHeSNaH7UthSdMPWNI9JGch2c9rFVtyJbml-R39wdWyaUhA8DTMMPN4c4ZOnHeA0DtK1pQSerXX3brktahZxvwVWlHBm0LwqjpBK1I3pGiYbE7RWYw_CCGSSPkGnZaiLGvJ5Qr9_RR89PNgR43vNrurmZXYRqxx6wPgwcaU83A76BnC4ZcGnTLnM9QJIv5t04BvN7uCXuLb7e4Sa9dht7QjZFMfJ-twfjHLp-wS_KRTxgEm38Fo3R53SziMHkKyo33ItHcX6HWvxwhvH-c5uv98c3f9tdh-__LterMtWtaQVFAhTG8E9IYTEKJsqNTMQNtCyeoajK6gqwynQnJjmsaU1FQgGi6ZEbyXlJ2jj0ffeTETdC24FPSo5mAnHf4or616yTg7qL3_pTitWD50NvjwaBD8zwViUpONLYyjduCXqHI0I6KuaJ2l66O0zQePAfqnGErUoUqVq1THKjM-eL9_vtyT_H937B_tnJ8K |
CitedBy_id | crossref_primary_10_1186_s13578_022_00861_z crossref_primary_10_3389_fcell_2022_767773 crossref_primary_10_1095_biolreprod_114_125435 crossref_primary_10_1371_journal_pbio_3000538 crossref_primary_10_1002_pmic_201400613 crossref_primary_10_1016_j_ibmb_2023_103931 crossref_primary_10_7554_eLife_81828 crossref_primary_10_1146_annurev_micro_041020_024616 crossref_primary_10_1016_j_gde_2015_06_003 crossref_primary_10_1016_j_molcel_2019_06_023 crossref_primary_10_1093_nar_gky988 crossref_primary_10_7554_eLife_61989 crossref_primary_10_1371_journal_pbio_3002136 crossref_primary_10_3389_fmed_2018_00066 crossref_primary_10_1371_journal_pgen_1009744 crossref_primary_10_1016_j_gde_2023_102100 crossref_primary_10_3390_genes11080852 crossref_primary_10_1016_j_jbc_2023_105212 crossref_primary_10_1074_jbc_M116_730705 crossref_primary_10_7554_eLife_50026 crossref_primary_10_1098_rsob_150076 crossref_primary_10_1002_mrd_22517 crossref_primary_10_1101_gad_290916_116 |
Cites_doi | 10.1074/jbc.271.17.10066 10.1073/pnas.96.7.3572 10.1073/pnas.0604046103 10.1139/y05-042 10.1016/0092-8674(91)90089-H 10.1126/science.1081813 10.1021/pr050477f 10.1371/journal.pbio.1001192 10.1073/pnas.93.19.10423 10.1093/nar/23.14.2715 10.1101/gad.180604.111 10.1016/j.devcel.2011.12.021 10.1084/jem.179.6.1809 10.1038/nrm1177 10.1128/MCB.19.10.6940 10.1083/jcb.93.2.298 10.1021/bi060983y 10.1093/nar/gks162 10.1074/jbc.272.39.24363 10.1371/journal.pgen.1003285 10.1095/biolreprod44.4.569 10.1016/S0959-440X(05)80116-2 10.1016/S0092-8674(00)80321-9 10.1101/gad.4.7.1158 10.1073/pnas.1008850107 10.1016/j.cell.2010.05.019 10.1126/science.1211878 10.1083/jcb.201107053 10.1038/46466 10.1007/978-1-4612-3490-6 10.1016/S0021-9258(17)37005-9 10.1099/0022-1317-79-7-1677 10.1128/jvi.69.5.3007-3016.1995 10.1006/viro.1997.8739 10.1038/41587 10.1016/S0959-437X(00)00170-2 10.1016/j.bbagrm.2013.08.004 10.1016/j.cell.2011.08.047 10.1101/gad.13.12.1529 10.1093/emboj/18.4.1014 10.1038/nsmb884 10.1016/S0969-2126(03)00007-8 10.3390/ijms12106544 10.1006/bbrc.2001.4473 10.1016/0092-8674(87)90587-3 10.1093/gerona/60.8.953 10.1002/jez.1402470207 10.1126/science.1234654 10.1371/journal.pgen.0030182 10.1101/gad.1139604 10.1038/nature08162 10.1128/MCB.25.14.6165-6177.2005 10.1074/jbc.C000093200 10.1038/38444 10.1530/rep.0.1250625 10.1126/science.7801129 10.1530/REP-09-0281 10.7554/eLife.00863 10.1016/S0092-8674(03)01064-X 10.1126/science.282.5395.1900 10.1038/nature04059 10.1016/0092-8674(92)90288-N 10.1016/S0959-440X(03)00002-2 10.1093/genetics/153.1.179 10.1016/S0076-6879(03)71037-4 10.1007/s004120100161 10.1073/pnas.94.15.7756 10.1128/jb.176.22.7126-7128.1994 10.1016/0012-1606(87)90180-1 10.1534/g3.111.001586 10.1074/jbc.271.40.25041 10.1002/j.1460-2075.1995.tb07160.x 10.1128/MCB.16.6.3112 10.1074/jbc.270.24.14659 10.1534/genetics.108.090563 10.1083/jcb.200211113 10.1016/S1097-2765(02)00526-9 10.1128/JVI.80.7.3189-3204.2006 10.1002/0471142727.mb2107s58 10.1074/jbc.M109.064790 10.1126/science.1145339 10.1016/S1067-5701(98)80005-3 10.1016/S1097-2765(01)00354-9 10.1186/gb-2007-8-9-227 10.1016/S0378-1119(96)00660-9 |
ContentType | Journal Article |
Copyright | 2014 Emelyanov et al.; Published by Cold Spring Harbor Laboratory Press. 2014 |
Copyright_xml | – notice: 2014 Emelyanov et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2014 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1101/gad.248583.114 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Emelyanov et al |
EISSN | 1549-5477 |
EndPage | 2040 |
ExternalDocumentID | 10_1101_gad_248583_114 25228646 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: ES019966 – fundername: NCI NIH HHS grantid: CA013330 – fundername: NIEHS NIH HHS grantid: R21 ES019966 – fundername: NCI NIH HHS grantid: P30 CA013330 – fundername: NIGMS NIH HHS grantid: R01 GM074233 – fundername: NIGMS NIH HHS grantid: GM074233 |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S ABCQX ABDIX ACGFO ACNCT ADBBV ADIYS AECCQ AENEX AFFNX AFOSN ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A NPM OK1 P2P R.V RCX RHF RHI RPM SJN TAE TN5 TR2 UHB VQA W8F WH7 WOQ X7M XJT XSW YBU YHG YKV YSK AAYXX CITATION 7X8 5PM AETEA |
ID | FETCH-LOGICAL-c390t-155bfb5efb40e552916a3becce2388eba7ed7b41564bb99b21b7e59463b54f613 |
IEDL.DBID | RPM |
ISSN | 0890-9369 |
IngestDate | Tue Sep 17 21:02:18 EDT 2024 Sat Oct 26 06:06:15 EDT 2024 Thu Sep 26 16:49:02 EDT 2024 Sat Nov 02 11:55:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | histone chaperones sperm chromatin remodeling protamines male pronucleus fertilization chromatin assembly |
Language | English |
License | 2014 Emelyanov et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c390t-155bfb5efb40e552916a3becce2388eba7ed7b41564bb99b21b7e59463b54f613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Enzo Biochem, Incorporated, 527 Madison Avenue, New York, NY 10022, USA. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173154/ |
PMID | 25228646 |
PQID | 1563058718 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4173154 proquest_miscellaneous_1563058718 crossref_primary_10_1101_gad_248583_114 pubmed_primary_25228646 |
PublicationCentury | 2000 |
PublicationDate | 2014-Sep-15 2014-09-15 20140915 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-Sep-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2014 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111619323273000_28.18.2027.45 Matthews (2021111619323273000_28.18.2027.56) 1998; 79 2021111619323273000_28.18.2027.46 2021111619323273000_28.18.2027.43 2021111619323273000_28.18.2027.44 2021111619323273000_28.18.2027.49 Bonnefoy (2021111619323273000_28.18.2027.10) 2007; 3 2021111619323273000_28.18.2027.47 2021111619323273000_28.18.2027.48 2021111619323273000_28.18.2027.81 2021111619323273000_28.18.2027.82 2021111619323273000_28.18.2027.80 2021111619323273000_28.18.2027.85 2021111619323273000_28.18.2027.42 2021111619323273000_28.18.2027.83 2021111619323273000_28.18.2027.84 Balasundaram (2021111619323273000_28.18.2027.4) 1994; 176 Katagiri (2021111619323273000_28.18.2027.40) 1994; 38 2021111619323273000_28.18.2027.12 2021111619323273000_28.18.2027.13 2021111619323273000_28.18.2027.57 2021111619323273000_28.18.2027.2 2021111619323273000_28.18.2027.54 2021111619323273000_28.18.2027.1 2021111619323273000_28.18.2027.11 2021111619323273000_28.18.2027.8 2021111619323273000_28.18.2027.16 2021111619323273000_28.18.2027.7 2021111619323273000_28.18.2027.17 2021111619323273000_28.18.2027.6 2021111619323273000_28.18.2027.58 2021111619323273000_28.18.2027.5 2021111619323273000_28.18.2027.15 2021111619323273000_28.18.2027.59 2021111619323273000_28.18.2027.52 2021111619323273000_28.18.2027.53 Ito (2021111619323273000_28.18.2027.33) 1996; 16 2021111619323273000_28.18.2027.50 Crevel (2021111619323273000_28.18.2027.14) 1995; 14 2021111619323273000_28.18.2027.51 Kawasaki (2021111619323273000_28.18.2027.41) 1994; 269 2021111619323273000_28.18.2027.23 2021111619323273000_28.18.2027.67 2021111619323273000_28.18.2027.24 2021111619323273000_28.18.2027.68 2021111619323273000_28.18.2027.21 2021111619323273000_28.18.2027.65 2021111619323273000_28.18.2027.22 2021111619323273000_28.18.2027.66 2021111619323273000_28.18.2027.27 2021111619323273000_28.18.2027.28 2021111619323273000_28.18.2027.25 2021111619323273000_28.18.2027.69 2021111619323273000_28.18.2027.26 2021111619323273000_28.18.2027.60 2021111619323273000_28.18.2027.63 2021111619323273000_28.18.2027.20 2021111619323273000_28.18.2027.64 Ashburner (2021111619323273000_28.18.2027.3) 1999; 153 2021111619323273000_28.18.2027.61 2021111619323273000_28.18.2027.62 Matsumoto (2021111619323273000_28.18.2027.55) 1999; 19 2021111619323273000_28.18.2027.18 2021111619323273000_28.18.2027.9 2021111619323273000_28.18.2027.19 2021111619323273000_28.18.2027.34 2021111619323273000_28.18.2027.78 2021111619323273000_28.18.2027.35 2021111619323273000_28.18.2027.79 2021111619323273000_28.18.2027.32 2021111619323273000_28.18.2027.76 2021111619323273000_28.18.2027.77 2021111619323273000_28.18.2027.38 2021111619323273000_28.18.2027.39 2021111619323273000_28.18.2027.36 2021111619323273000_28.18.2027.37 2021111619323273000_28.18.2027.70 2021111619323273000_28.18.2027.71 2021111619323273000_28.18.2027.30 2021111619323273000_28.18.2027.74 2021111619323273000_28.18.2027.31 2021111619323273000_28.18.2027.75 2021111619323273000_28.18.2027.72 2021111619323273000_28.18.2027.73 Yu (2021111619323273000_28.18.2027.86) 1995; 69 2021111619323273000_28.18.2027.29 |
References_xml | – ident: 2021111619323273000_28.18.2027.78 doi: 10.1074/jbc.271.17.10066 – ident: 2021111619323273000_28.18.2027.38 doi: 10.1073/pnas.96.7.3572 – ident: 2021111619323273000_28.18.2027.53 doi: 10.1073/pnas.0604046103 – ident: 2021111619323273000_28.18.2027.29 doi: 10.1139/y05-042 – ident: 2021111619323273000_28.18.2027.69 doi: 10.1016/0092-8674(91)90089-H – ident: 2021111619323273000_28.18.2027.13 doi: 10.1126/science.1081813 – ident: 2021111619323273000_28.18.2027.73 doi: 10.1021/pr050477f – ident: 2021111619323273000_28.18.2027.74 doi: 10.1371/journal.pbio.1001192 – ident: 2021111619323273000_28.18.2027.12 doi: 10.1073/pnas.93.19.10423 – ident: 2021111619323273000_28.18.2027.18 doi: 10.1093/nar/23.14.2715 – ident: 2021111619323273000_28.18.2027.20 doi: 10.1101/gad.180604.111 – ident: 2021111619323273000_28.18.2027.15 doi: 10.1016/j.devcel.2011.12.021 – ident: 2021111619323273000_28.18.2027.24 doi: 10.1084/jem.179.6.1809 – ident: 2021111619323273000_28.18.2027.30 doi: 10.1038/nrm1177 – volume: 19 start-page: 6940 year: 1999 ident: 2021111619323273000_28.18.2027.55 article-title: Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins publication-title: Mol Cell Biol doi: 10.1128/MCB.19.10.6940 contributor: fullname: Matsumoto – ident: 2021111619323273000_28.18.2027.5 doi: 10.1083/jcb.93.2.298 – ident: 2021111619323273000_28.18.2027.75 doi: 10.1021/bi060983y – ident: 2021111619323273000_28.18.2027.64 doi: 10.1093/nar/gks162 – ident: 2021111619323273000_28.18.2027.61 doi: 10.1074/jbc.272.39.24363 – ident: 2021111619323273000_28.18.2027.65 doi: 10.1371/journal.pgen.1003285 – ident: 2021111619323273000_28.18.2027.83 doi: 10.1095/biolreprod44.4.569 – ident: 2021111619323273000_28.18.2027.25 doi: 10.1016/S0959-440X(05)80116-2 – ident: 2021111619323273000_28.18.2027.35 doi: 10.1016/S0092-8674(00)80321-9 – ident: 2021111619323273000_28.18.2027.43 doi: 10.1101/gad.4.7.1158 – ident: 2021111619323273000_28.18.2027.46 doi: 10.1073/pnas.1008850107 – ident: 2021111619323273000_28.18.2027.8 doi: 10.1016/j.cell.2010.05.019 – ident: 2021111619323273000_28.18.2027.2 doi: 10.1126/science.1211878 – ident: 2021111619323273000_28.18.2027.31 doi: 10.1083/jcb.201107053 – ident: 2021111619323273000_28.18.2027.76 doi: 10.1038/46466 – ident: 2021111619323273000_28.18.2027.80 doi: 10.1007/978-1-4612-3490-6 – volume: 269 start-page: 10169 year: 1994 ident: 2021111619323273000_28.18.2027.41 article-title: Chromatin decondensation in Drosophila embryo extracts publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)37005-9 contributor: fullname: Kawasaki – volume: 79 start-page: 1677 year: 1998 ident: 2021111619323273000_28.18.2027.56 article-title: Adenovirus core protein V interacts with p32—a protein which is associated with both the mitochondria and the nucleus publication-title: J Gen Virol doi: 10.1099/0022-1317-79-7-1677 contributor: fullname: Matthews – volume: 69 start-page: 3007 year: 1995 ident: 2021111619323273000_28.18.2027.86 article-title: Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain publication-title: J Virol doi: 10.1128/jvi.69.5.3007-3016.1995 contributor: fullname: Yu – ident: 2021111619323273000_28.18.2027.82 doi: 10.1006/viro.1997.8739 – ident: 2021111619323273000_28.18.2027.81 doi: 10.1038/41587 – ident: 2021111619323273000_28.18.2027.58 doi: 10.1016/S0959-437X(00)00170-2 – ident: 2021111619323273000_28.18.2027.71 doi: 10.1016/j.bbagrm.2013.08.004 – ident: 2021111619323273000_28.18.2027.26 doi: 10.1016/j.cell.2011.08.047 – ident: 2021111619323273000_28.18.2027.36 doi: 10.1101/gad.13.12.1529 – ident: 2021111619323273000_28.18.2027.67 doi: 10.1093/emboj/18.4.1014 – ident: 2021111619323273000_28.18.2027.51 doi: 10.1038/nsmb884 – ident: 2021111619323273000_28.18.2027.62 doi: 10.1016/S0969-2126(03)00007-8 – ident: 2021111619323273000_28.18.2027.70 doi: 10.3390/ijms12106544 – ident: 2021111619323273000_28.18.2027.11 doi: 10.1006/bbrc.2001.4473 – ident: 2021111619323273000_28.18.2027.16 doi: 10.1016/0092-8674(87)90587-3 – ident: 2021111619323273000_28.18.2027.63 doi: 10.1093/gerona/60.8.953 – ident: 2021111619323273000_28.18.2027.85 doi: 10.1002/jez.1402470207 – ident: 2021111619323273000_28.18.2027.49 doi: 10.1126/science.1234654 – volume: 3 start-page: 1991 year: 2007 ident: 2021111619323273000_28.18.2027.10 article-title: The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030182 contributor: fullname: Bonnefoy – ident: 2021111619323273000_28.18.2027.23 doi: 10.1101/gad.1139604 – ident: 2021111619323273000_28.18.2027.28 doi: 10.1038/nature08162 – ident: 2021111619323273000_28.18.2027.37 doi: 10.1128/MCB.25.14.6165-6177.2005 – ident: 2021111619323273000_28.18.2027.45 doi: 10.1074/jbc.C000093200 – volume: 38 start-page: 209 year: 1994 ident: 2021111619323273000_28.18.2027.40 article-title: Remodeling of sperm chromatin induced in egg extracts of amphibians publication-title: Int J Dev Biol contributor: fullname: Katagiri – ident: 2021111619323273000_28.18.2027.50 doi: 10.1038/38444 – ident: 2021111619323273000_28.18.2027.57 doi: 10.1530/rep.0.1250625 – ident: 2021111619323273000_28.18.2027.66 doi: 10.1126/science.7801129 – ident: 2021111619323273000_28.18.2027.60 doi: 10.1530/REP-09-0281 – ident: 2021111619323273000_28.18.2027.79 doi: 10.7554/eLife.00863 – ident: 2021111619323273000_28.18.2027.77 doi: 10.1016/S0092-8674(03)01064-X – ident: 2021111619323273000_28.18.2027.44 doi: 10.1126/science.282.5395.1900 – ident: 2021111619323273000_28.18.2027.48 doi: 10.1038/nature04059 – ident: 2021111619323273000_28.18.2027.68 doi: 10.1016/0092-8674(92)90288-N – ident: 2021111619323273000_28.18.2027.1 doi: 10.1016/S0959-440X(03)00002-2 – volume: 153 start-page: 179 year: 1999 ident: 2021111619323273000_28.18.2027.3 article-title: An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region publication-title: Genetics doi: 10.1093/genetics/153.1.179 contributor: fullname: Ashburner – ident: 2021111619323273000_28.18.2027.21 doi: 10.1016/S0076-6879(03)71037-4 – ident: 2021111619323273000_28.18.2027.47 doi: 10.1007/s004120100161 – ident: 2021111619323273000_28.18.2027.54 doi: 10.1073/pnas.94.15.7756 – volume: 176 start-page: 7126 year: 1994 ident: 2021111619323273000_28.18.2027.4 article-title: SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae publication-title: J Bacteriol doi: 10.1128/jb.176.22.7126-7128.1994 contributor: fullname: Balasundaram – ident: 2021111619323273000_28.18.2027.7 doi: 10.1016/0012-1606(87)90180-1 – ident: 2021111619323273000_28.18.2027.52 doi: 10.1534/g3.111.001586 – ident: 2021111619323273000_28.18.2027.34 doi: 10.1074/jbc.271.40.25041 – volume: 14 start-page: 1711 year: 1995 ident: 2021111619323273000_28.18.2027.14 article-title: DF 31, a sperm decondensation factor from Drosophila melanogaster: purification and characterization publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb07160.x contributor: fullname: Crevel – volume: 16 start-page: 3112 year: 1996 ident: 2021111619323273000_28.18.2027.33 article-title: Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays publication-title: Mol Cell Biol doi: 10.1128/MCB.16.6.3112 contributor: fullname: Ito – ident: 2021111619323273000_28.18.2027.39 doi: 10.1074/jbc.270.24.14659 – ident: 2021111619323273000_28.18.2027.32 doi: 10.1534/genetics.108.090563 – ident: 2021111619323273000_28.18.2027.59 doi: 10.1083/jcb.200211113 – ident: 2021111619323273000_28.18.2027.72 doi: 10.1016/S1097-2765(02)00526-9 – ident: 2021111619323273000_28.18.2027.9 doi: 10.1128/JVI.80.7.3189-3204.2006 – ident: 2021111619323273000_28.18.2027.22 doi: 10.1002/0471142727.mb2107s58 – ident: 2021111619323273000_28.18.2027.19 doi: 10.1074/jbc.M109.064790 – ident: 2021111619323273000_28.18.2027.42 doi: 10.1126/science.1145339 – ident: 2021111619323273000_28.18.2027.84 doi: 10.1016/S1067-5701(98)80005-3 – ident: 2021111619323273000_28.18.2027.17 doi: 10.1016/S1097-2765(01)00354-9 – ident: 2021111619323273000_28.18.2027.6 doi: 10.1186/gb-2007-8-9-227 – ident: 2021111619323273000_28.18.2027.27 doi: 10.1016/S0378-1119(96)00660-9 |
SSID | ssj0006066 |
Score | 2.3302002 |
Snippet | Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2027 |
SubjectTerms | Animals Chromatin Assembly and Disassembly - physiology Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Female Fertilization - physiology Histone Chaperones - metabolism Male Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Neuropeptides - genetics Neuropeptides - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleophosmin Nucleoplasmins - genetics Nucleoplasmins - metabolism Nucleosome Assembly Protein 1 - genetics Nucleosome Assembly Protein 1 - metabolism Nucleosomes - metabolism Research Paper Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Spermatozoa - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
Title | Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25228646 https://search.proquest.com/docview/1563058718 https://pubmed.ncbi.nlm.nih.gov/PMC4173154 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED6awmAvY-t-pe2KBoO91LEVS7b8GLqWsq0hgxb6ZiRFXgyJEhL3Yf9H_-DeyXZpt7eBHwSyhe3v8H1n3X0H8EXqzPKq3RosIiHGDkcVj9AV2kTrROSGdnSvptnljfh-K2_3QPa1MCFp35p65Jerka8XIbdys7JxnycWz67OBM9TdP3xAAZooH2I3n1-iZEH6lgkEXWr65Qa0fTi33o-IgkvlZJELukAI_tQGZHfp07pH6b5d8LkEw908RpeddSRTdpbfAN7zh_Ai7aZ5J-3cP9tG3oS1EvNriezeJOOWb1jmpFQJQu6wt4xu9AkDY6jZqEbnFtvSFbZ7Rj9kWXTySzip2z6c3bKtJ8zT3LHuOh6t6o9w4OExVe4ynZNVNezrQu9dNABsrbikVWUqb3syjvfwc3F-fXZZdT1XIhsWiRNhPTCVEa6yojESTlG9qhTwtmhb1fO6NzNc0NRnzCmKMyYm9zJQmSpkaJCbvAe9j0-xEdgyG1Sba3SWZIKldkidyLXQtmCKy14NYSv_UsvN620RhlCkoSXiFTZIkVl00P43GNSovXTlob2bn23KznJm0kM-tQQPrQYPa7VgzuE_Bl6jyeQsvbzGTS4oLDdGdjhf195BC-RWQlKLOHyGPab7Z37hOylMScw-PFLnQSbfQBZ7fD9 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7SlNJeSt91Hu0WCr1Eltba1eNo0ga3tY0PDuQmdterWGCvja0c-j_ygzuzkkLS3gI6LEhaJH0jzTfamW8AvkqVGF42S4N5IMTA4qjkAbpCEykViVTTiu5kmowuxa8reXUAsquF8Un7Rld9t1r3XbX0uZXbtQm7PLFwNjkXPI3R9YdP4Cm-r5HogvT2A0yc3JPHPAqoX12r1YjGF16rRZ9EvLKYRHJJCRj5R5YQ_b3vlv7jmv-mTN7zQRev4GVLHtmwucjXcGDdG3jWtJP88xZuv-98V4Jqpdh8OAu38YBVe6YYSVUyryzsLDNLReLgOKqXqsZ9my0JK9s9o3-ybDqcBfyMTcezM6bcgjkSPMZJN_t15RhuJC2-xll2GyK7ju2s76aDLpA1NY-spFztVVvg-Q4uL37Mz0dB23UhMHEe1QESDF1qaUstIivlAPmjiglpi949s1qldpFqivuE1nmuB1ynVuYiibUUJbKD93Do8CY-AkN2EytjMpVEscgSk6dWpEpkJueZErzswbfuoRfbRlyj8EFJxAtEqmiQosLpHnzpMCnQ_mlRQzm7udkXnATOJIZ9WQ8-NBjdzdWB24P0AXp3B5C29sM9aHJeY7s1saNHn_kZno_mk3Ex_jn9fQwvkGcJSjPh8gQO692NPUUuU-tP3nL_An9_814 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSksvpe9u-ppCoZd4ba0lP45L0iVtk8WHBHIzklbOGna1Ztc59H_kB3dGtsOmvRV8EMgWtr-R5xtr9A1jX6VKDK-6pcE8EGJisVXxAF2hiZSKRKppRfd8npxeip9X8mqv1JdP2je6HrvVeuzqpc-tbNYmHPLEwuL8WPA0RtcfNosqfMge4ZyNkiFQ7z_CxMs9gcyjgGrW9XqNaIDhtVqMScgri0kol9SAkYNkCVHgfdf0D9_8O21yzw_NnrNnPYGEaXejL9gD616yx11Jyd-v2O3J1lcmqFcKLqZF2MQTqHeggOQqwasLOwtmqUggHFvtUrXYt2lIXNnugP7LwnxaBPwI5mfFESi3AEeixzjoZreuHeBB8uJrHGW7IcLrYGt9RR10g9Dte4SK8rVX_SbP1-xy9v3i-DToKy8EJs6jNkCSoSstbaVFZKWcIIdUMaFt0cNnVqvULlJNsZ_QOs_1hOvUylwksZaiQobwhh04fIh3DJDhxMqYTCVRLLLE5KkVqRKZyXmmBK9G7Nvw0sumE9gofWAS8RKRKjukaPP0iH0ZMClxDtDChnJ2c7MrOYmcSQz9shF722F0N9YA7oil99C7O4H0te_3oNl5ne3ezA7_-8rP7ElxMivPfsx_vWdPkWoJyjTh8gM7aLc39iPSmVZ_8ob7B_9y9HE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drosophila+TAP%2Fp32+is+a+core+histone+chaperone+that+cooperates+with+NAP-1%2C+NLP%2C+and+nucleophosmin+in+sperm+chromatin+remodeling+during+fertilization&rft.jtitle=Genes+%26+development&rft.au=Emelyanov%2C+Alexander+V&rft.au=Rabbani%2C+Joshua&rft.au=Mehta%2C+Monika&rft.au=Vershilova%2C+Elena&rft.date=2014-09-15&rft.eissn=1549-5477&rft.volume=28&rft.issue=18&rft.spage=2027&rft_id=info:doi/10.1101%2Fgad.248583.114&rft_id=info%3Apmid%2F25228646&rft.externalDocID=25228646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |