Numerical considerations for advection‐diffusion problems in cardiovascular hemodynamics
Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element comput...
Saved in:
Published in | International journal for numerical methods in biomedical engineering Vol. 36; no. 9; pp. e3378 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows.
In this work we present a stabilized finite element framework to study scalar mass transport in realistic cardiovascular geometries. Our framework includes the following key features: (a) a backflow stabilization technique, (b) a “consistent flux” boundary condition that minimally disturbs the local physics of the problem, and (c) a front‐capturing stabilization technique to regularize the solution near the wavefront in the case high Péclet numbers. We illustrate the efficacy of these features in both idealized and patient‐specific geometries.
Novelty Statement
The presented study is to the best of our knowledge the first implementation of backflow stabilization for 3D scalar mass transport problems. In addition, this paper is the first analysis of the “consistent flux” boundary condition in 3D patient‐specific geometries. The novelty of our study is the implementation of backflow stabilization, the consistent flux boundary condition, and discontinuity‐capturing stabilization in a unified scalar mass transport framework that can be applied to study the cardiovascular system. |
---|---|
AbstractList | Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows. Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows. In this work we present a stabilized finite element framework to study scalar mass transport in realistic cardiovascular geometries. Our framework includes the following key features: (a) a backflow stabilization technique, (b) a “consistent flux” boundary condition that minimally disturbs the local physics of the problem, and (c) a front‐capturing stabilization technique to regularize the solution near the wavefront in the case high Péclet numbers. We illustrate the efficacy of these features in both idealized and patient‐specific geometries. Novelty Statement The presented study is to the best of our knowledge the first implementation of backflow stabilization for 3D scalar mass transport problems. In addition, this paper is the first analysis of the “consistent flux” boundary condition in 3D patient‐specific geometries. The novelty of our study is the implementation of backflow stabilization, the consistent flux boundary condition, and discontinuity‐capturing stabilization in a unified scalar mass transport framework that can be applied to study the cardiovascular system. Abstract Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows. |
Author | Figueroa, C. Alberto Nama, Nitesh Lynch, Sabrina R. Arthurs, Christopher J. Xu, Zelu Sahni, Onkar |
AuthorAffiliation | 2 Department of Surgery, University of Michigan, Ann Arbor, Michigan 1 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 3 Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, New York, New York 4 School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK |
AuthorAffiliation_xml | – name: 4 School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK – name: 1 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan – name: 3 Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, New York, New York – name: 2 Department of Surgery, University of Michigan, Ann Arbor, Michigan |
Author_xml | – sequence: 1 givenname: Sabrina R. orcidid: 0000-0002-5220-8861 surname: Lynch fullname: Lynch, Sabrina R. email: srlynch@umich.edu organization: University of Michigan – sequence: 2 givenname: Nitesh surname: Nama fullname: Nama, Nitesh organization: University of Michigan – sequence: 3 givenname: Zelu surname: Xu fullname: Xu, Zelu organization: Rensselaer Polytechnic Institute – sequence: 4 givenname: Christopher J. surname: Arthurs fullname: Arthurs, Christopher J. organization: King's College London – sequence: 5 givenname: Onkar surname: Sahni fullname: Sahni, Onkar organization: Rensselaer Polytechnic Institute – sequence: 6 givenname: C. Alberto surname: Figueroa fullname: Figueroa, C. Alberto organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32573092$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1O3DAYRS0EAkpH4glQpG66CfgnseNVVY0KReJnA5tuLMf-AkaJPdiTqWbXR-AZeZJ6yjCCSnjja_vo6LPuJ7TtgweEDgk-JhjTE-OHY8ZEs4X2Ka5wKWQltjeZyT00SekB50WllILtoj1Ga8GwpPvo19U4QHRG94UJPjkLUc9dTkUXYqHtAszq-PznybquG1POxSyGtochFc4XRkfrwkInM_Y6FvcwBLv0enAmfUY7ne4TTNb7Abo9_XEz_VleXJ-dT79flIZJ3JSWyw6sAEEsNnUruTbWcNnQhkBnOAgAiysGTV1bI2vM82XbWKw1rwRrKTtA3168s7EdwBrw86h7NYtu0HGpgnbq_Yt39-ouLBQhhMpG1NnwdW2I4XGENFeDSwb6XnsIY1K0IpxyhonM6Jf_0IcwRp__l6kKV4Jz_EZoYkgpQreZhmC1Kk3l0tSqtIwevZ1-A75WlIHyBfjtelh-KFLTq8t_wr8rXKX1 |
CitedBy_id | crossref_primary_10_1371_journal_pcbi_1008881 crossref_primary_10_1016_j_ece_2021_01_011 crossref_primary_10_1038_s41598_022_19867_1 crossref_primary_10_1097_MAT_0000000000001819 crossref_primary_10_1016_j_triboint_2024_109934 |
Cites_doi | 10.1007/s10492-011-0016-1 10.1098/rsif.2008.0417 10.1016/j.cma.2004.06.034 10.1016/S0045-7825(01)00229-8 10.1016/S0045-7825(01)00307-3 10.1051/m2an/1996300708151 10.1007/s00021-013-0135-4 10.1007/s00466-011-0599-0 10.1016/0021-9290(95)95273-8 10.1002/fld.1650190805 10.1002/fld.1509 10.1016/j.jcp.2013.12.057 10.1038/s41598-018-20603-x 10.1016/j.cma.2005.04.014 10.1108/HFF-03-2016-0104 10.1016/0045-7825(82)90071-8 10.3389/fphys.2012.00266 10.1016/0045-7825(93)90213-H 10.1002/cnm.2488 10.1109/TMI.2005.859204 10.1161/01.ATV.0000229658.76797.30 10.1017/jfm.2016.6 10.1093/imammb/dqq005 10.1080/10255840903413565 10.1002/(SICI)1097-0363(19970228)24:4<393::AID-FLD505>3.0.CO;2-O 10.1002/fld.1572 10.1016/j.ijheatmasstransfer.2020.119355 10.1007/s40324-014-0012-y 10.1016/j.jcp.2015.09.017 10.1007/s00033-018-1058-y 10.1114/1.1477445 10.1016/0045-7825(86)90153-2 10.1002/cnm.496 10.1002/(SICI)1097-0363(19970228)24:4<413::AID-FLD507>3.0.CO;2-N 10.1016/j.ijheatmasstransfer.2018.11.051 10.3389/fped.2017.00078 10.1016/0045-7825(93)90033-T 10.1016/j.jcp.2015.03.012 10.4208/jcm.1405-m4347 10.1002/fld.1650140506 10.1016/j.jcp.2013.12.042 10.1002/cnm.1490 10.1146/annurev.bioeng.5.040202.121529 10.1016/j.ijheatmasstransfer.2005.05.004 10.1002/cnm.2918 10.1093/ejcts/ezy068 10.1016/j.cma.2009.02.012 10.1016/j.jcp.2019.04.030 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1002/cnm.3378 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Civil Engineering Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2040-7947 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cnm_3378 32573092 CNM3378 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Army Research Office funderid: W911NF‐19‐C‐0094 – fundername: National Science Foundation funderid: 1531752; 1350454; Graduate Research Fellowships Program (GRFP) – fundername: Edward B. Diethrich M.D. Professorship – fundername: Wellcome Trust under Wellcome grant: 204823/Z/16/Z The Centre for Medical Engineering (CME) at King's College London: WT 203148/Z/16/Z – fundername: American Heart Association funderid: 18PRE33960252; 20POST35220004 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 204823/Z/16/Z – fundername: American Heart Association-American Stroke Association grantid: 20POST35220004 – fundername: Wellcome Trust grantid: 203148/Z/16/Z |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c3908-d69fed7e71d0c5b96acdc698281efc6e7eed043e855dc9506fc6b8d0aa6473b23 |
IEDL.DBID | DR2 |
ISSN | 2040-7939 |
IngestDate | Tue Sep 17 21:28:22 EDT 2024 Sat Oct 26 05:09:06 EDT 2024 Thu Oct 10 22:03:03 EDT 2024 Fri Aug 23 01:47:55 EDT 2024 Sat Nov 02 12:28:23 EDT 2024 Sat Aug 24 01:05:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | backflow stabilization consistent flux boundary condition discontinuity-capturing operator scalar advection diffusion cardiovascular simulation Neumann inflow boundary condition |
Language | English |
License | 2020 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3908-d69fed7e71d0c5b96acdc698281efc6e7eed043e855dc9506fc6b8d0aa6473b23 |
Notes | Funding information American Heart Association, Grant/Award Numbers: 18PRE33960252, 20POST35220004; Army Research Office, Grant/Award Number: W911NF‐19‐C‐0094; Edward B. Diethrich M.D. Professorship; National Science Foundation, Grant/Award Numbers: 1531752, 1350454, Graduate Research Fellowships Program (GRFP); Wellcome Trust under Wellcome grant: 204823/Z/16/Z The Centre for Medical Engineering (CME) at King's College London: WT 203148/Z/16/Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5220-8861 |
PMID | 32573092 |
PQID | 2440476605 |
PQPubID | 2034586 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11129875 proquest_miscellaneous_2416263019 proquest_journals_2440476605 crossref_primary_10_1002_cnm_3378 pubmed_primary_32573092 wiley_primary_10_1002_cnm_3378_CNM3378 |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Chichester |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationTitleAlternate | Int J Numer Method Biomed Eng |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 5 2005; 194 2019; 70 2002; 18 2010; 13 2002; 30 2015; 302 2017; 27 2019; 35 1997; 24 1986; 58 1982; 32 2009; 198 2006; 195 1996; 30 2008; 56 2011; 56 1992; 14 2005; 48 1993; 104 2005; 24 2014; 64 2018; 8 2013; 15 2015; 291 2012; 3 2001; 191 1995; 28 2020; 151 1994; 19 2001; 190 2006; 26 2003; 5 2014; 261 2012; 28 2009; 6 2011; 48 2018; 34 2011; 28 2019; 391 2018; 54 1993; 110 2016; 790 2014; 32 2019; 131 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 Hansen KB (e_1_2_6_27_1) 2019; 35 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 Ceretani AN (e_1_2_6_25_1) 2019; 70 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – volume: 302 start-page: 300 year: 2015 end-page: 328 article-title: A convective‐like energy‐stable open boundary condition for simulations of incompressible flows publication-title: J Comput Phys – volume: 391 start-page: 179 year: 2019 end-page: 215 article-title: Energy‐stable boundary conditions based on a quadratic form: applications to outflow/open‐boundary problems in incompressible flows publication-title: J Comput Phys – volume: 790 start-page: 158 year: 2016 end-page: 172 article-title: Lagrangian wall shear stress structures and near‐wall transport in high‐Schmidt‐number aneurysmal flows publication-title: J Fluid Mech – volume: 131 start-page: 252 year: 2019 end-page: 260 article-title: The combined effect of wall shear stress topology and magnitude on cardiovascular mass transport publication-title: Int J Heat Mass Transf – volume: 104 start-page: 397 issue: 3 year: 1993 end-page: 422 article-title: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations publication-title: Comput Methods Appl Mech Eng – volume: 28 start-page: 845 issue: 7 year: 1995 end-page: 856 article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model publication-title: J Biomech – volume: 30 start-page: 815 issue: 7 year: 1996 end-page: 840 article-title: New efficient boundary conditions for incompressible Navier‐stokes equations: a well‐posedness result publication-title: ESAIM Math Model Num Anal – volume: 151 year: 2020 article-title: On a simple and effective thermal open boundary condition for convective heat transfer problems publication-title: Int J Heat Mass Transf – volume: 28 start-page: 47 issue: 1 year: 2011 end-page: 84 article-title: Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow publication-title: Math Med Biol – volume: 13 start-page: 625 issue: 5 year: 2010 end-page: 640 article-title: Outflow boundary conditions for 3D simulations of non‐periodic blood flow and pressure fields in deformable arteries publication-title: Comput Methods Biomech Biomed Engin – volume: 26 start-page: 1729 issue: 8 year: 2006 end-page: 1737 article-title: Flow effects on coagulation and thrombosis publication-title: Arterioscler Thromb Vasc Biol – volume: 195 start-page: 3776 issue: 29–32 year: 2006 end-page: 3796 article-title: Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries publication-title: Comput Methods Appl Mech Eng – volume: 261 start-page: 83 year: 2014 end-page: 105 article-title: A robust and accurate outflow boundary condition for incompressible flow simulations on severely‐truncated unbounded domains publication-title: J Comput Phys – volume: 28 start-page: 1165 issue: 12 year: 2012 end-page: 1183 article-title: Numerical treatment of boundary conditions to replace lateral branches in hemodynamics publication-title: Int J Num Method Biomed Eng – volume: 194 start-page: 1141 issue: 9–11 year: 2005 end-page: 1159 article-title: Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier‐Stokes equations publication-title: Comput Methods Appl Mech Eng – volume: 15 start-page: 701 year: 2013 end-page: 715 article-title: On the existence of a weak solution of viscous incompressible flow past a cascade of profiles with an arbitrarily large inflow publication-title: J Math Fluid Mech – volume: 19 start-page: 693 issue: 8 year: 1994 end-page: 705 article-title: Effective downstream boundary conditions for incompressible Navier‐Stokes equations publication-title: Int J Num Method Fluid – volume: 48 start-page: 277 issue: 3 year: 2011 end-page: 291 article-title: Others . A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations publication-title: Comput Mech – volume: 24 start-page: 1586 issue: 12 year: 2005 end-page: 1592 article-title: Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 2515 issue: 1 year: 2018 article-title: Data‐driven modeling of hemodynamics and its role on thrombus size and shape in aortic dissections publication-title: Sci Rep – volume: 32 start-page: 199 issue: 1–3 year: 1982 end-page: 259 article-title: Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations publication-title: Comput Methods Appl Mech Eng – volume: 5 start-page: 79 issue: 1 year: 2003 end-page: 118 article-title: Mass transport in arteries and the localization of atherosclerosis publication-title: Annu Rev Biomed Eng – volume: 32 start-page: 507 issue: 5 year: 2014 end-page: 521 article-title: Directional do‐nothing condition for the Navier‐Stokes equations publication-title: J Comput Math – volume: 14 start-page: 587 issue: 5 year: 1992 end-page: 608 article-title: A new outflow boundary condition publication-title: Int J Num Method Fluid – volume: 64 start-page: 1 issue: 1 year: 2014 end-page: 40 article-title: Artificial boundaries and formulations for the incompressible Navier‐Stokes equations: applications to air and blood flows publication-title: SeMA J – volume: 261 start-page: 162 year: 2014 end-page: 171 article-title: A tangential regularization method for backflow stabilization in hemodynamics publication-title: J Comput Phys – volume: 190 start-page: 6291 issue: 46–47 year: 2001 end-page: 6308 article-title: A natural derivation of discontinuity capturing operator for convection–diffusion problems publication-title: Comput Methods Appl Mech Eng – volume: 48 start-page: 4510 issue: 21–22 year: 2005 end-page: 4517 article-title: Mass transport and fluid flow in stenotic arteries: axisymmetric and asymmetric models publication-title: Int J Heat Mass Transf – volume: 110 start-page: 325 issue: 3–4 year: 1993 end-page: 342 article-title: A discontinuity‐capturing crosswind‐dissipation for the finite element solution of the convection‐diffusion equation publication-title: Comput Methods Appl Mech Eng – volume: 54 start-page: 389 issue: 2 year: 2018 end-page: 396 article-title: A computational analysis of different endograft designs for Zone 0 aortic arch repair publication-title: Eur J Cardiothorac Surg – volume: 56 start-page: 63 issue: 1 year: 2008 end-page: 89 article-title: The steady Navier‐Stokes/energy system with temperature‐dependent viscosity‐part 1: analysis of the continuous problem publication-title: Int J Num Method Fluid – volume: 6 start-page: 519 issue: 35 year: 2009 end-page: 528 article-title: Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance publication-title: J Roy Soc Interf – volume: 27 start-page: 1451 issue: 7 year: 2017 end-page: 1466 article-title: The weak solvability of the steady problem modelling the flow of a viscous incompressible heat‐conductive fluid through the profile cascade publication-title: Int J Num Method Heat Fluid Flow – volume: 35 start-page: 1 issue: 1 year: 2019 end-page: 15 article-title: Finite element modeling of near‐wall mass transport in cardiovascular flows publication-title: Int J Num Method Biomed Eng – volume: 58 start-page: 329 issue: 3 year: 1986 end-page: 336 article-title: A new finite element formulation for computational fluid dynamics: IV. A discontinuity‐capturing operator for multidimensional advective‐diffusive systems publication-title: Comput Methods Appl Mech Eng – volume: 70 start-page: 1 year: 2019 end-page: 24 article-title: The Boussinesq system with mixed non‐smooth boundary conditions and do‐nothing boundary flow publication-title: Zeitschrift für Angewandte Mathematik Und Physik – volume: 24 start-page: 393 issue: 4 year: 1997 end-page: 411 article-title: The ‘no boundary condition’ outflow boundary condition publication-title: Int J Num Method Fluid – volume: 191 start-page: 661 issue: 6–7 year: 2001 end-page: 671 article-title: Finite element simulation of blood flow in the cerebral artery publication-title: Comput Methods Appl Mech Eng – volume: 198 start-page: 3551 issue: 45–46 year: 2009 end-page: 3566 article-title: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three‐dimensional finite element simulations of blood flow publication-title: Comput Methods Appl Mech Eng – volume: 5 start-page: 78 year: 2017 end-page: 78 article-title: Reproducing patient‐specific hemodynamics in the Blalock‐Taussig circulation using a flexible multi‐domain simulation framework: applications for optimal shunt design publication-title: Front Pediatr – volume: 30 start-page: 447 issue: 4 year: 2002 end-page: 460 article-title: Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses publication-title: Ann Biomed Eng – volume: 291 start-page: 254 year: 2015 end-page: 278 article-title: A pressure correction scheme for generalized form of energy‐stable open boundary conditions for incompressible flows publication-title: J Comput Phys – volume: 24 start-page: 413 issue: 4 year: 1997 end-page: 417 article-title: Imposing ‘no’ boundary condition at outflow: why does it work? publication-title: Int J Num Method Fluid – volume: 56 start-page: 265 issue: 3 year: 2011 end-page: 285 article-title: On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities publication-title: Appl Math – volume: 34 issue: 2 year: 2018 article-title: Benchmark problems for numerical treatment of backflow at open boundaries publication-title: Int J Num Method Biomed Eng – volume: 3 start-page: 266 year: 2012 article-title: An integrated fluid‐chemical model toward modeling the formation of intra‐luminal thrombus in abdominal aortic aneurysms publication-title: Front Physiol – volume: 56 start-page: 91 issue: 1 year: 2008 end-page: 114 article-title: The steady Navier‐stokes/energy system with temperature‐dependent viscosity‐part 2: the discrete problem and numerical experiments publication-title: Int J Num Method Fluid – volume: 28 start-page: 560 issue: 5 year: 2012 end-page: 573 article-title: A novel formulation for Neumann inflow boundary conditions in biomechanics publication-title: Int J Num Method Biomed Eng – volume: 18 start-page: 345 issue: 5 year: 2002 end-page: 353 article-title: Improving convergence to steady state of implicit SUPG solution of Euler equations publication-title: Commun Num Method Eng – ident: e_1_2_6_10_1 doi: 10.1007/s10492-011-0016-1 – ident: e_1_2_6_46_1 doi: 10.1098/rsif.2008.0417 – ident: e_1_2_6_20_1 doi: 10.1016/j.cma.2004.06.034 – ident: e_1_2_6_37_1 doi: 10.1016/S0045-7825(01)00229-8 – ident: e_1_2_6_2_1 doi: 10.1016/S0045-7825(01)00307-3 – ident: e_1_2_6_9_1 doi: 10.1051/m2an/1996300708151 – ident: e_1_2_6_11_1 doi: 10.1007/s00021-013-0135-4 – ident: e_1_2_6_6_1 doi: 10.1007/s00466-011-0599-0 – ident: e_1_2_6_3_1 doi: 10.1016/0021-9290(95)95273-8 – ident: e_1_2_6_8_1 doi: 10.1002/fld.1650190805 – ident: e_1_2_6_22_1 doi: 10.1002/fld.1509 – ident: e_1_2_6_21_1 doi: 10.1016/j.jcp.2013.12.057 – ident: e_1_2_6_33_1 doi: 10.1038/s41598-018-20603-x – ident: e_1_2_6_4_1 doi: 10.1016/j.cma.2005.04.014 – ident: e_1_2_6_24_1 doi: 10.1108/HFF-03-2016-0104 – ident: e_1_2_6_38_1 doi: 10.1016/0045-7825(82)90071-8 – ident: e_1_2_6_30_1 doi: 10.3389/fphys.2012.00266 – ident: e_1_2_6_36_1 doi: 10.1016/0045-7825(93)90213-H – ident: e_1_2_6_14_1 doi: 10.1002/cnm.2488 – ident: e_1_2_6_31_1 doi: 10.1109/TMI.2005.859204 – ident: e_1_2_6_44_1 doi: 10.1161/01.ATV.0000229658.76797.30 – ident: e_1_2_6_28_1 doi: 10.1017/jfm.2016.6 – ident: e_1_2_6_32_1 doi: 10.1093/imammb/dqq005 – volume: 35 start-page: 1 issue: 1 year: 2019 ident: e_1_2_6_27_1 article-title: Finite element modeling of near‐wall mass transport in cardiovascular flows publication-title: Int J Num Method Biomed Eng contributor: fullname: Hansen KB – ident: e_1_2_6_49_1 doi: 10.1080/10255840903413565 – ident: e_1_2_6_34_1 doi: 10.1002/(SICI)1097-0363(19970228)24:4<393::AID-FLD505>3.0.CO;2-O – ident: e_1_2_6_23_1 doi: 10.1002/fld.1572 – ident: e_1_2_6_26_1 doi: 10.1016/j.ijheatmasstransfer.2020.119355 – ident: e_1_2_6_7_1 doi: 10.1007/s40324-014-0012-y – ident: e_1_2_6_16_1 doi: 10.1016/j.jcp.2015.09.017 – volume: 70 start-page: 1 year: 2019 ident: e_1_2_6_25_1 article-title: The Boussinesq system with mixed non‐smooth boundary conditions and do‐nothing boundary flow publication-title: Zeitschrift für Angewandte Mathematik Und Physik doi: 10.1007/s00033-018-1058-y contributor: fullname: Ceretani AN – ident: e_1_2_6_42_1 – ident: e_1_2_6_48_1 doi: 10.1114/1.1477445 – ident: e_1_2_6_35_1 doi: 10.1016/0045-7825(86)90153-2 – ident: e_1_2_6_51_1 doi: 10.1002/cnm.496 – ident: e_1_2_6_40_1 doi: 10.1002/(SICI)1097-0363(19970228)24:4<413::AID-FLD507>3.0.CO;2-N – ident: e_1_2_6_29_1 doi: 10.1016/j.ijheatmasstransfer.2018.11.051 – ident: e_1_2_6_50_1 doi: 10.3389/fped.2017.00078 – ident: e_1_2_6_41_1 doi: 10.1016/0045-7825(93)90033-T – ident: e_1_2_6_15_1 doi: 10.1016/j.jcp.2015.03.012 – ident: e_1_2_6_13_1 doi: 10.4208/jcm.1405-m4347 – ident: e_1_2_6_39_1 doi: 10.1002/fld.1650140506 – ident: e_1_2_6_12_1 doi: 10.1016/j.jcp.2013.12.042 – ident: e_1_2_6_18_1 doi: 10.1002/cnm.1490 – ident: e_1_2_6_45_1 doi: 10.1146/annurev.bioeng.5.040202.121529 – ident: e_1_2_6_47_1 doi: 10.1016/j.ijheatmasstransfer.2005.05.004 – ident: e_1_2_6_19_1 doi: 10.1002/cnm.2918 – ident: e_1_2_6_43_1 doi: 10.1093/ejcts/ezy068 – ident: e_1_2_6_5_1 doi: 10.1016/j.cma.2009.02.012 – ident: e_1_2_6_17_1 doi: 10.1016/j.jcp.2019.04.030 |
SSID | ssj0000299973 |
Score | 2.313979 |
Snippet | Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries.... Abstract Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e3378 |
SubjectTerms | Advection backflow stabilization Biological Transport Boundaries Boundary conditions cardiovascular simulation Cardiovascular System Computer applications Computer simulation consistent flux boundary condition Diffusion discontinuity‐capturing operator Fluctuations Flux Hemodynamics Humans Mass transport Neumann inflow boundary condition scalar advection diffusion Transport processes |
Title | Numerical considerations for advection‐diffusion problems in cardiovascular hemodynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3378 https://www.ncbi.nlm.nih.gov/pubmed/32573092 https://www.proquest.com/docview/2440476605 https://www.proquest.com/docview/2416263019 https://pubmed.ncbi.nlm.nih.gov/PMC11129875 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1VnHop_YKGUuRKVW9ZEjtx1scKgVAl9lAVCcEhcmxHrGC9iGyQ4NSf0N_YX9IZ56PdokpVTznYSWyPx37PHj8DfHBZxTNpVYzguEaCUtexdiqNXVHVBskbkiI64Hwyk8en2eez_KyPqqSzMJ0-xLjgRp4RxmtycF01-79EQ41fTIQo6Jxvig_CQ1_4uLyS4DCrwv4yDzFzSqhBejbh-8O765PRI4T5OFDydwAbZqCjTbgYyt4FnlxN2lU1MQ9_yDr-X-Wew7MemLJPXU96AU-cfwmbPUhl_RDQvILzWdtt8lwz01_22S36MYS_TNu7ENvlf3z7TnevtLQYx_pbaxo298ysBcCyS7dY2nuvF3PTvIbTo8OvB8dxf0FDbIRKprGVqna2cEVqE5NXSmpjjVRI4lJXG-kKnICTTLhpnlujcuwNRlZTm2gts0JUXGzBhl969wYYEqcMO4fCidRkWHNkkVki6lrmQkvO0wjeD5YqbzodjrJTXOYlNlZJjRXB7mDCsvfEpuQkgFhIZG34iTEZfYg2RrR3y5bypCTKg2g3gu3O4uNPBI5pIlE8gulaXxgzkD73eoqfXwad7pSwLPLBCD4GW_-14OXB7ISeO_-a8S085cT7Q6zbLmysblv3DsHRqtoLbvATXFwP6Q |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB615UAvLT8tDSzUSIhbtomdOLE4oYVqC909oFaqUKUosR3tiq63YjeVyolH4Bl5EsbODyxVpaqnHOwktsdjfzMefwPwRkcFjbgSPoLjEg2UsvRzLUJfJ0Up0XhDo8hecB6N-fA0-nQWn63Bu_YuTM0P0TncrGa49doquHVIH_xlDZVm1mcsSdfhAWo7s3kbPnyhnYMlwIVWuBNm6qLmBBMt-WxAD9qXV7ejGxjzZqjkvxDW7UGH23Detr4OPfnWr5ZFX_74j9jxnt17BFsNNiXv68n0GNa0eQLbDU4lzSqweApfx1V9znNBZJPvs_b7EUTAJFdXLrzL_P75y6Zfqaw_jjSJaxZkaohciYElEz2bq2uTz6ZysQOnhx9PBkO_ydHgSyaC1FdclFolOglVIONC8FwqyQXacaEuJdcJ7sFBxHQax0qKGCeE5EWqgjznUcIKynZhw8yN3gOCtlOE80PgXioj7DkaklHAypLHLOeUhh68bkWVXdZUHFlNukwzHKzMDpYHvVaGWaOMi4xaDsSEo-GGn-iKUY3s2Uhu9LyydULLy4OA14Nntci7nzBc1lggqAfpymToKliK7tUSM504qu7Qwlk0CT1464R9a8OzwXhkn8_vWnEfHg5PRsfZ8dH48wvYpNYN4ELferCx_F7pl4iVlsUrpxN_ACt-FAE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJcWlpegVJcCXHLNrEdJz6iwqoFukKIShUcosQPdQXrrbobJDjxE_iN_BLGzoMuFRLilIOdxPbM2N-Mx58BnhpeUy60jBEcW3RQrI0rI9PY5LVV6LyhU-QPOJ9MxNEpf3WWnXVZlf4sTMsPMQTcvGWE-dob-IW2B79JQ5WbjRjLixuwwQUCXw-I3tEhvpLgPCvDBjMNSXOSyZ57NqEH_curq9E1iHk9U_Iqgg1L0HgLPvaNbzNPPo2aZT1S3_7gdfy_3t2GzQ6ZkuetKm3DmnE7sNWhVNLNAYs78GHStLs8n4nqbvtso34E8S-p9JeQ3OV-fv_hL19pfDSOdNfWLMjUEbWSAUvOzWyuv7pqNlWLu3A6fvn-8CjubmiIFZNJEWshrdG5yVOdqKyWolJaCYleXGqsEibHFTjhzBRZppXMUB2UqAudVJXgOaspuwfrbu7MAyDoOXHUDokrqeLYc3QjecKsFRmrBKVpBPu9pMqLloijbCmXaYmDVfrBimC3F2HZmeKipJ4BMRfotuEnhmI0Ir8zUjkzb3yd1LPyINyN4H4r8eEnDCc1lkgaQbGiC0MFT9C9WuKm54GoO_VgFh3CCJ4FWf-14eXh5MQ_H_5rxSdw8-2LcfnmePL6EdyiPgYQ8t52YX152ZjHCJSW9V6wiF_0ZxKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+considerations+for+advection%E2%80%90diffusion+problems+in+cardiovascular+hemodynamics&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Lynch%2C+Sabrina+R&rft.au=Nama%2C+Nitesh&rft.au=Xu%2C+Zelu&rft.au=Arthurs%2C+Christopher+J&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=36&rft.issue=9&rft_id=info:doi/10.1002%2Fcnm.3378&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |