Numerical considerations for advection‐diffusion problems in cardiovascular hemodynamics

Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element comput...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 36; no. 9; pp. e3378 - n/a
Main Authors Lynch, Sabrina R., Nama, Nitesh, Xu, Zelu, Arthurs, Christopher J., Sahni, Onkar, Figueroa, C. Alberto
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows. In this work we present a stabilized finite element framework to study scalar mass transport in realistic cardiovascular geometries. Our framework includes the following key features: (a) a backflow stabilization technique, (b) a “consistent flux” boundary condition that minimally disturbs the local physics of the problem, and (c) a front‐capturing stabilization technique to regularize the solution near the wavefront in the case high Péclet numbers. We illustrate the efficacy of these features in both idealized and patient‐specific geometries. Novelty Statement The presented study is to the best of our knowledge the first implementation of backflow stabilization for 3D scalar mass transport problems. In addition, this paper is the first analysis of the “consistent flux” boundary condition in 3D patient‐specific geometries. The novelty of our study is the implementation of backflow stabilization, the consistent flux boundary condition, and discontinuity‐capturing stabilization in a unified scalar mass transport framework that can be applied to study the cardiovascular system.
AbstractList Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows.
Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows. In this work we present a stabilized finite element framework to study scalar mass transport in realistic cardiovascular geometries. Our framework includes the following key features: (a) a backflow stabilization technique, (b) a “consistent flux” boundary condition that minimally disturbs the local physics of the problem, and (c) a front‐capturing stabilization technique to regularize the solution near the wavefront in the case high Péclet numbers. We illustrate the efficacy of these features in both idealized and patient‐specific geometries. Novelty Statement The presented study is to the best of our knowledge the first implementation of backflow stabilization for 3D scalar mass transport problems. In addition, this paper is the first analysis of the “consistent flux” boundary condition in 3D patient‐specific geometries. The novelty of our study is the implementation of backflow stabilization, the consistent flux boundary condition, and discontinuity‐capturing stabilization in a unified scalar mass transport framework that can be applied to study the cardiovascular system.
Abstract Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries. In this paper we present and discuss several numerical tools to address these challenges in the context of a stabilized finite element computational framework. To overcome numerical instabilities when backflow occurs at Neumann boundaries, we propose an approach based on the prescription of the total flux. In addition, we introduce a “consistent flux” outflow boundary condition and demonstrate its superior performance over the traditional zero diffusive flux boundary condition. Lastly, we discuss discontinuity capturing (DC) stabilization techniques to address the well‐known oscillatory behavior of the solution near the concentration front in advection‐dominated flows. We present numerical examples in both idealized and patient‐specific geometries to demonstrate the efficacy of the proposed procedures. The three contributions discussed in this paper successfully address commonly found challenges when simulating mass transport processes in cardiovascular flows.
Author Figueroa, C. Alberto
Nama, Nitesh
Lynch, Sabrina R.
Arthurs, Christopher J.
Xu, Zelu
Sahni, Onkar
AuthorAffiliation 2 Department of Surgery, University of Michigan, Ann Arbor, Michigan
1 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
3 Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, New York, New York
4 School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
AuthorAffiliation_xml – name: 4 School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
– name: 1 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
– name: 3 Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, New York, New York
– name: 2 Department of Surgery, University of Michigan, Ann Arbor, Michigan
Author_xml – sequence: 1
  givenname: Sabrina R.
  orcidid: 0000-0002-5220-8861
  surname: Lynch
  fullname: Lynch, Sabrina R.
  email: srlynch@umich.edu
  organization: University of Michigan
– sequence: 2
  givenname: Nitesh
  surname: Nama
  fullname: Nama, Nitesh
  organization: University of Michigan
– sequence: 3
  givenname: Zelu
  surname: Xu
  fullname: Xu, Zelu
  organization: Rensselaer Polytechnic Institute
– sequence: 4
  givenname: Christopher J.
  surname: Arthurs
  fullname: Arthurs, Christopher J.
  organization: King's College London
– sequence: 5
  givenname: Onkar
  surname: Sahni
  fullname: Sahni, Onkar
  organization: Rensselaer Polytechnic Institute
– sequence: 6
  givenname: C. Alberto
  surname: Figueroa
  fullname: Figueroa, C. Alberto
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32573092$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAYRS0EAkpH4glQpG66CfgnseNVVY0KReJnA5tuLMf-AkaJPdiTqWbXR-AZeZJ6yjCCSnjja_vo6LPuJ7TtgweEDgk-JhjTE-OHY8ZEs4X2Ka5wKWQltjeZyT00SekB50WllILtoj1Ga8GwpPvo19U4QHRG94UJPjkLUc9dTkUXYqHtAszq-PznybquG1POxSyGtochFc4XRkfrwkInM_Y6FvcwBLv0enAmfUY7ne4TTNb7Abo9_XEz_VleXJ-dT79flIZJ3JSWyw6sAEEsNnUruTbWcNnQhkBnOAgAiysGTV1bI2vM82XbWKw1rwRrKTtA3168s7EdwBrw86h7NYtu0HGpgnbq_Yt39-ouLBQhhMpG1NnwdW2I4XGENFeDSwb6XnsIY1K0IpxyhonM6Jf_0IcwRp__l6kKV4Jz_EZoYkgpQreZhmC1Kk3l0tSqtIwevZ1-A75WlIHyBfjtelh-KFLTq8t_wr8rXKX1
CitedBy_id crossref_primary_10_1371_journal_pcbi_1008881
crossref_primary_10_1016_j_ece_2021_01_011
crossref_primary_10_1038_s41598_022_19867_1
crossref_primary_10_1097_MAT_0000000000001819
crossref_primary_10_1016_j_triboint_2024_109934
Cites_doi 10.1007/s10492-011-0016-1
10.1098/rsif.2008.0417
10.1016/j.cma.2004.06.034
10.1016/S0045-7825(01)00229-8
10.1016/S0045-7825(01)00307-3
10.1051/m2an/1996300708151
10.1007/s00021-013-0135-4
10.1007/s00466-011-0599-0
10.1016/0021-9290(95)95273-8
10.1002/fld.1650190805
10.1002/fld.1509
10.1016/j.jcp.2013.12.057
10.1038/s41598-018-20603-x
10.1016/j.cma.2005.04.014
10.1108/HFF-03-2016-0104
10.1016/0045-7825(82)90071-8
10.3389/fphys.2012.00266
10.1016/0045-7825(93)90213-H
10.1002/cnm.2488
10.1109/TMI.2005.859204
10.1161/01.ATV.0000229658.76797.30
10.1017/jfm.2016.6
10.1093/imammb/dqq005
10.1080/10255840903413565
10.1002/(SICI)1097-0363(19970228)24:4<393::AID-FLD505>3.0.CO;2-O
10.1002/fld.1572
10.1016/j.ijheatmasstransfer.2020.119355
10.1007/s40324-014-0012-y
10.1016/j.jcp.2015.09.017
10.1007/s00033-018-1058-y
10.1114/1.1477445
10.1016/0045-7825(86)90153-2
10.1002/cnm.496
10.1002/(SICI)1097-0363(19970228)24:4<413::AID-FLD507>3.0.CO;2-N
10.1016/j.ijheatmasstransfer.2018.11.051
10.3389/fped.2017.00078
10.1016/0045-7825(93)90033-T
10.1016/j.jcp.2015.03.012
10.4208/jcm.1405-m4347
10.1002/fld.1650140506
10.1016/j.jcp.2013.12.042
10.1002/cnm.1490
10.1146/annurev.bioeng.5.040202.121529
10.1016/j.ijheatmasstransfer.2005.05.004
10.1002/cnm.2918
10.1093/ejcts/ezy068
10.1016/j.cma.2009.02.012
10.1016/j.jcp.2019.04.030
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1002/cnm.3378
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Civil Engineering Abstracts

MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 10_1002_cnm_3378
32573092
CNM3378
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Army Research Office
  funderid: W911NF‐19‐C‐0094
– fundername: National Science Foundation
  funderid: 1531752; 1350454; Graduate Research Fellowships Program (GRFP)
– fundername: Edward B. Diethrich M.D. Professorship
– fundername: Wellcome Trust under Wellcome grant: 204823/Z/16/Z The Centre for Medical Engineering (CME) at King's College London: WT 203148/Z/16/Z
– fundername: American Heart Association
  funderid: 18PRE33960252; 20POST35220004
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 204823/Z/16/Z
– fundername: American Heart Association-American Stroke Association
  grantid: 20POST35220004
– fundername: Wellcome Trust
  grantid: 203148/Z/16/Z
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c3908-d69fed7e71d0c5b96acdc698281efc6e7eed043e855dc9506fc6b8d0aa6473b23
IEDL.DBID DR2
ISSN 2040-7939
IngestDate Tue Sep 17 21:28:22 EDT 2024
Sat Oct 26 05:09:06 EDT 2024
Thu Oct 10 22:03:03 EDT 2024
Fri Aug 23 01:47:55 EDT 2024
Sat Nov 02 12:28:23 EDT 2024
Sat Aug 24 01:05:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords backflow stabilization
consistent flux boundary condition
discontinuity-capturing operator
scalar advection diffusion
cardiovascular simulation
Neumann inflow boundary condition
Language English
License 2020 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3908-d69fed7e71d0c5b96acdc698281efc6e7eed043e855dc9506fc6b8d0aa6473b23
Notes Funding information
American Heart Association, Grant/Award Numbers: 18PRE33960252, 20POST35220004; Army Research Office, Grant/Award Number: W911NF‐19‐C‐0094; Edward B. Diethrich M.D. Professorship; National Science Foundation, Grant/Award Numbers: 1531752, 1350454, Graduate Research Fellowships Program (GRFP); Wellcome Trust under Wellcome grant: 204823/Z/16/Z The Centre for Medical Engineering (CME) at King's College London: WT 203148/Z/16/Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5220-8861
PMID 32573092
PQID 2440476605
PQPubID 2034586
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11129875
proquest_miscellaneous_2416263019
proquest_journals_2440476605
crossref_primary_10_1002_cnm_3378
pubmed_primary_32573092
wiley_primary_10_1002_cnm_3378_CNM3378
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2005; 194
2019; 70
2002; 18
2010; 13
2002; 30
2015; 302
2017; 27
2019; 35
1997; 24
1986; 58
1982; 32
2009; 198
2006; 195
1996; 30
2008; 56
2011; 56
1992; 14
2005; 48
1993; 104
2005; 24
2014; 64
2018; 8
2013; 15
2015; 291
2012; 3
2001; 191
1995; 28
2020; 151
1994; 19
2001; 190
2006; 26
2003; 5
2014; 261
2012; 28
2009; 6
2011; 48
2018; 34
2011; 28
2019; 391
2018; 54
1993; 110
2016; 790
2014; 32
2019; 131
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
Hansen KB (e_1_2_6_27_1) 2019; 35
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
Ceretani AN (e_1_2_6_25_1) 2019; 70
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – volume: 302
  start-page: 300
  year: 2015
  end-page: 328
  article-title: A convective‐like energy‐stable open boundary condition for simulations of incompressible flows
  publication-title: J Comput Phys
– volume: 391
  start-page: 179
  year: 2019
  end-page: 215
  article-title: Energy‐stable boundary conditions based on a quadratic form: applications to outflow/open‐boundary problems in incompressible flows
  publication-title: J Comput Phys
– volume: 790
  start-page: 158
  year: 2016
  end-page: 172
  article-title: Lagrangian wall shear stress structures and near‐wall transport in high‐Schmidt‐number aneurysmal flows
  publication-title: J Fluid Mech
– volume: 131
  start-page: 252
  year: 2019
  end-page: 260
  article-title: The combined effect of wall shear stress topology and magnitude on cardiovascular mass transport
  publication-title: Int J Heat Mass Transf
– volume: 104
  start-page: 397
  issue: 3
  year: 1993
  end-page: 422
  article-title: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations
  publication-title: Comput Methods Appl Mech Eng
– volume: 28
  start-page: 845
  issue: 7
  year: 1995
  end-page: 856
  article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
  publication-title: J Biomech
– volume: 30
  start-page: 815
  issue: 7
  year: 1996
  end-page: 840
  article-title: New efficient boundary conditions for incompressible Navier‐stokes equations: a well‐posedness result
  publication-title: ESAIM Math Model Num Anal
– volume: 151
  year: 2020
  article-title: On a simple and effective thermal open boundary condition for convective heat transfer problems
  publication-title: Int J Heat Mass Transf
– volume: 28
  start-page: 47
  issue: 1
  year: 2011
  end-page: 84
  article-title: Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow
  publication-title: Math Med Biol
– volume: 13
  start-page: 625
  issue: 5
  year: 2010
  end-page: 640
  article-title: Outflow boundary conditions for 3D simulations of non‐periodic blood flow and pressure fields in deformable arteries
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 26
  start-page: 1729
  issue: 8
  year: 2006
  end-page: 1737
  article-title: Flow effects on coagulation and thrombosis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 195
  start-page: 3776
  issue: 29–32
  year: 2006
  end-page: 3796
  article-title: Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Comput Methods Appl Mech Eng
– volume: 261
  start-page: 83
  year: 2014
  end-page: 105
  article-title: A robust and accurate outflow boundary condition for incompressible flow simulations on severely‐truncated unbounded domains
  publication-title: J Comput Phys
– volume: 28
  start-page: 1165
  issue: 12
  year: 2012
  end-page: 1183
  article-title: Numerical treatment of boundary conditions to replace lateral branches in hemodynamics
  publication-title: Int J Num Method Biomed Eng
– volume: 194
  start-page: 1141
  issue: 9–11
  year: 2005
  end-page: 1159
  article-title: Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier‐Stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 15
  start-page: 701
  year: 2013
  end-page: 715
  article-title: On the existence of a weak solution of viscous incompressible flow past a cascade of profiles with an arbitrarily large inflow
  publication-title: J Math Fluid Mech
– volume: 19
  start-page: 693
  issue: 8
  year: 1994
  end-page: 705
  article-title: Effective downstream boundary conditions for incompressible Navier‐Stokes equations
  publication-title: Int J Num Method Fluid
– volume: 48
  start-page: 277
  issue: 3
  year: 2011
  end-page: 291
  article-title: Others . A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations
  publication-title: Comput Mech
– volume: 24
  start-page: 1586
  issue: 12
  year: 2005
  end-page: 1592
  article-title: Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 2515
  issue: 1
  year: 2018
  article-title: Data‐driven modeling of hemodynamics and its role on thrombus size and shape in aortic dissections
  publication-title: Sci Rep
– volume: 32
  start-page: 199
  issue: 1–3
  year: 1982
  end-page: 259
  article-title: Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 5
  start-page: 79
  issue: 1
  year: 2003
  end-page: 118
  article-title: Mass transport in arteries and the localization of atherosclerosis
  publication-title: Annu Rev Biomed Eng
– volume: 32
  start-page: 507
  issue: 5
  year: 2014
  end-page: 521
  article-title: Directional do‐nothing condition for the Navier‐Stokes equations
  publication-title: J Comput Math
– volume: 14
  start-page: 587
  issue: 5
  year: 1992
  end-page: 608
  article-title: A new outflow boundary condition
  publication-title: Int J Num Method Fluid
– volume: 64
  start-page: 1
  issue: 1
  year: 2014
  end-page: 40
  article-title: Artificial boundaries and formulations for the incompressible Navier‐Stokes equations: applications to air and blood flows
  publication-title: SeMA J
– volume: 261
  start-page: 162
  year: 2014
  end-page: 171
  article-title: A tangential regularization method for backflow stabilization in hemodynamics
  publication-title: J Comput Phys
– volume: 190
  start-page: 6291
  issue: 46–47
  year: 2001
  end-page: 6308
  article-title: A natural derivation of discontinuity capturing operator for convection–diffusion problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 48
  start-page: 4510
  issue: 21–22
  year: 2005
  end-page: 4517
  article-title: Mass transport and fluid flow in stenotic arteries: axisymmetric and asymmetric models
  publication-title: Int J Heat Mass Transf
– volume: 110
  start-page: 325
  issue: 3–4
  year: 1993
  end-page: 342
  article-title: A discontinuity‐capturing crosswind‐dissipation for the finite element solution of the convection‐diffusion equation
  publication-title: Comput Methods Appl Mech Eng
– volume: 54
  start-page: 389
  issue: 2
  year: 2018
  end-page: 396
  article-title: A computational analysis of different endograft designs for Zone 0 aortic arch repair
  publication-title: Eur J Cardiothorac Surg
– volume: 56
  start-page: 63
  issue: 1
  year: 2008
  end-page: 89
  article-title: The steady Navier‐Stokes/energy system with temperature‐dependent viscosity‐part 1: analysis of the continuous problem
  publication-title: Int J Num Method Fluid
– volume: 6
  start-page: 519
  issue: 35
  year: 2009
  end-page: 528
  article-title: Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance
  publication-title: J Roy Soc Interf
– volume: 27
  start-page: 1451
  issue: 7
  year: 2017
  end-page: 1466
  article-title: The weak solvability of the steady problem modelling the flow of a viscous incompressible heat‐conductive fluid through the profile cascade
  publication-title: Int J Num Method Heat Fluid Flow
– volume: 35
  start-page: 1
  issue: 1
  year: 2019
  end-page: 15
  article-title: Finite element modeling of near‐wall mass transport in cardiovascular flows
  publication-title: Int J Num Method Biomed Eng
– volume: 58
  start-page: 329
  issue: 3
  year: 1986
  end-page: 336
  article-title: A new finite element formulation for computational fluid dynamics: IV. A discontinuity‐capturing operator for multidimensional advective‐diffusive systems
  publication-title: Comput Methods Appl Mech Eng
– volume: 70
  start-page: 1
  year: 2019
  end-page: 24
  article-title: The Boussinesq system with mixed non‐smooth boundary conditions and do‐nothing boundary flow
  publication-title: Zeitschrift für Angewandte Mathematik Und Physik
– volume: 24
  start-page: 393
  issue: 4
  year: 1997
  end-page: 411
  article-title: The ‘no boundary condition’ outflow boundary condition
  publication-title: Int J Num Method Fluid
– volume: 191
  start-page: 661
  issue: 6–7
  year: 2001
  end-page: 671
  article-title: Finite element simulation of blood flow in the cerebral artery
  publication-title: Comput Methods Appl Mech Eng
– volume: 198
  start-page: 3551
  issue: 45–46
  year: 2009
  end-page: 3566
  article-title: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three‐dimensional finite element simulations of blood flow
  publication-title: Comput Methods Appl Mech Eng
– volume: 5
  start-page: 78
  year: 2017
  end-page: 78
  article-title: Reproducing patient‐specific hemodynamics in the Blalock‐Taussig circulation using a flexible multi‐domain simulation framework: applications for optimal shunt design
  publication-title: Front Pediatr
– volume: 30
  start-page: 447
  issue: 4
  year: 2002
  end-page: 460
  article-title: Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses
  publication-title: Ann Biomed Eng
– volume: 291
  start-page: 254
  year: 2015
  end-page: 278
  article-title: A pressure correction scheme for generalized form of energy‐stable open boundary conditions for incompressible flows
  publication-title: J Comput Phys
– volume: 24
  start-page: 413
  issue: 4
  year: 1997
  end-page: 417
  article-title: Imposing ‘no’ boundary condition at outflow: why does it work?
  publication-title: Int J Num Method Fluid
– volume: 56
  start-page: 265
  issue: 3
  year: 2011
  end-page: 285
  article-title: On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities
  publication-title: Appl Math
– volume: 34
  issue: 2
  year: 2018
  article-title: Benchmark problems for numerical treatment of backflow at open boundaries
  publication-title: Int J Num Method Biomed Eng
– volume: 3
  start-page: 266
  year: 2012
  article-title: An integrated fluid‐chemical model toward modeling the formation of intra‐luminal thrombus in abdominal aortic aneurysms
  publication-title: Front Physiol
– volume: 56
  start-page: 91
  issue: 1
  year: 2008
  end-page: 114
  article-title: The steady Navier‐stokes/energy system with temperature‐dependent viscosity‐part 2: the discrete problem and numerical experiments
  publication-title: Int J Num Method Fluid
– volume: 28
  start-page: 560
  issue: 5
  year: 2012
  end-page: 573
  article-title: A novel formulation for Neumann inflow boundary conditions in biomechanics
  publication-title: Int J Num Method Biomed Eng
– volume: 18
  start-page: 345
  issue: 5
  year: 2002
  end-page: 353
  article-title: Improving convergence to steady state of implicit SUPG solution of Euler equations
  publication-title: Commun Num Method Eng
– ident: e_1_2_6_10_1
  doi: 10.1007/s10492-011-0016-1
– ident: e_1_2_6_46_1
  doi: 10.1098/rsif.2008.0417
– ident: e_1_2_6_20_1
  doi: 10.1016/j.cma.2004.06.034
– ident: e_1_2_6_37_1
  doi: 10.1016/S0045-7825(01)00229-8
– ident: e_1_2_6_2_1
  doi: 10.1016/S0045-7825(01)00307-3
– ident: e_1_2_6_9_1
  doi: 10.1051/m2an/1996300708151
– ident: e_1_2_6_11_1
  doi: 10.1007/s00021-013-0135-4
– ident: e_1_2_6_6_1
  doi: 10.1007/s00466-011-0599-0
– ident: e_1_2_6_3_1
  doi: 10.1016/0021-9290(95)95273-8
– ident: e_1_2_6_8_1
  doi: 10.1002/fld.1650190805
– ident: e_1_2_6_22_1
  doi: 10.1002/fld.1509
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jcp.2013.12.057
– ident: e_1_2_6_33_1
  doi: 10.1038/s41598-018-20603-x
– ident: e_1_2_6_4_1
  doi: 10.1016/j.cma.2005.04.014
– ident: e_1_2_6_24_1
  doi: 10.1108/HFF-03-2016-0104
– ident: e_1_2_6_38_1
  doi: 10.1016/0045-7825(82)90071-8
– ident: e_1_2_6_30_1
  doi: 10.3389/fphys.2012.00266
– ident: e_1_2_6_36_1
  doi: 10.1016/0045-7825(93)90213-H
– ident: e_1_2_6_14_1
  doi: 10.1002/cnm.2488
– ident: e_1_2_6_31_1
  doi: 10.1109/TMI.2005.859204
– ident: e_1_2_6_44_1
  doi: 10.1161/01.ATV.0000229658.76797.30
– ident: e_1_2_6_28_1
  doi: 10.1017/jfm.2016.6
– ident: e_1_2_6_32_1
  doi: 10.1093/imammb/dqq005
– volume: 35
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_2_6_27_1
  article-title: Finite element modeling of near‐wall mass transport in cardiovascular flows
  publication-title: Int J Num Method Biomed Eng
  contributor:
    fullname: Hansen KB
– ident: e_1_2_6_49_1
  doi: 10.1080/10255840903413565
– ident: e_1_2_6_34_1
  doi: 10.1002/(SICI)1097-0363(19970228)24:4<393::AID-FLD505>3.0.CO;2-O
– ident: e_1_2_6_23_1
  doi: 10.1002/fld.1572
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ijheatmasstransfer.2020.119355
– ident: e_1_2_6_7_1
  doi: 10.1007/s40324-014-0012-y
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jcp.2015.09.017
– volume: 70
  start-page: 1
  year: 2019
  ident: e_1_2_6_25_1
  article-title: The Boussinesq system with mixed non‐smooth boundary conditions and do‐nothing boundary flow
  publication-title: Zeitschrift für Angewandte Mathematik Und Physik
  doi: 10.1007/s00033-018-1058-y
  contributor:
    fullname: Ceretani AN
– ident: e_1_2_6_42_1
– ident: e_1_2_6_48_1
  doi: 10.1114/1.1477445
– ident: e_1_2_6_35_1
  doi: 10.1016/0045-7825(86)90153-2
– ident: e_1_2_6_51_1
  doi: 10.1002/cnm.496
– ident: e_1_2_6_40_1
  doi: 10.1002/(SICI)1097-0363(19970228)24:4<413::AID-FLD507>3.0.CO;2-N
– ident: e_1_2_6_29_1
  doi: 10.1016/j.ijheatmasstransfer.2018.11.051
– ident: e_1_2_6_50_1
  doi: 10.3389/fped.2017.00078
– ident: e_1_2_6_41_1
  doi: 10.1016/0045-7825(93)90033-T
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jcp.2015.03.012
– ident: e_1_2_6_13_1
  doi: 10.4208/jcm.1405-m4347
– ident: e_1_2_6_39_1
  doi: 10.1002/fld.1650140506
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jcp.2013.12.042
– ident: e_1_2_6_18_1
  doi: 10.1002/cnm.1490
– ident: e_1_2_6_45_1
  doi: 10.1146/annurev.bioeng.5.040202.121529
– ident: e_1_2_6_47_1
  doi: 10.1016/j.ijheatmasstransfer.2005.05.004
– ident: e_1_2_6_19_1
  doi: 10.1002/cnm.2918
– ident: e_1_2_6_43_1
  doi: 10.1093/ejcts/ezy068
– ident: e_1_2_6_5_1
  doi: 10.1016/j.cma.2009.02.012
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jcp.2019.04.030
SSID ssj0000299973
Score 2.313979
Snippet Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann boundaries....
Abstract Numerical simulations of cardiovascular mass transport pose significant challenges due to the wide range of Péclet numbers and backflow at Neumann...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e3378
SubjectTerms Advection
backflow stabilization
Biological Transport
Boundaries
Boundary conditions
cardiovascular simulation
Cardiovascular System
Computer applications
Computer simulation
consistent flux boundary condition
Diffusion
discontinuity‐capturing operator
Fluctuations
Flux
Hemodynamics
Humans
Mass transport
Neumann inflow boundary condition
scalar advection diffusion
Transport processes
Title Numerical considerations for advection‐diffusion problems in cardiovascular hemodynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3378
https://www.ncbi.nlm.nih.gov/pubmed/32573092
https://www.proquest.com/docview/2440476605
https://www.proquest.com/docview/2416263019
https://pubmed.ncbi.nlm.nih.gov/PMC11129875
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1VnHop_YKGUuRKVW9ZEjtx1scKgVAl9lAVCcEhcmxHrGC9iGyQ4NSf0N_YX9IZ56PdokpVTznYSWyPx37PHj8DfHBZxTNpVYzguEaCUtexdiqNXVHVBskbkiI64Hwyk8en2eez_KyPqqSzMJ0-xLjgRp4RxmtycF01-79EQ41fTIQo6Jxvig_CQ1_4uLyS4DCrwv4yDzFzSqhBejbh-8O765PRI4T5OFDydwAbZqCjTbgYyt4FnlxN2lU1MQ9_yDr-X-Wew7MemLJPXU96AU-cfwmbPUhl_RDQvILzWdtt8lwz01_22S36MYS_TNu7ENvlf3z7TnevtLQYx_pbaxo298ysBcCyS7dY2nuvF3PTvIbTo8OvB8dxf0FDbIRKprGVqna2cEVqE5NXSmpjjVRI4lJXG-kKnICTTLhpnlujcuwNRlZTm2gts0JUXGzBhl969wYYEqcMO4fCidRkWHNkkVki6lrmQkvO0wjeD5YqbzodjrJTXOYlNlZJjRXB7mDCsvfEpuQkgFhIZG34iTEZfYg2RrR3y5bypCTKg2g3gu3O4uNPBI5pIlE8gulaXxgzkD73eoqfXwad7pSwLPLBCD4GW_-14OXB7ISeO_-a8S085cT7Q6zbLmysblv3DsHRqtoLbvATXFwP6Q
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB615UAvLT8tDSzUSIhbtomdOLE4oYVqC909oFaqUKUosR3tiq63YjeVyolH4Bl5EsbODyxVpaqnHOwktsdjfzMefwPwRkcFjbgSPoLjEg2UsvRzLUJfJ0Up0XhDo8hecB6N-fA0-nQWn63Bu_YuTM0P0TncrGa49doquHVIH_xlDZVm1mcsSdfhAWo7s3kbPnyhnYMlwIVWuBNm6qLmBBMt-WxAD9qXV7ejGxjzZqjkvxDW7UGH23Detr4OPfnWr5ZFX_74j9jxnt17BFsNNiXv68n0GNa0eQLbDU4lzSqweApfx1V9znNBZJPvs_b7EUTAJFdXLrzL_P75y6Zfqaw_jjSJaxZkaohciYElEz2bq2uTz6ZysQOnhx9PBkO_ydHgSyaC1FdclFolOglVIONC8FwqyQXacaEuJdcJ7sFBxHQax0qKGCeE5EWqgjznUcIKynZhw8yN3gOCtlOE80PgXioj7DkaklHAypLHLOeUhh68bkWVXdZUHFlNukwzHKzMDpYHvVaGWaOMi4xaDsSEo-GGn-iKUY3s2Uhu9LyydULLy4OA14Nntci7nzBc1lggqAfpymToKliK7tUSM504qu7Qwlk0CT1464R9a8OzwXhkn8_vWnEfHg5PRsfZ8dH48wvYpNYN4ELferCx_F7pl4iVlsUrpxN_ACt-FAE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJcWlpegVJcCXHLNrEdJz6iwqoFukKIShUcosQPdQXrrbobJDjxE_iN_BLGzoMuFRLilIOdxPbM2N-Mx58BnhpeUy60jBEcW3RQrI0rI9PY5LVV6LyhU-QPOJ9MxNEpf3WWnXVZlf4sTMsPMQTcvGWE-dob-IW2B79JQ5WbjRjLixuwwQUCXw-I3tEhvpLgPCvDBjMNSXOSyZ57NqEH_curq9E1iHk9U_Iqgg1L0HgLPvaNbzNPPo2aZT1S3_7gdfy_3t2GzQ6ZkuetKm3DmnE7sNWhVNLNAYs78GHStLs8n4nqbvtso34E8S-p9JeQ3OV-fv_hL19pfDSOdNfWLMjUEbWSAUvOzWyuv7pqNlWLu3A6fvn-8CjubmiIFZNJEWshrdG5yVOdqKyWolJaCYleXGqsEibHFTjhzBRZppXMUB2UqAudVJXgOaspuwfrbu7MAyDoOXHUDokrqeLYc3QjecKsFRmrBKVpBPu9pMqLloijbCmXaYmDVfrBimC3F2HZmeKipJ4BMRfotuEnhmI0Ir8zUjkzb3yd1LPyINyN4H4r8eEnDCc1lkgaQbGiC0MFT9C9WuKm54GoO_VgFh3CCJ4FWf-14eXh5MQ_H_5rxSdw8-2LcfnmePL6EdyiPgYQ8t52YX152ZjHCJSW9V6wiF_0ZxKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+considerations+for+advection%E2%80%90diffusion+problems+in+cardiovascular+hemodynamics&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Lynch%2C+Sabrina+R&rft.au=Nama%2C+Nitesh&rft.au=Xu%2C+Zelu&rft.au=Arthurs%2C+Christopher+J&rft.date=2020-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=36&rft.issue=9&rft_id=info:doi/10.1002%2Fcnm.3378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon