Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long‐Cycling Lithium–Sulfur Batteries

Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards lo...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 43; pp. e202309968 - n/a
Main Authors Li, Zheng, Hou, Li‐Peng, Yao, Nan, Li, Xi‐Yao, Chen, Zi‐Xian, Chen, Xiang, Zhang, Xue‐Qiang, Li, Bo‐Quan, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 23.10.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries. The polysulfide electrode kinetics regarding the sulfur cathode and the lithium anode are promoted as the solvating power of the polysulfide solvation structure increases. Both too fast and slow electrode kinetics induce rapid failure of Lithium–sulfur batteries. The polysulfide solvation structure with medium solvating power balances the cathode and anode kinetics and improves the cycling performance of high‐energy‐density Lithium–sulfur batteries.
AbstractList Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg −1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries.
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries. The polysulfide electrode kinetics regarding the sulfur cathode and the lithium anode are promoted as the solvating power of the polysulfide solvation structure increases. Both too fast and slow electrode kinetics induce rapid failure of Lithium–sulfur batteries. The polysulfide solvation structure with medium solvating power balances the cathode and anode kinetics and improves the cycling performance of high‐energy‐density Lithium–sulfur batteries.
Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li-S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li-S batteries. Li-S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg-1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li-S batteries.Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li-S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li-S batteries. Li-S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg-1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li-S batteries.
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries.
Author Li, Zheng
Zhang, Qiang
Hou, Li‐Peng
Li, Xi‐Yao
Li, Bo‐Quan
Yao, Nan
Chen, Zi‐Xian
Zhang, Xue‐Qiang
Chen, Xiang
Author_xml – sequence: 1
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Tsinghua University
– sequence: 2
  givenname: Li‐Peng
  surname: Hou
  fullname: Hou, Li‐Peng
  organization: Tsinghua University
– sequence: 3
  givenname: Nan
  surname: Yao
  fullname: Yao, Nan
  organization: Tsinghua University
– sequence: 4
  givenname: Xi‐Yao
  surname: Li
  fullname: Li, Xi‐Yao
  organization: Tsinghua University
– sequence: 5
  givenname: Zi‐Xian
  surname: Chen
  fullname: Chen, Zi‐Xian
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 7
  givenname: Xue‐Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  email: libq@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkctqGzEUhkVJoLl02_VAN9mMq8uMRlomxrlQ0xTcrgdZcyZVkKVElxjv8giBvmGepHJdGgiEriTE9_3noP8Q7TnvAKGPBE8IxvSzcgYmFFOGpeTiHTogLSU16zq2V-4NY3UnWvIeHcZ4W3ghMD9AeepDAKuScTfVN283MdvRDFAtvH0or95VixSyTjlAtTbpZzWzoFPwBfliHCSjY5X8WoUhVnPvbp4fn6Ybbbdx84KbvHp-_LUooTlUZyolCAbiMdoflY3w4e95hH6cz75PL-v59cXV9HReayaxqNvlIMQwEr4cGBFSj5yrThLcDoNSelwyrrlURAyS8g4IpQ0BIaBtlpoAEMWO0Mku9y74-wwx9SsTNVirHPgceyo45kQS2RT00yv01ufgynaF6jpaxsq2UJMdpYOPMcDY3wWzUmHTE9xvW-i3LfT_WihC80rQJv351xSUsW9rcqetjYXNf4b0p1-vZi_ub9vTo1w
CitedBy_id crossref_primary_10_1016_j_ensm_2025_104123
crossref_primary_10_1002_anie_202416506
crossref_primary_10_1002_ange_202502255
crossref_primary_10_1002_ange_202423046
crossref_primary_10_1002_adma_202401263
crossref_primary_10_1002_ange_202400343
crossref_primary_10_1002_anie_202410823
crossref_primary_10_1002_anie_202406065
crossref_primary_10_1039_D4TA08847F
crossref_primary_10_1016_j_cej_2024_157314
crossref_primary_10_1002_aenm_202402506
crossref_primary_10_1002_ange_202410823
crossref_primary_10_1016_j_cej_2024_151161
crossref_primary_10_1002_ange_202416506
crossref_primary_10_1002_smll_202406282
crossref_primary_10_1002_anie_202414770
crossref_primary_10_1039_D3DT03895E
crossref_primary_10_1039_D4MH01287A
crossref_primary_10_1002_anie_202412214
crossref_primary_10_1039_D4MH01504E
crossref_primary_10_1002_anie_202502255
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1002_ange_202406065
crossref_primary_10_1002_anie_202423046
crossref_primary_10_1002_anie_202400343
crossref_primary_10_1016_j_cej_2024_153762
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1021_acsenergylett_4c02535
crossref_primary_10_1016_j_jechem_2024_03_037
crossref_primary_10_1039_D4CC04372C
crossref_primary_10_1002_ange_202412214
crossref_primary_10_1038_s44286_024_00115_4
crossref_primary_10_1002_ange_202414770
Cites_doi 10.1002/aenm.202101004
10.1021/acs.energyfuels.1c00990
10.1002/adma.201700542
10.1002/adma.202102034
10.1016/j.coelec.2020.100652
10.1016/j.chempr.2021.12.023
10.1021/acs.jpcc.1c04559
10.1021/jp408037e
10.1002/adma.201501559
10.1038/s41560-018-0214-0
10.1002/anie.202103470
10.1002/anie.202003136
10.1021/acs.jpclett.6b00228
10.1038/35104644
10.1039/C4EE00372A
10.1021/acs.chemmater.7b00068
10.1021/jacs.2c04176
10.1021/jacs.9b13303
10.1002/adma.202005022
10.1021/acs.nanolett.0c04347
10.1021/acsenergylett.6b00194
10.1016/j.jechem.2022.09.029
10.1021/ja3091438
10.1002/anie.201904240
10.1002/adfm.201910375
10.1016/j.esci.2021.08.001
10.1002/aenm.201802207
10.1002/smsc.202100042
10.1002/anie.201807367
10.1016/j.mattod.2020.10.021
10.1016/j.jechem.2021.12.024
10.1021/acsenergylett.0c02527
10.1016/j.ensm.2021.08.012
10.1016/j.joule.2017.11.009
10.1038/nmat3191
10.1002/aenm.201903843
10.1002/smll.202200046
10.1021/jacs.1c03868
10.1016/j.joule.2021.06.009
10.1002/bte2.20220006
10.1002/anie.202007740
10.1002/aenm.202002180
10.1021/acsenergylett.0c01545
10.1002/anie.202114671
10.1016/j.ensm.2021.01.008
10.1021/acsami.0c17058
10.1002/aenm.202202474
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202309968
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202309968
ANIE202309968
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300
– fundername: National Natural Science Foundation of China
  funderid: 22109007, 22109086, 22209010
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3908-5bd88df16bd3189cf66a79105ddaacfb36c69a18d9267e12241e88e54bc1ee1a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 18:21:21 EDT 2025
Thu Jul 24 14:11:01 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Thu Jul 31 00:18:38 EDT 2025
Fri Jul 25 09:40:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3908-5bd88df16bd3189cf66a79105ddaacfb36c69a18d9267e12241e88e54bc1ee1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202309968
PQID 2877291095
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2860619194
proquest_journals_2877291095
crossref_primary_10_1002_anie_202309968
crossref_citationtrail_10_1002_anie_202309968
wiley_primary_10_1002_anie_202309968_ANIE202309968
PublicationCentury 2000
PublicationDate October 23, 2023
2023-10-23
20231023
PublicationDateYYYYMMDD 2023-10-23
PublicationDate_xml – month: 10
  year: 2023
  text: October 23, 2023
  day: 23
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 25
2023; 76
2021; 6
2019; 9
2017; 1
2021; 5
2021; 42
2021; 45
2020; 20
2020; 142
2021; 125
2019; 58
2022; 68
2020; 59
2020; 12
2017; 29
2020; 10
2020; 32
2021; 143
2021; 1
2012; 11
2022; 144
2021; 36
2021; 35
2020; 5
2016; 7
2018; 3
2015; 27
2016; 1
2021; 33
2021; 11
2020; 30
2022; 61
2022; 8
2013; 117
2022; 12
2013; 135
2022; 1
2021; 60
2014; 7
2001; 414
2022; 18
2018; 57
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_2
e_1_2_7_38_1
e_1_2_7_59_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  publication-title: Nat. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 20157
  year: 2021
  end-page: 20170
  publication-title: J. Phys. Chem. C
– volume: 18
  year: 2022
  publication-title: Small
– volume: 29
  start-page: 3375
  year: 2017
  end-page: 3379
  publication-title: Chem. Mater.
– volume: 36
  start-page: 333
  year: 2021
  end-page: 340
  publication-title: Energy Storage Mater.
– volume: 57
  start-page: 12033
  year: 2018
  end-page: 12036
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 45
  start-page: 62
  year: 2021
  end-page: 76
  publication-title: Mater. Today
– volume: 1
  start-page: 871
  year: 2017
  end-page: 886
  publication-title: Joule
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 144
  start-page: 14638
  year: 2022
  end-page: 14646
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 3583
  year: 2020
  end-page: 3592
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 10301
  year: 2021
  end-page: 10308
  publication-title: J. Am. Chem. Soc.
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  publication-title: Nature
– volume: 25
  year: 2021
  publication-title: Curr. Opin. Electrochem.
– volume: 1
  year: 2022
  publication-title: Battery Energy
– volume: 1
  start-page: 44
  year: 2021
  end-page: 52
  publication-title: eScience
– volume: 59
  start-page: 9011
  year: 2020
  end-page: 9017
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 20531
  year: 2013
  end-page: 20541
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 503
  year: 2016
  end-page: 509
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 5203
  year: 2015
  end-page: 5209
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1083
  year: 2022
  end-page: 1098
  publication-title: Chem
– volume: 60
  start-page: 15503
  year: 2021
  end-page: 15509
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 3
  start-page: 783
  year: 2018
  end-page: 791
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3140
  year: 2020
  end-page: 3151
  publication-title: ACS Energy Lett.
– volume: 76
  start-page: 181
  year: 2023
  end-page: 186
  publication-title: J. Energy Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 42
  start-page: 645
  year: 2021
  end-page: 678
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 537
  year: 2021
  end-page: 546
  publication-title: ACS Energy Lett.
– volume: 58
  start-page: 10591
  year: 2019
  end-page: 10595
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 10405
  year: 2021
  end-page: 10427
  publication-title: Energy Fuels
– volume: 5
  start-page: 2323
  year: 2021
  end-page: 2364
  publication-title: Joule
– volume: 68
  start-page: 300
  year: 2022
  end-page: 305
  publication-title: J. Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1518
  year: 2016
  end-page: 1525
  publication-title: J. Phys. Chem. Lett.
– volume: 20
  start-page: 8435
  year: 2020
  end-page: 8437
  publication-title: Nano Lett.
– volume: 59
  start-page: 17670
  year: 2020
  end-page: 17675
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 55971
  year: 2020
  end-page: 55981
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 2697
  year: 2014
  end-page: 2705
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_54_2
  doi: 10.1002/aenm.202101004
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.energyfuels.1c00990
– ident: e_1_2_7_20_1
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201700542
– ident: e_1_2_7_36_2
  doi: 10.1002/adma.202102034
– ident: e_1_2_7_18_2
  doi: 10.1016/j.coelec.2020.100652
– ident: e_1_2_7_57_1
  doi: 10.1016/j.chempr.2021.12.023
– ident: e_1_2_7_48_2
  doi: 10.1021/acs.jpcc.1c04559
– ident: e_1_2_7_17_1
– ident: e_1_2_7_45_2
  doi: 10.1021/jp408037e
– ident: e_1_2_7_4_1
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201501559
– ident: e_1_2_7_39_1
– ident: e_1_2_7_50_2
  doi: 10.1038/s41560-018-0214-0
– ident: e_1_2_7_52_1
– ident: e_1_2_7_8_1
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.202103470
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202003136
– ident: e_1_2_7_21_2
  doi: 10.1021/acs.jpclett.6b00228
– ident: e_1_2_7_5_2
  doi: 10.1038/35104644
– ident: e_1_2_7_32_1
– ident: e_1_2_7_53_2
  doi: 10.1039/C4EE00372A
– ident: e_1_2_7_35_1
– ident: e_1_2_7_41_2
  doi: 10.1021/acs.chemmater.7b00068
– ident: e_1_2_7_15_2
  doi: 10.1021/jacs.2c04176
– ident: e_1_2_7_30_2
  doi: 10.1021/jacs.9b13303
– ident: e_1_2_7_46_1
– ident: e_1_2_7_37_2
  doi: 10.1002/adma.202005022
– ident: e_1_2_7_49_1
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.nanolett.0c04347
– ident: e_1_2_7_47_2
  doi: 10.1021/acsenergylett.6b00194
– ident: e_1_2_7_11_2
  doi: 10.1016/j.jechem.2022.09.029
– ident: e_1_2_7_7_1
  doi: 10.1021/ja3091438
– ident: e_1_2_7_60_2
  doi: 10.1002/anie.201904240
– ident: e_1_2_7_19_2
  doi: 10.1002/adfm.201910375
– ident: e_1_2_7_25_2
  doi: 10.1016/j.esci.2021.08.001
– ident: e_1_2_7_62_1
  doi: 10.1002/aenm.201802207
– ident: e_1_2_7_63_1
  doi: 10.1002/smsc.202100042
– ident: e_1_2_7_59_2
  doi: 10.1002/anie.201807367
– ident: e_1_2_7_29_2
  doi: 10.1016/j.mattod.2020.10.021
– ident: e_1_2_7_14_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_12_2
  doi: 10.1016/j.jechem.2021.12.024
– ident: e_1_2_7_9_2
  doi: 10.1021/acsenergylett.0c02527
– ident: e_1_2_7_44_2
  doi: 10.1016/j.ensm.2021.08.012
– ident: e_1_2_7_34_2
  doi: 10.1016/j.joule.2017.11.009
– ident: e_1_2_7_1_1
– ident: e_1_2_7_6_2
  doi: 10.1038/nmat3191
– ident: e_1_2_7_33_2
  doi: 10.1002/aenm.201903843
– ident: e_1_2_7_55_1
  doi: 10.1002/smll.202200046
– ident: e_1_2_7_40_2
  doi: 10.1021/jacs.1c03868
– ident: e_1_2_7_43_2
  doi: 10.1016/j.joule.2021.06.009
– ident: e_1_2_7_58_1
– ident: e_1_2_7_26_2
  doi: 10.1002/bte2.20220006
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.202007740
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.202002180
– ident: e_1_2_7_2_2
  doi: 10.1021/acsenergylett.0c01545
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.202114671
– ident: e_1_2_7_51_2
  doi: 10.1016/j.ensm.2021.01.008
– ident: e_1_2_7_16_2
  doi: 10.1021/acsami.0c17058
– ident: e_1_2_7_42_1
– ident: e_1_2_7_23_1
– ident: e_1_2_7_13_2
  doi: 10.1002/aenm.202202474
SSID ssj0028806
Score 2.6382964
Snippet Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the...
Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202309968
SubjectTerms Anodes
Cathodes
Cycles
Electrode Kinetics
Electrodes
Electrolytic cells
Kinetics
Life span
Lithium
Lithium Polysulfides
Lithium sulfur batteries
Polysulfides
Pouch Cells
Solvation
Solvation Structure
Sulfur
Title Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long‐Cycling Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202309968
https://www.proquest.com/docview/2877291095
https://www.proquest.com/docview/2860619194
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--xdVVIgiesm7abrY9yrLiG3EVvJW8uohrK-72oKf9CYL_0F_iTLOtDxBBb31M2jSTdL5JMt8QsmMM-g2RZAHnhgWaaxaBVWa-4W2hjBWimMw5OxeH18HxTevmUxS_44eoJtxwZBT_axzgUg33PkhDMQK7gcm_AeMIjPbFDVuIii4r_igPOqcLL_J9hlnoS9bGprf3tfhXq_QBNT8D1sLiHMwTWdbVbTS5a-Qj1dDP32gc__MxC2RuAkfpvus_i2TKpktkplNmgVsmeQfTd-CGubRPL7LB0zAfJLfG0l42cLO5tFdQ0OaPluKkLu26xDogcgLVQhZoOir25g7paZb238YvnSeMx-zTUxC_ze_fxq89eGj-SB3ZJ_juK-T6oHvVOWSTVA1M-1EzZC1lwtAkHNQLP4lIJ0LINiCRljFS6kT5QotI8tBEnmjbYjXPhqFtBUpza7n0V8l0mqV2jVDdlIHVwnCleGCaPASEpLhMTAKX_CioEVaqKtYTHnNMpzGIHQOzF2NjxlVj1shuJf_gGDx-lKyXmo8nI3kYg0cJ_gcHJFoj29VtUAIurMjUZjnKgBsIji9WzivU_Mub4v3zo251tv6XQhtkFo_RjHp-nUyDqu0m4KOR2irGwDtE0AxH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BOZQLlD8RaMsiIXHaNGs7G_tYRalSmkaItBI3a_8cVQQbNfGhnPoISH3DPklndmO3RUJIcPR61l7v7HhnZme-AfhgLdkNmeKJEJYnRhie4a7MYysGUlsnpXfmHE_l-DT59LXfRBNSLkzAh2gdbiQZ_n9NAk4O6b1b1FBKwe5S9W9UcmT6EB5RWW9vVX1pEaQiXJ4hwSiOOdWhb3Abe9He_f7396VbZfOuyur3nIOnoJvRhlCTb916pbvm529Ajv_1OVvwZK2Rsv2whJ7BA1c-h81hUwjuBdRDquBBMXPlnH2uFhfLelGcWcdm1SI4dNnMo9DW546RX5eNQm0dJDnCcREQNFv58Nwlm1Tl_Pry1_CCUjLnbILkZ_X368urGT60PmcB7xPN95dwejA6GY75uloDN3HWS3lf2zS1hUAO438iM4WUaoDKSN9apUyhY2lkpkRqs0gOnD_Qc2nq-ok2wjmh4lewUValew3M9FTijLRCa5HYnkhRSdJCFbbApjhLOsAbXuVmDWVOFTUWeQBhjnKazLydzA58bOl_BBCPP1JuN6zP18K8zNGoRBNEoDLagfftbWQCna2o0lU10aAliLYvDS7yfP7Lm_L96eGovXrzL53eweb45HiSTw6nR2_hMbXTrhrF27CBbHc7qC6t9K4XiBv0fRBi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSC0X-hYLtHWlSj15iZOs1zmiZVc8tivULRK3yK-sUJcEsZsDnPgJSPxDfgkz8SZAJVSpPcYZJ47Hk3nY8w0h36xFvyFRLObcsthwwxLQyiyyvCu0dUJUwZwfI7F3HB-cdE4eZfF7fIgm4IaSUf2vUcDPbbb9ABqKGdhtLP4NNo6QL8hKLAKJ63r3ZwMgFcLq9PlFUcSwDH0N2xiE20_7P1VLD7bmY4u1UjmD10TVg_UnTX63y7lum6s_cBz_52vekLWFPUp3_AJ6S5Zc_o686tVl4N6Tsof1O_DEXD6hR8X0clZOs1Pr6LiY-nAuHVcYtOWFoxjVpX1fWQdIDmFYCANN59Xh3BkdFvnk7vqmd4kJmRM6BPLT8uzu-nYMDy0vqEf7BOf9Azke9H_19tiiVgMzURJI1tFWSptx4C_8JRKTCaG6YIp0rFXKZDoSRiSKS5uEouuq7TwnpevE2nDnuIo-kuW8yN06oSZQsTPCcq15bAMuwUTSXGU2g6YoiVuE1axKzQLIHOtpTFMPwRymOJlpM5kt8r2hP_cQHs9SbtWcTxeiPEvBpQQHhIMp2iJfm9vABNxZUbkrSqQBPxA8XxxcWLH5L29Kd0b7_eZq4186fSEvj3YH6XB_dLhJVrEZVWoYbZFl4Lr7BLbSXH-uxOEe2i8PGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlating+Polysulfide+Solvation+Structure+with+Electrode+Kinetics+towards+Long-Cycling+Lithium-Sulfur+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zheng&rft.au=Hou%2C+Li-Peng&rft.au=Yao%2C+Nan&rft.au=Li%2C+Xi-Yao&rft.date=2023-10-23&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=43&rft.spage=e202309968&rft_id=info:doi/10.1002%2Fanie.202309968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon