Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long‐Cycling Lithium–Sulfur Batteries
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards lo...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 43; pp. e202309968 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
23.10.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries.
The polysulfide electrode kinetics regarding the sulfur cathode and the lithium anode are promoted as the solvating power of the polysulfide solvation structure increases. Both too fast and slow electrode kinetics induce rapid failure of Lithium–sulfur batteries. The polysulfide solvation structure with medium solvating power balances the cathode and anode kinetics and improves the cycling performance of high‐energy‐density Lithium–sulfur batteries. |
---|---|
AbstractList | Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg −1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries. Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries. The polysulfide electrode kinetics regarding the sulfur cathode and the lithium anode are promoted as the solvating power of the polysulfide solvation structure increases. Both too fast and slow electrode kinetics induce rapid failure of Lithium–sulfur batteries. The polysulfide solvation structure with medium solvating power balances the cathode and anode kinetics and improves the cycling performance of high‐energy‐density Lithium–sulfur batteries. Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li-S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li-S batteries. Li-S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg-1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li-S batteries.Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li-S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li-S batteries. Li-S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg-1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li-S batteries. Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long‐cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra‐thin Li anodes and high‐S‐loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long‐cycling Li−S batteries. |
Author | Li, Zheng Zhang, Qiang Hou, Li‐Peng Li, Xi‐Yao Li, Bo‐Quan Yao, Nan Chen, Zi‐Xian Zhang, Xue‐Qiang Chen, Xiang |
Author_xml | – sequence: 1 givenname: Zheng surname: Li fullname: Li, Zheng organization: Tsinghua University – sequence: 2 givenname: Li‐Peng surname: Hou fullname: Hou, Li‐Peng organization: Tsinghua University – sequence: 3 givenname: Nan surname: Yao fullname: Yao, Nan organization: Tsinghua University – sequence: 4 givenname: Xi‐Yao surname: Li fullname: Li, Xi‐Yao organization: Tsinghua University – sequence: 5 givenname: Zi‐Xian surname: Chen fullname: Chen, Zi‐Xian organization: Beijing Institute of Technology – sequence: 6 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 7 givenname: Xue‐Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Xue‐Qiang organization: Beijing Institute of Technology – sequence: 8 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan email: libq@bit.edu.cn organization: Beijing Institute of Technology – sequence: 9 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkctqGzEUhkVJoLl02_VAN9mMq8uMRlomxrlQ0xTcrgdZcyZVkKVElxjv8giBvmGepHJdGgiEriTE9_3noP8Q7TnvAKGPBE8IxvSzcgYmFFOGpeTiHTogLSU16zq2V-4NY3UnWvIeHcZ4W3ghMD9AeepDAKuScTfVN283MdvRDFAtvH0or95VixSyTjlAtTbpZzWzoFPwBfliHCSjY5X8WoUhVnPvbp4fn6Ybbbdx84KbvHp-_LUooTlUZyolCAbiMdoflY3w4e95hH6cz75PL-v59cXV9HReayaxqNvlIMQwEr4cGBFSj5yrThLcDoNSelwyrrlURAyS8g4IpQ0BIaBtlpoAEMWO0Mku9y74-wwx9SsTNVirHPgceyo45kQS2RT00yv01ufgynaF6jpaxsq2UJMdpYOPMcDY3wWzUmHTE9xvW-i3LfT_WihC80rQJv351xSUsW9rcqetjYXNf4b0p1-vZi_ub9vTo1w |
CitedBy_id | crossref_primary_10_1016_j_ensm_2025_104123 crossref_primary_10_1002_anie_202416506 crossref_primary_10_1002_ange_202502255 crossref_primary_10_1002_ange_202423046 crossref_primary_10_1002_adma_202401263 crossref_primary_10_1002_ange_202400343 crossref_primary_10_1002_anie_202410823 crossref_primary_10_1002_anie_202406065 crossref_primary_10_1039_D4TA08847F crossref_primary_10_1016_j_cej_2024_157314 crossref_primary_10_1002_aenm_202402506 crossref_primary_10_1002_ange_202410823 crossref_primary_10_1016_j_cej_2024_151161 crossref_primary_10_1002_ange_202416506 crossref_primary_10_1002_smll_202406282 crossref_primary_10_1002_anie_202414770 crossref_primary_10_1039_D3DT03895E crossref_primary_10_1039_D4MH01287A crossref_primary_10_1002_anie_202412214 crossref_primary_10_1039_D4MH01504E crossref_primary_10_1002_anie_202502255 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1002_ange_202406065 crossref_primary_10_1002_anie_202423046 crossref_primary_10_1002_anie_202400343 crossref_primary_10_1016_j_cej_2024_153762 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1021_acsenergylett_4c02535 crossref_primary_10_1016_j_jechem_2024_03_037 crossref_primary_10_1039_D4CC04372C crossref_primary_10_1002_ange_202412214 crossref_primary_10_1038_s44286_024_00115_4 crossref_primary_10_1002_ange_202414770 |
Cites_doi | 10.1002/aenm.202101004 10.1021/acs.energyfuels.1c00990 10.1002/adma.201700542 10.1002/adma.202102034 10.1016/j.coelec.2020.100652 10.1016/j.chempr.2021.12.023 10.1021/acs.jpcc.1c04559 10.1021/jp408037e 10.1002/adma.201501559 10.1038/s41560-018-0214-0 10.1002/anie.202103470 10.1002/anie.202003136 10.1021/acs.jpclett.6b00228 10.1038/35104644 10.1039/C4EE00372A 10.1021/acs.chemmater.7b00068 10.1021/jacs.2c04176 10.1021/jacs.9b13303 10.1002/adma.202005022 10.1021/acs.nanolett.0c04347 10.1021/acsenergylett.6b00194 10.1016/j.jechem.2022.09.029 10.1021/ja3091438 10.1002/anie.201904240 10.1002/adfm.201910375 10.1016/j.esci.2021.08.001 10.1002/aenm.201802207 10.1002/smsc.202100042 10.1002/anie.201807367 10.1016/j.mattod.2020.10.021 10.1016/j.jechem.2021.12.024 10.1021/acsenergylett.0c02527 10.1016/j.ensm.2021.08.012 10.1016/j.joule.2017.11.009 10.1038/nmat3191 10.1002/aenm.201903843 10.1002/smll.202200046 10.1021/jacs.1c03868 10.1016/j.joule.2021.06.009 10.1002/bte2.20220006 10.1002/anie.202007740 10.1002/aenm.202002180 10.1021/acsenergylett.0c01545 10.1002/anie.202114671 10.1016/j.ensm.2021.01.008 10.1021/acsami.0c17058 10.1002/aenm.202202474 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202309968 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202309968 ANIE202309968 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300 – fundername: National Natural Science Foundation of China funderid: 22109007, 22109086, 22209010 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3908-5bd88df16bd3189cf66a79105ddaacfb36c69a18d9267e12241e88e54bc1ee1a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:21:21 EDT 2025 Thu Jul 24 14:11:01 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Thu Jul 31 00:18:38 EDT 2025 Fri Jul 25 09:40:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3908-5bd88df16bd3189cf66a79105ddaacfb36c69a18d9267e12241e88e54bc1ee1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202309968 |
PQID | 2877291095 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2860619194 proquest_journals_2877291095 crossref_primary_10_1002_anie_202309968 crossref_citationtrail_10_1002_anie_202309968 wiley_primary_10_1002_anie_202309968_ANIE202309968 |
PublicationCentury | 2000 |
PublicationDate | October 23, 2023 2023-10-23 20231023 |
PublicationDateYYYYMMDD | 2023-10-23 |
PublicationDate_xml | – month: 10 year: 2023 text: October 23, 2023 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 25 2023; 76 2021; 6 2019; 9 2017; 1 2021; 5 2021; 42 2021; 45 2020; 20 2020; 142 2021; 125 2019; 58 2022; 68 2020; 59 2020; 12 2017; 29 2020; 10 2020; 32 2021; 143 2021; 1 2012; 11 2022; 144 2021; 36 2021; 35 2020; 5 2016; 7 2018; 3 2015; 27 2016; 1 2021; 33 2021; 11 2020; 30 2022; 61 2022; 8 2013; 117 2022; 12 2013; 135 2022; 1 2021; 60 2014; 7 2001; 414 2022; 18 2018; 57 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_2 e_1_2_7_38_1 e_1_2_7_59_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 11 start-page: 19 year: 2012 end-page: 29 publication-title: Nat. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 20157 year: 2021 end-page: 20170 publication-title: J. Phys. Chem. C – volume: 18 year: 2022 publication-title: Small – volume: 29 start-page: 3375 year: 2017 end-page: 3379 publication-title: Chem. Mater. – volume: 36 start-page: 333 year: 2021 end-page: 340 publication-title: Energy Storage Mater. – volume: 57 start-page: 12033 year: 2018 end-page: 12036 publication-title: Angew. Chem. Int. Ed. – volume: 1 year: 2021 publication-title: Small Sci. – volume: 45 start-page: 62 year: 2021 end-page: 76 publication-title: Mater. Today – volume: 1 start-page: 871 year: 2017 end-page: 886 publication-title: Joule – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 144 start-page: 14638 year: 2022 end-page: 14646 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 3583 year: 2020 end-page: 3592 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 10301 year: 2021 end-page: 10308 publication-title: J. Am. Chem. Soc. – volume: 414 start-page: 359 year: 2001 end-page: 367 publication-title: Nature – volume: 25 year: 2021 publication-title: Curr. Opin. Electrochem. – volume: 1 year: 2022 publication-title: Battery Energy – volume: 1 start-page: 44 year: 2021 end-page: 52 publication-title: eScience – volume: 59 start-page: 9011 year: 2020 end-page: 9017 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 20531 year: 2013 end-page: 20541 publication-title: J. Phys. Chem. C – volume: 1 start-page: 503 year: 2016 end-page: 509 publication-title: ACS Energy Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 27 start-page: 5203 year: 2015 end-page: 5209 publication-title: Adv. Mater. – volume: 8 start-page: 1083 year: 2022 end-page: 1098 publication-title: Chem – volume: 60 start-page: 15503 year: 2021 end-page: 15509 publication-title: Angew. Chem. Int. Ed. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 3 start-page: 783 year: 2018 end-page: 791 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 3140 year: 2020 end-page: 3151 publication-title: ACS Energy Lett. – volume: 76 start-page: 181 year: 2023 end-page: 186 publication-title: J. Energy Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 42 start-page: 645 year: 2021 end-page: 678 publication-title: Energy Storage Mater. – volume: 6 start-page: 537 year: 2021 end-page: 546 publication-title: ACS Energy Lett. – volume: 58 start-page: 10591 year: 2019 end-page: 10595 publication-title: Angew. Chem. Int. Ed. – volume: 35 start-page: 10405 year: 2021 end-page: 10427 publication-title: Energy Fuels – volume: 5 start-page: 2323 year: 2021 end-page: 2364 publication-title: Joule – volume: 68 start-page: 300 year: 2022 end-page: 305 publication-title: J. Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1518 year: 2016 end-page: 1525 publication-title: J. Phys. Chem. Lett. – volume: 20 start-page: 8435 year: 2020 end-page: 8437 publication-title: Nano Lett. – volume: 59 start-page: 17670 year: 2020 end-page: 17675 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 55971 year: 2020 end-page: 55981 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 2697 year: 2014 end-page: 2705 publication-title: Energy Environ. Sci. – ident: e_1_2_7_54_2 doi: 10.1002/aenm.202101004 – ident: e_1_2_7_61_1 doi: 10.1021/acs.energyfuels.1c00990 – ident: e_1_2_7_20_1 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201700542 – ident: e_1_2_7_36_2 doi: 10.1002/adma.202102034 – ident: e_1_2_7_18_2 doi: 10.1016/j.coelec.2020.100652 – ident: e_1_2_7_57_1 doi: 10.1016/j.chempr.2021.12.023 – ident: e_1_2_7_48_2 doi: 10.1021/acs.jpcc.1c04559 – ident: e_1_2_7_17_1 – ident: e_1_2_7_45_2 doi: 10.1021/jp408037e – ident: e_1_2_7_4_1 – ident: e_1_2_7_10_2 doi: 10.1002/adma.201501559 – ident: e_1_2_7_39_1 – ident: e_1_2_7_50_2 doi: 10.1038/s41560-018-0214-0 – ident: e_1_2_7_52_1 – ident: e_1_2_7_8_1 – ident: e_1_2_7_56_1 doi: 10.1002/anie.202103470 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202003136 – ident: e_1_2_7_21_2 doi: 10.1021/acs.jpclett.6b00228 – ident: e_1_2_7_5_2 doi: 10.1038/35104644 – ident: e_1_2_7_32_1 – ident: e_1_2_7_53_2 doi: 10.1039/C4EE00372A – ident: e_1_2_7_35_1 – ident: e_1_2_7_41_2 doi: 10.1021/acs.chemmater.7b00068 – ident: e_1_2_7_15_2 doi: 10.1021/jacs.2c04176 – ident: e_1_2_7_30_2 doi: 10.1021/jacs.9b13303 – ident: e_1_2_7_46_1 – ident: e_1_2_7_37_2 doi: 10.1002/adma.202005022 – ident: e_1_2_7_49_1 – ident: e_1_2_7_3_2 doi: 10.1021/acs.nanolett.0c04347 – ident: e_1_2_7_47_2 doi: 10.1021/acsenergylett.6b00194 – ident: e_1_2_7_11_2 doi: 10.1016/j.jechem.2022.09.029 – ident: e_1_2_7_7_1 doi: 10.1021/ja3091438 – ident: e_1_2_7_60_2 doi: 10.1002/anie.201904240 – ident: e_1_2_7_19_2 doi: 10.1002/adfm.201910375 – ident: e_1_2_7_25_2 doi: 10.1016/j.esci.2021.08.001 – ident: e_1_2_7_62_1 doi: 10.1002/aenm.201802207 – ident: e_1_2_7_63_1 doi: 10.1002/smsc.202100042 – ident: e_1_2_7_59_2 doi: 10.1002/anie.201807367 – ident: e_1_2_7_29_2 doi: 10.1016/j.mattod.2020.10.021 – ident: e_1_2_7_14_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_12_2 doi: 10.1016/j.jechem.2021.12.024 – ident: e_1_2_7_9_2 doi: 10.1021/acsenergylett.0c02527 – ident: e_1_2_7_44_2 doi: 10.1016/j.ensm.2021.08.012 – ident: e_1_2_7_34_2 doi: 10.1016/j.joule.2017.11.009 – ident: e_1_2_7_1_1 – ident: e_1_2_7_6_2 doi: 10.1038/nmat3191 – ident: e_1_2_7_33_2 doi: 10.1002/aenm.201903843 – ident: e_1_2_7_55_1 doi: 10.1002/smll.202200046 – ident: e_1_2_7_40_2 doi: 10.1021/jacs.1c03868 – ident: e_1_2_7_43_2 doi: 10.1016/j.joule.2021.06.009 – ident: e_1_2_7_58_1 – ident: e_1_2_7_26_2 doi: 10.1002/bte2.20220006 – ident: e_1_2_7_22_2 doi: 10.1002/anie.202007740 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.202002180 – ident: e_1_2_7_2_2 doi: 10.1021/acsenergylett.0c01545 – ident: e_1_2_7_24_2 doi: 10.1002/anie.202114671 – ident: e_1_2_7_51_2 doi: 10.1016/j.ensm.2021.01.008 – ident: e_1_2_7_16_2 doi: 10.1021/acsami.0c17058 – ident: e_1_2_7_42_1 – ident: e_1_2_7_23_1 – ident: e_1_2_7_13_2 doi: 10.1002/aenm.202202474 |
SSID | ssj0028806 |
Score | 2.6382964 |
Snippet | Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the... Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202309968 |
SubjectTerms | Anodes Cathodes Cycles Electrode Kinetics Electrodes Electrolytic cells Kinetics Life span Lithium Lithium Polysulfides Lithium sulfur batteries Polysulfides Pouch Cells Solvation Solvation Structure Sulfur |
Title | Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long‐Cycling Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202309968 https://www.proquest.com/docview/2877291095 https://www.proquest.com/docview/2860619194 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--xdVVIgiesm7abrY9yrLiG3EVvJW8uohrK-72oKf9CYL_0F_iTLOtDxBBb31M2jSTdL5JMt8QsmMM-g2RZAHnhgWaaxaBVWa-4W2hjBWimMw5OxeH18HxTevmUxS_44eoJtxwZBT_axzgUg33PkhDMQK7gcm_AeMIjPbFDVuIii4r_igPOqcLL_J9hlnoS9bGprf3tfhXq_QBNT8D1sLiHMwTWdbVbTS5a-Qj1dDP32gc__MxC2RuAkfpvus_i2TKpktkplNmgVsmeQfTd-CGubRPL7LB0zAfJLfG0l42cLO5tFdQ0OaPluKkLu26xDogcgLVQhZoOir25g7paZb238YvnSeMx-zTUxC_ze_fxq89eGj-SB3ZJ_juK-T6oHvVOWSTVA1M-1EzZC1lwtAkHNQLP4lIJ0LINiCRljFS6kT5QotI8tBEnmjbYjXPhqFtBUpza7n0V8l0mqV2jVDdlIHVwnCleGCaPASEpLhMTAKX_CioEVaqKtYTHnNMpzGIHQOzF2NjxlVj1shuJf_gGDx-lKyXmo8nI3kYg0cJ_gcHJFoj29VtUAIurMjUZjnKgBsIji9WzivU_Mub4v3zo251tv6XQhtkFo_RjHp-nUyDqu0m4KOR2irGwDtE0AxH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BOZQLlD8RaMsiIXHaNGs7G_tYRalSmkaItBI3a_8cVQQbNfGhnPoISH3DPklndmO3RUJIcPR61l7v7HhnZme-AfhgLdkNmeKJEJYnRhie4a7MYysGUlsnpXfmHE_l-DT59LXfRBNSLkzAh2gdbiQZ_n9NAk4O6b1b1FBKwe5S9W9UcmT6EB5RWW9vVX1pEaQiXJ4hwSiOOdWhb3Abe9He_f7396VbZfOuyur3nIOnoJvRhlCTb916pbvm529Ajv_1OVvwZK2Rsv2whJ7BA1c-h81hUwjuBdRDquBBMXPlnH2uFhfLelGcWcdm1SI4dNnMo9DW546RX5eNQm0dJDnCcREQNFv58Nwlm1Tl_Pry1_CCUjLnbILkZ_X368urGT60PmcB7xPN95dwejA6GY75uloDN3HWS3lf2zS1hUAO438iM4WUaoDKSN9apUyhY2lkpkRqs0gOnD_Qc2nq-ok2wjmh4lewUValew3M9FTijLRCa5HYnkhRSdJCFbbApjhLOsAbXuVmDWVOFTUWeQBhjnKazLydzA58bOl_BBCPP1JuN6zP18K8zNGoRBNEoDLagfftbWQCna2o0lU10aAliLYvDS7yfP7Lm_L96eGovXrzL53eweb45HiSTw6nR2_hMbXTrhrF27CBbHc7qC6t9K4XiBv0fRBi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSC0X-hYLtHWlSj15iZOs1zmiZVc8tivULRK3yK-sUJcEsZsDnPgJSPxDfgkz8SZAJVSpPcYZJ47Hk3nY8w0h36xFvyFRLObcsthwwxLQyiyyvCu0dUJUwZwfI7F3HB-cdE4eZfF7fIgm4IaSUf2vUcDPbbb9ABqKGdhtLP4NNo6QL8hKLAKJ63r3ZwMgFcLq9PlFUcSwDH0N2xiE20_7P1VLD7bmY4u1UjmD10TVg_UnTX63y7lum6s_cBz_52vekLWFPUp3_AJ6S5Zc_o686tVl4N6Tsof1O_DEXD6hR8X0clZOs1Pr6LiY-nAuHVcYtOWFoxjVpX1fWQdIDmFYCANN59Xh3BkdFvnk7vqmd4kJmRM6BPLT8uzu-nYMDy0vqEf7BOf9Azke9H_19tiiVgMzURJI1tFWSptx4C_8JRKTCaG6YIp0rFXKZDoSRiSKS5uEouuq7TwnpevE2nDnuIo-kuW8yN06oSZQsTPCcq15bAMuwUTSXGU2g6YoiVuE1axKzQLIHOtpTFMPwRymOJlpM5kt8r2hP_cQHs9SbtWcTxeiPEvBpQQHhIMp2iJfm9vABNxZUbkrSqQBPxA8XxxcWLH5L29Kd0b7_eZq4186fSEvj3YH6XB_dLhJVrEZVWoYbZFl4Lr7BLbSXH-uxOEe2i8PGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlating+Polysulfide+Solvation+Structure+with+Electrode+Kinetics+towards+Long-Cycling+Lithium-Sulfur+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zheng&rft.au=Hou%2C+Li-Peng&rft.au=Yao%2C+Nan&rft.au=Li%2C+Xi-Yao&rft.date=2023-10-23&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=43&rft.spage=e202309968&rft_id=info:doi/10.1002%2Fanie.202309968&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |