Simultaneous variable selection in regression analysis of multivariate interval‐censored data
Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This typ...
Saved in:
Published in | Biometrics Vol. 78; no. 4; pp. 1402 - 1413 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event‐specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval‐censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation‐maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study. |
---|---|
AbstractList | Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event-specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval-censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation-maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study. Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event‐specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval‐censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation‐maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study. Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event-specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval-censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation-maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study.Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event-specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval-censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation-maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study. |
Author | Li, Shuwei Sun, Liuquan Sui, Xuemei Wang, Lianming Song, Xinyuan |
Author_xml | – sequence: 1 givenname: Liuquan orcidid: 0000-0002-8816-942X surname: Sun fullname: Sun, Liuquan organization: Chinese Academy of Sciences – sequence: 2 givenname: Shuwei orcidid: 0000-0002-9400-2722 surname: Li fullname: Li, Shuwei email: seslishuw@gzhu.edu.cn organization: Guangzhou University – sequence: 3 givenname: Lianming surname: Wang fullname: Wang, Lianming organization: University of South Carolina – sequence: 4 givenname: Xinyuan orcidid: 0000-0002-4877-3200 surname: Song fullname: Song, Xinyuan organization: Chinese University of Hong Kong – sequence: 5 givenname: Xuemei surname: Sui fullname: Sui, Xuemei organization: University of South Carolina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34407218$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9K5jAUxYMo-vln4wMMhdnIQPUmTdJ2OYrOCIoLFdyFNL2VSNpo0irfzkfwGX2Saa1uZNC7uVz4nQP3nE2y2vkOCdmlsE_HOaisb_dpJnixQhZUcJoCZ7BKFgAg04zTmw2yGePdeJYC2DrZyDiHnNFiQdSlbQfX6w79EJNHHayuHCYRHZre-i6xXRLwNmCM06U77ZbRxsQ3yaSzb4oeR6zH8Kjd6_OLwS76gHVS615vk7VGu4g773uLXJ8cXx39Tc8u_pwe_T5LTVZCkTJmaqaZFCbXUMiCo6wZx0o2dSFKIShqbhBzjsxwMJmoJFSMN4KLzIwG2RbZm33vg38YMPaqtdGgc_NnihWUljmHkn-PCsmKjM6uPz-hd34IYwYjlYscKEg5Gf54p4aqxVrdB9vqsFQfKY8AzIAJPsaAjTK211O8fdDWKQpqKlJNRaq3IkfJr0-SD9f_wnSGn6zD5RekOjy9OJ81_wBc0K7o |
CitedBy_id | crossref_primary_10_1111_biom_13795 crossref_primary_10_1002_sim_70023 crossref_primary_10_1080_00031305_2024_2407495 crossref_primary_10_1093_jrsssc_qlad093 crossref_primary_10_1002_sim_10225 crossref_primary_10_3390_math11224576 crossref_primary_10_1093_biomtc_ujad041 crossref_primary_10_1002_sam_11680 crossref_primary_10_1007_s00362_023_01486_1 crossref_primary_10_1007_s12561_023_09391_9 |
Cites_doi | 10.1093/biostatistics/kxz032 10.1016/0895-7061(95)00216-2 10.1093/biomet/ast029 10.1111/j.2517-6161.1996.tb02080.x 10.1093/biomet/asm037 10.1111/j.1467-9469.2009.00680.x 10.1093/biomet/92.2.303 10.1111/biom.12389 10.1093/biomet/asw013 10.1093/biomet/asx029 10.1016/j.amjmed.2016.11.017 10.1002/sim.2907 10.1111/j.1541-0420.2006.00562.x 10.1080/01621459.2012.746068 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1002/sim.6767 10.1198/jasa.2009.tm07494 10.1093/biomet/asp008 10.1080/01621459.2018.1537922 10.1111/j.1541-0420.2008.01074.x 10.1016/j.csda.2018.07.016 10.1111/biom.12484 10.1111/biom.12302 10.1198/016214506000000735 10.1177/0962280219884720 10.1214/09-AOS729 10.1080/01621459.1997.10474050 10.1177/0962280219856238 10.1002/sim.8165 10.1080/01621459.2016.1158113 10.1111/j.0006-341X.2000.00940.x 10.1198/106186006X96854 |
ContentType | Journal Article |
Copyright | 2021 The International Biometric Society. 2022 The International Biometric Society. |
Copyright_xml | – notice: 2021 The International Biometric Society. – notice: 2022 The International Biometric Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
DOI | 10.1111/biom.13548 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA ProQuest Computer Science Collection MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 1413 |
ExternalDocumentID | 34407218 10_1111_biom_13548 BIOM13548 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province funderid: 2021A1515010044 – fundername: Research Grant Council of the Hong Kong Special Administrative Region funderid: 14301918; 14302519 – fundername: National Institutes of Health funderid: R01CA218578 – fundername: National Natural Science Foundation of China funderid: 11771431; 11690015; 11901128 – fundername: Key Laboratory of RCSDS, CAS funderid: 2008DP173182 – fundername: Science and Technology Program of Guangzhou of China funderid: 202102010512 – fundername: Research Grant Council of the Hong Kong Special Administrative Region grantid: 14301918 – fundername: National Natural Science Foundation of China grantid: 11771431 – fundername: NCI NIH HHS grantid: R01 CA218578 – fundername: National Natural Science Foundation of China grantid: 11690015 – fundername: Research Grant Council of the Hong Kong Special Administrative Region grantid: 14302519 – fundername: National Natural Science Foundation of China grantid: 11901128 – fundername: Natural Science Foundation of Guangdong Province grantid: 2021A1515010044 – fundername: Science and Technology Program of Guangzhou of China grantid: 202102010512 – fundername: Key Laboratory of RCSDS, CAS grantid: 2008DP173182 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAWIL AAYXX ABAWQ ABGNP ACHJO ADNBA AEOTA AGLNM AGORE AGQPQ AHGBF AIHAF AJBYB AJNCP CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3908-22cd2a265c7a08684e6d24eb6fd859551ea4cee74e2c40c35b60b24f5453c9083 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 18:33:05 EDT 2025 Tue Aug 05 09:59:39 EDT 2025 Wed Aug 13 08:35:20 EDT 2025 Mon Jul 21 06:02:11 EDT 2025 Tue Jul 01 00:58:12 EDT 2025 Thu Apr 24 23:05:29 EDT 2025 Wed Jan 22 16:25:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | interval censoring EM algorithm multivariate analysis transformation models minimum information criterion |
Language | English |
License | 2021 The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3908-22cd2a265c7a08684e6d24eb6fd859551ea4cee74e2c40c35b60b24f5453c9083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9400-2722 0000-0002-8816-942X 0000-0002-4877-3200 |
PMID | 34407218 |
PQID | 2757010664 |
PQPubID | 35366 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2811974094 proquest_miscellaneous_2562831908 proquest_journals_2757010664 pubmed_primary_34407218 crossref_citationtrail_10_1111_biom_13548 crossref_primary_10_1111_biom_13548 wiley_primary_10_1111_biom_13548_BIOM13548 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 38 2010; 37 2009; 65 2018; 128 2015; 71 2013; 108 2013; 23 2006; 15 2002; 1 2013; 100 2019; 16 2006 2016; 72 2017; 130 2007; 94 2008; 31 2016; 103 1996; 58 2017; 112 2016; 35 1995; 8 2009; 96 2006; 62 1997; 92 1997; 56 2020; 115 1997; 16 2005; 92 2020; 22 2017; 104 2006; 101 2009; 104 2007; 26 2020; 29 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 Fan J. (e_1_2_9_5_1) 2002; 1 e_1_2_9_12_1 e_1_2_9_33_1 Sui X. (e_1_2_9_18_1) 2008; 31 Sun J. (e_1_2_9_20_1) 2006 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 Tibshirani R. (e_1_2_9_23_1) 1996; 58 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Wen C.C. (e_1_2_9_26_1) 2013; 23 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 96 start-page: 277 year: 2009 end-page: 291 article-title: Gamma frailty transformation models for multivariate survival times publication-title: Biometrika – volume: 23 start-page: 383 year: 2013 end-page: 408 article-title: A frailty model approach for regression analysis of bivariate interval‐censored survival data publication-title: Statistica Sinica – volume: 31 start-page: 550 year: 2008 end-page: 555 article-title: A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women publication-title: Cardiovascular and Metabolic Risk – volume: 15 start-page: 39 year: 2006 end-page: 57 article-title: Use of the probability integral transformation to fit nonlinear mixed‐effects models with nonnormal random effects publication-title: Journal of Computational and Graphical Statistics – volume: 29 start-page: 1243 year: 2020 end-page: 1255 article-title: Adaptive lasso for the Cox regression with interval censored and possibly left truncated data publication-title: Statistical Methods in Medical Research – volume: 35 start-page: 1210 year: 2016 end-page: 1225 article-title: Variable selection in a flexible parametric mixture cure model with interval‐censored data publication-title: Statistics in Medicine – volume: 16 start-page: 3026 year: 2019 end-page: 3039 article-title: Variable selection in semiparametric nonmixture cure model with interval‐censored failure time data: an application to the prostate cancer screening study publication-title: Statistics in Medicine – volume: 1 start-page: 74 year: 2002 end-page: 99 article-title: Variable selection for Cox's proportional hazards model and frailty model publication-title: The Annals of Statistics – volume: 103 start-page: 253 year: 2016 end-page: 271 article-title: Maximum likelihood estimation for semiparametric transformation models with interval‐censored data publication-title: Biometrika – volume: 37 start-page: 338 year: 2010 end-page: 354 article-title: A spline‐based semiparametric maximum likelihood estimation method for the Cox model with interval‐censored data publication-title: Scandinavian Journal of Statistics – volume: 108 start-page: 247 year: 2013 end-page: 264 article-title: High‐dimensional sparse additive hazards regression publication-title: Journal of the American Statistical Association – volume: 26 start-page: 5147 year: 2007 end-page: 5161 article-title: The proportional odds model for multivariate interval‐censored failure time data publication-title: Statistics in Medicine – volume: 92 start-page: 960 year: 1997 end-page: 967 article-title: Sieve estimation for the proportional‐odds failure‐time regression model with interval censoring publication-title: Journal of the American Statistical Association – volume: 62 start-page: 813 year: 2006 end-page: 820 article-title: Regularized estimation in the accelerated failure time model with high‐dimensional covariates publication-title: Biometrics – volume: 72 start-page: 222 year: 2016 end-page: 231 article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval‐censored data publication-title: Biometrics – volume: 92 start-page: 303 year: 2005 end-page: 316 article-title: Variable selection for multivariate failure time data publication-title: Biometrika – volume: 56 start-page: 940 year: 1997 end-page: 943 article-title: A proportional hazards model for multivariate interval‐censored failure time data publication-title: Biometrics – volume: 29 start-page: 2151 year: 2020 end-page: 2166 article-title: Penalized estimation of semiparametric transformation models with interval‐censored data and application to Alzheimer's disease publication-title: Statistical Methods in Medical Research – volume: 72 start-page: 751 year: 2016 end-page: 759 article-title: Sparse estimation of Cox proportional hazards models via approximated information criteria publication-title: Biometrics – volume: 104 start-page: 1168 year: 2009 end-page: 1178 article-title: A semiparametric regression cure model for interval‐censored data publication-title: Journal of the American Statistical Association – year: 2006 – volume: 130 start-page: 469 year: 2017 end-page: 476 article-title: Longitudinal patterns of cardiorespiratory fitness predict the development of hypertension among men and women publication-title: The American Journal of Medicine – volume: 100 start-page: 859 year: 2013 end-page: 876 article-title: Variable selection in semiparametric transformation models for right‐censored data publication-title: Biometrika – volume: 65 start-page: 394 year: 2009 end-page: 404 article-title: Regularized estimation for the accelerated failure time model publication-title: Biometrics – volume: 104 start-page: 505 year: 2017 end-page: 525 article-title: Maximum likelihood estimation for semiparametric regression models with multivariate interval‐censored data publication-title: Biometrika – volume: 94 start-page: 1 year: 2007 end-page: 13 article-title: Adaptive lasso for Cox's proportional hazards model publication-title: Biometrika – volume: 22 start-page: 315 year: 2020 end-page: 330 article-title: Copula‐based semiparametric regression method for bivariate data under general interval censoring publication-title: Biostatistics – volume: 16 start-page: 385 year: 1997 end-page: 395 article-title: The lasso method for variable selection in the Cox model publication-title: Statistics in Medicine – volume: 8 start-page: 978 year: 1995 end-page: 986 article-title: 24‐h ambulatory blood pressure in 352 normal Danish subjects, related to age and gender publication-title: American Journal of Hypertension – volume: 112 start-page: 664 year: 2017 end-page: 672 article-title: A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval‐censored failure time data publication-title: Journal of the American Statistical Association – volume: 101 start-page: 1418 year: 2006 end-page: 1429 article-title: The adaptive lasso and its oracle properties publication-title: Journal of the American Statistical Association – volume: 128 start-page: 354 year: 2018 end-page: 366 article-title: A gamma‐frailty proportional hazards model for bivariate interval‐censored data publication-title: Computational Statistics and Data Analysis – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B – volume: 71 start-page: 782 year: 2015 end-page: 791 article-title: Penalized regression for interval‐censored times of disease progression: selection of HLA markers in psoriatic arthritis publication-title: Biometrics – volume: 38 start-page: 894 year: 2010 end-page: 942 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: The Annals of Statistics – volume: 115 start-page: 204 year: 2020 end-page: 216 article-title: Simultaneous estimation and variable selection for interval‐censored data with broken adaptive ridge regression publication-title: Journal of the American Statistical Association – ident: e_1_2_9_22_1 doi: 10.1093/biostatistics/kxz032 – ident: e_1_2_9_27_1 doi: 10.1016/0895-7061(95)00216-2 – volume: 23 start-page: 383 year: 2013 ident: e_1_2_9_26_1 article-title: A frailty model approach for regression analysis of bivariate interval‐censored survival data publication-title: Statistica Sinica – volume-title: The statistical analysis of interval‐censored failure time data year: 2006 ident: e_1_2_9_20_1 – ident: e_1_2_9_14_1 doi: 10.1093/biomet/ast029 – volume: 58 start-page: 267 year: 1996 ident: e_1_2_9_23_1 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_9_33_1 doi: 10.1093/biomet/asm037 – ident: e_1_2_9_34_1 doi: 10.1111/j.1467-9469.2009.00680.x – volume: 1 start-page: 74 year: 2002 ident: e_1_2_9_5_1 article-title: Variable selection for Cox's proportional hazards model and frailty model publication-title: The Annals of Statistics – ident: e_1_2_9_2_1 doi: 10.1093/biomet/92.2.303 – ident: e_1_2_9_25_1 doi: 10.1111/biom.12389 – ident: e_1_2_9_31_1 doi: 10.1093/biomet/asw013 – ident: e_1_2_9_29_1 doi: 10.1093/biomet/asx029 – ident: e_1_2_9_19_1 doi: 10.1016/j.amjmed.2016.11.017 – ident: e_1_2_9_4_1 doi: 10.1002/sim.2907 – ident: e_1_2_9_8_1 doi: 10.1111/j.1541-0420.2006.00562.x – ident: e_1_2_9_12_1 doi: 10.1080/01621459.2012.746068 – ident: e_1_2_9_24_1 doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – ident: e_1_2_9_16_1 doi: 10.1002/sim.6767 – ident: e_1_2_9_13_1 doi: 10.1198/jasa.2009.tm07494 – ident: e_1_2_9_30_1 doi: 10.1093/biomet/asp008 – ident: e_1_2_9_35_1 doi: 10.1080/01621459.2018.1537922 – ident: e_1_2_9_3_1 doi: 10.1111/j.1541-0420.2008.01074.x – ident: e_1_2_9_6_1 doi: 10.1016/j.csda.2018.07.016 – ident: e_1_2_9_17_1 doi: 10.1111/biom.12484 – ident: e_1_2_9_28_1 doi: 10.1111/biom.12302 – ident: e_1_2_9_37_1 doi: 10.1198/016214506000000735 – ident: e_1_2_9_11_1 doi: 10.1177/0962280219884720 – ident: e_1_2_9_32_1 doi: 10.1214/09-AOS729 – ident: e_1_2_9_9_1 doi: 10.1080/01621459.1997.10474050 – ident: e_1_2_9_10_1 doi: 10.1177/0962280219856238 – ident: e_1_2_9_21_1 doi: 10.1002/sim.8165 – volume: 31 start-page: 550 year: 2008 ident: e_1_2_9_18_1 article-title: A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women publication-title: Cardiovascular and Metabolic Risk – ident: e_1_2_9_36_1 doi: 10.1080/01621459.2016.1158113 – ident: e_1_2_9_7_1 doi: 10.1111/j.0006-341X.2000.00940.x – ident: e_1_2_9_15_1 doi: 10.1198/106186006X96854 |
SSID | ssj0009502 |
Score | 2.4388018 |
Snippet | Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not... Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1402 |
SubjectTerms | Algorithms Computer applications Computer Simulation Data analysis Data structures EM algorithm Feature selection Humans interval censoring Likelihood Functions Longitudinal Studies Maximization minimum information criterion Models, Statistical Multivariate analysis Optimization Parameter estimation patients Regression Analysis risk Risk analysis Risk factors Time Factors transformation models |
Title | Simultaneous variable selection in regression analysis of multivariate interval‐censored data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13548 https://www.ncbi.nlm.nih.gov/pubmed/34407218 https://www.proquest.com/docview/2757010664 https://www.proquest.com/docview/2562831908 https://www.proquest.com/docview/2811974094 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UglAfWl1tTV1lir4opOxOJpMEfFFxqcJWUAv7UsJ8pSwuSdlkC-2TP6G_sb_EuTNJbFUK7VsgM2Eyd27m3My55wK8LgwteGHSUCZGh0yncZhxkYSUx4pGPJNCYO7w9JAfHLEvs3i2Bu-6XBivD9H_cEPPcN9rdHAh62tOjunpWLWBYaYvkrUQEX2j1xR3R14qHMldbDxrtUmRxvOn683d6B-IeROxui1nsgXH3WA90-Tn_qqR--riLx3H-77NI9hssSh57xfPY1gz5QAe-OqU5wN4OO0lXesBbCAs9arOTyD_PkcmoihNtarJmY23MQOL1K6ojrU0mZdkaU48x7YkolU-IVVBHIPR9WgMmTvGpVhc_bpUNp6ulkYT5Kw-haPJpx8fD8K2VEOoomxkfY0qTQUaOBE2SEqZ4ZoyI3mhUUAtHhvB7HacMEMVG6kolnwkKSssfouUfUC0DetlVZpnQBKNKCqJpM4Q3Qhpg1YV2SiIZkLHRgfwpjNZrlodcyynsci7eAbnMndzGcCrvu2pV-_4b6thZ_m89eA6p0mcYLzMWQB7_W3re3ig4qc3t3DRojMLqdJb2qR4UItRdAA7flX1Q4mYk6ezvd-6tXHLGPMPn79O3dXuXRo_hw2K-RqOfzOE9Wa5Mi8simrkS-ctvwEvfBog |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ah9DGwxgFto6yGY0XkDJ1juMkj4CYuo8OiW1S3yx_BVWb0qlpkeBpP2G_kV-Cr52GDtAk9hYpdpTYvvE5ybnnArwpLC14YbNIpdZEzGRJlHOZRpQnmsY8V1Ji7nD_lPcu2NEgGdTaHMyFCf4QzQc3jAz_vsYAxw_Sc1GO-elYtoFli7CMJb09o_pC5zx3u8EsHOVdbH9Qu5OikOd337v70V8g8y5m9ZvOwZNQWbXyXoWoNbncm07Unv7xh5Pjg59nHdZqOEreh_XzFBZs2YJHoUDl9xY87jeurlULVhGZBmPnZyDOhihGlKUdTSvyzVFuTMIila-r4yabDEsytl-DzLYksjY_IaOCeBGj7zGxZOhFl_Lq582tdpR6NLaGoGz1OVwcfDr_2Ivqag2RjvOuCzeqDZU4x6l0PCljlhvKrOKFQQ-1ZN9K5nbklFmqWVfHieJdRVnhIFys3QXiF7BUjkq7CSQ1CKTSWJkcAY5Ujrfq2BEhmkuTWNOGt7M5E7q2MseKGldiRmlwLIUfyzbsNm2vg4HHP1t1ZlMv6iCuBE2TFCkzZ2143Zx24Yf_VMLwCocYHUBzqCq7p02G_2qRSLdhIyyr5lZi5h3qXO93fnHcc4_iw-Hnvj_a-p_GO7DSO--fiJPD0-OXsEoxfcPLcTqwNBlP7SsHqiZq24fOL7ZXHjs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVqD2gcJC26UFjOCFSqlSx3ESiZdeWLXAFgRU2hdk-ZZq1Spb7aVSeeIT-Ea-BI-dhBZQJXiLFDtyPJ74THzmDMCL0tKSlzaPVGZNxEyeRgWXWUR5qmnCCyUl5g73j_jBMXszSAdz8KrJhQn6EO0PN_QM_71GBz835RUnx_R0rNrA8luwwHic45re_0ivSO7GQSsc2V1se1CLkyKP51ff69vRHxjzOmT1e05vGb40ow1Uk9Ot2VRt6a-_CTn-7-vcg7s1GCU7YfXchzlbdeB2KE952YGlfqvpOunAIuLSIOv8AMSnIVIRZWVHswm5cAE3pmCRia-q40xNhhUZ25NAsq2IrKVPyKgknsLoe0wtGXrKpTz78e27dgH1aGwNQdLqQzjuvf68dxDVtRoinRSxczaqDZVo4Uy6KClnlhvKrOKlQQW1dNtK5vbjjFmqWayTVPFYUVY6AJdo94BkBearUWXXgGQGYVSWKFMgvJHKRa06cWEQLaRJrenCy8ZkQtdC5lhP40w0AQ3OpfBz2YXnbdvzIN_x11YbjeVF7cITQbM0w4CZsy48a28758MTlTC9wuFFB88cpspvaJPjSS2G0V1YDauqHUrCvD6d673p18YNYxS7h-_7_urRvzR-Cnc-7PfEu8Ojt-uwSDF3w3NxNmB-Op7Zxw5RTdUT7zg_AWjBHPM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+variable+selection+in+regression+analysis+of+multivariate+interval%E2%80%90censored+data&rft.jtitle=Biometrics&rft.au=Sun%2C+Liuquan&rft.au=Li%2C+Shuwei&rft.au=Wang%2C+Lianming&rft.au=Song%2C+Xinyuan&rft.date=2022-12-01&rft.issn=0006-341X&rft.volume=78&rft.issue=4+p.1402-1413&rft.spage=1402&rft.epage=1413&rft_id=info:doi/10.1111%2Fbiom.13548&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |