Simultaneous variable selection in regression analysis of multivariate interval‐censored data

Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This typ...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 78; no. 4; pp. 1402 - 1413
Main Authors Sun, Liuquan, Li, Shuwei, Wang, Lianming, Song, Xinyuan, Sui, Xuemei
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event‐specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval‐censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation‐maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study.
AbstractList Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event-specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval-censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation-maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study.
Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event‐specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval‐censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation‐maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study.
Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event-specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval-censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation-maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study.Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies. Thus, conducting variable selection for event-specific covariates simultaneously becomes useful in identifying important variables and assessing their effects on the events of interest. In this paper, we develop a variable selection technique for multivariate interval-censored data under a general class of semiparametric transformation frailty models. The minimum information criterion (MIC) method is embedded in the optimization step of the proposed expectation-maximization (EM) algorithm to obtain the parameter estimator. The proposed EM algorithm greatly reduces the computational burden in maximizing the observed likelihood function, and the MIC naturally avoids selecting the optimal tuning parameter as needed in many other popular penalties, making the proposed algorithm promising and reliable. The proposed method is evaluated through extensive simulation studies and illustrated by an analysis of patient data from the Aerobics Center Longitudinal Study.
Author Li, Shuwei
Sun, Liuquan
Sui, Xuemei
Wang, Lianming
Song, Xinyuan
Author_xml – sequence: 1
  givenname: Liuquan
  orcidid: 0000-0002-8816-942X
  surname: Sun
  fullname: Sun, Liuquan
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Shuwei
  orcidid: 0000-0002-9400-2722
  surname: Li
  fullname: Li, Shuwei
  email: seslishuw@gzhu.edu.cn
  organization: Guangzhou University
– sequence: 3
  givenname: Lianming
  surname: Wang
  fullname: Wang, Lianming
  organization: University of South Carolina
– sequence: 4
  givenname: Xinyuan
  orcidid: 0000-0002-4877-3200
  surname: Song
  fullname: Song, Xinyuan
  organization: Chinese University of Hong Kong
– sequence: 5
  givenname: Xuemei
  surname: Sui
  fullname: Sui, Xuemei
  organization: University of South Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34407218$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9K5jAUxYMo-vln4wMMhdnIQPUmTdJ2OYrOCIoLFdyFNL2VSNpo0irfzkfwGX2Saa1uZNC7uVz4nQP3nE2y2vkOCdmlsE_HOaisb_dpJnixQhZUcJoCZ7BKFgAg04zTmw2yGePdeJYC2DrZyDiHnNFiQdSlbQfX6w79EJNHHayuHCYRHZre-i6xXRLwNmCM06U77ZbRxsQ3yaSzb4oeR6zH8Kjd6_OLwS76gHVS615vk7VGu4g773uLXJ8cXx39Tc8u_pwe_T5LTVZCkTJmaqaZFCbXUMiCo6wZx0o2dSFKIShqbhBzjsxwMJmoJFSMN4KLzIwG2RbZm33vg38YMPaqtdGgc_NnihWUljmHkn-PCsmKjM6uPz-hd34IYwYjlYscKEg5Gf54p4aqxVrdB9vqsFQfKY8AzIAJPsaAjTK211O8fdDWKQpqKlJNRaq3IkfJr0-SD9f_wnSGn6zD5RekOjy9OJ81_wBc0K7o
CitedBy_id crossref_primary_10_1111_biom_13795
crossref_primary_10_1002_sim_70023
crossref_primary_10_1080_00031305_2024_2407495
crossref_primary_10_1093_jrsssc_qlad093
crossref_primary_10_1002_sim_10225
crossref_primary_10_3390_math11224576
crossref_primary_10_1093_biomtc_ujad041
crossref_primary_10_1002_sam_11680
crossref_primary_10_1007_s00362_023_01486_1
crossref_primary_10_1007_s12561_023_09391_9
Cites_doi 10.1093/biostatistics/kxz032
10.1016/0895-7061(95)00216-2
10.1093/biomet/ast029
10.1111/j.2517-6161.1996.tb02080.x
10.1093/biomet/asm037
10.1111/j.1467-9469.2009.00680.x
10.1093/biomet/92.2.303
10.1111/biom.12389
10.1093/biomet/asw013
10.1093/biomet/asx029
10.1016/j.amjmed.2016.11.017
10.1002/sim.2907
10.1111/j.1541-0420.2006.00562.x
10.1080/01621459.2012.746068
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1002/sim.6767
10.1198/jasa.2009.tm07494
10.1093/biomet/asp008
10.1080/01621459.2018.1537922
10.1111/j.1541-0420.2008.01074.x
10.1016/j.csda.2018.07.016
10.1111/biom.12484
10.1111/biom.12302
10.1198/016214506000000735
10.1177/0962280219884720
10.1214/09-AOS729
10.1080/01621459.1997.10474050
10.1177/0962280219856238
10.1002/sim.8165
10.1080/01621459.2016.1158113
10.1111/j.0006-341X.2000.00940.x
10.1198/106186006X96854
ContentType Journal Article
Copyright 2021 The International Biometric Society.
2022 The International Biometric Society.
Copyright_xml – notice: 2021 The International Biometric Society.
– notice: 2022 The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13548
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
AGRICOLA

ProQuest Computer Science Collection
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1413
ExternalDocumentID 34407218
10_1111_biom_13548
BIOM13548
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  funderid: 2021A1515010044
– fundername: Research Grant Council of the Hong Kong Special Administrative Region
  funderid: 14301918; 14302519
– fundername: National Institutes of Health
  funderid: R01CA218578
– fundername: National Natural Science Foundation of China
  funderid: 11771431; 11690015; 11901128
– fundername: Key Laboratory of RCSDS, CAS
  funderid: 2008DP173182
– fundername: Science and Technology Program of Guangzhou of China
  funderid: 202102010512
– fundername: Research Grant Council of the Hong Kong Special Administrative Region
  grantid: 14301918
– fundername: National Natural Science Foundation of China
  grantid: 11771431
– fundername: NCI NIH HHS
  grantid: R01 CA218578
– fundername: National Natural Science Foundation of China
  grantid: 11690015
– fundername: Research Grant Council of the Hong Kong Special Administrative Region
  grantid: 14302519
– fundername: National Natural Science Foundation of China
  grantid: 11901128
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2021A1515010044
– fundername: Science and Technology Program of Guangzhou of China
  grantid: 202102010512
– fundername: Key Laboratory of RCSDS, CAS
  grantid: 2008DP173182
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAWIL
AAYXX
ABAWQ
ABGNP
ACHJO
ADNBA
AEOTA
AGLNM
AGORE
AGQPQ
AHGBF
AIHAF
AJBYB
AJNCP
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c3908-22cd2a265c7a08684e6d24eb6fd859551ea4cee74e2c40c35b60b24f5453c9083
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 18:33:05 EDT 2025
Tue Aug 05 09:59:39 EDT 2025
Wed Aug 13 08:35:20 EDT 2025
Mon Jul 21 06:02:11 EDT 2025
Tue Jul 01 00:58:12 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Wed Jan 22 16:25:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords interval censoring
EM algorithm
multivariate analysis
transformation models
minimum information criterion
Language English
License 2021 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3908-22cd2a265c7a08684e6d24eb6fd859551ea4cee74e2c40c35b60b24f5453c9083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9400-2722
0000-0002-8816-942X
0000-0002-4877-3200
PMID 34407218
PQID 2757010664
PQPubID 35366
PageCount 12
ParticipantIDs proquest_miscellaneous_2811974094
proquest_miscellaneous_2562831908
proquest_journals_2757010664
pubmed_primary_34407218
crossref_citationtrail_10_1111_biom_13548
crossref_primary_10_1111_biom_13548
wiley_primary_10_1111_biom_13548_BIOM13548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 38
2010; 37
2009; 65
2018; 128
2015; 71
2013; 108
2013; 23
2006; 15
2002; 1
2013; 100
2019; 16
2006
2016; 72
2017; 130
2007; 94
2008; 31
2016; 103
1996; 58
2017; 112
2016; 35
1995; 8
2009; 96
2006; 62
1997; 92
1997; 56
2020; 115
1997; 16
2005; 92
2020; 22
2017; 104
2006; 101
2009; 104
2007; 26
2020; 29
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
Fan J. (e_1_2_9_5_1) 2002; 1
e_1_2_9_12_1
e_1_2_9_33_1
Sui X. (e_1_2_9_18_1) 2008; 31
Sun J. (e_1_2_9_20_1) 2006
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
Tibshirani R. (e_1_2_9_23_1) 1996; 58
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Wen C.C. (e_1_2_9_26_1) 2013; 23
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 96
  start-page: 277
  year: 2009
  end-page: 291
  article-title: Gamma frailty transformation models for multivariate survival times
  publication-title: Biometrika
– volume: 23
  start-page: 383
  year: 2013
  end-page: 408
  article-title: A frailty model approach for regression analysis of bivariate interval‐censored survival data
  publication-title: Statistica Sinica
– volume: 31
  start-page: 550
  year: 2008
  end-page: 555
  article-title: A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women
  publication-title: Cardiovascular and Metabolic Risk
– volume: 15
  start-page: 39
  year: 2006
  end-page: 57
  article-title: Use of the probability integral transformation to fit nonlinear mixed‐effects models with nonnormal random effects
  publication-title: Journal of Computational and Graphical Statistics
– volume: 29
  start-page: 1243
  year: 2020
  end-page: 1255
  article-title: Adaptive lasso for the Cox regression with interval censored and possibly left truncated data
  publication-title: Statistical Methods in Medical Research
– volume: 35
  start-page: 1210
  year: 2016
  end-page: 1225
  article-title: Variable selection in a flexible parametric mixture cure model with interval‐censored data
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 3026
  year: 2019
  end-page: 3039
  article-title: Variable selection in semiparametric nonmixture cure model with interval‐censored failure time data: an application to the prostate cancer screening study
  publication-title: Statistics in Medicine
– volume: 1
  start-page: 74
  year: 2002
  end-page: 99
  article-title: Variable selection for Cox's proportional hazards model and frailty model
  publication-title: The Annals of Statistics
– volume: 103
  start-page: 253
  year: 2016
  end-page: 271
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval‐censored data
  publication-title: Biometrika
– volume: 37
  start-page: 338
  year: 2010
  end-page: 354
  article-title: A spline‐based semiparametric maximum likelihood estimation method for the Cox model with interval‐censored data
  publication-title: Scandinavian Journal of Statistics
– volume: 108
  start-page: 247
  year: 2013
  end-page: 264
  article-title: High‐dimensional sparse additive hazards regression
  publication-title: Journal of the American Statistical Association
– volume: 26
  start-page: 5147
  year: 2007
  end-page: 5161
  article-title: The proportional odds model for multivariate interval‐censored failure time data
  publication-title: Statistics in Medicine
– volume: 92
  start-page: 960
  year: 1997
  end-page: 967
  article-title: Sieve estimation for the proportional‐odds failure‐time regression model with interval censoring
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 813
  year: 2006
  end-page: 820
  article-title: Regularized estimation in the accelerated failure time model with high‐dimensional covariates
  publication-title: Biometrics
– volume: 72
  start-page: 222
  year: 2016
  end-page: 231
  article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval‐censored data
  publication-title: Biometrics
– volume: 92
  start-page: 303
  year: 2005
  end-page: 316
  article-title: Variable selection for multivariate failure time data
  publication-title: Biometrika
– volume: 56
  start-page: 940
  year: 1997
  end-page: 943
  article-title: A proportional hazards model for multivariate interval‐censored failure time data
  publication-title: Biometrics
– volume: 29
  start-page: 2151
  year: 2020
  end-page: 2166
  article-title: Penalized estimation of semiparametric transformation models with interval‐censored data and application to Alzheimer's disease
  publication-title: Statistical Methods in Medical Research
– volume: 72
  start-page: 751
  year: 2016
  end-page: 759
  article-title: Sparse estimation of Cox proportional hazards models via approximated information criteria
  publication-title: Biometrics
– volume: 104
  start-page: 1168
  year: 2009
  end-page: 1178
  article-title: A semiparametric regression cure model for interval‐censored data
  publication-title: Journal of the American Statistical Association
– year: 2006
– volume: 130
  start-page: 469
  year: 2017
  end-page: 476
  article-title: Longitudinal patterns of cardiorespiratory fitness predict the development of hypertension among men and women
  publication-title: The American Journal of Medicine
– volume: 100
  start-page: 859
  year: 2013
  end-page: 876
  article-title: Variable selection in semiparametric transformation models for right‐censored data
  publication-title: Biometrika
– volume: 65
  start-page: 394
  year: 2009
  end-page: 404
  article-title: Regularized estimation for the accelerated failure time model
  publication-title: Biometrics
– volume: 104
  start-page: 505
  year: 2017
  end-page: 525
  article-title: Maximum likelihood estimation for semiparametric regression models with multivariate interval‐censored data
  publication-title: Biometrika
– volume: 94
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Adaptive lasso for Cox's proportional hazards model
  publication-title: Biometrika
– volume: 22
  start-page: 315
  year: 2020
  end-page: 330
  article-title: Copula‐based semiparametric regression method for bivariate data under general interval censoring
  publication-title: Biostatistics
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Statistics in Medicine
– volume: 8
  start-page: 978
  year: 1995
  end-page: 986
  article-title: 24‐h ambulatory blood pressure in 352 normal Danish subjects, related to age and gender
  publication-title: American Journal of Hypertension
– volume: 112
  start-page: 664
  year: 2017
  end-page: 672
  article-title: A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval‐censored failure time data
  publication-title: Journal of the American Statistical Association
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 128
  start-page: 354
  year: 2018
  end-page: 366
  article-title: A gamma‐frailty proportional hazards model for bivariate interval‐censored data
  publication-title: Computational Statistics and Data Analysis
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 71
  start-page: 782
  year: 2015
  end-page: 791
  article-title: Penalized regression for interval‐censored times of disease progression: selection of HLA markers in psoriatic arthritis
  publication-title: Biometrics
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: The Annals of Statistics
– volume: 115
  start-page: 204
  year: 2020
  end-page: 216
  article-title: Simultaneous estimation and variable selection for interval‐censored data with broken adaptive ridge regression
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_9_22_1
  doi: 10.1093/biostatistics/kxz032
– ident: e_1_2_9_27_1
  doi: 10.1016/0895-7061(95)00216-2
– volume: 23
  start-page: 383
  year: 2013
  ident: e_1_2_9_26_1
  article-title: A frailty model approach for regression analysis of bivariate interval‐censored survival data
  publication-title: Statistica Sinica
– volume-title: The statistical analysis of interval‐censored failure time data
  year: 2006
  ident: e_1_2_9_20_1
– ident: e_1_2_9_14_1
  doi: 10.1093/biomet/ast029
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_9_23_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_9_33_1
  doi: 10.1093/biomet/asm037
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1467-9469.2009.00680.x
– volume: 1
  start-page: 74
  year: 2002
  ident: e_1_2_9_5_1
  article-title: Variable selection for Cox's proportional hazards model and frailty model
  publication-title: The Annals of Statistics
– ident: e_1_2_9_2_1
  doi: 10.1093/biomet/92.2.303
– ident: e_1_2_9_25_1
  doi: 10.1111/biom.12389
– ident: e_1_2_9_31_1
  doi: 10.1093/biomet/asw013
– ident: e_1_2_9_29_1
  doi: 10.1093/biomet/asx029
– ident: e_1_2_9_19_1
  doi: 10.1016/j.amjmed.2016.11.017
– ident: e_1_2_9_4_1
  doi: 10.1002/sim.2907
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1541-0420.2006.00562.x
– ident: e_1_2_9_12_1
  doi: 10.1080/01621459.2012.746068
– ident: e_1_2_9_24_1
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– ident: e_1_2_9_16_1
  doi: 10.1002/sim.6767
– ident: e_1_2_9_13_1
  doi: 10.1198/jasa.2009.tm07494
– ident: e_1_2_9_30_1
  doi: 10.1093/biomet/asp008
– ident: e_1_2_9_35_1
  doi: 10.1080/01621459.2018.1537922
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1541-0420.2008.01074.x
– ident: e_1_2_9_6_1
  doi: 10.1016/j.csda.2018.07.016
– ident: e_1_2_9_17_1
  doi: 10.1111/biom.12484
– ident: e_1_2_9_28_1
  doi: 10.1111/biom.12302
– ident: e_1_2_9_37_1
  doi: 10.1198/016214506000000735
– ident: e_1_2_9_11_1
  doi: 10.1177/0962280219884720
– ident: e_1_2_9_32_1
  doi: 10.1214/09-AOS729
– ident: e_1_2_9_9_1
  doi: 10.1080/01621459.1997.10474050
– ident: e_1_2_9_10_1
  doi: 10.1177/0962280219856238
– ident: e_1_2_9_21_1
  doi: 10.1002/sim.8165
– volume: 31
  start-page: 550
  year: 2008
  ident: e_1_2_9_18_1
  article-title: A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women
  publication-title: Cardiovascular and Metabolic Risk
– ident: e_1_2_9_36_1
  doi: 10.1080/01621459.2016.1158113
– ident: e_1_2_9_7_1
  doi: 10.1111/j.0006-341X.2000.00940.x
– ident: e_1_2_9_15_1
  doi: 10.1198/106186006X96854
SSID ssj0009502
Score 2.4388018
Snippet Multivariate interval‐censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not...
Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1402
SubjectTerms Algorithms
Computer applications
Computer Simulation
Data analysis
Data structures
EM algorithm
Feature selection
Humans
interval censoring
Likelihood Functions
Longitudinal Studies
Maximization
minimum information criterion
Models, Statistical
Multivariate analysis
Optimization
Parameter estimation
patients
Regression Analysis
risk
Risk analysis
Risk factors
Time Factors
transformation models
Title Simultaneous variable selection in regression analysis of multivariate interval‐censored data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13548
https://www.ncbi.nlm.nih.gov/pubmed/34407218
https://www.proquest.com/docview/2757010664
https://www.proquest.com/docview/2562831908
https://www.proquest.com/docview/2811974094
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UglAfWl1tTV1lir4opOxOJpMEfFFxqcJWUAv7UsJ8pSwuSdlkC-2TP6G_sb_EuTNJbFUK7VsgM2Eyd27m3My55wK8LgwteGHSUCZGh0yncZhxkYSUx4pGPJNCYO7w9JAfHLEvs3i2Bu-6XBivD9H_cEPPcN9rdHAh62tOjunpWLWBYaYvkrUQEX2j1xR3R14qHMldbDxrtUmRxvOn683d6B-IeROxui1nsgXH3WA90-Tn_qqR--riLx3H-77NI9hssSh57xfPY1gz5QAe-OqU5wN4OO0lXesBbCAs9arOTyD_PkcmoihNtarJmY23MQOL1K6ojrU0mZdkaU48x7YkolU-IVVBHIPR9WgMmTvGpVhc_bpUNp6ulkYT5Kw-haPJpx8fD8K2VEOoomxkfY0qTQUaOBE2SEqZ4ZoyI3mhUUAtHhvB7HacMEMVG6kolnwkKSssfouUfUC0DetlVZpnQBKNKCqJpM4Q3Qhpg1YV2SiIZkLHRgfwpjNZrlodcyynsci7eAbnMndzGcCrvu2pV-_4b6thZ_m89eA6p0mcYLzMWQB7_W3re3ig4qc3t3DRojMLqdJb2qR4UItRdAA7flX1Q4mYk6ezvd-6tXHLGPMPn79O3dXuXRo_hw2K-RqOfzOE9Wa5Mi8simrkS-ctvwEvfBog
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ah9DGwxgFto6yGY0XkDJ1juMkj4CYuo8OiW1S3yx_BVWb0qlpkeBpP2G_kV-Cr52GDtAk9hYpdpTYvvE5ybnnArwpLC14YbNIpdZEzGRJlHOZRpQnmsY8V1Ji7nD_lPcu2NEgGdTaHMyFCf4QzQc3jAz_vsYAxw_Sc1GO-elYtoFli7CMJb09o_pC5zx3u8EsHOVdbH9Qu5OikOd337v70V8g8y5m9ZvOwZNQWbXyXoWoNbncm07Unv7xh5Pjg59nHdZqOEreh_XzFBZs2YJHoUDl9xY87jeurlULVhGZBmPnZyDOhihGlKUdTSvyzVFuTMIila-r4yabDEsytl-DzLYksjY_IaOCeBGj7zGxZOhFl_Lq582tdpR6NLaGoGz1OVwcfDr_2Ivqag2RjvOuCzeqDZU4x6l0PCljlhvKrOKFQQ-1ZN9K5nbklFmqWVfHieJdRVnhIFys3QXiF7BUjkq7CSQ1CKTSWJkcAY5Ujrfq2BEhmkuTWNOGt7M5E7q2MseKGldiRmlwLIUfyzbsNm2vg4HHP1t1ZlMv6iCuBE2TFCkzZ2143Zx24Yf_VMLwCocYHUBzqCq7p02G_2qRSLdhIyyr5lZi5h3qXO93fnHcc4_iw-Hnvj_a-p_GO7DSO--fiJPD0-OXsEoxfcPLcTqwNBlP7SsHqiZq24fOL7ZXHjs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVqD2gcJC26UFjOCFSqlSx3ESiZdeWLXAFgRU2hdk-ZZq1Spb7aVSeeIT-Ea-BI-dhBZQJXiLFDtyPJ74THzmDMCL0tKSlzaPVGZNxEyeRgWXWUR5qmnCCyUl5g73j_jBMXszSAdz8KrJhQn6EO0PN_QM_71GBz835RUnx_R0rNrA8luwwHic45re_0ivSO7GQSsc2V1se1CLkyKP51ff69vRHxjzOmT1e05vGb40ow1Uk9Ot2VRt6a-_CTn-7-vcg7s1GCU7YfXchzlbdeB2KE952YGlfqvpOunAIuLSIOv8AMSnIVIRZWVHswm5cAE3pmCRia-q40xNhhUZ25NAsq2IrKVPyKgknsLoe0wtGXrKpTz78e27dgH1aGwNQdLqQzjuvf68dxDVtRoinRSxczaqDZVo4Uy6KClnlhvKrOKlQQW1dNtK5vbjjFmqWayTVPFYUVY6AJdo94BkBearUWXXgGQGYVSWKFMgvJHKRa06cWEQLaRJrenCy8ZkQtdC5lhP40w0AQ3OpfBz2YXnbdvzIN_x11YbjeVF7cITQbM0w4CZsy48a28758MTlTC9wuFFB88cpspvaJPjSS2G0V1YDauqHUrCvD6d673p18YNYxS7h-_7_urRvzR-Cnc-7PfEu8Ojt-uwSDF3w3NxNmB-Op7Zxw5RTdUT7zg_AWjBHPM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+variable+selection+in+regression+analysis+of+multivariate+interval%E2%80%90censored+data&rft.jtitle=Biometrics&rft.au=Sun%2C+Liuquan&rft.au=Li%2C+Shuwei&rft.au=Wang%2C+Lianming&rft.au=Song%2C+Xinyuan&rft.date=2022-12-01&rft.issn=0006-341X&rft.volume=78&rft.issue=4+p.1402-1413&rft.spage=1402&rft.epage=1413&rft_id=info:doi/10.1111%2Fbiom.13548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon