Introducing Spiro‐locks into the Nitrogen/Carbonyl System towards Efficient Narrowband Deep‐blue Multi‐resonance TADF Emitters

The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strateg...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 40; pp. e202310047 - n/a
Main Authors Yu, You‐Jun, Feng, Zi‐Qi, Meng, Xin‐Yue, Chen, Long, Liu, Fu‐Ming, Yang, Sheng‐Yi, Zhou, Dong‐Ying, Liao, Liang‐Sheng, Jiang, Zuo‐Quan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 02.10.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue‐shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro‐junction in modulating deep‐blue MR‐TADF emitters. The various spiro‐locks were introduced into the nitrogen/carbonyl‐based multi‐resonance thermally activated delayed fluorescence (MR‐TADF) system via a designed synthetic route. The introduction of spiro‐locks increased molecular rigidity and suppressed intermolecular interactions. Thus, narrowband deep‐blue electroluminescence spectra and improved device efficiencies were achieved simultaneously.
AbstractList The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue‐shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro‐junction in modulating deep‐blue MR‐TADF emitters.
The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.
The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue‐shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro‐junction in modulating deep‐blue MR‐TADF emitters. The various spiro‐locks were introduced into the nitrogen/carbonyl‐based multi‐resonance thermally activated delayed fluorescence (MR‐TADF) system via a designed synthetic route. The introduction of spiro‐locks increased molecular rigidity and suppressed intermolecular interactions. Thus, narrowband deep‐blue electroluminescence spectra and improved device efficiencies were achieved simultaneously.
Author Feng, Zi‐Qi
Yang, Sheng‐Yi
Liao, Liang‐Sheng
Yu, You‐Jun
Chen, Long
Jiang, Zuo‐Quan
Zhou, Dong‐Ying
Meng, Xin‐Yue
Liu, Fu‐Ming
Author_xml – sequence: 1
  givenname: You‐Jun
  surname: Yu
  fullname: Yu, You‐Jun
  organization: Soochow University
– sequence: 2
  givenname: Zi‐Qi
  surname: Feng
  fullname: Feng, Zi‐Qi
  organization: Soochow University
– sequence: 3
  givenname: Xin‐Yue
  surname: Meng
  fullname: Meng, Xin‐Yue
  organization: Soochow University
– sequence: 4
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: Soochow University
– sequence: 5
  givenname: Fu‐Ming
  surname: Liu
  fullname: Liu, Fu‐Ming
  organization: Soochow University
– sequence: 6
  givenname: Sheng‐Yi
  surname: Yang
  fullname: Yang, Sheng‐Yi
  organization: Soochow University
– sequence: 7
  givenname: Dong‐Ying
  surname: Zhou
  fullname: Zhou, Dong‐Ying
  organization: Soochow University
– sequence: 8
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  organization: Macau University of Science and Technology
– sequence: 9
  givenname: Zuo‐Quan
  orcidid: 0000-0003-4447-2408
  surname: Jiang
  fullname: Jiang, Zuo‐Quan
  email: zqjiang@suda.edu.cn
  organization: Soochow University
BookMark eNqFkc1OWzEQhS0EUiGw7dpSN93c4J_752UUQokE6SJ0feX4jsHUsVPbV1F2XfAAPCNPUkepQEKqupo50nfOjHTO0LHzDhD6TMmYEsIupTMwZoTxrMrmCJ3SitGCNw0_znvJedG0Ff2EzmJ8ynzbkvoUPc9dCr4flHEPeLkxwb_-frFe_YzYuORxegS8MBl5AHc5lWHl3c7i5S4mWOPktzL0Ec-0NsqAS3ghQ_DblXQ9vgLY5KyVHQDfDTaZLAJE76RTgO8nV9d4tjYpQYjn6ERLG-Hi7xyhH9ez--lNcfv923w6uS0UF6QphG5rUiuqqCat4L0QIEhZNUwBZ7IVDBrS8pUWQlei1zVhqsyi7KkgUIuej9DXQ-4m-F8DxNStTVRgrXTgh9ixtuIiB-aUEfryAX3yQ3D5u0zVjaiqOr8wQuMDpYKPMYDuNsGsZdh1lHT7Urp9Kd1bKdlQfjAok2QyPrcgjf23TRxsW2Nh958j3WQxn717_wDlxqd8
CitedBy_id crossref_primary_10_1002_ange_202417200
crossref_primary_10_1002_asia_202400679
crossref_primary_10_1002_adom_202400739
crossref_primary_10_1002_adfm_202422973
crossref_primary_10_1002_ange_202424950
crossref_primary_10_1002_smll_202407220
crossref_primary_10_1002_anie_202316710
crossref_primary_10_1016_j_cej_2024_155350
crossref_primary_10_1021_acs_joc_4c00782
crossref_primary_10_1039_D4MH00634H
crossref_primary_10_1021_acsmaterialslett_4c00210
crossref_primary_10_1021_acsami_4c05510
crossref_primary_10_1021_jacs_4c15651
crossref_primary_10_1002_advs_202411765
crossref_primary_10_1016_j_orgel_2024_107072
crossref_primary_10_1039_D4TC04002C
crossref_primary_10_1002_adom_202402464
crossref_primary_10_1002_adom_202402960
crossref_primary_10_1002_anie_202417200
crossref_primary_10_1002_advs_202401664
crossref_primary_10_1002_adom_202401818
crossref_primary_10_1039_D4CC05040A
crossref_primary_10_1016_j_cej_2024_151314
crossref_primary_10_1021_acs_jpclett_4c01177
crossref_primary_10_1021_acs_jpclett_4c02423
crossref_primary_10_1039_D4TC05386A
crossref_primary_10_1016_j_cej_2024_150782
crossref_primary_10_1016_j_chempr_2024_10_020
crossref_primary_10_1039_D4QM00720D
crossref_primary_10_1002_ange_202316710
crossref_primary_10_1002_adma_202402905
crossref_primary_10_1002_anie_202424950
crossref_primary_10_1021_acs_jpca_4c06357
crossref_primary_10_1038_s42004_025_01435_z
crossref_primary_10_1002_adma_202416224
crossref_primary_10_1002_adom_202400490
crossref_primary_10_70401_smd_2025_0001
crossref_primary_10_1002_adom_202402479
crossref_primary_10_1038_s41467_024_48659_6
crossref_primary_10_1039_D4QO02104E
crossref_primary_10_1002_adom_202403566
crossref_primary_10_1021_acsami_4c02834
crossref_primary_10_1039_D4QO02027H
Cites_doi 10.1351/pac196511030371
10.1002/adma.202104125
10.1002/advs.202101137
10.1002/anie.202301863
10.1021/jacs.9b13704
10.1021/acs.orglett.0c04159
10.1002/adom.202000922
10.1021/acs.chemrev.1c00449
10.1002/chem.202101188
10.1002/adom.202001845
10.1002/anie.202103187
10.1038/s41566-021-00870-3
10.1002/adma.202107951
10.1021/jacs.0c08980
10.1002/chem.202202628
10.1002/anie.202113206
10.1021/ja054661d
10.1021/jacs.9b09323
10.1002/adma.202202464
10.1021/acs.joc.6b00238
10.1021/acs.jpcc.5b00276
10.1038/s42004-022-00766-5
10.1021/acs.chemrev.6b00076
10.1002/anie.202215522
10.1021/acs.chemmater.8b03142
10.1002/anie.201904272
10.1002/adma.201001167
10.1002/adfm.201808088
10.1002/adom.202202610
10.1039/D1CC04405B
10.1007/s11426-022-1485-8
10.1002/smll.201907569
10.1039/D2SC05580E
10.1002/anie.202017328
10.1021/acsami.8b19635
10.1039/D3MH00617D
10.1016/j.cej.2022.138498
10.1038/s41566-019-0476-5
10.1002/anie.202002869
10.1039/C8TC06575F
10.1002/adom.202000102
10.1007/s11426-022-1382-5
10.1038/s41566-022-01106-8
10.1021/jacs.8b11337
10.1002/anie.201813604
10.1002/adma.201808242
10.1039/D1TC01427G
10.1038/s41566-022-01083-y
10.1002/agt2.182
10.1021/jacs.1c11659
10.1002/adma.201505491
10.1021/acsami.1c09743
10.1039/C4CC08028A
10.1002/adom.201901627
10.1002/anie.202206916
10.1002/anie.202305182
10.1038/s41563-019-0465-6
10.1002/adom.201801536
10.1016/j.cej.2023.144565
10.1039/D1TC05711A
10.1002/anie.202215226
10.1002/anie.202218947
10.1002/chem.202104624
10.1002/anie.202016914
10.1063/1.98799
10.1016/j.cej.2021.131169
10.1039/D1TC04699C
10.1038/ncomms13680
10.1002/adfm.201908677
10.1002/adom.202201714
10.1002/adma.201506286
10.1038/s41467-022-32607-3
10.1002/anie.202100423
10.1021/accountsmr.1c00208
10.1002/anie.202201588
10.1039/D0TC02682D
10.1039/D3MH00800B
10.1021/am301703a
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202310047
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202310047
ANIE202310047
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220057
– fundername: National Natural Science Foundation of China
  funderid: 22175124; 62175171; 61961160731
– fundername: Science and Technology Program of Suzhou
  funderid: SYG202010
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3907-9f8606c1c1f0893d99e904572ce32a892e7083bf99f59df602c4f994d190e69d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:17:27 EDT 2025
Sun Jul 13 05:28:17 EDT 2025
Tue Jul 01 01:47:18 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Sun Jul 06 04:45:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3907-9f8606c1c1f0893d99e904572ce32a892e7083bf99f59df602c4f994d190e69d3
Notes These authors contributed equally to this work.
Minor changes have been made to Figure 1 since its publication in Early View.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4447-2408
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202310047
PQID 2867955689
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2853945708
proquest_journals_2867955689
crossref_primary_10_1002_anie_202310047
crossref_citationtrail_10_1002_anie_202310047
wiley_primary_10_1002_anie_202310047_ANIE202310047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2, 2023
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: October 2, 2023
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
1965; 11
2021; 23
2019; 11
2019; 13
2019; 58
2020; 16
2020; 59
2019; 18
2022; 65
2022; 28
2017; 117
2020; 8
2022; 122
2010; 22
2023; 62
2023; 66
2023; 29
2023; 451
2022; 34
2019; 29
2018; 30
2016; 81
2021; 9
2021; 8
2019; 7
2023; 11
1987; 51
2018; 140
2021; 2
2023; 17
2019; 31
2020; 142
2015; 51
2021; 426
2019; 141
2022; 144
2021; 57
2021; 13
2021; 15
2016; 7
2022; 3
2023
2020; 30
2023; 471
2022; 5
2022; 61
2005; 127
2022; 13
2019
2015; 119
2022; 10
2016; 28
2021; 60
2012; 4
2022; 16
e_1_2_7_3_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_83_2
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_41_2
e_1_2_7_87_2
Arjona-Esteban A. (e_1_2_7_25_1) 2019
Xie Y. (e_1_2_7_43_2) 2023; 66
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_68_2
e_1_2_7_49_1
e_1_2_7_90_2
e_1_2_7_94_2
e_1_2_7_71_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_82_2
e_1_2_7_16_1
e_1_2_7_40_2
e_1_2_7_86_2
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_55_1
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_2
e_1_2_7_59_2
e_1_2_7_5_2
e_1_2_7_9_2
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_31_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_2_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_84_1
e_1_2_7_80_2
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_76_1
e_1_2_7_30_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_38_2
References_xml – volume: 142
  start-page: 6588
  year: 2020
  end-page: 6599
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 149
  year: 2022
  publication-title: Commun. Chem.
– volume: 13
  start-page: 678
  year: 2019
  end-page: 682
  publication-title: Nat. Photonics
– volume: 11
  start-page: 371
  year: 1965
  publication-title: Pure Appl. Chem.
– volume: 17
  start-page: 280
  year: 2023
  end-page: 285
  publication-title: Nat. Photonics
– volume: 66
  start-page: 1
  year: 2023
  end-page: 3
  publication-title: Sci. China Chem.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 65
  start-page: 2219
  year: 2022
  end-page: 2230
  publication-title: Sci. China Chem.
– volume: 51
  start-page: 1313
  year: 2015
  end-page: 1315
  publication-title: Chem. Commun.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 60
  start-page: 12376
  year: 2021
  end-page: 12380
  publication-title: Angew. Chem. Int. Ed.
– volume: 144
  start-page: 106
  year: 2022
  end-page: 112
  publication-title: J. Am. Chem. Soc.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 471
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 13472
  year: 2019
  end-page: 13480
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 3479
  year: 2017
  end-page: 3716
  publication-title: Chem. Rev.
– volume: 122
  start-page: 565
  year: 2022
  end-page: 788
  publication-title: Chem. Rev.
– volume: 58
  start-page: 11301
  year: 2019
  end-page: 11305
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 36089
  year: 2021
  end-page: 36097
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 17756
  year: 2020
  end-page: 17765
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 913
  year: 1987
  end-page: 915
  publication-title: Appl. Phys. Lett.
– volume: 127
  start-page: 14152
  year: 2005
  end-page: 14153
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 9598
  year: 2021
  end-page: 9603
  publication-title: Angew. Chem. Int. Ed.
– volume: 66
  start-page: 826
  year: 2023
  end-page: 836
  publication-title: Sci. China Chem.
– volume: 28
  year: 2022
  publication-title: Chem. Eur. J.
– volume: 3
  year: 2022
  publication-title: Aggregate
– volume: 28
  start-page: 2777
  year: 2016
  end-page: 2781
  publication-title: Adv. Mater.
– volume: 9
  start-page: 17136
  year: 2021
  end-page: 17142
  publication-title: J. Mater. Chem. C
– volume: 15
  start-page: 780
  year: 2021
  end-page: 786
  publication-title: Nat. Photonics
– volume: 60
  start-page: 7643
  year: 2021
  end-page: 7648
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 140
  start-page: 18173
  year: 2018
  end-page: 18182
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 7
  start-page: 13680
  year: 2016
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2023
  publication-title: Adv. Opt. Mater.
– year: 2023
  publication-title: Mater. Horiz.
– volume: 60
  start-page: 12269
  year: 2021
  end-page: 12273
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 3122
  year: 2016
  end-page: 3130
  publication-title: Adv. Mater.
– volume: 141
  start-page: 18390
  year: 2019
  end-page: 18394
  publication-title: J. Am. Chem. Soc.
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 3082
  year: 2019
  end-page: 3089
  publication-title: J. Mater. Chem. C
– volume: 13
  start-page: 13907
  year: 2022
  end-page: 13913
  publication-title: Chem. Sci.
– volume: 57
  start-page: 11041
  year: 2021
  end-page: 11044
  publication-title: Chem. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 81
  start-page: 4347
  year: 2016
  end-page: 4352
  publication-title: J. Org. Chem.
– volume: 30
  start-page: 8771
  year: 2018
  end-page: 8781
  publication-title: Chem. Mater.
– start-page: 1
  year: 2019
  end-page: 18
– volume: 22
  start-page: 5227
  year: 2010
  end-page: 5239
  publication-title: Adv. Mater.
– volume: 16
  start-page: 803
  year: 2022
  end-page: 810
  publication-title: Nat. Photonics
– volume: 58
  start-page: 3848
  year: 2019
  end-page: 3853
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 10869
  year: 2021
  end-page: 10874
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 6579
  year: 2012
  end-page: 6586
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 4941
  year: 2022
  end-page: 4946
  publication-title: J. Mater. Chem. C
– volume: 18
  start-page: 1084
  year: 2019
  end-page: 1090
  publication-title: Nat. Mater.
– volume: 8
  start-page: 11340
  year: 2020
  end-page: 11353
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 1261
  year: 2021
  end-page: 1271
  publication-title: Acc. Mater. Res.
– volume: 29
  year: 2023
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 4876
  year: 2022
  publication-title: Nat. Commun.
– volume: 59
  start-page: 8963
  year: 2020
  end-page: 8968
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 8308
  year: 2021
  end-page: 8313
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 958
  year: 2021
  end-page: 962
  publication-title: Org. Lett.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 119
  start-page: 9728
  year: 2015
  end-page: 9733
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_60_1
  doi: 10.1351/pac196511030371
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.202104125
– ident: e_1_2_7_40_2
  doi: 10.1002/advs.202101137
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.202301863
– ident: e_1_2_7_30_2
  doi: 10.1021/jacs.9b13704
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.orglett.0c04159
– ident: e_1_2_7_7_2
  doi: 10.1002/adom.202000922
– ident: e_1_2_7_11_1
– ident: e_1_2_7_19_2
  doi: 10.1021/acs.chemrev.1c00449
– ident: e_1_2_7_77_2
  doi: 10.1002/chem.202101188
– ident: e_1_2_7_62_1
  doi: 10.1002/adom.202001845
– ident: e_1_2_7_78_2
  doi: 10.1002/anie.202103187
– ident: e_1_2_7_64_1
  doi: 10.1038/s41566-021-00870-3
– ident: e_1_2_7_29_2
  doi: 10.1002/adma.202107951
– ident: e_1_2_7_70_2
  doi: 10.1021/jacs.0c08980
– ident: e_1_2_7_10_2
  doi: 10.1002/chem.202202628
– ident: e_1_2_7_27_1
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.202113206
– ident: e_1_2_7_61_1
  doi: 10.1021/ja054661d
– ident: e_1_2_7_54_1
– ident: e_1_2_7_68_2
  doi: 10.1021/jacs.9b09323
– ident: e_1_2_7_42_2
  doi: 10.1002/adma.202202464
– ident: e_1_2_7_21_2
  doi: 10.1021/acs.joc.6b00238
– ident: e_1_2_7_82_2
  doi: 10.1021/acs.jpcc.5b00276
– ident: e_1_2_7_2_2
  doi: 10.1038/s42004-022-00766-5
– ident: e_1_2_7_18_2
  doi: 10.1021/acs.chemrev.6b00076
– ident: e_1_2_7_34_2
  doi: 10.1002/anie.202215522
– ident: e_1_2_7_97_2
  doi: 10.1021/acs.chemmater.8b03142
– ident: e_1_2_7_67_1
– ident: e_1_2_7_71_1
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.201904272
– ident: e_1_2_7_55_1
– ident: e_1_2_7_94_2
  doi: 10.1002/adma.201001167
– ident: e_1_2_7_57_2
  doi: 10.1002/adfm.201808088
– ident: e_1_2_7_8_2
  doi: 10.1002/adom.202202610
– ident: e_1_2_7_24_2
  doi: 10.1039/D1CC04405B
– ident: e_1_2_7_75_2
  doi: 10.1007/s11426-022-1485-8
– ident: e_1_2_7_39_2
  doi: 10.1002/smll.201907569
– ident: e_1_2_7_23_2
  doi: 10.1039/D2SC05580E
– ident: e_1_2_7_41_2
  doi: 10.1002/anie.202017328
– ident: e_1_2_7_87_2
  doi: 10.1021/acsami.8b19635
– ident: e_1_2_7_90_2
  doi: 10.1039/D3MH00617D
– ident: e_1_2_7_35_2
  doi: 10.1016/j.cej.2022.138498
– ident: e_1_2_7_79_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_26_1
  doi: 10.1038/s41566-019-0476-5
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202002869
– ident: e_1_2_7_63_1
  doi: 10.1039/C8TC06575F
– ident: e_1_2_7_96_2
  doi: 10.1002/adom.202000102
– ident: e_1_2_7_53_2
  doi: 10.1007/s11426-022-1382-5
– ident: e_1_2_7_36_1
  doi: 10.1038/s41566-022-01106-8
– ident: e_1_2_7_22_2
  doi: 10.1021/jacs.8b11337
– ident: e_1_2_7_51_2
  doi: 10.1002/anie.201813604
– ident: e_1_2_7_69_2
  doi: 10.1002/adma.201808242
– ident: e_1_2_7_72_2
  doi: 10.1039/D1TC01427G
– ident: e_1_2_7_16_1
– ident: e_1_2_7_73_2
  doi: 10.1038/s41566-022-01083-y
– ident: e_1_2_7_9_2
  doi: 10.1002/agt2.182
– ident: e_1_2_7_31_2
  doi: 10.1021/jacs.1c11659
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201505491
– ident: e_1_2_7_86_2
  doi: 10.1021/acsami.1c09743
– ident: e_1_2_7_52_2
  doi: 10.1039/C4CC08028A
– ident: e_1_2_7_88_2
  doi: 10.1002/adom.201901627
– ident: e_1_2_7_49_1
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.202206916
– ident: e_1_2_7_95_1
– ident: e_1_2_7_76_1
– ident: e_1_2_7_89_2
  doi: 10.1002/anie.202305182
– ident: e_1_2_7_37_1
– ident: e_1_2_7_80_2
  doi: 10.1038/s41563-019-0465-6
– ident: e_1_2_7_44_1
  doi: 10.1002/adom.201801536
– start-page: 1
  volume-title: TADF technology for efficient blue OLEDs: status and challenges from an industrial point of view
  year: 2019
  ident: e_1_2_7_25_1
– ident: e_1_2_7_93_2
  doi: 10.1016/j.cej.2023.144565
– ident: e_1_2_7_47_1
  doi: 10.1039/D1TC05711A
– ident: e_1_2_7_85_1
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.202215226
– ident: e_1_2_7_1_1
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.202218947
– ident: e_1_2_7_4_2
  doi: 10.1002/chem.202104624
– ident: e_1_2_7_38_2
  doi: 10.1002/anie.202016914
– volume: 66
  start-page: 826
  year: 2023
  ident: e_1_2_7_43_2
  publication-title: Sci. China Chem.
– ident: e_1_2_7_12_2
  doi: 10.1063/1.98799
– ident: e_1_2_7_74_2
  doi: 10.1016/j.cej.2021.131169
– ident: e_1_2_7_66_1
  doi: 10.1039/D1TC04699C
– ident: e_1_2_7_91_1
– ident: e_1_2_7_83_2
  doi: 10.1038/ncomms13680
– ident: e_1_2_7_5_2
  doi: 10.1002/adfm.201908677
– ident: e_1_2_7_6_2
  doi: 10.1002/adom.202201714
– ident: e_1_2_7_50_2
  doi: 10.1002/adma.201506286
– ident: e_1_2_7_59_2
  doi: 10.1038/s41467-022-32607-3
– ident: e_1_2_7_56_2
  doi: 10.1002/anie.202100423
– ident: e_1_2_7_13_2
  doi: 10.1021/accountsmr.1c00208
– ident: e_1_2_7_81_2
  doi: 10.1002/advs.202101137
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.202201588
– ident: e_1_2_7_3_2
  doi: 10.1039/D0TC02682D
– ident: e_1_2_7_92_2
  doi: 10.1039/D3MH00800B
– ident: e_1_2_7_84_1
  doi: 10.1021/am301703a
SSID ssj0028806
Score 2.6049547
Snippet The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency...
The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202310047
SubjectTerms Blueshift
Carbonyl compounds
Carbonyls
Emission
Emissions
Emitters
Multi-Resonance
Narrowband
Nitrogen
Organic Light-Emitting Diodes
Photoluminescence
Photons
Quantum efficiency
Resonance
Rigidity
Spiro Structure
Thermally Activated Delayed Fluorescence
Title Introducing Spiro‐locks into the Nitrogen/Carbonyl System towards Efficient Narrowband Deep‐blue Multi‐resonance TADF Emitters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202310047
https://www.proquest.com/docview/2867955689
https://www.proquest.com/docview/2853945708
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctxAILb0ShICMhMblNnFc9VqUVMHTgIbFFsWNLFZBUbbIwMfAB-Ix8Eu6cJjwkhARbrDhpEp97fyd3vyPkxHU8A37TZ8oXEfNDVzHJJWemZ4JURgpM2tI-x-H5rX95F9x9yuKv-BDNCzecGfb_Gid4IufdD2goZmB3sPg3Ms8wnRwDtlAVXTX8KA7GWaUXeR7DKvQ1tdHh3a-Hf_VKH1Lzs2C1Hme0TpL6WqtAk_tOWciOevqGcfzPzWyQtYUcpf3KfjbJks62yMqgrgK3TV4uMJQ9LRW4OHo9nczyt-dXcID3czrJipyCfqTjCXQBQ-wOkpnESHdacdBpYWNy53RoORXg3ujYMh9lkqX0TOspnEs-lJraNGBowNo_RwKIpjf9sxEdPk4s_XOH3I6GN4NztqjcwJQHq20mTA8WRspVrnFAEKVCaAHaMeJKezzpCa4jkH7SCGECkZrQ4cqHhp-CPNGhSL1dspzlmd4j1KRGKNAYwgeh6iRSSBH4rpGRh4unULYIq0cuVgusOVbXeIgrIDOP8dnGzbNtkdOm_7QCevzYs10bQryY2POYI6AQqW2iRY6b3TAm-J0lyXReYp_AE3C3Tq9FuB31X34p7o8vhk1r_y8HHZBV3LZhhrxNlotZqQ9BLhXyyE6Jd9cdDz4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lj9MwEMdHsByWy_IWXZbFSEic3CbOqz5W3VYtLDlAV-IWxY4tVbskVZtcOHHgA_AZ-STMOE12FwkhwdGN0zw87vzHHf8G4I3vBRb9Zsh1KBMexr7mSijB7dhGhUo0mrSjfabx4iJ89znqsglpL0zLh-gX3GhmuN9rmuC0ID26pobSFuwhVf8m6FlyF-5RWW8XVX3sCVICzbPdYBQEnOrQd9xGT4xun3_bL12LzZuS1fmc-QNQ3d22qSaXw6ZWQ_31N5Djfz3OQzjaK1I2aU3oEdwx5WM4nHaF4J7A9yVlsxeNRi_HPm3W2-rntx_oAy93bF3WFUMJydI1dkFbHE3zraJkd9ai0Fnt0nJ3bOZQFejhWOqwjyovC3ZmzAa_S101hrmdwNjA8L8iCIhhq8nZnM2-rB0A9ClczGer6YLvizdwHWDAzaUdY2ykfe1bDzVRIaWRKB8ToU0g8rEUJkH1p6yUNpKFjT2hQ2yEBSoUE8sieAYHZVWa58BsYaVGmSFD1KperqSSUehblQQUP8VqALwbukzvyeZUYOMqa5nMIqN3m_XvdgBv-_6blunxx54nnSVk-7m9ywQxCgncJgfwuj-MY0J_teSlqRrqEwUSn9YbD0C4Yf_LlbJJupz1reN_OekVHC5WH86z82X6_gXcp89d1qE4gYN625iXqJ5qdermxy-8MRNZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctKBJw4V2xUMBISJy8m9jOw8fVPtQFFCFopd6i2LGlVUuy2k0unDjwAfiMfBJmnE3aIiEkODpxHo7Hmb-T8W8IeRMGwoHflMxIlTAZh4ZprjlzqYtKnRgwaU_7zOLjU_nuLDq7soq_40MMH9xwZPj3NQ7wTekml9BQXIE9xuTfyDxLbpJbMg5StOv5pwEgxcE6u_VFQjBMQ99jGwM-uX78dbd0qTWvKlbvcpb3SdHfbBdpcj5uGz02X3_jOP5Pax6Qe3s9SqedAT0kN2z1iNyZ9WngHpPvK4xlL1sDPo5-3qy39c9vP8ADnu_oumpqCgKSZmuoApY4mRVbjaHutAOh08YH5e7owoMqwL_RzEMfdVGVdG7tBs6lL1pL_TpgKMDkv0YEiKUn0_mSLr6sPf7zCTldLk5mx2yfuoEZAdNtplwKMyMTmtBBp4hSKatAPCbcWMGLVHGbgPbTTikXqdLFATcSCrIEfWJjVYpDclDVlX1KqCudMiAylASlGhRaaRXJ0OlE4Owp1iPC-p7LzZ5rjuk1LvKOyMxzfLb58GxH5O1Qf9MRPf5Y86g3hHw_snc5R0IhYtvUiLwedkOf4I-WorJ1i3UioaC1QToi3Pf6X66UT7PVYig9-5eDXpHbH-fL_MMqe_-c3MXNPuSQH5GDZtvaFyCdGv3Sj45fkT8SEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+Spiro%E2%80%90locks+into+the+Nitrogen%2FCarbonyl+System+towards+Efficient+Narrowband+Deep%E2%80%90blue+Multi%E2%80%90resonance+TADF+Emitters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+You%E2%80%90Jun&rft.au=Feng%2C+Zi%E2%80%90Qi&rft.au=Meng%2C+Xin%E2%80%90Yue&rft.au=Chen%2C+Long&rft.date=2023-10-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=40&rft_id=info:doi/10.1002%2Fanie.202310047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202310047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon