Introducing Spiro‐locks into the Nitrogen/Carbonyl System towards Efficient Narrowband Deep‐blue Multi‐resonance TADF Emitters
The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strateg...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 40; pp. e202310047 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
02.10.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue‐shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro‐junction in modulating deep‐blue MR‐TADF emitters.
The various spiro‐locks were introduced into the nitrogen/carbonyl‐based multi‐resonance thermally activated delayed fluorescence (MR‐TADF) system via a designed synthetic route. The introduction of spiro‐locks increased molecular rigidity and suppressed intermolecular interactions. Thus, narrowband deep‐blue electroluminescence spectra and improved device efficiencies were achieved simultaneously. |
---|---|
AbstractList | The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue‐shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro‐junction in modulating deep‐blue MR‐TADF emitters. The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters. The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency in the deep‐blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR‐TADF system, we propose a spiro‐lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue‐shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro‐junction in modulating deep‐blue MR‐TADF emitters. The various spiro‐locks were introduced into the nitrogen/carbonyl‐based multi‐resonance thermally activated delayed fluorescence (MR‐TADF) system via a designed synthetic route. The introduction of spiro‐locks increased molecular rigidity and suppressed intermolecular interactions. Thus, narrowband deep‐blue electroluminescence spectra and improved device efficiencies were achieved simultaneously. |
Author | Feng, Zi‐Qi Yang, Sheng‐Yi Liao, Liang‐Sheng Yu, You‐Jun Chen, Long Jiang, Zuo‐Quan Zhou, Dong‐Ying Meng, Xin‐Yue Liu, Fu‐Ming |
Author_xml | – sequence: 1 givenname: You‐Jun surname: Yu fullname: Yu, You‐Jun organization: Soochow University – sequence: 2 givenname: Zi‐Qi surname: Feng fullname: Feng, Zi‐Qi organization: Soochow University – sequence: 3 givenname: Xin‐Yue surname: Meng fullname: Meng, Xin‐Yue organization: Soochow University – sequence: 4 givenname: Long surname: Chen fullname: Chen, Long organization: Soochow University – sequence: 5 givenname: Fu‐Ming surname: Liu fullname: Liu, Fu‐Ming organization: Soochow University – sequence: 6 givenname: Sheng‐Yi surname: Yang fullname: Yang, Sheng‐Yi organization: Soochow University – sequence: 7 givenname: Dong‐Ying surname: Zhou fullname: Zhou, Dong‐Ying organization: Soochow University – sequence: 8 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng organization: Macau University of Science and Technology – sequence: 9 givenname: Zuo‐Quan orcidid: 0000-0003-4447-2408 surname: Jiang fullname: Jiang, Zuo‐Quan email: zqjiang@suda.edu.cn organization: Soochow University |
BookMark | eNqFkc1OWzEQhS0EUiGw7dpSN93c4J_752UUQokE6SJ0feX4jsHUsVPbV1F2XfAAPCNPUkepQEKqupo50nfOjHTO0LHzDhD6TMmYEsIupTMwZoTxrMrmCJ3SitGCNw0_znvJedG0Ff2EzmJ8ynzbkvoUPc9dCr4flHEPeLkxwb_-frFe_YzYuORxegS8MBl5AHc5lWHl3c7i5S4mWOPktzL0Ec-0NsqAS3ghQ_DblXQ9vgLY5KyVHQDfDTaZLAJE76RTgO8nV9d4tjYpQYjn6ERLG-Hi7xyhH9ez--lNcfv923w6uS0UF6QphG5rUiuqqCat4L0QIEhZNUwBZ7IVDBrS8pUWQlei1zVhqsyi7KkgUIuej9DXQ-4m-F8DxNStTVRgrXTgh9ixtuIiB-aUEfryAX3yQ3D5u0zVjaiqOr8wQuMDpYKPMYDuNsGsZdh1lHT7Urp9Kd1bKdlQfjAok2QyPrcgjf23TRxsW2Nh958j3WQxn717_wDlxqd8 |
CitedBy_id | crossref_primary_10_1002_ange_202417200 crossref_primary_10_1002_asia_202400679 crossref_primary_10_1002_adom_202400739 crossref_primary_10_1002_adfm_202422973 crossref_primary_10_1002_ange_202424950 crossref_primary_10_1002_smll_202407220 crossref_primary_10_1002_anie_202316710 crossref_primary_10_1016_j_cej_2024_155350 crossref_primary_10_1021_acs_joc_4c00782 crossref_primary_10_1039_D4MH00634H crossref_primary_10_1021_acsmaterialslett_4c00210 crossref_primary_10_1021_acsami_4c05510 crossref_primary_10_1021_jacs_4c15651 crossref_primary_10_1002_advs_202411765 crossref_primary_10_1016_j_orgel_2024_107072 crossref_primary_10_1039_D4TC04002C crossref_primary_10_1002_adom_202402464 crossref_primary_10_1002_adom_202402960 crossref_primary_10_1002_anie_202417200 crossref_primary_10_1002_advs_202401664 crossref_primary_10_1002_adom_202401818 crossref_primary_10_1039_D4CC05040A crossref_primary_10_1016_j_cej_2024_151314 crossref_primary_10_1021_acs_jpclett_4c01177 crossref_primary_10_1021_acs_jpclett_4c02423 crossref_primary_10_1039_D4TC05386A crossref_primary_10_1016_j_cej_2024_150782 crossref_primary_10_1016_j_chempr_2024_10_020 crossref_primary_10_1039_D4QM00720D crossref_primary_10_1002_ange_202316710 crossref_primary_10_1002_adma_202402905 crossref_primary_10_1002_anie_202424950 crossref_primary_10_1021_acs_jpca_4c06357 crossref_primary_10_1038_s42004_025_01435_z crossref_primary_10_1002_adma_202416224 crossref_primary_10_1002_adom_202400490 crossref_primary_10_70401_smd_2025_0001 crossref_primary_10_1002_adom_202402479 crossref_primary_10_1038_s41467_024_48659_6 crossref_primary_10_1039_D4QO02104E crossref_primary_10_1002_adom_202403566 crossref_primary_10_1021_acsami_4c02834 crossref_primary_10_1039_D4QO02027H |
Cites_doi | 10.1351/pac196511030371 10.1002/adma.202104125 10.1002/advs.202101137 10.1002/anie.202301863 10.1021/jacs.9b13704 10.1021/acs.orglett.0c04159 10.1002/adom.202000922 10.1021/acs.chemrev.1c00449 10.1002/chem.202101188 10.1002/adom.202001845 10.1002/anie.202103187 10.1038/s41566-021-00870-3 10.1002/adma.202107951 10.1021/jacs.0c08980 10.1002/chem.202202628 10.1002/anie.202113206 10.1021/ja054661d 10.1021/jacs.9b09323 10.1002/adma.202202464 10.1021/acs.joc.6b00238 10.1021/acs.jpcc.5b00276 10.1038/s42004-022-00766-5 10.1021/acs.chemrev.6b00076 10.1002/anie.202215522 10.1021/acs.chemmater.8b03142 10.1002/anie.201904272 10.1002/adma.201001167 10.1002/adfm.201808088 10.1002/adom.202202610 10.1039/D1CC04405B 10.1007/s11426-022-1485-8 10.1002/smll.201907569 10.1039/D2SC05580E 10.1002/anie.202017328 10.1021/acsami.8b19635 10.1039/D3MH00617D 10.1016/j.cej.2022.138498 10.1038/s41566-019-0476-5 10.1002/anie.202002869 10.1039/C8TC06575F 10.1002/adom.202000102 10.1007/s11426-022-1382-5 10.1038/s41566-022-01106-8 10.1021/jacs.8b11337 10.1002/anie.201813604 10.1002/adma.201808242 10.1039/D1TC01427G 10.1038/s41566-022-01083-y 10.1002/agt2.182 10.1021/jacs.1c11659 10.1002/adma.201505491 10.1021/acsami.1c09743 10.1039/C4CC08028A 10.1002/adom.201901627 10.1002/anie.202206916 10.1002/anie.202305182 10.1038/s41563-019-0465-6 10.1002/adom.201801536 10.1016/j.cej.2023.144565 10.1039/D1TC05711A 10.1002/anie.202215226 10.1002/anie.202218947 10.1002/chem.202104624 10.1002/anie.202016914 10.1063/1.98799 10.1016/j.cej.2021.131169 10.1039/D1TC04699C 10.1038/ncomms13680 10.1002/adfm.201908677 10.1002/adom.202201714 10.1002/adma.201506286 10.1038/s41467-022-32607-3 10.1002/anie.202100423 10.1021/accountsmr.1c00208 10.1002/anie.202201588 10.1039/D0TC02682D 10.1039/D3MH00800B 10.1021/am301703a |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202310047 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202310047 ANIE202310047 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20220057 – fundername: National Natural Science Foundation of China funderid: 22175124; 62175171; 61961160731 – fundername: Science and Technology Program of Suzhou funderid: SYG202010 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3907-9f8606c1c1f0893d99e904572ce32a892e7083bf99f59df602c4f994d190e69d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:17:27 EDT 2025 Sun Jul 13 05:28:17 EDT 2025 Tue Jul 01 01:47:18 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Sun Jul 06 04:45:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3907-9f8606c1c1f0893d99e904572ce32a892e7083bf99f59df602c4f994d190e69d3 |
Notes | These authors contributed equally to this work. Minor changes have been made to Figure 1 since its publication in Early View. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4447-2408 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202310047 |
PQID | 2867955689 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2853945708 proquest_journals_2867955689 crossref_primary_10_1002_anie_202310047 crossref_citationtrail_10_1002_anie_202310047 wiley_primary_10_1002_anie_202310047_ANIE202310047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2, 2023 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2, 2023 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 1965; 11 2021; 23 2019; 11 2019; 13 2019; 58 2020; 16 2020; 59 2019; 18 2022; 65 2022; 28 2017; 117 2020; 8 2022; 122 2010; 22 2023; 62 2023; 66 2023; 29 2023; 451 2022; 34 2019; 29 2018; 30 2016; 81 2021; 9 2021; 8 2019; 7 2023; 11 1987; 51 2018; 140 2021; 2 2023; 17 2019; 31 2020; 142 2015; 51 2021; 426 2019; 141 2022; 144 2021; 57 2021; 13 2021; 15 2016; 7 2022; 3 2023 2020; 30 2023; 471 2022; 5 2022; 61 2005; 127 2022; 13 2019 2015; 119 2022; 10 2016; 28 2021; 60 2012; 4 2022; 16 e_1_2_7_3_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_83_2 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_41_2 e_1_2_7_87_2 Arjona-Esteban A. (e_1_2_7_25_1) 2019 Xie Y. (e_1_2_7_43_2) 2023; 66 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_68_2 e_1_2_7_49_1 e_1_2_7_90_2 e_1_2_7_94_2 e_1_2_7_71_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_82_2 e_1_2_7_16_1 e_1_2_7_40_2 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_31_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_2_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_84_1 e_1_2_7_80_2 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_76_1 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_38_2 |
References_xml | – volume: 142 start-page: 6588 year: 2020 end-page: 6599 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 149 year: 2022 publication-title: Commun. Chem. – volume: 13 start-page: 678 year: 2019 end-page: 682 publication-title: Nat. Photonics – volume: 11 start-page: 371 year: 1965 publication-title: Pure Appl. Chem. – volume: 17 start-page: 280 year: 2023 end-page: 285 publication-title: Nat. Photonics – volume: 66 start-page: 1 year: 2023 end-page: 3 publication-title: Sci. China Chem. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 65 start-page: 2219 year: 2022 end-page: 2230 publication-title: Sci. China Chem. – volume: 51 start-page: 1313 year: 2015 end-page: 1315 publication-title: Chem. Commun. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 60 start-page: 12376 year: 2021 end-page: 12380 publication-title: Angew. Chem. Int. Ed. – volume: 144 start-page: 106 year: 2022 end-page: 112 publication-title: J. Am. Chem. Soc. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 471 year: 2023 publication-title: Chem. Eng. J. – volume: 11 start-page: 13472 year: 2019 end-page: 13480 publication-title: ACS Appl. Mater. Interfaces – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 117 start-page: 3479 year: 2017 end-page: 3716 publication-title: Chem. Rev. – volume: 122 start-page: 565 year: 2022 end-page: 788 publication-title: Chem. Rev. – volume: 58 start-page: 11301 year: 2019 end-page: 11305 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 36089 year: 2021 end-page: 36097 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 17756 year: 2020 end-page: 17765 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 913 year: 1987 end-page: 915 publication-title: Appl. Phys. Lett. – volume: 127 start-page: 14152 year: 2005 end-page: 14153 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 9598 year: 2021 end-page: 9603 publication-title: Angew. Chem. Int. Ed. – volume: 66 start-page: 826 year: 2023 end-page: 836 publication-title: Sci. China Chem. – volume: 28 year: 2022 publication-title: Chem. Eur. J. – volume: 3 year: 2022 publication-title: Aggregate – volume: 28 start-page: 2777 year: 2016 end-page: 2781 publication-title: Adv. Mater. – volume: 9 start-page: 17136 year: 2021 end-page: 17142 publication-title: J. Mater. Chem. C – volume: 15 start-page: 780 year: 2021 end-page: 786 publication-title: Nat. Photonics – volume: 60 start-page: 7643 year: 2021 end-page: 7648 publication-title: Angew. Chem. Int. Ed. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 140 start-page: 18173 year: 2018 end-page: 18182 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 7 start-page: 13680 year: 2016 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – year: 2023 publication-title: Mater. Horiz. – volume: 60 start-page: 12269 year: 2021 end-page: 12273 publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 3122 year: 2016 end-page: 3130 publication-title: Adv. Mater. – volume: 141 start-page: 18390 year: 2019 end-page: 18394 publication-title: J. Am. Chem. Soc. – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 7 start-page: 3082 year: 2019 end-page: 3089 publication-title: J. Mater. Chem. C – volume: 13 start-page: 13907 year: 2022 end-page: 13913 publication-title: Chem. Sci. – volume: 57 start-page: 11041 year: 2021 end-page: 11044 publication-title: Chem. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 81 start-page: 4347 year: 2016 end-page: 4352 publication-title: J. Org. Chem. – volume: 30 start-page: 8771 year: 2018 end-page: 8781 publication-title: Chem. Mater. – start-page: 1 year: 2019 end-page: 18 – volume: 22 start-page: 5227 year: 2010 end-page: 5239 publication-title: Adv. Mater. – volume: 16 start-page: 803 year: 2022 end-page: 810 publication-title: Nat. Photonics – volume: 58 start-page: 3848 year: 2019 end-page: 3853 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 10869 year: 2021 end-page: 10874 publication-title: Chem. Eur. J. – volume: 4 start-page: 6579 year: 2012 end-page: 6586 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 4941 year: 2022 end-page: 4946 publication-title: J. Mater. Chem. C – volume: 18 start-page: 1084 year: 2019 end-page: 1090 publication-title: Nat. Mater. – volume: 8 start-page: 11340 year: 2020 end-page: 11353 publication-title: J. Mater. Chem. C – volume: 2 start-page: 1261 year: 2021 end-page: 1271 publication-title: Acc. Mater. Res. – volume: 29 year: 2023 publication-title: Chem. Eur. J. – volume: 13 start-page: 4876 year: 2022 publication-title: Nat. Commun. – volume: 59 start-page: 8963 year: 2020 end-page: 8968 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 8308 year: 2021 end-page: 8313 publication-title: J. Mater. Chem. C – volume: 23 start-page: 958 year: 2021 end-page: 962 publication-title: Org. Lett. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 119 start-page: 9728 year: 2015 end-page: 9733 publication-title: J. Phys. Chem. C – ident: e_1_2_7_60_1 doi: 10.1351/pac196511030371 – ident: e_1_2_7_14_2 doi: 10.1002/adma.202104125 – ident: e_1_2_7_40_2 doi: 10.1002/advs.202101137 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202301863 – ident: e_1_2_7_30_2 doi: 10.1021/jacs.9b13704 – ident: e_1_2_7_45_1 doi: 10.1021/acs.orglett.0c04159 – ident: e_1_2_7_7_2 doi: 10.1002/adom.202000922 – ident: e_1_2_7_11_1 – ident: e_1_2_7_19_2 doi: 10.1021/acs.chemrev.1c00449 – ident: e_1_2_7_77_2 doi: 10.1002/chem.202101188 – ident: e_1_2_7_62_1 doi: 10.1002/adom.202001845 – ident: e_1_2_7_78_2 doi: 10.1002/anie.202103187 – ident: e_1_2_7_64_1 doi: 10.1038/s41566-021-00870-3 – ident: e_1_2_7_29_2 doi: 10.1002/adma.202107951 – ident: e_1_2_7_70_2 doi: 10.1021/jacs.0c08980 – ident: e_1_2_7_10_2 doi: 10.1002/chem.202202628 – ident: e_1_2_7_27_1 – ident: e_1_2_7_65_1 doi: 10.1002/anie.202113206 – ident: e_1_2_7_61_1 doi: 10.1021/ja054661d – ident: e_1_2_7_54_1 – ident: e_1_2_7_68_2 doi: 10.1021/jacs.9b09323 – ident: e_1_2_7_42_2 doi: 10.1002/adma.202202464 – ident: e_1_2_7_21_2 doi: 10.1021/acs.joc.6b00238 – ident: e_1_2_7_82_2 doi: 10.1021/acs.jpcc.5b00276 – ident: e_1_2_7_2_2 doi: 10.1038/s42004-022-00766-5 – ident: e_1_2_7_18_2 doi: 10.1021/acs.chemrev.6b00076 – ident: e_1_2_7_34_2 doi: 10.1002/anie.202215522 – ident: e_1_2_7_97_2 doi: 10.1021/acs.chemmater.8b03142 – ident: e_1_2_7_67_1 – ident: e_1_2_7_71_1 – ident: e_1_2_7_58_2 doi: 10.1002/anie.201904272 – ident: e_1_2_7_55_1 – ident: e_1_2_7_94_2 doi: 10.1002/adma.201001167 – ident: e_1_2_7_57_2 doi: 10.1002/adfm.201808088 – ident: e_1_2_7_8_2 doi: 10.1002/adom.202202610 – ident: e_1_2_7_24_2 doi: 10.1039/D1CC04405B – ident: e_1_2_7_75_2 doi: 10.1007/s11426-022-1485-8 – ident: e_1_2_7_39_2 doi: 10.1002/smll.201907569 – ident: e_1_2_7_23_2 doi: 10.1039/D2SC05580E – ident: e_1_2_7_41_2 doi: 10.1002/anie.202017328 – ident: e_1_2_7_87_2 doi: 10.1021/acsami.8b19635 – ident: e_1_2_7_90_2 doi: 10.1039/D3MH00617D – ident: e_1_2_7_35_2 doi: 10.1016/j.cej.2022.138498 – ident: e_1_2_7_79_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_26_1 doi: 10.1038/s41566-019-0476-5 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202002869 – ident: e_1_2_7_63_1 doi: 10.1039/C8TC06575F – ident: e_1_2_7_96_2 doi: 10.1002/adom.202000102 – ident: e_1_2_7_53_2 doi: 10.1007/s11426-022-1382-5 – ident: e_1_2_7_36_1 doi: 10.1038/s41566-022-01106-8 – ident: e_1_2_7_22_2 doi: 10.1021/jacs.8b11337 – ident: e_1_2_7_51_2 doi: 10.1002/anie.201813604 – ident: e_1_2_7_69_2 doi: 10.1002/adma.201808242 – ident: e_1_2_7_72_2 doi: 10.1039/D1TC01427G – ident: e_1_2_7_16_1 – ident: e_1_2_7_73_2 doi: 10.1038/s41566-022-01083-y – ident: e_1_2_7_9_2 doi: 10.1002/agt2.182 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.1c11659 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201505491 – ident: e_1_2_7_86_2 doi: 10.1021/acsami.1c09743 – ident: e_1_2_7_52_2 doi: 10.1039/C4CC08028A – ident: e_1_2_7_88_2 doi: 10.1002/adom.201901627 – ident: e_1_2_7_49_1 – ident: e_1_2_7_32_2 doi: 10.1002/anie.202206916 – ident: e_1_2_7_95_1 – ident: e_1_2_7_76_1 – ident: e_1_2_7_89_2 doi: 10.1002/anie.202305182 – ident: e_1_2_7_37_1 – ident: e_1_2_7_80_2 doi: 10.1038/s41563-019-0465-6 – ident: e_1_2_7_44_1 doi: 10.1002/adom.201801536 – start-page: 1 volume-title: TADF technology for efficient blue OLEDs: status and challenges from an industrial point of view year: 2019 ident: e_1_2_7_25_1 – ident: e_1_2_7_93_2 doi: 10.1016/j.cej.2023.144565 – ident: e_1_2_7_47_1 doi: 10.1039/D1TC05711A – ident: e_1_2_7_85_1 – ident: e_1_2_7_46_1 doi: 10.1002/anie.202215226 – ident: e_1_2_7_1_1 – ident: e_1_2_7_28_2 doi: 10.1002/anie.202218947 – ident: e_1_2_7_4_2 doi: 10.1002/chem.202104624 – ident: e_1_2_7_38_2 doi: 10.1002/anie.202016914 – volume: 66 start-page: 826 year: 2023 ident: e_1_2_7_43_2 publication-title: Sci. China Chem. – ident: e_1_2_7_12_2 doi: 10.1063/1.98799 – ident: e_1_2_7_74_2 doi: 10.1016/j.cej.2021.131169 – ident: e_1_2_7_66_1 doi: 10.1039/D1TC04699C – ident: e_1_2_7_91_1 – ident: e_1_2_7_83_2 doi: 10.1038/ncomms13680 – ident: e_1_2_7_5_2 doi: 10.1002/adfm.201908677 – ident: e_1_2_7_6_2 doi: 10.1002/adom.202201714 – ident: e_1_2_7_50_2 doi: 10.1002/adma.201506286 – ident: e_1_2_7_59_2 doi: 10.1038/s41467-022-32607-3 – ident: e_1_2_7_56_2 doi: 10.1002/anie.202100423 – ident: e_1_2_7_13_2 doi: 10.1021/accountsmr.1c00208 – ident: e_1_2_7_81_2 doi: 10.1002/advs.202101137 – ident: e_1_2_7_33_2 doi: 10.1002/anie.202201588 – ident: e_1_2_7_3_2 doi: 10.1039/D0TC02682D – ident: e_1_2_7_92_2 doi: 10.1039/D3MH00800B – ident: e_1_2_7_84_1 doi: 10.1021/am301703a |
SSID | ssj0028806 |
Score | 2.6049547 |
Snippet | The current availability of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with excellent color purity and high device efficiency... The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202310047 |
SubjectTerms | Blueshift Carbonyl compounds Carbonyls Emission Emissions Emitters Multi-Resonance Narrowband Nitrogen Organic Light-Emitting Diodes Photoluminescence Photons Quantum efficiency Resonance Rigidity Spiro Structure Thermally Activated Delayed Fluorescence |
Title | Introducing Spiro‐locks into the Nitrogen/Carbonyl System towards Efficient Narrowband Deep‐blue Multi‐resonance TADF Emitters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202310047 https://www.proquest.com/docview/2867955689 https://www.proquest.com/docview/2853945708 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctxAILb0ShICMhMblNnFc9VqUVMHTgIbFFsWNLFZBUbbIwMfAB-Ix8Eu6cJjwkhARbrDhpEp97fyd3vyPkxHU8A37TZ8oXEfNDVzHJJWemZ4JURgpM2tI-x-H5rX95F9x9yuKv-BDNCzecGfb_Gid4IufdD2goZmB3sPg3Ms8wnRwDtlAVXTX8KA7GWaUXeR7DKvQ1tdHh3a-Hf_VKH1Lzs2C1Hme0TpL6WqtAk_tOWciOevqGcfzPzWyQtYUcpf3KfjbJks62yMqgrgK3TV4uMJQ9LRW4OHo9nczyt-dXcID3czrJipyCfqTjCXQBQ-wOkpnESHdacdBpYWNy53RoORXg3ujYMh9lkqX0TOspnEs-lJraNGBowNo_RwKIpjf9sxEdPk4s_XOH3I6GN4NztqjcwJQHq20mTA8WRspVrnFAEKVCaAHaMeJKezzpCa4jkH7SCGECkZrQ4cqHhp-CPNGhSL1dspzlmd4j1KRGKNAYwgeh6iRSSBH4rpGRh4unULYIq0cuVgusOVbXeIgrIDOP8dnGzbNtkdOm_7QCevzYs10bQryY2POYI6AQqW2iRY6b3TAm-J0lyXReYp_AE3C3Tq9FuB31X34p7o8vhk1r_y8HHZBV3LZhhrxNlotZqQ9BLhXyyE6Jd9cdDz4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lj9MwEMdHsByWy_IWXZbFSEic3CbOqz5W3VYtLDlAV-IWxY4tVbskVZtcOHHgA_AZ-STMOE12FwkhwdGN0zw87vzHHf8G4I3vBRb9Zsh1KBMexr7mSijB7dhGhUo0mrSjfabx4iJ89znqsglpL0zLh-gX3GhmuN9rmuC0ID26pobSFuwhVf8m6FlyF-5RWW8XVX3sCVICzbPdYBQEnOrQd9xGT4xun3_bL12LzZuS1fmc-QNQ3d22qSaXw6ZWQ_31N5Djfz3OQzjaK1I2aU3oEdwx5WM4nHaF4J7A9yVlsxeNRi_HPm3W2-rntx_oAy93bF3WFUMJydI1dkFbHE3zraJkd9ai0Fnt0nJ3bOZQFejhWOqwjyovC3ZmzAa_S101hrmdwNjA8L8iCIhhq8nZnM2-rB0A9ClczGer6YLvizdwHWDAzaUdY2ykfe1bDzVRIaWRKB8ToU0g8rEUJkH1p6yUNpKFjT2hQ2yEBSoUE8sieAYHZVWa58BsYaVGmSFD1KperqSSUehblQQUP8VqALwbukzvyeZUYOMqa5nMIqN3m_XvdgBv-_6blunxx54nnSVk-7m9ywQxCgncJgfwuj-MY0J_teSlqRrqEwUSn9YbD0C4Yf_LlbJJupz1reN_OekVHC5WH86z82X6_gXcp89d1qE4gYN625iXqJ5qdermxy-8MRNZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctKBJw4V2xUMBISJy8m9jOw8fVPtQFFCFopd6i2LGlVUuy2k0unDjwAfiMfBJmnE3aIiEkODpxHo7Hmb-T8W8IeRMGwoHflMxIlTAZh4ZprjlzqYtKnRgwaU_7zOLjU_nuLDq7soq_40MMH9xwZPj3NQ7wTekml9BQXIE9xuTfyDxLbpJbMg5StOv5pwEgxcE6u_VFQjBMQ99jGwM-uX78dbd0qTWvKlbvcpb3SdHfbBdpcj5uGz02X3_jOP5Pax6Qe3s9SqedAT0kN2z1iNyZ9WngHpPvK4xlL1sDPo5-3qy39c9vP8ADnu_oumpqCgKSZmuoApY4mRVbjaHutAOh08YH5e7owoMqwL_RzEMfdVGVdG7tBs6lL1pL_TpgKMDkv0YEiKUn0_mSLr6sPf7zCTldLk5mx2yfuoEZAdNtplwKMyMTmtBBp4hSKatAPCbcWMGLVHGbgPbTTikXqdLFATcSCrIEfWJjVYpDclDVlX1KqCudMiAylASlGhRaaRXJ0OlE4Owp1iPC-p7LzZ5rjuk1LvKOyMxzfLb58GxH5O1Qf9MRPf5Y86g3hHw_snc5R0IhYtvUiLwedkOf4I-WorJ1i3UioaC1QToi3Pf6X66UT7PVYig9-5eDXpHbH-fL_MMqe_-c3MXNPuSQH5GDZtvaFyCdGv3Sj45fkT8SEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+Spiro%E2%80%90locks+into+the+Nitrogen%2FCarbonyl+System+towards+Efficient+Narrowband+Deep%E2%80%90blue+Multi%E2%80%90resonance+TADF+Emitters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+You%E2%80%90Jun&rft.au=Feng%2C+Zi%E2%80%90Qi&rft.au=Meng%2C+Xin%E2%80%90Yue&rft.au=Chen%2C+Long&rft.date=2023-10-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=40&rft_id=info:doi/10.1002%2Fanie.202310047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202310047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |