Plants control soil gas exchanges possibly via mucilage
Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this...
Saved in:
Published in | Journal of plant nutrition and soil science Vol. 184; no. 3; pp. 320 - 328 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying.
Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations.
Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process.
Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying.
Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil. |
---|---|
AbstractList | Background
: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (
e.g
., mucilage) affects soil pore tortuosity and gas diffusion properties when drying.
Aims
: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations.
Methods
: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process.
Results
: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying.
Conclusion
: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil. Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations. Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process. Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying. Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil. Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations. Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process. Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying. Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil. |
Author | Kroener, Eva Brax, Mathilde Bentz, Jonas Schützenmeister, Klaus Haupenthal, Adrian Jungkunst, Hermann F. |
Author_xml | – sequence: 1 givenname: Adrian surname: Haupenthal fullname: Haupenthal, Adrian email: a.haupenthal@fz-juelich.de organization: Forschungszentrum Jülich GmbH – sequence: 2 givenname: Mathilde surname: Brax fullname: Brax, Mathilde organization: University of Koblenz-Landau – sequence: 3 givenname: Jonas surname: Bentz fullname: Bentz, Jonas organization: University of Koblenz-Landau – sequence: 4 givenname: Hermann F. surname: Jungkunst fullname: Jungkunst, Hermann F. organization: University of Koblenz-Landau – sequence: 5 givenname: Klaus surname: Schützenmeister fullname: Schützenmeister, Klaus organization: University of Koblenz-Landau – sequence: 6 givenname: Eva surname: Kroener fullname: Kroener, Eva organization: Forschungszentrum Jülich GmbH |
BookMark | eNqFkE1LAzEQhoNUsFavnhe8eNmaTLIfOUrxk6I96DkkaVJT0s262VX7792lolAQTzOH5xneeY_RqAqVQeiM4CnBGC7Xta-mgAFjzHh-gMYkA0ghBzbqd0bztCwoPkLHMa4HhnAYo2LhZdXGRIeqbYJPYnA-WcmYmE_9KquViUkdYnTKb5N3J5NNp52XK3OCDq300Zx-zwl6ubl-nt2l86fb-9nVPNWU4zzleLmUKpdaMbCUFyBLqyUhUjOWcaywIsQWFgqrLFhVKsWUAmlBqoxhvqQTdLG7WzfhrTOxFRsXtfF9ahO6KICXWYYpI6RHz_fQdeiaqk8nIKM8IyUUtKfYjtJN_1djrNCula0b_pfOC4LF0KYY2hQ_bfbadE-rG7eRzfZvge-ED-fN9h9aPCzmj7_uF6oUijY |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116576 crossref_primary_10_1002_vzj2_20268 crossref_primary_10_1016_j_advwatres_2022_104364 crossref_primary_10_1111_ejss_13576 crossref_primary_10_1007_s11104_022_05306_7 crossref_primary_10_1029_2021WR030052 crossref_primary_10_3390_su15086959 |
Cites_doi | 10.1002/2013WR014756 10.1021/je60032a036 10.1104/pp.105.2.651 10.1007/s11104-008-9885-9 10.1046/j.1469-8137.1997.00859.x 10.1111/j.1365-2389.1959.tb00667.x 10.1016/j.compgeo.2016.02.017 10.2136/vzj2013.01.0026 10.1111/j.1365-2389.2005.00778.x 10.1007/s11104-010-0283-8 10.1126/science.130.3367.100-a 10.2136/vzj2008.0023 10.1007/978-3-658-10687-4_2 10.2136/sssaj2004.7500 10.1029/2003WR002333 10.2136/sssaj1992.03615995005600060014x 10.2136/vzj2011.0065 10.3389/fenvs.2018.00032 10.1016/j.geoderma.2019.02.023 10.1016/j.advwatres.2015.08.006 10.1049/mnl.2017.0844 10.2136/sssabookser5.4.c45 10.1104/pp.106.3.1179 10.1016/j.jfoodeng.2011.06.037 10.1007/s11104-013-1910-y 10.1039/tf9615701200 10.1016/j.ces.2011.10.066 10.1111/j.1365-3040.2009.01926.x 10.1103/PhysRevE.47.1815 10.1146/annurev.arplant.57.032905.105159 10.2136/vzj2017.03.0056 10.1111/j.1574-6941.2010.00860.x 10.1038/ismej.2008.80 10.1111/j.1399-3054.1997.tb03445.x 10.1061/(ASCE)GT.1943-5606.0000133 10.1097/01.ss.0000196771.53574.79 10.2136/sssaj2000.6451588x 10.1111/ejss.12487 10.2136/vzj2017.01.0013 10.1007/s11104-017-3227-8 10.2136/vzj2008.0157 10.1088/0508-3443/11/8/303 10.1108/02644409510799532 10.2136/vzj2017.06.0119 10.2136/vzj2018.12.0211 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley‐VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley‐VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7S9 L.6 |
DOI | 10.1002/jpln.202000496 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Engineering Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Botany |
EISSN | 1522-2624 |
EndPage | 328 |
ExternalDocumentID | 10_1002_jpln_202000496 JPLN202000496 |
Genre | article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3906-90ddab6acb42f3972a8fca11ac44590b0b11f7f27fbf2fb8bb4bb2af2ab5409d3 |
IEDL.DBID | DR2 |
ISSN | 1436-8730 |
IngestDate | Fri Jul 11 18:25:08 EDT 2025 Mon Jul 28 15:40:43 EDT 2025 Tue Jul 01 00:47:43 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Jan 22 16:29:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3906-90ddab6acb42f3972a8fca11ac44590b0b11f7f27fbf2fb8bb4bb2af2ab5409d3 |
Notes | The data that support the findings of this study are available from the corresponding author upon reasonable request. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.202000496 |
PQID | 2539518273 |
PQPubID | 1016373 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2985503411 proquest_journals_2539518273 crossref_citationtrail_10_1002_jpln_202000496 crossref_primary_10_1002_jpln_202000496 wiley_primary_10_1002_jpln_202000496_JPLN202000496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Journal of plant nutrition and soil science |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 417 1993; 47 2005; 170 1997; 137 1960; 11 2004; 40 2006; 57 1995; 12 2017; 68 2000; 64 2004; 68 2008; 7 2019; 18 2009; 135 2004 2014; 374 2008; 2 1961; 57 2012; 11 1992; 56 2012; 108 2019; 343 2018; 6 2018; 17 1959; 130 1994; 105 1994; 106 2009; 32 1997; 99 2000 2015; 84 1967; 12 2013; 12 2010; 332 2009; 321 2018 2009; 8 2017 2016 2016; 80 2012; 69 2014; 50 1904 1959; 10 2010; 72 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 (e_1_2_8_33_1) 2000 e_1_2_8_36_1 Tuller M. (e_1_2_8_45_1) 2004 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Buckingham E. (e_1_2_8_9_1) 1904 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_50_1 |
References_xml | – volume: 417 start-page: 1 year: 2017 end-page: 15 article-title: Liquid bridges at the root‐soil interface publication-title: Plant Soil – volume: 12 year: 2013 article-title: Structure‐dependent water‐induced linear reduction model for predicting gas diffusivity and tortuosity in repacked and intact soil publication-title: Vadose Zone J. – volume: 332 start-page: 163 year: 2010 end-page: 176 article-title: Dynamics of soil water content in the rhizosphere publication-title: Plant Soil – volume: 80 start-page: 353 year: 2016 end-page: 359 article-title: Lattice Boltzmann modelling of liquid distribution in unsaturated granular media publication-title: Comput. Geotec. – start-page: 335 year: 2017 – volume: 84 start-page: 87 year: 2015 end-page: 102 article-title: Three‐dimensional distribution of water and air in soil pores: Comparison of two‐phase two‐relaxation‐times lattice‐Boltzmann and morphological model outputs with synchrotron X‐ray computed tomography data publication-title: Adv. Water Resour. – volume: 17 year: 2018 article-title: Effects of mucilage on rhizosphere hydraulic functions depend on soil particle size publication-title: Vadose Zone J. – volume: 11 start-page: 318 year: 1960 end-page: 324 article-title: Gaseous diffusion in porous media. Part 2.‐Dry granular materials publication-title: Brit. J. Appl. Phys. – year: 1904 – volume: 57 start-page: 233 year: 2006 end-page: 266 article-title: The role of root exudates in rhizosphere interactions with plants and other organisms publication-title: Annu. Rev. Plant Biol. – volume: 2 start-page: 1221 year: 2008 end-page: 1230 article-title: Plant host habitat and root exudates shape soil bacterial community structure publication-title: ISME J. – volume: 50 start-page: 6479 year: 2014 end-page: 6495 article-title: Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils publication-title: Water Resour. Res. – volume: 6 year: 2018 article-title: Correlative visualization of root mucilage degradation using X‐ray CT and MRI publication-title: Front. Environ. Sci. – start-page: 278 year: 2004 end-page: 289 – volume: 13 start-page: 743 year: 2018 end-page: 746 article-title: Simulation of fracture behaviour of hydrogel by discrete element method publication-title: Micro Nano Lett. – start-page: 1113 year: 2018 end-page: 1139 – volume: 72 start-page: 313 year: 2010 end-page: 327 article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? publication-title: FEMS Microbiol. Ecol. – volume: 68 start-page: 750 year: 2004 end-page: 759 article-title: Three‐porosity model for predicting the gas diffusion coefficient in undisturbed soil publication-title: Soil Sci. Soc. Am. J. – volume: 56 start-page: 1743 year: 1992 end-page: 1750 article-title: Compaction effect on the gas diffusion coefficient in soils publication-title: Soil Sci. Soc. Am. J. – volume: 18 year: 2019 article-title: Microhydrological niches in soils: How mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots publication-title: Vadose Zone J. – volume: 11 year: 2012 article-title: Organic matter fraction dependent model for predicting the gas diffusion coefficient in variably saturated soils publication-title: Vadose Zone J. – volume: 32 start-page: 666 year: 2009 end-page: 681 article-title: Regulation and function of root exudates publication-title: Plant, Cell Environ. – volume: 99 start-page: 169 year: 1997 end-page: 177 article-title: The expansion of maize root‐cap mucilage during hydration. 3. Changes in water potential and water content publication-title: Physiol. Plant. – volume: 47 start-page: 1815 year: 1993 end-page: 1819 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys. Rev. E – volume: 135 start-page: 1547 year: 2009 end-page: 1561 article-title: Numerical models in discontinuous media: review of advances for rock mechanics applications publication-title: J. Geotech. Geoenviron. Eng. – volume: 57 start-page: 1200 year: 1961 end-page: 1207 article-title: Permeability of porous solids publication-title: Trans. Faraday Soc. – volume: 170 start-page: 892 year: 2005 end-page: 901 article-title: Effects of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils publication-title: Soil Sci. – start-page: 7 year: 2016 end-page: 118 – volume: 57 start-page: 2 year: 2006 end-page: 12 article-title: Roots, rhizosphere and soil: the route to a better understanding of soil science? publication-title: Eur. J. Soil Sci. – volume: 8 start-page: 986 year: 2009 end-page: 995 article-title: Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils publication-title: Vadose Zone J. – volume: 69 start-page: 394 year: 2012 end-page: 403 article-title: Modelling of pharmaceutical tablet swelling and dissolution using discrete element method publication-title: Chem. Eng. Sci. – volume: 10 start-page: 79 year: 1959 end-page: 82 article-title: The diffusion of gases through porous media publication-title: J. Soil Sci. – volume: 130 start-page: 100 year: 1959 end-page: 102 article-title: Gas diffusion in porous media publication-title: Science – volume: 17 year: 2018 article-title: Review and evaluation of root respiration and of natural and agricultural processes of soil aeration publication-title: Vadose Zone J. – volume: 12 start-page: 111 year: 1967 end-page: 115 article-title: Diffusion coefficients of nitrogen and oxygen in water publication-title: J. Chem. Eng. Data – year: 2000 – volume: 12 start-page: 145 year: 1995 end-page: 174 article-title: A combined finite‐discrete element method in transient dynamics of fracturing solids publication-title: Eng. Comput. – volume: 68 start-page: 806 year: 2017 end-page: 816 article-title: Plant exudates may stabilize or weaken soil depending on species, origin and time publication-title: Eur. J. Soil Sci. – volume: 7 start-page: 1276 year: 2008 end-page: 1286 article-title: A gas diffusivity model based on air‐, solid‐, and water‐phase resistance in variably saturated soil publication-title: Vadose Zone J. – volume: 64 start-page: 1588 year: 2000 end-page: 1594 article-title: Predicting the gas diffusion coefficient in repacked soil water‐induced linear reduction model publication-title: Soil Sci. Soc. Am. J. – volume: 108 start-page: 216 year: 2012 end-page: 224 article-title: Chia seeds: Microstructure, mucilage extraction and hydration publication-title: J. Food Eng. – volume: 321 start-page: 117 year: 2009 end-page: 152 article-title: Rhizosphere: biophysics, biogeochemistry and ecological relevance publication-title: Plant Soil – volume: 40 year: 2004 article-title: Lattice Boltzmann method for modeling liquid‐vapor interface configurations in porous media publication-title: Water Resour. Res. – volume: 106 start-page: 1179 year: 1994 end-page: 1185 article-title: Metabolic control of anaerobic glycolysis (overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies–Roberts hypothesis and points to a critical role for lactate secretion publication-title: Plant Physiol. – volume: 374 start-page: 739 year: 2014 end-page: 751 article-title: Interplay between soil drying and root exudation in rhizosheath development publication-title: Plant Soil – volume: 343 start-page: 50 year: 2019 end-page: 59 article-title: Residues with varying decomposability interact differently with seed or root exudate compounds to affect the biophysical behaviour of soil publication-title: Geoderma – volume: 17 year: 2018 article-title: Pore‐scale distribution of mucilage affecting water repellency in the rhizosphere publication-title: Vadose Zone J. – volume: 105 start-page: 651 year: 1994 end-page: 657 article-title: Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low‐oxygen environment publication-title: Plant Physiol. – volume: 137 start-page: 623 year: 1997 end-page: 628 article-title: Surface tension and viscosity of axenic maize and lupin root mucilages publication-title: New Phytol. – ident: e_1_2_8_23_1 doi: 10.1002/2013WR014756 – ident: e_1_2_8_15_1 doi: 10.1021/je60032a036 – ident: e_1_2_8_48_1 doi: 10.1104/pp.105.2.651 – ident: e_1_2_8_20_1 doi: 10.1007/s11104-008-9885-9 – ident: e_1_2_8_38_1 doi: 10.1046/j.1469-8137.1997.00859.x – ident: e_1_2_8_24_1 doi: 10.1111/j.1365-2389.1959.tb00667.x – ident: e_1_2_8_39_1 doi: 10.1016/j.compgeo.2016.02.017 – ident: e_1_2_8_36_1 – ident: e_1_2_8_28_1 doi: 10.2136/vzj2013.01.0026 – ident: e_1_2_8_17_1 doi: 10.1111/j.1365-2389.2005.00778.x – start-page: 278 volume-title: Encyclopedia of Soils in the Environment year: 2004 ident: e_1_2_8_45_1 – ident: e_1_2_8_11_1 doi: 10.1007/s11104-010-0283-8 – ident: e_1_2_8_26_1 doi: 10.1126/science.130.3367.100-a – ident: e_1_2_8_44_1 doi: 10.2136/vzj2008.0023 – ident: e_1_2_8_47_1 doi: 10.1007/978-3-658-10687-4_2 – ident: e_1_2_8_30_1 doi: 10.2136/sssaj2004.7500 – volume-title: Contributions to Our Knowledge of the Aeration of Soils year: 1904 ident: e_1_2_8_9_1 – ident: e_1_2_8_43_1 doi: 10.1029/2003WR002333 – ident: e_1_2_8_49_1 doi: 10.2136/sssaj1992.03615995005600060014x – ident: e_1_2_8_19_1 doi: 10.2136/vzj2011.0065 – ident: e_1_2_8_46_1 doi: 10.3389/fenvs.2018.00032 – ident: e_1_2_8_35_1 doi: 10.1016/j.geoderma.2019.02.023 – ident: e_1_2_8_37_1 doi: 10.1016/j.advwatres.2015.08.006 – ident: e_1_2_8_50_1 doi: 10.1049/mnl.2017.0844 – ident: e_1_2_8_41_1 doi: 10.2136/sssabookser5.4.c45 – ident: e_1_2_8_40_1 doi: 10.1104/pp.106.3.1179 – ident: e_1_2_8_32_1 doi: 10.1016/j.jfoodeng.2011.06.037 – ident: e_1_2_8_2_1 doi: 10.1007/s11104-013-1910-y – ident: e_1_2_8_27_1 doi: 10.1039/tf9615701200 – ident: e_1_2_8_21_1 doi: 10.1016/j.ces.2011.10.066 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-3040.2009.01926.x – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevE.47.1815 – volume-title: Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001 year: 2000 ident: e_1_2_8_33_1 – ident: e_1_2_8_4_1 doi: 10.1146/annurev.arplant.57.032905.105159 – ident: e_1_2_8_22_1 doi: 10.2136/vzj2017.03.0056 – ident: e_1_2_8_13_1 doi: 10.1111/j.1574-6941.2010.00860.x – ident: e_1_2_8_14_1 doi: 10.1038/ismej.2008.80 – ident: e_1_2_8_25_1 doi: 10.1111/j.1399-3054.1997.tb03445.x – ident: e_1_2_8_8_1 doi: 10.1061/(ASCE)GT.1943-5606.0000133 – ident: e_1_2_8_16_1 doi: 10.1097/01.ss.0000196771.53574.79 – ident: e_1_2_8_29_1 doi: 10.2136/sssaj2000.6451588x – ident: e_1_2_8_34_1 doi: 10.1111/ejss.12487 – ident: e_1_2_8_6_1 doi: 10.2136/vzj2017.01.0013 – ident: e_1_2_8_10_1 doi: 10.1007/s11104-017-3227-8 – ident: e_1_2_8_18_1 doi: 10.2136/vzj2008.0157 – ident: e_1_2_8_12_1 doi: 10.1088/0508-3443/11/8/303 – ident: e_1_2_8_31_1 doi: 10.1108/02644409510799532 – ident: e_1_2_8_7_1 doi: 10.2136/vzj2017.06.0119 – ident: e_1_2_8_5_1 doi: 10.2136/vzj2018.12.0211 |
SSID | ssj0004192 |
Score | 2.335669 |
Snippet | Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it... Background : Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 320 |
SubjectTerms | Beads Bulk density Diffusion coefficient diffusivity Drying Electron microscopy Exudates Filaments gas diffusion coefficient Gas exchange Gaseous diffusion geometry glass Glass beads Hydrogels liquid bridges Microscopy Mucilage mucilages plant nutrition pore connectivity pore scale simulation Porosity respiration rhizodeposition Rhizosphere Scanning electron microscopy soil air Soil gas Soil gases soil pore system Soil porosity Soils Tortuosity Vapor phases |
Title | Plants control soil gas exchanges possibly via mucilage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.202000496 https://www.proquest.com/docview/2539518273 https://www.proquest.com/docview/2985503411 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED660ML6sHVpx7J1RYNCn5zakmzHj91YKaEtoTSQN6OTrZLOi0OclGW_fjrbcZpBKbSPxics6-50H9LddwDHqZaoTYKOK7TvUMRwlPYix_NDHcheEoQuFSdfXQcXQ9kf-aNHVfwVP0Rz4EaeUe7X5OAKi9M1aej9NCP-Ul6CXOLcpoQtQkU3a_4ouuIsy4uIddfa8oq10eWnm8M3o9Iaaj4GrGXEOX8PajXXKtHkV3cxx67--x-N42t-Zg_e1XCUnVX28wG20kkbds_uZjUlR9qGnapd5bIN299zCyWX-xBSq6N5weo8d1bk44zdqYKlf6pC4oJNc3K2bMkexor9XuhxZjeuAxie_7z9ceHUHRgcLSI3cCI3SRQGSqPkxiIXrnpGK89TWko_ctFFzzOh4aFBww32ECUiV4YrtEgwSsRHaE3ySfoJmBKoI-SofSOkTlwlAqqDjVJUwkfhdcBZaSDWNT05dcnI4opYmce0RnGzRh04aeSnFTHHk5KHK4XGtYMWMfeFxZY9C9468K15bV2L7kvUJM0XViYitjcb5u3keKm9Z74U9weX183T55cM-gJvOWXNlOc8h9CazxbpVwt75ngEb7gcHJUG_g-2dvqn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fT9RAEJ8gatQH0APCKeqaaHwqtNt_1wceQCQHHBdjIOGt7Gx3yUm5XuidcH4rvwqfyJ3-OzExJCY8-Nh02253dmZ-uzvzG4D3SnoodYKW7UrfIo9hCelEluOHMvA6SRDalJx82A-6x97-iX8yBz_rXJiSH6LZcCPNKOw1KThtSG_MWEO_jVIiMOUFyg2quMoDNb0yq7Z8c2_HiPgD57ufjz51raqwgCXNEj-wIjtJBAZCose1cchcdLQUjiOk5_mRjTY6jg41DzVqrrGD6CFyoblAA3CixDXvfQAPqYw40fXvfJ0xVtGhapHQRDy_Rntqnkibb9zu720_OAO3v0PkwsftLsJNPTplaMv5-mSM6_LHH8SR_9XwPYeFCnGzrVJFXsCcGrbg2dbZZcU6olrwuKzIOW3Bo-3MoOXpEoRUzWmcsyqUn-XZIGVnImfqusyVztkoI3uSTtn3gWAXEzlIjW1ehuN7-ZkVmB9mQ7UKTLgoI-Qofe16MrGFG1Cqb6RQuD66ThusWuSxrBjYqRBIGpfc0TwmmcSNTNrwsWk_KrlH_tpyrZ5BcWWD8pj7roHPHYNP2_CuuW2sBx0JiaHKJqZNRIR2BsmYzvFiutzxpXj_S6_fXL38l4fewpPu0WEv7u31D17BU05BQsW21hrMjy8n6rVBeWN8U-gVg9P7nom_ADaTWzk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V8hA9VLAUsaUFVwJxiprYTrI5cOiDVZ-rPVCpt-Bx7GpR2KyaXej-q_7EjpNstj0gJKQeo9iJNZ7xfLZnvgH4ZLREbTP0fKFDz3kMT-kg8YIw1pHsZVHsu-Tk80F0dCFPLsPLFbhd5MLU_BDtgZuzjGq9dgY-yezukjT05yR3_KW8ArlRE1Z5auZ_aNNWfj0-pBn-zHn_2_eDI6-pK-Bp2uFHXuJnmcJIaZTckj_mqme1CgKlpQwTH30MAhtbHlu03GIPUSJyZblCwjdJJui7T-Cpu2F0QWRcDpeZmEFVhplASETrjPAXNJE-33043oducIlt7yPkysX1X8F6g03ZXq1Mr2HFjDuwtnd13fBzmA48r2tXzjvwbL8gXDl_A7GrezQtWRP0zspilLMrVTJzU2cVl2xSOMvL5-z3SLFfMz3KaRXbgItHEdtbWB0XY_MOmBKoE-SoQyukznwlIpcUmxhUIkQRdMFbSCfVDVe5K5mRpzXLMk-dNNNWml340raf1Cwdf225tRB22lhrmfJQENDsEZLrwk77muzMXZ6osSlm1CZx1G_k82lwvJqkf_wpPRmeDdqnzf_p9BFeDA_76dnx4PQ9vOQumqY6_9mC1en1zGwTHJrih0oDGfx4bJW_A0WDF08 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plants+control+soil+gas+exchanges+possibly+via+mucilage&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Haupenthal%2C+Adrian&rft.au=Brax%2C+Mathilde&rft.au=Bentz%2C+Jonas&rft.au=Jungkunst%2C+Hermann+F.&rft.date=2021-06-01&rft.issn=1436-8730&rft.eissn=1522-2624&rft.volume=184&rft.issue=3&rft.spage=320&rft.epage=328&rft_id=info:doi/10.1002%2Fjpln.202000496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jpln_202000496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon |