Plants control soil gas exchanges possibly via mucilage

Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant nutrition and soil science Vol. 184; no. 3; pp. 320 - 328
Main Authors Haupenthal, Adrian, Brax, Mathilde, Bentz, Jonas, Jungkunst, Hermann F., Schützenmeister, Klaus, Kroener, Eva
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations. Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process. Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying. Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil.
AbstractList Background : Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel ( e.g ., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims : The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations. Methods : To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process. Results : Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying. Conclusion : Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil.
Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations. Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process. Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying. Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil.
Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying. Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations. Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process. Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying. Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil.
Author Kroener, Eva
Brax, Mathilde
Bentz, Jonas
Schützenmeister, Klaus
Haupenthal, Adrian
Jungkunst, Hermann F.
Author_xml – sequence: 1
  givenname: Adrian
  surname: Haupenthal
  fullname: Haupenthal, Adrian
  email: a.haupenthal@fz-juelich.de
  organization: Forschungszentrum Jülich GmbH
– sequence: 2
  givenname: Mathilde
  surname: Brax
  fullname: Brax, Mathilde
  organization: University of Koblenz-Landau
– sequence: 3
  givenname: Jonas
  surname: Bentz
  fullname: Bentz, Jonas
  organization: University of Koblenz-Landau
– sequence: 4
  givenname: Hermann F.
  surname: Jungkunst
  fullname: Jungkunst, Hermann F.
  organization: University of Koblenz-Landau
– sequence: 5
  givenname: Klaus
  surname: Schützenmeister
  fullname: Schützenmeister, Klaus
  organization: University of Koblenz-Landau
– sequence: 6
  givenname: Eva
  surname: Kroener
  fullname: Kroener, Eva
  organization: Forschungszentrum Jülich GmbH
BookMark eNqFkE1LAzEQhoNUsFavnhe8eNmaTLIfOUrxk6I96DkkaVJT0s262VX7792lolAQTzOH5xneeY_RqAqVQeiM4CnBGC7Xta-mgAFjzHh-gMYkA0ghBzbqd0bztCwoPkLHMa4HhnAYo2LhZdXGRIeqbYJPYnA-WcmYmE_9KquViUkdYnTKb5N3J5NNp52XK3OCDq300Zx-zwl6ubl-nt2l86fb-9nVPNWU4zzleLmUKpdaMbCUFyBLqyUhUjOWcaywIsQWFgqrLFhVKsWUAmlBqoxhvqQTdLG7WzfhrTOxFRsXtfF9ahO6KICXWYYpI6RHz_fQdeiaqk8nIKM8IyUUtKfYjtJN_1djrNCula0b_pfOC4LF0KYY2hQ_bfbadE-rG7eRzfZvge-ED-fN9h9aPCzmj7_uF6oUijY
CitedBy_id crossref_primary_10_1016_j_geoderma_2023_116576
crossref_primary_10_1002_vzj2_20268
crossref_primary_10_1016_j_advwatres_2022_104364
crossref_primary_10_1111_ejss_13576
crossref_primary_10_1007_s11104_022_05306_7
crossref_primary_10_1029_2021WR030052
crossref_primary_10_3390_su15086959
Cites_doi 10.1002/2013WR014756
10.1021/je60032a036
10.1104/pp.105.2.651
10.1007/s11104-008-9885-9
10.1046/j.1469-8137.1997.00859.x
10.1111/j.1365-2389.1959.tb00667.x
10.1016/j.compgeo.2016.02.017
10.2136/vzj2013.01.0026
10.1111/j.1365-2389.2005.00778.x
10.1007/s11104-010-0283-8
10.1126/science.130.3367.100-a
10.2136/vzj2008.0023
10.1007/978-3-658-10687-4_2
10.2136/sssaj2004.7500
10.1029/2003WR002333
10.2136/sssaj1992.03615995005600060014x
10.2136/vzj2011.0065
10.3389/fenvs.2018.00032
10.1016/j.geoderma.2019.02.023
10.1016/j.advwatres.2015.08.006
10.1049/mnl.2017.0844
10.2136/sssabookser5.4.c45
10.1104/pp.106.3.1179
10.1016/j.jfoodeng.2011.06.037
10.1007/s11104-013-1910-y
10.1039/tf9615701200
10.1016/j.ces.2011.10.066
10.1111/j.1365-3040.2009.01926.x
10.1103/PhysRevE.47.1815
10.1146/annurev.arplant.57.032905.105159
10.2136/vzj2017.03.0056
10.1111/j.1574-6941.2010.00860.x
10.1038/ismej.2008.80
10.1111/j.1399-3054.1997.tb03445.x
10.1061/(ASCE)GT.1943-5606.0000133
10.1097/01.ss.0000196771.53574.79
10.2136/sssaj2000.6451588x
10.1111/ejss.12487
10.2136/vzj2017.01.0013
10.1007/s11104-017-3227-8
10.2136/vzj2008.0157
10.1088/0508-3443/11/8/303
10.1108/02644409510799532
10.2136/vzj2017.06.0119
10.2136/vzj2018.12.0211
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley‐VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley‐VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7T7
8FD
C1K
FR3
P64
SOI
7S9
L.6
DOI 10.1002/jpln.202000496
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Engineering Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Botany
EISSN 1522-2624
EndPage 328
ExternalDocumentID 10_1002_jpln_202000496
JPLN202000496
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c3906-90ddab6acb42f3972a8fca11ac44590b0b11f7f27fbf2fb8bb4bb2af2ab5409d3
IEDL.DBID DR2
ISSN 1436-8730
IngestDate Fri Jul 11 18:25:08 EDT 2025
Mon Jul 28 15:40:43 EDT 2025
Tue Jul 01 00:47:43 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Jan 22 16:29:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3906-90ddab6acb42f3972a8fca11ac44590b0b11f7f27fbf2fb8bb4bb2af2ab5409d3
Notes The data that support the findings of this study are available from the corresponding author upon reasonable request.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.202000496
PQID 2539518273
PQPubID 1016373
PageCount 9
ParticipantIDs proquest_miscellaneous_2985503411
proquest_journals_2539518273
crossref_citationtrail_10_1002_jpln_202000496
crossref_primary_10_1002_jpln_202000496
wiley_primary_10_1002_jpln_202000496_JPLN202000496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Journal of plant nutrition and soil science
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 417
1993; 47
2005; 170
1997; 137
1960; 11
2004; 40
2006; 57
1995; 12
2017; 68
2000; 64
2004; 68
2008; 7
2019; 18
2009; 135
2004
2014; 374
2008; 2
1961; 57
2012; 11
1992; 56
2012; 108
2019; 343
2018; 6
2018; 17
1959; 130
1994; 105
1994; 106
2009; 32
1997; 99
2000
2015; 84
1967; 12
2013; 12
2010; 332
2009; 321
2018
2009; 8
2017
2016
2016; 80
2012; 69
2014; 50
1904
1959; 10
2010; 72
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
(e_1_2_8_33_1) 2000
e_1_2_8_36_1
Tuller M. (e_1_2_8_45_1) 2004
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Buckingham E. (e_1_2_8_9_1) 1904
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_50_1
References_xml – volume: 417
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Liquid bridges at the root‐soil interface
  publication-title: Plant Soil
– volume: 12
  year: 2013
  article-title: Structure‐dependent water‐induced linear reduction model for predicting gas diffusivity and tortuosity in repacked and intact soil
  publication-title: Vadose Zone J.
– volume: 332
  start-page: 163
  year: 2010
  end-page: 176
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant Soil
– volume: 80
  start-page: 353
  year: 2016
  end-page: 359
  article-title: Lattice Boltzmann modelling of liquid distribution in unsaturated granular media
  publication-title: Comput. Geotec.
– start-page: 335
  year: 2017
– volume: 84
  start-page: 87
  year: 2015
  end-page: 102
  article-title: Three‐dimensional distribution of water and air in soil pores: Comparison of two‐phase two‐relaxation‐times lattice‐Boltzmann and morphological model outputs with synchrotron X‐ray computed tomography data
  publication-title: Adv. Water Resour.
– volume: 17
  year: 2018
  article-title: Effects of mucilage on rhizosphere hydraulic functions depend on soil particle size
  publication-title: Vadose Zone J.
– volume: 11
  start-page: 318
  year: 1960
  end-page: 324
  article-title: Gaseous diffusion in porous media. Part 2.‐Dry granular materials
  publication-title: Brit. J. Appl. Phys.
– year: 1904
– volume: 57
  start-page: 233
  year: 2006
  end-page: 266
  article-title: The role of root exudates in rhizosphere interactions with plants and other organisms
  publication-title: Annu. Rev. Plant Biol.
– volume: 2
  start-page: 1221
  year: 2008
  end-page: 1230
  article-title: Plant host habitat and root exudates shape soil bacterial community structure
  publication-title: ISME J.
– volume: 50
  start-page: 6479
  year: 2014
  end-page: 6495
  article-title: Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils
  publication-title: Water Resour. Res.
– volume: 6
  year: 2018
  article-title: Correlative visualization of root mucilage degradation using X‐ray CT and MRI
  publication-title: Front. Environ. Sci.
– start-page: 278
  year: 2004
  end-page: 289
– volume: 13
  start-page: 743
  year: 2018
  end-page: 746
  article-title: Simulation of fracture behaviour of hydrogel by discrete element method
  publication-title: Micro Nano Lett.
– start-page: 1113
  year: 2018
  end-page: 1139
– volume: 72
  start-page: 313
  year: 2010
  end-page: 327
  article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?
  publication-title: FEMS Microbiol. Ecol.
– volume: 68
  start-page: 750
  year: 2004
  end-page: 759
  article-title: Three‐porosity model for predicting the gas diffusion coefficient in undisturbed soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 56
  start-page: 1743
  year: 1992
  end-page: 1750
  article-title: Compaction effect on the gas diffusion coefficient in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 18
  year: 2019
  article-title: Microhydrological niches in soils: How mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots
  publication-title: Vadose Zone J.
– volume: 11
  year: 2012
  article-title: Organic matter fraction dependent model for predicting the gas diffusion coefficient in variably saturated soils
  publication-title: Vadose Zone J.
– volume: 32
  start-page: 666
  year: 2009
  end-page: 681
  article-title: Regulation and function of root exudates
  publication-title: Plant, Cell Environ.
– volume: 99
  start-page: 169
  year: 1997
  end-page: 177
  article-title: The expansion of maize root‐cap mucilage during hydration. 3. Changes in water potential and water content
  publication-title: Physiol. Plant.
– volume: 47
  start-page: 1815
  year: 1993
  end-page: 1819
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
– volume: 135
  start-page: 1547
  year: 2009
  end-page: 1561
  article-title: Numerical models in discontinuous media: review of advances for rock mechanics applications
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 57
  start-page: 1200
  year: 1961
  end-page: 1207
  article-title: Permeability of porous solids
  publication-title: Trans. Faraday Soc.
– volume: 170
  start-page: 892
  year: 2005
  end-page: 901
  article-title: Effects of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils
  publication-title: Soil Sci.
– start-page: 7
  year: 2016
  end-page: 118
– volume: 57
  start-page: 2
  year: 2006
  end-page: 12
  article-title: Roots, rhizosphere and soil: the route to a better understanding of soil science?
  publication-title: Eur. J. Soil Sci.
– volume: 8
  start-page: 986
  year: 2009
  end-page: 995
  article-title: Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils
  publication-title: Vadose Zone J.
– volume: 69
  start-page: 394
  year: 2012
  end-page: 403
  article-title: Modelling of pharmaceutical tablet swelling and dissolution using discrete element method
  publication-title: Chem. Eng. Sci.
– volume: 10
  start-page: 79
  year: 1959
  end-page: 82
  article-title: The diffusion of gases through porous media
  publication-title: J. Soil Sci.
– volume: 130
  start-page: 100
  year: 1959
  end-page: 102
  article-title: Gas diffusion in porous media
  publication-title: Science
– volume: 17
  year: 2018
  article-title: Review and evaluation of root respiration and of natural and agricultural processes of soil aeration
  publication-title: Vadose Zone J.
– volume: 12
  start-page: 111
  year: 1967
  end-page: 115
  article-title: Diffusion coefficients of nitrogen and oxygen in water
  publication-title: J. Chem. Eng. Data
– year: 2000
– volume: 12
  start-page: 145
  year: 1995
  end-page: 174
  article-title: A combined finite‐discrete element method in transient dynamics of fracturing solids
  publication-title: Eng. Comput.
– volume: 68
  start-page: 806
  year: 2017
  end-page: 816
  article-title: Plant exudates may stabilize or weaken soil depending on species, origin and time
  publication-title: Eur. J. Soil Sci.
– volume: 7
  start-page: 1276
  year: 2008
  end-page: 1286
  article-title: A gas diffusivity model based on air‐, solid‐, and water‐phase resistance in variably saturated soil
  publication-title: Vadose Zone J.
– volume: 64
  start-page: 1588
  year: 2000
  end-page: 1594
  article-title: Predicting the gas diffusion coefficient in repacked soil water‐induced linear reduction model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 108
  start-page: 216
  year: 2012
  end-page: 224
  article-title: Chia seeds: Microstructure, mucilage extraction and hydration
  publication-title: J. Food Eng.
– volume: 321
  start-page: 117
  year: 2009
  end-page: 152
  article-title: Rhizosphere: biophysics, biogeochemistry and ecological relevance
  publication-title: Plant Soil
– volume: 40
  year: 2004
  article-title: Lattice Boltzmann method for modeling liquid‐vapor interface configurations in porous media
  publication-title: Water Resour. Res.
– volume: 106
  start-page: 1179
  year: 1994
  end-page: 1185
  article-title: Metabolic control of anaerobic glycolysis (overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies–Roberts hypothesis and points to a critical role for lactate secretion
  publication-title: Plant Physiol.
– volume: 374
  start-page: 739
  year: 2014
  end-page: 751
  article-title: Interplay between soil drying and root exudation in rhizosheath development
  publication-title: Plant Soil
– volume: 343
  start-page: 50
  year: 2019
  end-page: 59
  article-title: Residues with varying decomposability interact differently with seed or root exudate compounds to affect the biophysical behaviour of soil
  publication-title: Geoderma
– volume: 17
  year: 2018
  article-title: Pore‐scale distribution of mucilage affecting water repellency in the rhizosphere
  publication-title: Vadose Zone J.
– volume: 105
  start-page: 651
  year: 1994
  end-page: 657
  article-title: Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low‐oxygen environment
  publication-title: Plant Physiol.
– volume: 137
  start-page: 623
  year: 1997
  end-page: 628
  article-title: Surface tension and viscosity of axenic maize and lupin root mucilages
  publication-title: New Phytol.
– ident: e_1_2_8_23_1
  doi: 10.1002/2013WR014756
– ident: e_1_2_8_15_1
  doi: 10.1021/je60032a036
– ident: e_1_2_8_48_1
  doi: 10.1104/pp.105.2.651
– ident: e_1_2_8_20_1
  doi: 10.1007/s11104-008-9885-9
– ident: e_1_2_8_38_1
  doi: 10.1046/j.1469-8137.1997.00859.x
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1365-2389.1959.tb00667.x
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compgeo.2016.02.017
– ident: e_1_2_8_36_1
– ident: e_1_2_8_28_1
  doi: 10.2136/vzj2013.01.0026
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1365-2389.2005.00778.x
– start-page: 278
  volume-title: Encyclopedia of Soils in the Environment
  year: 2004
  ident: e_1_2_8_45_1
– ident: e_1_2_8_11_1
  doi: 10.1007/s11104-010-0283-8
– ident: e_1_2_8_26_1
  doi: 10.1126/science.130.3367.100-a
– ident: e_1_2_8_44_1
  doi: 10.2136/vzj2008.0023
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-658-10687-4_2
– ident: e_1_2_8_30_1
  doi: 10.2136/sssaj2004.7500
– volume-title: Contributions to Our Knowledge of the Aeration of Soils
  year: 1904
  ident: e_1_2_8_9_1
– ident: e_1_2_8_43_1
  doi: 10.1029/2003WR002333
– ident: e_1_2_8_49_1
  doi: 10.2136/sssaj1992.03615995005600060014x
– ident: e_1_2_8_19_1
  doi: 10.2136/vzj2011.0065
– ident: e_1_2_8_46_1
  doi: 10.3389/fenvs.2018.00032
– ident: e_1_2_8_35_1
  doi: 10.1016/j.geoderma.2019.02.023
– ident: e_1_2_8_37_1
  doi: 10.1016/j.advwatres.2015.08.006
– ident: e_1_2_8_50_1
  doi: 10.1049/mnl.2017.0844
– ident: e_1_2_8_41_1
  doi: 10.2136/sssabookser5.4.c45
– ident: e_1_2_8_40_1
  doi: 10.1104/pp.106.3.1179
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jfoodeng.2011.06.037
– ident: e_1_2_8_2_1
  doi: 10.1007/s11104-013-1910-y
– ident: e_1_2_8_27_1
  doi: 10.1039/tf9615701200
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ces.2011.10.066
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-3040.2009.01926.x
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevE.47.1815
– volume-title: Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001
  year: 2000
  ident: e_1_2_8_33_1
– ident: e_1_2_8_4_1
  doi: 10.1146/annurev.arplant.57.032905.105159
– ident: e_1_2_8_22_1
  doi: 10.2136/vzj2017.03.0056
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1574-6941.2010.00860.x
– ident: e_1_2_8_14_1
  doi: 10.1038/ismej.2008.80
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1399-3054.1997.tb03445.x
– ident: e_1_2_8_8_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000133
– ident: e_1_2_8_16_1
  doi: 10.1097/01.ss.0000196771.53574.79
– ident: e_1_2_8_29_1
  doi: 10.2136/sssaj2000.6451588x
– ident: e_1_2_8_34_1
  doi: 10.1111/ejss.12487
– ident: e_1_2_8_6_1
  doi: 10.2136/vzj2017.01.0013
– ident: e_1_2_8_10_1
  doi: 10.1007/s11104-017-3227-8
– ident: e_1_2_8_18_1
  doi: 10.2136/vzj2008.0157
– ident: e_1_2_8_12_1
  doi: 10.1088/0508-3443/11/8/303
– ident: e_1_2_8_31_1
  doi: 10.1108/02644409510799532
– ident: e_1_2_8_7_1
  doi: 10.2136/vzj2017.06.0119
– ident: e_1_2_8_5_1
  doi: 10.2136/vzj2018.12.0211
SSID ssj0004192
Score 2.335669
Snippet Background: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it...
Background : Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 320
SubjectTerms Beads
Bulk density
Diffusion coefficient
diffusivity
Drying
Electron microscopy
Exudates
Filaments
gas diffusion coefficient
Gas exchange
Gaseous diffusion
geometry
glass
Glass beads
Hydrogels
liquid bridges
Microscopy
Mucilage
mucilages
plant nutrition
pore connectivity
pore scale simulation
Porosity
respiration
rhizodeposition
Rhizosphere
Scanning electron microscopy
soil air
Soil gas
Soil gases
soil pore system
Soil porosity
Soils
Tortuosity
Vapor phases
Title Plants control soil gas exchanges possibly via mucilage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.202000496
https://www.proquest.com/docview/2539518273
https://www.proquest.com/docview/2985503411
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED660ML6sHVpx7J1RYNCn5zakmzHj91YKaEtoTSQN6OTrZLOi0OclGW_fjrbcZpBKbSPxics6-50H9LddwDHqZaoTYKOK7TvUMRwlPYix_NDHcheEoQuFSdfXQcXQ9kf-aNHVfwVP0Rz4EaeUe7X5OAKi9M1aej9NCP-Ul6CXOLcpoQtQkU3a_4ouuIsy4uIddfa8oq10eWnm8M3o9Iaaj4GrGXEOX8PajXXKtHkV3cxx67--x-N42t-Zg_e1XCUnVX28wG20kkbds_uZjUlR9qGnapd5bIN299zCyWX-xBSq6N5weo8d1bk44zdqYKlf6pC4oJNc3K2bMkexor9XuhxZjeuAxie_7z9ceHUHRgcLSI3cCI3SRQGSqPkxiIXrnpGK89TWko_ctFFzzOh4aFBww32ECUiV4YrtEgwSsRHaE3ySfoJmBKoI-SofSOkTlwlAqqDjVJUwkfhdcBZaSDWNT05dcnI4opYmce0RnGzRh04aeSnFTHHk5KHK4XGtYMWMfeFxZY9C9468K15bV2L7kvUJM0XViYitjcb5u3keKm9Z74U9weX183T55cM-gJvOWXNlOc8h9CazxbpVwt75ngEb7gcHJUG_g-2dvqn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fT9RAEJ8gatQH0APCKeqaaHwqtNt_1wceQCQHHBdjIOGt7Gx3yUm5XuidcH4rvwqfyJ3-OzExJCY8-Nh02253dmZ-uzvzG4D3SnoodYKW7UrfIo9hCelEluOHMvA6SRDalJx82A-6x97-iX8yBz_rXJiSH6LZcCPNKOw1KThtSG_MWEO_jVIiMOUFyg2quMoDNb0yq7Z8c2_HiPgD57ufjz51raqwgCXNEj-wIjtJBAZCose1cchcdLQUjiOk5_mRjTY6jg41DzVqrrGD6CFyoblAA3CixDXvfQAPqYw40fXvfJ0xVtGhapHQRDy_Rntqnkibb9zu720_OAO3v0PkwsftLsJNPTplaMv5-mSM6_LHH8SR_9XwPYeFCnGzrVJFXsCcGrbg2dbZZcU6olrwuKzIOW3Bo-3MoOXpEoRUzWmcsyqUn-XZIGVnImfqusyVztkoI3uSTtn3gWAXEzlIjW1ehuN7-ZkVmB9mQ7UKTLgoI-Qofe16MrGFG1Cqb6RQuD66ThusWuSxrBjYqRBIGpfc0TwmmcSNTNrwsWk_KrlH_tpyrZ5BcWWD8pj7roHPHYNP2_CuuW2sBx0JiaHKJqZNRIR2BsmYzvFiutzxpXj_S6_fXL38l4fewpPu0WEv7u31D17BU05BQsW21hrMjy8n6rVBeWN8U-gVg9P7nom_ADaTWzk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V8hA9VLAUsaUFVwJxiprYTrI5cOiDVZ-rPVCpt-Bx7GpR2KyaXej-q_7EjpNstj0gJKQeo9iJNZ7xfLZnvgH4ZLREbTP0fKFDz3kMT-kg8YIw1pHsZVHsu-Tk80F0dCFPLsPLFbhd5MLU_BDtgZuzjGq9dgY-yezukjT05yR3_KW8ArlRE1Z5auZ_aNNWfj0-pBn-zHn_2_eDI6-pK-Bp2uFHXuJnmcJIaZTckj_mqme1CgKlpQwTH30MAhtbHlu03GIPUSJyZblCwjdJJui7T-Cpu2F0QWRcDpeZmEFVhplASETrjPAXNJE-33043oducIlt7yPkysX1X8F6g03ZXq1Mr2HFjDuwtnd13fBzmA48r2tXzjvwbL8gXDl_A7GrezQtWRP0zspilLMrVTJzU2cVl2xSOMvL5-z3SLFfMz3KaRXbgItHEdtbWB0XY_MOmBKoE-SoQyukznwlIpcUmxhUIkQRdMFbSCfVDVe5K5mRpzXLMk-dNNNWml340raf1Cwdf225tRB22lhrmfJQENDsEZLrwk77muzMXZ6osSlm1CZx1G_k82lwvJqkf_wpPRmeDdqnzf_p9BFeDA_76dnx4PQ9vOQumqY6_9mC1en1zGwTHJrih0oDGfx4bJW_A0WDF08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plants+control+soil+gas+exchanges+possibly+via+mucilage&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Haupenthal%2C+Adrian&rft.au=Brax%2C+Mathilde&rft.au=Bentz%2C+Jonas&rft.au=Jungkunst%2C+Hermann+F.&rft.date=2021-06-01&rft.issn=1436-8730&rft.eissn=1522-2624&rft.volume=184&rft.issue=3&rft.spage=320&rft.epage=328&rft_id=info:doi/10.1002%2Fjpln.202000496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jpln_202000496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon