Relative contrast estimation and inference for treatment recommendation

When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as a metric for...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 79; no. 4; pp. 2920 - 2932
Main Authors Liang, Muxuan, Yu, Menggang
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2023
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13826

Cover

Abstract When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as a metric for the benefit. However, there can be settings where relative differences may better represent such benefit. In this paper, we consider modeling such relative differences formed as scale‐invariant contrasts between the conditional treatment effects. By showing that all scale‐invariant contrasts are monotonic transformations of each other, we posit a single index model for a particular relative contrast. We then characterize semiparametric estimating equations, including the efficient score, to estimate index parameters. To achieve semiparametric efficiency, we propose a two‐step approach that minimizes a doubly robust loss function for initial estimation and then performs a one‐step efficiency augmentation procedure. Careful theoretical and numerical studies are provided to show the superiority of our proposed approach.
AbstractList When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as a metric for the benefit. However, there can be settings where relative differences may better represent such benefit. In this paper, we consider modeling such relative differences formed as scale‐invariant contrasts between the conditional treatment effects. By showing that all scale‐invariant contrasts are monotonic transformations of each other, we posit a single index model for a particular relative contrast. We then characterize semiparametric estimating equations, including the efficient score, to estimate index parameters. To achieve semiparametric efficiency, we propose a two‐step approach that minimizes a doubly robust loss function for initial estimation and then performs a one‐step efficiency augmentation procedure. Careful theoretical and numerical studies are provided to show the superiority of our proposed approach.
When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as a metric for the benefit. However, there can be settings where relative differences may better represent such benefit. In this paper, we consider modeling such relative differences formed as scale-invariant contrasts between the conditional treatment effects. By showing that all scale-invariant contrasts are monotonic transformations of each other, we posit a single index model for a particular relative contrast. We then characterize semiparametric estimating equations, including the efficient score, to estimate index parameters. To achieve semiparametric efficiency, we propose a two-step approach that minimizes a doubly robust loss function for initial estimation and then performs a one-step efficiency augmentation procedure. Careful theoretical and numerical studies are provided to show the superiority of our proposed approach.When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as a metric for the benefit. However, there can be settings where relative differences may better represent such benefit. In this paper, we consider modeling such relative differences formed as scale-invariant contrasts between the conditional treatment effects. By showing that all scale-invariant contrasts are monotonic transformations of each other, we posit a single index model for a particular relative contrast. We then characterize semiparametric estimating equations, including the efficient score, to estimate index parameters. To achieve semiparametric efficiency, we propose a two-step approach that minimizes a doubly robust loss function for initial estimation and then performs a one-step efficiency augmentation procedure. Careful theoretical and numerical studies are provided to show the superiority of our proposed approach.
When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different treatments. Most existing literature on individualized treatment rules targets absolute conditional treatment effect differences as a metric for the benefit. However, there can be settings where relative differences may better represent such benefit. In this paper, we consider modeling such relative differences formed as scale-invariant contrasts between the conditional treatment effects. By showing that all scale-invariant contrasts are monotonic transformations of each other, we posit a single index model for a particular relative contrast. We then characterize semiparametric estimating equations, including the efficient score, to estimate index parameters. To achieve semiparametric efficiency, we propose a two-step approach that minimizes a doubly robust loss function for initial estimation and then performs a one-step efficiency augmentation procedure. Careful theoretical and numerical studies are provided to show the superiority of our proposed approach.
Author Liang, Muxuan
Yu, Menggang
Author_xml – sequence: 1
  givenname: Muxuan
  orcidid: 0000-0002-1351-7928
  surname: Liang
  fullname: Liang, Muxuan
  organization: University of Florida
– sequence: 2
  givenname: Menggang
  orcidid: 0000-0002-7904-3155
  surname: Yu
  fullname: Yu, Menggang
  email: meyu@biostat.wisc.edu
  organization: University of Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36645310$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMoOj42_gApuBFh9ObRpFnq4AsUQRTchTS9hUqbaNJR_PfGGd2IaDZ58J3DzTmbZNUHj4TsUjiieR3XXRiOKK-YXCETWgo6BcFglUwAQE65oI8bZDOlp3zVJbB1ssGlFCWnMCEXd9jbsXvFwgU_RpvGAtPYDfkt-ML6puh8ixG9w6INsRgj2nFAPxYRXRjyqVmg22SttX3Cna99izycn93PLqfXtxdXs5PrqeM6D1MqpFYhs9iWTFe1rl2DrZacVU6UlaobWqEFrThwyhoOrGpVprWjijHB-RY5WPo-x_Ayz6OaoUsO-956DPNkmBaMggJZ_o8qKUEKXomM7v9An8I8-vyRbAhccV0plam9L2peD9iY55hziu_mO80MwBJwMaQUsTWuGxfx5GS73lAwn4WZz8LMorAsOfwh-Xb9FaZL-K3r8f0P0pxe3d4sNR8VsqRk
CitedBy_id crossref_primary_10_1088_1361_6501_ad6622
Cites_doi 10.1007/BF00992698
10.1037/h0037350
10.1214/17-AOS1570
10.1093/biostatistics/kxl036
10.1214/15-AOS1404
10.1177/1740774514537727
10.1016/j.pec.2006.09.014
10.1016/S0091-7435(02)00038-5
10.1214/15-AOS1384
10.1080/01621459.2012.695674
10.1111/j.1541-0420.2012.01763.x
10.1214/10-AOS864
10.1111/biom.12676
10.1093/biomet/asu043
10.1214/10-AOS835
10.1080/01621459.2014.951443
10.1111/ectj.12097
10.1214/16-EJS1178
10.1093/biomet/70.1.41
10.1017/CBO9781139025751
10.1198/016214504000001880
10.1111/biom.12322
10.1007/b93152
10.1300/J077v18n04_01
10.1214/17-EJS1226
10.1515/jci-2022-0005
10.1214/14-EJS905
10.1002/sta.411
10.1177/1359105314542817
10.1111/rssb.12216
10.1177/0962280209105013
10.1214/16-AOS1448
10.1080/01621459.1997.10474001
10.1137/1.9781611974188
10.1214/aos/1176345969
10.1177/0962280211428383
10.1080/01621459.2020.1811099
10.1080/01621459.2020.1772080
10.1111/1467-9868.00389
ContentType Journal Article
Copyright 2023 The International Biometric Society.
Copyright_xml – notice: 2023 The International Biometric Society.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13826
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
ProQuest Computer Science Collection
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 2932
ExternalDocumentID 36645310
10_1111_biom_13826
BIOM13826
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
24P
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGNP
ADNBA
AEOTA
AGORE
AJNCP
CITATION
AAMMB
AAWIL
ABAWQ
ACHJO
AEFGJ
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJBYB
CGR
CUY
CVF
ECM
EIF
H13
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
JQ2
7X8
ESTFP
7S9
L.6
ID FETCH-LOGICAL-c3906-57e1a7e2aef5298b9bcdef96328c4587bd18ea09730312d3028f72ae9c1722433
IEDL.DBID 24P
ISSN 0006-341X
1541-0420
IngestDate Fri Sep 05 17:23:54 EDT 2025
Mon Sep 08 11:52:00 EDT 2025
Sat Aug 23 13:25:58 EDT 2025
Mon Jul 21 05:34:17 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
Tue Jul 01 00:58:14 EDT 2025
Wed Jan 22 16:18:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords precision medicine
single index model
individualized treatment rule
semiparametric efficiency
observational study
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2023 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3906-57e1a7e2aef5298b9bcdef96328c4587bd18ea09730312d3028f72ae9c1722433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7904-3155
0000-0002-1351-7928
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13826
PMID 36645310
PQID 2903739877
PQPubID 35366
PageCount 13
ParticipantIDs proquest_miscellaneous_2942107065
proquest_miscellaneous_2766064384
proquest_journals_2903739877
pubmed_primary_36645310
crossref_citationtrail_10_1111_biom_13826
crossref_primary_10_1111_biom_13826
wiley_primary_10_1111_biom_13826_BIOM13826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-01
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 38
2013; 22
2015; 71
2010; 19
1982; 10
2017; 45
2016; 10
2003; 36
2002
1983; 70
2011; 39
2018; 21
2022; 117
2012; 107
2018; 46
2017; 73
1992; 8
2000; 18
1974; 66
2014; 109
1997; 92
2012; 1
2019; 20
2022
2005; 100
2017; 11
2021; 116
2017; 79
2016; 21
2007; 8
2018
2015
2020; 21
2007; 65
2014; 8
2012; 68
2014; 11
2003; 65
2014; 101
2016; 44
Rosenbaum (2024013111474605000_biom13826-bib-0028) 1983; 70
Watkins (2024013111474605000_biom13826-bib-0037) 1992; 8
Song (2024013111474605000_biom13826-bib-0034) 2017; 11
Rubin (2024013111474605000_biom13826-bib-0030) 2005; 100
Kosorok (2024013111474605000_biom13826-bib-0014) 2015
Fan (2024013111474605000_biom13826-bib-0011) 2017; 79
Chakraborty (2024013111474605000_biom13826-bib-0003) 2014; 11
Stone (2024013111474605000_biom13826-bib-0035) 1982; 10
Yadlowsky (2024013111474605000_biom13826-bib-0039) 2021; 116
Chen (2024013111474605000_biom13826-bib-0009) 2017; 73
Champion (2024013111474605000_biom13826-bib-0005) 2003; 36
Champion (2024013111474605000_biom13826-bib-0008) 2000; 18
Tian (2024013111474605000_biom13826-bib-0036) 2014; 109
Goldberg (2024013111474605000_biom13826-bib-0012) 2014; 8
Laber (2024013111474605000_biom13826-bib-0015) 2014; 101
Zhao (2024013111474605000_biom13826-bib-0042) 2012; 107
Shi (2024013111474605000_biom13826-bib-0033) 2016; 10
Rubin (2024013111474605000_biom13826-bib-0029) 1974; 66
Zhang (2024013111474605000_biom13826-bib-0041) 2012; 68
Chernozhukov (2024013111474605000_biom13826-bib-0010) 2018; 21
Zhang (2024013111474605000_biom13826-bib-0040) 2012; 1
Chakraborty (2024013111474605000_biom13826-bib-0004) 2010; 19
Zhao (2024013111474605000_biom13826-bib-0043) 2019; 20
Ma (2024013111474605000_biom13826-bib-0023) 2016; 44
Qiu (2024013111474605000_biom13826-bib-0027) 2022
Lu (2024013111474605000_biom13826-bib-0020) 2013; 22
Liang (2024013111474605000_biom13826-bib-0018) 2010; 38
Qian (2024013111474605000_biom13826-bib-0026) 2011; 39
Shi (2024013111474605000_biom13826-bib-0031) 2018; 46
Shi (2024013111474605000_biom13826-bib-0032) 2020; 21
Champion (2024013111474605000_biom13826-bib-0006) 2007; 65
Luedtke (2024013111474605000_biom13826-bib-0022) 2016; 44
Ning (2024013111474605000_biom13826-bib-0025) 2017; 45
Luedtke (2024013111474605000_biom13826-bib-0021) 2018
Imbens (2024013111474605000_biom13826-bib-0013) 2015
Murphy (2024013111474605000_biom13826-bib-0024) 2003; 65
Liang (2024013111474605000_biom13826-bib-0019) 2022; 117
Carroll (2024013111474605000_biom13826-bib-0002) 1997; 92
Xu (2024013111474605000_biom13826-bib-0038) 2015; 71
Champion (2024013111474605000_biom13826-bib-0007) 2016; 21
Bolthausen (2024013111474605000_biom13826-bib-0001) 2002
Laber (2024013111474605000_biom13826-bib-0016) 2014; 8
Leitenstorfer (2024013111474605000_biom13826-bib-0017) 2007; 8
References_xml – volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  end-page: 292
  article-title: Q‐learning
  publication-title: Machine Learning
– volume: 1
  start-page: 103
  issue: 1
  year: 2012
  end-page: 114
  article-title: Estimating optimal treatment regimes from a classification perspective
  publication-title: Stat
– volume: 68
  start-page: 1010
  issue: 4
  year: 2012
  end-page: 1018
  article-title: A robust method for estimating optimal treatment regimes
  publication-title: Biometrics
– volume: 109
  start-page: 1517
  issue: 508
  year: 2014
  end-page: 1532
  article-title: A simple method for estimating interactions between a treatment and a large number of covariates
  publication-title: Journal of the American Statistical Association
– volume: 107
  start-page: 1106
  issue: 499
  year: 2012
  end-page: 1118
  article-title: Estimating individualized treatment rules using outcome weighted learning
  publication-title: Journal of the American Statistical Association
– volume: 44
  start-page: 1234
  issue: 3
  year: 2016
  end-page: 1268
  article-title: Inference for single‐index quantile regression models with profile optimization
  publication-title: Annals of Statistics
– volume: 10
  start-page: 1040
  year: 1982
  end-page: 1053
  article-title: Optimal global rates of convergence for nonparametric regression
  publication-title: Annals of Statistics
– volume: 100
  start-page: 322
  issue: 469
  year: 2005
  end-page: 331
  article-title: Causal inference using potential outcomes: design, modeling, decisions
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 150
  issue: 2
  year: 2003
  end-page: 158
  article-title: Comparison of tailored interventions to increase mammography screening in nonadherent older women
  publication-title: Preventive Medicine
– volume: 38
  start-page: 3811
  issue: 6
  year: 2010
  end-page: 3836
  article-title: Estimation and testing for partially linear single‐index models
  publication-title: Annals of Statistics
– volume: 65
  start-page: 416
  issue: 3
  year: 2007
  end-page: 423
  article-title: The effect of telephone versus print tailoring for mammography adherence
  publication-title: Patient Education and Counseling
– volume: 71
  start-page: 645
  issue: 3
  year: 2015
  end-page: 653
  article-title: Regularized outcome weighted subgroup identification for differential treatment effects
  publication-title: Biometrics
– year: 2018
– volume: 8
  start-page: 654
  issue: 3
  year: 2007
  end-page: 673
  article-title: Generalized monotonic regression based on B‐splines with an application to air pollution data
  publication-title: Biostatistics
– volume: 65
  start-page: 331
  issue: 2
  year: 2003
  end-page: 355
  article-title: Optimal dynamic treatment regimes
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 39
  start-page: 1180
  issue: 2
  year: 2011
  end-page: 1210
  article-title: Performance guarantees for individualized treatment rules
  publication-title: Annals of Statistics
– volume: 21
  start-page: 1
  issue: 176
  year: 2020
  end-page: 67
  article-title: Breaking the curse of nonregularity with subagging: inference of the mean outcome under optimal treatment regimes
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 493
  issue: 5
  year: 2013
  end-page: 504
  article-title: Variable selection for optimal treatment decision
  publication-title: Statistical Methods in Medical Research
– volume: 18
  start-page: 1
  issue: 4
  year: 2000
  end-page: 13
  article-title: A tailored intervention for mammography among low‐income African–American women
  publication-title: Journal of Psychosocial Oncology
– volume: 11
  start-page: 408
  issue: 4
  year: 2014
  end-page: 417
  article-title: Inference about the expected performance of a data‐driven dynamic treatment regime
  publication-title: Clinical Trials
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: Journal of Educational Psychology
– volume: 73
  start-page: 1199
  issue: 4
  year: 2017
  end-page: 1209
  article-title: A general statistical framework for subgroup identification and comparative treatment scoring
  publication-title: Biometrics
– volume: 21
  start-page: C1
  issue: 1
  year: 2018
  end-page: C68
  article-title: Double/debiased machine learning for treatment and structural parameters
  publication-title: The Econometrics Journal
– volume: 92
  start-page: 477
  issue: 438
  year: 1997
  end-page: 489
  article-title: Generalized partially linear single‐index models
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 364
  issue: 1
  year: 2017
  end-page: 384
  article-title: Semiparametric single‐index model for estimating optimal individualized treatment strategy
  publication-title: Electronic Journal of Statistics
– year: 2002
– volume: 46
  start-page: 925
  issue: 3
  year: 2018
  end-page: 957
  article-title: High‐dimensional a‐learning for optimal dynamic treatment regimes
  publication-title: Annals of Statistics
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 19
  start-page: 317
  issue: 3
  year: 2010
  end-page: 343
  article-title: Inference for non‐regular parameters in optimal dynamic treatment regimes
  publication-title: Statistical Methods in Medical Research
– year: 2022
– volume: 116
  start-page: 335
  issue: 533
  year: 2021
  end-page: 352
  article-title: Estimation and validation of ratio‐based conditional average treatment effects using observational data
  publication-title: Journal of the American Statistical Association
– volume: 8
  start-page: 1290
  issue: 1
  year: 2014
  end-page: 1300
  article-title: Comment on “dynamic treatment regimes: technical challenges and applications”
  publication-title: Electronic Journal of Statistics
– volume: 117
  start-page: 752
  issue: 538
  year: 2022
  end-page: 764
  article-title: A semiparametric approach to model effect modification
  publication-title: Journal of the American Statistical Association
– volume: 10
  start-page: 2894
  year: 2016
  end-page: 2921
  article-title: Robust learning for optimal treatment decision with np‐dimensionality
  publication-title: Electronic Journal of Statistics
– volume: 79
  start-page: 1565
  issue: 5
  year: 2017
  end-page: 1582
  article-title: Concordance‐assisted learning for estimating optimal individualized treatment regimes
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 20
  start-page: 1821
  issue: 1
  year: 2019
  end-page: 1843
  article-title: Efficient augmentation and relaxation learning for individualized treatment rules using observational data
  publication-title: Journal of Machine Learning Research
– volume: 45
  start-page: 158
  issue: 1
  year: 2017
  end-page: 195
  article-title: A general theory of hypothesis tests and confidence regions for sparse high‐dimensional models
  publication-title: Annals of Statistics
– volume: 21
  start-page: 916
  issue: 6
  year: 2016
  end-page: 926
  article-title: Randomized trial of DVD, telephone, and usual care for increasing mammography adherence
  publication-title: Journal of Health Psychology
– volume: 101
  start-page: 831
  issue: 4
  year: 2014
  end-page: 847
  article-title: Interactive model building for Q‐learning
  publication-title: Biometrika
– volume: 8
  start-page: 1225
  issue: 1
  year: 2014
  end-page: 1272
  article-title: Dynamic treatment regimes: technical challenges and applications
  publication-title: Electronic Journal of Statistics
– volume: 44
  start-page: 713
  issue: 2
  year: 2016
  end-page: 742
  article-title: Statistical inference for the mean outcome under a possibly non‐unique optimal treatment strategy
  publication-title: Annals of Statistics
– year: 2015
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  ident: 2024013111474605000_biom13826-bib-0037
  article-title: Q-learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992698
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  ident: 2024013111474605000_biom13826-bib-0029
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: Journal of Educational Psychology
  doi: 10.1037/h0037350
– volume: 46
  start-page: 925
  issue: 3
  year: 2018
  ident: 2024013111474605000_biom13826-bib-0031
  article-title: High-dimensional a-learning for optimal dynamic treatment regimes
  publication-title: Annals of Statistics
  doi: 10.1214/17-AOS1570
– volume: 8
  start-page: 1225
  issue: 1
  year: 2014
  ident: 2024013111474605000_biom13826-bib-0016
  article-title: Dynamic treatment regimes: technical challenges and applications
  publication-title: Electronic Journal of Statistics
– volume: 8
  start-page: 654
  issue: 3
  year: 2007
  ident: 2024013111474605000_biom13826-bib-0017
  article-title: Generalized monotonic regression based on B-splines with an application to air pollution data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl036
– volume: 44
  start-page: 1234
  issue: 3
  year: 2016
  ident: 2024013111474605000_biom13826-bib-0023
  article-title: Inference for single-index quantile regression models with profile optimization
  publication-title: Annals of Statistics
  doi: 10.1214/15-AOS1404
– volume: 11
  start-page: 408
  issue: 4
  year: 2014
  ident: 2024013111474605000_biom13826-bib-0003
  article-title: Inference about the expected performance of a data-driven dynamic treatment regime
  publication-title: Clinical Trials
  doi: 10.1177/1740774514537727
– volume: 65
  start-page: 416
  issue: 3
  year: 2007
  ident: 2024013111474605000_biom13826-bib-0006
  article-title: The effect of telephone versus print tailoring for mammography adherence
  publication-title: Patient Education and Counseling
  doi: 10.1016/j.pec.2006.09.014
– volume: 36
  start-page: 150
  issue: 2
  year: 2003
  ident: 2024013111474605000_biom13826-bib-0005
  article-title: Comparison of tailored interventions to increase mammography screening in nonadherent older women
  publication-title: Preventive Medicine
  doi: 10.1016/S0091-7435(02)00038-5
– volume: 44
  start-page: 713
  issue: 2
  year: 2016
  ident: 2024013111474605000_biom13826-bib-0022
  article-title: Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy
  publication-title: Annals of Statistics
  doi: 10.1214/15-AOS1384
– volume: 107
  start-page: 1106
  issue: 499
  year: 2012
  ident: 2024013111474605000_biom13826-bib-0042
  article-title: Estimating individualized treatment rules using outcome weighted learning
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.695674
– volume: 68
  start-page: 1010
  issue: 4
  year: 2012
  ident: 2024013111474605000_biom13826-bib-0041
  article-title: A robust method for estimating optimal treatment regimes
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01763.x
– volume: 39
  start-page: 1180
  issue: 2
  year: 2011
  ident: 2024013111474605000_biom13826-bib-0026
  article-title: Performance guarantees for individualized treatment rules
  publication-title: Annals of Statistics
  doi: 10.1214/10-AOS864
– volume: 73
  start-page: 1199
  issue: 4
  year: 2017
  ident: 2024013111474605000_biom13826-bib-0009
  article-title: A general statistical framework for subgroup identification and comparative treatment scoring
  publication-title: Biometrics
  doi: 10.1111/biom.12676
– volume: 101
  start-page: 831
  issue: 4
  year: 2014
  ident: 2024013111474605000_biom13826-bib-0015
  article-title: Interactive model building for Q-learning
  publication-title: Biometrika
  doi: 10.1093/biomet/asu043
– volume: 38
  start-page: 3811
  issue: 6
  year: 2010
  ident: 2024013111474605000_biom13826-bib-0018
  article-title: Estimation and testing for partially linear single-index models
  publication-title: Annals of Statistics
  doi: 10.1214/10-AOS835
– volume: 109
  start-page: 1517
  issue: 508
  year: 2014
  ident: 2024013111474605000_biom13826-bib-0036
  article-title: A simple method for estimating interactions between a treatment and a large number of covariates
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.951443
– volume: 21
  start-page: 1
  issue: 176
  year: 2020
  ident: 2024013111474605000_biom13826-bib-0032
  article-title: Breaking the curse of nonregularity with subagging: inference of the mean outcome under optimal treatment regimes
  publication-title: Journal of Machine Learning Research
– volume: 21
  start-page: C1
  issue: 1
  year: 2018
  ident: 2024013111474605000_biom13826-bib-0010
  article-title: Double/debiased machine learning for treatment and structural parameters
  publication-title: The Econometrics Journal
  doi: 10.1111/ectj.12097
– start-page: 419
  volume-title: Optimal individualized treatments under limited resources
  year: 2018
  ident: 2024013111474605000_biom13826-bib-0021
– volume: 10
  start-page: 2894
  year: 2016
  ident: 2024013111474605000_biom13826-bib-0033
  article-title: Robust learning for optimal treatment decision with np-dimensionality
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/16-EJS1178
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  ident: 2024013111474605000_biom13826-bib-0028
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume-title: Causal inference in statistics, social, and biomedical sciences
  year: 2015
  ident: 2024013111474605000_biom13826-bib-0013
  doi: 10.1017/CBO9781139025751
– volume: 100
  start-page: 322
  issue: 469
  year: 2005
  ident: 2024013111474605000_biom13826-bib-0030
  article-title: Causal inference using potential outcomes: design, modeling, decisions
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001880
– volume: 71
  start-page: 645
  issue: 3
  year: 2015
  ident: 2024013111474605000_biom13826-bib-0038
  article-title: Regularized outcome weighted subgroup identification for differential treatment effects
  publication-title: Biometrics
  doi: 10.1111/biom.12322
– volume-title: Lectures on Probability Theory and Statistics
  year: 2002
  ident: 2024013111474605000_biom13826-bib-0001
  doi: 10.1007/b93152
– volume: 18
  start-page: 1
  issue: 4
  year: 2000
  ident: 2024013111474605000_biom13826-bib-0008
  article-title: A tailored intervention for mammography among low-income African–American women
  publication-title: Journal of Psychosocial Oncology
  doi: 10.1300/J077v18n04_01
– volume: 11
  start-page: 364
  issue: 1
  year: 2017
  ident: 2024013111474605000_biom13826-bib-0034
  article-title: Semiparametric single-index model for estimating optimal individualized treatment strategy
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/17-EJS1226
– volume-title: Individualized treatment rules under stochastic treatment cost constraints
  year: 2022
  ident: 2024013111474605000_biom13826-bib-0027
  doi: 10.1515/jci-2022-0005
– volume: 8
  start-page: 1290
  issue: 1
  year: 2014
  ident: 2024013111474605000_biom13826-bib-0012
  article-title: Comment on “dynamic treatment regimes: technical challenges and applications”
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/14-EJS905
– volume: 1
  start-page: 103
  issue: 1
  year: 2012
  ident: 2024013111474605000_biom13826-bib-0040
  article-title: Estimating optimal treatment regimes from a classification perspective
  publication-title: Stat
  doi: 10.1002/sta.411
– volume: 21
  start-page: 916
  issue: 6
  year: 2016
  ident: 2024013111474605000_biom13826-bib-0007
  article-title: Randomized trial of DVD, telephone, and usual care for increasing mammography adherence
  publication-title: Journal of Health Psychology
  doi: 10.1177/1359105314542817
– volume: 79
  start-page: 1565
  issue: 5
  year: 2017
  ident: 2024013111474605000_biom13826-bib-0011
  article-title: Concordance-assisted learning for estimating optimal individualized treatment regimes
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/rssb.12216
– volume: 19
  start-page: 317
  issue: 3
  year: 2010
  ident: 2024013111474605000_biom13826-bib-0004
  article-title: Inference for non-regular parameters in optimal dynamic treatment regimes
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280209105013
– volume: 45
  start-page: 158
  issue: 1
  year: 2017
  ident: 2024013111474605000_biom13826-bib-0025
  article-title: A general theory of hypothesis tests and confidence regions for sparse high-dimensional models
  publication-title: Annals of Statistics
  doi: 10.1214/16-AOS1448
– volume: 92
  start-page: 477
  issue: 438
  year: 1997
  ident: 2024013111474605000_biom13826-bib-0002
  article-title: Generalized partially linear single-index models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10474001
– volume-title: Adaptive treatment strategies in practice
  year: 2015
  ident: 2024013111474605000_biom13826-bib-0014
  doi: 10.1137/1.9781611974188
– volume: 10
  start-page: 1040
  year: 1982
  ident: 2024013111474605000_biom13826-bib-0035
  article-title: Optimal global rates of convergence for nonparametric regression
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176345969
– volume: 20
  start-page: 1821
  issue: 1
  year: 2019
  ident: 2024013111474605000_biom13826-bib-0043
  article-title: Efficient augmentation and relaxation learning for individualized treatment rules using observational data
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 493
  issue: 5
  year: 2013
  ident: 2024013111474605000_biom13826-bib-0020
  article-title: Variable selection for optimal treatment decision
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280211428383
– volume: 117
  start-page: 752
  issue: 538
  year: 2022
  ident: 2024013111474605000_biom13826-bib-0019
  article-title: A semiparametric approach to model effect modification
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2020.1811099
– volume: 116
  start-page: 335
  issue: 533
  year: 2021
  ident: 2024013111474605000_biom13826-bib-0039
  article-title: Estimation and validation of ratio-based conditional average treatment effects using observational data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2020.1772080
– volume: 65
  start-page: 331
  issue: 2
  year: 2003
  ident: 2024013111474605000_biom13826-bib-0024
  article-title: Optimal dynamic treatment regimes
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00389
SSID ssj0009502
Score 2.4109056
Snippet When there are resource constraints, it may be necessary to rank individualized treatment benefits to facilitate the prioritization of assigning different...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2920
SubjectTerms biometry
equations
Estimation
individualized treatment rule
Invariants
Models, Statistical
Observational studies
observational study
Parametric statistics
Precision medicine
Precision Medicine - methods
prioritization
Robustness (mathematics)
semiparametric efficiency
single index model
Title Relative contrast estimation and inference for treatment recommendation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13826
https://www.ncbi.nlm.nih.gov/pubmed/36645310
https://www.proquest.com/docview/2903739877
https://www.proquest.com/docview/2766064384
https://www.proquest.com/docview/2942107065
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5WRdCD6PpaX0T0olDZbdImAS--H7Aq4sLeStqmIGgVdxX89840bV1RFryUQKeQZDrJN8nMNwC7YdZW6HGhW6Ji4RH7i6eCIPA0gvFEytS0i6jK7k142RPX_aDfgMMqF8bxQ9QHbmQZxXpNBm7iwYiRU3r6ATHohRMwRbm1VLjBF3cjlLttxxVO0V2i0y_JSSmO5_vbn9vRL4z5E7IWe875PMyVYJEdOe0uQMPmTZh25SM_mzDbrTlXB02YIdzoaJcX4cIFuX1YVsSim8GQEZ2Gy1NkJk_ZY5XpxxC2sjrenJGH_IwtV2tpCXrnZw8nl15ZM8FLuMaBBtJ2jLS-sVngaxXrOElthlbmq0QESsZpR1lDHD1ozX7KEV5kEqV1gkjGF5wvw2T-kttVYDyUWgtEFBluYVZmseHC6jg1gVIWcWQL9qqpi5KSUJzqWjxFlWNB0xwV09yCnVr21dFo_Cm1UWkgKk1pEPm6zSXXSsoWbNev0QjoZsPk9uUdZWQYErZSYoyMFuje0q1uC1acduuu8DAUuBjhkPYLdY_pY3R8ddstWmv_EV6HGSpU7wJhNmBy-PZuNxHODOOt4q_F5-m9_wXgZu5G
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTojxMKDA6FbAaLwwKVUbO7H9uLGNFtoiTZvUt8hJHAmxZRNtkeCv352dhpZNleDNUi6Sf539nf35O4D3cdFVGHFhWKJSEZD6S6CiKAo0gvFMytx0HatyNI77F-LzJJpU3Bx6C-P1IeoDN_IMt16Tg9OB9JKX0_v0DknoxQ9gUyDSoNjr-Cxc0tzterFwoneJ3qRSJyUiz59_V_ejOyBzFbO6Tef0ic-sOnVahcQ1-d6Zz9JO9vsvJcf_bs9T2K7gKDv08-cZbNiyCQ99gspfTXg8qlVdp03YImTqhZ2fwydPo_tpmWO7m-mMkWCHfwnJTJmzb4u3hAyBMasZ7Yxi8Css-WxOL-Di9OT8Yz-osjIEGdfYk5G0PSNtaGwRhVqlOs1yW6AfhyoTkZJp3lPWkAoQrhdhzhHAFBKtdYZYKRScv4RGeV3aV8B4LLUWiFkK3CStLFLDhdVpbiKlLCLVFnxYjE2SVZLllDnjMlmELtRnieuzFuzXtjdeqONeq_ZiiJPKWadJqLtccq2kbMG7-jO6Gd2dmNJez9FGxjGhNyXW2GiBATTdG7dgx0-fuio8jgUud9ikAzcJ1tQxORp8HbnS7r8Yv4VH_fPRMBkOxl_2YCtEMOZpN21ozH7M7WsET7P0jXORW4r9EgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oOhBdH2tz4heFCq7Tdok4MXX-lz1oLC3krYpCFrFXQX_vTNNWxVF8BboFJKZTvJNM_MNwFaYtRRGXBiWqFh4xP7iqSAIPI1gPJEyNa0iq7J7FZ7eifNe0BuCvaoWxvFD1D_cyDOK_Zoc_DnNvjg5lafvEoNeOAyjdNtHbumLmy-Uuy3HFU7ZXaLdK8lJKY_n893vx9EPjPkdshZnTmcapkqwyPaddWdgyOYNGHPtI98bMNmtOVf7DZgg3Ohol2fhxCW5vVlW5KKb_oARnYarU2QmT9l9VenHELayOt-cUYT8iCPXa2kO7jrHt4enXtkzwUu4xoUG0raNtL6xWeBrFes4SW2GXuarBJUk47StrCGOHvRmP-UILzKJ0jpBJOMLzudhJH_K7SIwHkqtBSKKDI8wK7PYcGF1nJpAKYs4sgnbleqipCQUp74WD1EVWJCao0LNTdisZZ8djcavUiuVBaLSlfqRr1tccq2kbMJG_RidgG42TG6fXlFGhiFhKyX-kNECw1u61W3CgrNuPRUehgI3I1zSTmHuP-YYHZxdd4vR0n-E12H85qgTXZ5dXSzDBPWsdzkxKzAyeHm1q4hsBvFa8QF_AMMI7_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+Contrast+Estimation+and+Inference+for+Treatment+Recommendation&rft.jtitle=Biometrics&rft.au=Liang%2C+Muxuan&rft.au=Yu%2C+Menggang&rft.date=2023-12-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=79&rft.issue=4&rft.spage=2920&rft.epage=2932&rft_id=info:doi/10.1111%2Fbiom.13826&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_13826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon