Machine learning for post‐traumatic stress disorder identification utilizing resting‐state functional magnetic resonance imaging

Early detection of post‐traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess int...

Full description

Saved in:
Bibliographic Details
Published inMicroscopy research and technique Vol. 85; no. 6; pp. 2083 - 2094
Main Authors Saba, Tanzila, Rehman, Amjad, Shahzad, Mirza Naveed, Latif, Rabia, Bahaj, Saeed Ali, Alyami, Jaber
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection of post‐traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting‐state functional magnetic resonance imaging (rs‐fMRI). The rs‐fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs‐fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K‐nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs‐fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms. Comparison of the performance in the brain regions‐of‐interest (hippocampus, amygdala, precuneus, medial prefrontal cortex, and thalamus) of PTSD than the healthy brain regions, interregional functional connectivity in the regions‐of‐interest, and applications of machine learning techniques to identify PTSD and healthy control using rs‐fMRI data. Highlights Machine learning techniques are applied to identify cancerous patients utilizing resting‐state fMRI data. Among several MLAs, the SVM‐RBF performed a better prediction rate at higher reliability than other competitive models.
AbstractList Early detection of post‐traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting‐state functional magnetic resonance imaging (rs‐fMRI). The rs‐fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs‐fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K‐nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs‐fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms.
Early detection of post‐traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting‐state functional magnetic resonance imaging (rs‐fMRI). The rs‐fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs‐fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K‐nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs‐fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms. Comparison of the performance in the brain regions‐of‐interest (hippocampus, amygdala, precuneus, medial prefrontal cortex, and thalamus) of PTSD than the healthy brain regions, interregional functional connectivity in the regions‐of‐interest, and applications of machine learning techniques to identify PTSD and healthy control using rs‐fMRI data. Highlights Machine learning techniques are applied to identify cancerous patients utilizing resting‐state fMRI data. Among several MLAs, the SVM‐RBF performed a better prediction rate at higher reliability than other competitive models.
Early detection of post-traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting-state functional magnetic resonance imaging (rs-fMRI). The rs-fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs-fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K-nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs-fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms.Early detection of post-traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting-state functional magnetic resonance imaging (rs-fMRI). The rs-fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs-fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K-nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs-fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms.
Early detection of post‐traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose of this study was to investigate the performance deviations in regions of interest (ROI) of PTSD than the healthy brain regions, to assess interregional functional connectivity and applications of machine learning techniques to identify PTSD and healthy control using resting‐state functional magnetic resonance imaging (rs‐fMRI). The rs‐fMRI data of 10 ROI was extracted from 14 approved PTSD subjects and 14 healthy controls. The rs‐fMRI data of the selected ROI were used in ANOVA to measure performance level and Pearson's correlation to investigate the interregional functional connectivity in PTSD brains. In machine learning approaches, the logistic regression, K‐nearest neighbor (KNN), support vector machine (SVM) with linear, radial basis function, and polynomial kernels were used to classify the PTSD and control subjects. The performance level in brain regions of PTSD deviated as compared to the regions in the healthy brain. In addition, significant positive or negative functional connectivity was observed among ROI in PTSD brains. The rs‐fMRI data have been distributed in training, validation, and testing group for maturity, implementation of machine learning techniques. The KNN and SVM with radial basis function kernel were outperformed for classification among other methods with high accuracies (96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%) to train, validate, and test datasets, respectively. The study's findings may provide a guideline to observe performance and functional connectivity of the brain regions in PTSD and to discriminate PTSD subject using only the suggested algorithms. Machine learning techniques are applied to identify cancerous patients utilizing resting‐state fMRI data. Among several MLAs, the SVM‐RBF performed a better prediction rate at higher reliability than other competitive models.
Author Saba, Tanzila
Latif, Rabia
Alyami, Jaber
Bahaj, Saeed Ali
Rehman, Amjad
Shahzad, Mirza Naveed
Author_xml – sequence: 1
  givenname: Tanzila
  orcidid: 0000-0001-6718-3866
  surname: Saba
  fullname: Saba, Tanzila
  organization: Prince Sultan University
– sequence: 2
  givenname: Amjad
  orcidid: 0000-0002-3817-2655
  surname: Rehman
  fullname: Rehman, Amjad
  email: arkhan@psu.edu.sa
  organization: Prince Sultan University
– sequence: 3
  givenname: Mirza Naveed
  surname: Shahzad
  fullname: Shahzad, Mirza Naveed
  organization: University of Gujrat
– sequence: 4
  givenname: Rabia
  surname: Latif
  fullname: Latif, Rabia
  organization: Prince Sultan University
– sequence: 5
  givenname: Saeed Ali
  surname: Bahaj
  fullname: Bahaj, Saeed Ali
  organization: Prince Sattam bin Abdulaziz University
– sequence: 6
  givenname: Jaber
  surname: Alyami
  fullname: Alyami, Jaber
  organization: King Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35088496$$D View this record in MEDLINE/PubMed
BookMark eNp90c1uFSEUB3Bi2vTLbnwAQ-LGmEw9wMCFpWnqR9PGTU3cEcpA5WYGrsCkqSsXPoDP6JPI9Labxrhicub3P4FzDtFOTNEh9ILACQGgb9duqie0B8GfoQMCatW1qtpZvrnqFIGv--iwlDUAIZz0e2ifcZCyV-IA_bo09luIDo_O5BjiDfYp400q9c_P3zWbeTI1WFxqdqXgIZSUB5dxGFyswQfb_qaI5xrG8GNJN1bb2cKlmuqwn6NdiBnxZG6iW5o10wrROhxarennaNebsbjjh_MIfXl_dnX6sbv4_OHT6buLzjIFvGOEeLVizjI_XDPGlaBO9cxL4a3obT8AF8wbJcF7SSkHMFKA9NxLu-qpYkfo9bbvJqfvc7upnkKxbhxNdGkumgrKpCIERKOvntB1mnN7xqKEBEqhp029fFDz9eQGvcntRflOP863AdgCm1Mp2XltQ72fWZttGDUBvaxQLyvU9ytskTdPIo9d_4nJFt-G0d39R-rzs8urbeYvdLqwTQ
CitedBy_id crossref_primary_10_1016_j_pscychresns_2024_111845
crossref_primary_10_1038_s44184_023_00035_w
crossref_primary_10_1016_j_inffus_2023_101898
crossref_primary_10_1155_2022_8622022
crossref_primary_10_3390_bs13060517
crossref_primary_10_1111_cgf_15142
crossref_primary_10_1155_2024_8419540
crossref_primary_10_15407_csc_2024_03_060
crossref_primary_10_1038_s41746_024_01117_5
crossref_primary_10_1016_j_heliyon_2024_e28559
crossref_primary_10_1007_s11682_024_00857_y
Cites_doi 10.1016/j.neulet.2013.04.032
10.1192/bjp.bp.114.148486
10.1016/j.psychres.2021.113712
10.1186/s40535-016-0025-y
10.35940/ijitee.C8170.019320
10.1371/journal.pone.0168315
10.1017/S0033291720001336
10.1109/ACCESS.2021.3098453
10.1002/jemt.22998
10.1109/ICTC.2015.7354606
10.1586/ern.10.198
10.1007/s11042-019-7324-y
10.1177/0284185114537927
10.2174/1573405613666170912164546
10.1016/j.jocs.2018.09.015
10.3389/fpsyt.2018.00532
10.1007/s00521-016-2474-6
10.1002/jemt.22867
10.2147/JPR.S177502
10.1007/s11920-020-1140-y
10.1002/jemt.23597
10.1038/s41398-021-01324-8
10.1186/s12888-016-0957-8
10.3389/fpsyt.2020.00588
10.1109/EMBC.2016.7591508
10.3389/fnins.2019.00743
10.1016/j.patcog.2020.107298
10.1017/S0033291718002866
10.1016/j.brat.2021.103920
10.31782/IJCRR.2021.SP173
10.1038/s41398-020-00879-2
10.3389/fpsyt.2018.00516
10.1002/jemt.23281
10.1371/journal.pone.0032766
10.1016/j.neuroimage.2021.118242
10.1002/jts.22384
10.1016/j.bandc.2012.10.002
10.1111/psyp.13357
10.1038/s41598-020-80776-2
10.1126/science.1063736
10.1515/jisys-2013-0010
10.1002/hbm.24242
10.1111/j.1475-6773.2005.00404.x
10.1007/s10115-019-01337-2
10.1155/2019/6743489
10.1016/j.jiph.2020.06.033
10.1038/s41398-019-0663-7
10.1056/NEJMp2008017
10.2147/NDT.S202418
10.1109/ICCISci.2019.8716413
10.1016/j.tics.2006.07.005
10.1093/pubmed/fdz026
10.1016/j.neulet.2017.04.042
10.1002/jemt.23429
10.1016/j.biopsych.2018.02.918
10.1371/journal.pone.0194526
10.1155/2019/7151475
10.1016/j.pnpbp.2018.11.003
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7SS
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1002/jemt.24065
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-0029
EndPage 2094
ExternalDocumentID 35088496
10_1002_jemt_24065
JEMT24065
Genre article
Journal Article
GrantInformation_xml – fundername: Prince Sultan University, Riyadh Saudi Arabia
  funderid: SEED‐CCIS‐2021{80}
– fundername: Prince Sultan University, Riyadh Saudi Arabia
  grantid: SEED-CCIS-2021{80}
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TWZ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WVDHM
WXSBR
WYB
X7M
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7SS
7TA
7TB
7U5
7U7
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c3905-311f973ec3fdb335962e943f86fc64c4d0563fa980ff822500a8608f5f8c74293
IEDL.DBID DR2
ISSN 1059-910X
1097-0029
IngestDate Fri Jul 11 00:00:32 EDT 2025
Sun Jul 13 04:36:51 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Jul 01 01:27:03 EDT 2025
Wed Jan 22 16:25:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords resting-state functional magnetic resonance imaging
human & diseases
brain tumor
post-traumatic stress disorder
functional connectivity
healthcare
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3905-311f973ec3fdb335962e943f86fc64c4d0563fa980ff822500a8608f5f8c74293
Notes Funding information
Review Editor
Alberto Diaspro
Prince Sultan University, Riyadh Saudi Arabia, Grant/Award Number: SEED‐CCIS‐2021{80}
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6718-3866
0000-0002-3817-2655
PMID 35088496
PQID 2668022042
PQPubID 1016375
PageCount 12
ParticipantIDs proquest_miscellaneous_2623891106
proquest_journals_2668022042
pubmed_primary_35088496
crossref_citationtrail_10_1002_jemt_24065
crossref_primary_10_1002_jemt_24065
wiley_primary_10_1002_jemt_24065_JEMT24065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Microscopy research and technique
PublicationTitleAlternate Microsc Res Tech
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 90
2019; 2019
2017; 80
2013; 22
2019; 13
2019; 12
2019; 15
2018; 81
2011; 11
2020; 57
2020; 13
2020; 11
2018; 83
2020; 10
2018; 49
2018; 9
2018; 39
2019; 60
2001; 293
2021; 238
2020; 9
2021; 84
2021; 9
2015; 56
2018; 29
2019; 9
2015; 4
2020; 42
2020; 383
2017; 28
2006; 10
2020; 83
2019; 32
2013; 547
2005; 40
2020; 79
2015; 206
2021; 144
2020; 103
2017; 650
2016; 16
2021; 51
2021; 13
2019; 82
2021; 11
2016; 3
2017; 12
2019
2013; 81
2016
2015
2020; 22
2021; 297
2012; 7
2018; 14
2018; 13
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
Iftikhar S. (e_1_2_10_20_1) 2017; 28
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
Francati V. (e_1_2_10_16_1) 2015; 4
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 83
  issue: 9
  year: 2018
  article-title: S27. Predicting trauma‐focused therapy outcome from resting‐state functional magnetic resonance imaging in veterans with posttraumatic stress disorder
  publication-title: Biological Psychiatry
– volume: 11
  start-page: 588
  year: 2020
  article-title: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: A systematic review
  publication-title: Frontiers in Psychiatry
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  article-title: Post‐traumatic stress disorder associated with life‐threatening motor vehicle collisions in the WHO World Mental Health Surveys
  publication-title: BMC Psychiatry
– volume: 9
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Pre‐treatment resting‐state functional MR imaging predicts the long‐term clinical outcome after short‐term paroxtine treatment in post‐traumatic stress disorder
  publication-title: Frontiers in Psychiatry
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  end-page: 430
  article-title: Beyond mind‐reading: Multi‐voxel pattern analysis of fMRI data
  publication-title: Trends in Cognitive Sciences
– volume: 297
  year: 2021
  article-title: A machine learning approach to modeling PTSD and difficulties in emotion regulation
  publication-title: Psychiatry Research
– volume: 22
  start-page: 197
  issue: 2
  year: 2013
  end-page: 212
  article-title: An intelligent fused approach for face recognition
  publication-title: Journal of Intelligent Systems
– volume: 22
  start-page: 1
  issue: 4
  year: 2020
  end-page: 9
  article-title: Gender‐and sex‐based contributors to sex differences in PTSD
  publication-title: Current Psychiatry Reports
– volume: 80
  start-page: 799
  issue: 7
  year: 2017
  end-page: 811
  article-title: Retinal imaging analysis based on vessel detection
  publication-title: Microscopy Research and Technique
– volume: 12
  issue: 1
  year: 2017
  article-title: Long‐term effects of acute stress on the prefrontal‐limbic system in the healthy adult
  publication-title: PLoS One
– volume: 29
  start-page: 803
  issue: 3
  year: 2018
  end-page: 818
  article-title: Machine aided malaria parasitemia detection in Giemsa‐stained thin blood smears
  publication-title: Neural Computing and Applications
– volume: 13
  issue: 4
  year: 2018
  article-title: An effective content‐based image retrieval technique for image visuals representation based on the bag‐of‐visual‐words model
  publication-title: PLoS One
– volume: 28
  start-page: 3451
  issue: 8
  year: 2017
  end-page: 3455
  article-title: An evolution based hybrid approach for heart diseases classification and associated risk factors identification
  publication-title: Biomedical Research
– volume: 81
  start-page: 151
  issue: 1
  year: 2013
  end-page: 159
  article-title: An fMRI investigation of posttraumatic flashbacks
  publication-title: Brain and Cognition
– volume: 383
  start-page: 508
  issue: 6
  year: 2020
  end-page: 510
  article-title: Mental health and the Covid‐19 pandemic
  publication-title: New England Journal of Medicine
– volume: 238
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Deep learning model of fMRI connectivity predicts PTSD symptom trajectories in recent trauma survivors
  publication-title: NeuroImage
– volume: 29
  start-page: 34
  year: 2018
  end-page: 45
  article-title: Fuzzy C‐means and region growing based classification of tumor from mammograms using hybrid texture feature
  publication-title: Journal of Computational Science
– volume: 57
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  article-title: A review of hippocampal activation in post‐traumatic stress disorder
  publication-title: Psychophysiology
– volume: 84
  start-page: 133
  issue: 1
  year: 2021
  end-page: 149
  article-title: Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture
  publication-title: Microscopy Research and Technique
– volume: 9
  start-page: 516
  year: 2018
  article-title: Increased inhibition of the amygdala by the mPFC may reflect a resilience factor in post‐traumatic stress disorder: A resting‐state fMRI granger causality analysis
  publication-title: Frontiers in Psychiatry
– volume: 103
  year: 2020
  article-title: Deep support vector machine for hyperspectral image classification
  publication-title: Pattern Recognition
– volume: 83
  start-page: 410
  issue: 4
  year: 2020
  end-page: 423
  article-title: Microscopic melanoma detection and classification: A framework of pixel‐based fusion and multilevel features reduction
  publication-title: Microscopy Research and Technique
– volume: 15
  start-page: 1605
  year: 2019
  end-page: 1627
  article-title: Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: A systematic review
  publication-title: Neuropsychiatric Disease and Treatment
– volume: 60
  start-page: 1693
  issue: 3
  year: 2019
  end-page: 1724
  article-title: A deep transfer learning approach for improved post‐traumatic stress disorder diagnosis
  publication-title: Knowledge and Information Systems
– volume: 82
  start-page: 1302
  issue: 8
  year: 2019
  end-page: 1315
  article-title: Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation
  publication-title: Microscopy Research and Technique
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  article-title: Differential relationships of PTSD symptom clusters with cortical thickness and grey matter volumes among women with PTSD
  publication-title: Scientific Reports
– year: 2019
– volume: 11
  start-page: 275
  issue: 2
  year: 2011
  end-page: 285
  article-title: Functional neuroimaging studies of post‐traumatic stress disorder
  publication-title: Expert Review of Neurotherapeutics
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 8
  article-title: The cerebellum posterior lobe associates with the exophthalmos of primary hyperthyroidism: A resting‐state fMRI study
  publication-title: International Journal of Endocrinology
– volume: 39
  start-page: 4228
  issue: 11
  year: 2018
  end-page: 4240
  article-title: Resting‐state pulvinar‐posterior parietal decoupling in PTSD and its dissociative subtype
  publication-title: Human Brain Mapping
– year: 2015
– volume: 9
  start-page: 107941
  year: 2021
  end-page: 107954
  article-title: Identifying patients with PTSD utilizing resting‐state fMRI data and neural network approach
  publication-title: IEEE Access
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  article-title: Mapping PTSD symptoms to brain networks: A machine learning study
  publication-title: Translational Psychiatry
– volume: 7
  issue: 3
  year: 2012
  article-title: Effects of different correlation metrics and preprocessing factors on small‐world brain functional networks: A resting‐state functional MRI study
  publication-title: PLoS One
– volume: 13
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Altered regional homogeneity in patients with corneal ulcer: A resting‐state functional MRI study
  publication-title: Frontiers in Neuroscience
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  end-page: 8
  article-title: Altered effective connectivity network of the thalamus in post‐traumatic stress disorder: a resting‐state FMRI study with granger causality method
  publication-title: Applied Informatics
– volume: 13
  start-page: 156
  issue: 6
  year: 2021
  end-page: 164
  article-title: Prediction of covid‐19 possibilities using knearest neighbour classification algorithm
  publication-title: International Journal of Current Research and Review
– volume: 49
  start-page: 2049
  issue: 12
  year: 2018
  end-page: 2059
  article-title: Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: A multimodal neuroimaging approach
  publication-title: Psychological Medicine
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  article-title: Utilization of machine learning for identifying symptom severity military‐related PTSD subtypes and their biological correlates
  publication-title: Translational Psychiatry
– volume: 13
  start-page: 1274
  issue: 9
  year: 2020
  end-page: 1289
  article-title: Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges
  publication-title: Journal of Infection and Public Health
– volume: 79
  start-page: 10955
  issue: 15
  year: 2020
  end-page: 10973
  article-title: Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions
  publication-title: Multimedia Tools and Applications
– volume: 51
  start-page: 1773
  issue: 10
  year: 2021
  end-page: 1774
  article-title: PTSD as the second tsunami of the SARS‐Cov‐2 pandemic
  publication-title: Psychological Medicine
– volume: 650
  start-page: 174
  year: 2017
  end-page: 179
  article-title: Differentiation chronic post traumatic stress disorder patients from healthy subjects using objective and subjective sleep‐related parameters
  publication-title: Neuroscience Letters
– volume: 40
  start-page: 1234
  issue: 4
  year: 2005
  end-page: 1246
  article-title: Predicting mortality and healthcare utilization with a single question
  publication-title: Health Services Research
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: Individual prediction of psychotherapy outcome in posttraumatic stress disorder using neuroimaging data
  publication-title: Translational Psychiatry
– volume: 32
  start-page: 215
  issue: 2
  year: 2019
  end-page: 225
  article-title: Machine learning for prediction of posttraumatic stress and resilience following trauma: An overview of basic concepts and recent advances
  publication-title: Journal of Traumatic Stress
– year: 2016
– volume: 547
  start-page: 1
  year: 2013
  end-page: 5
  article-title: Spontaneous brain activity in combat related PTSD
  publication-title: Neuroscience Letters
– volume: 42
  start-page: 319
  issue: 2
  year: 2020
  end-page: 324
  article-title: Post‐traumatic stress disorder among Syrian adolescent refugees in Jordan
  publication-title: Journal of Public Health
– volume: 12
  start-page: 1243
  year: 2019
  end-page: 1250
  article-title: Altered amplitude of low‐frequency fluctuation and regional cerebral blood flow in females with primary dysmenorrhea: A resting‐state fMRI and arterial spin labeling study
  publication-title: Journal of Pain Research
– volume: 56
  start-page: 746
  issue: 6
  year: 2015
  end-page: 753
  article-title: Altered cortical and subcortical local coherence in PTSD: Evidence from resting‐state fMRI
  publication-title: Acta Radiologica
– volume: 293
  start-page: 2425
  issue: 5539
  year: 2001
  end-page: 2430
  article-title: Distributed and overlapping representations of faces and objects in the ventral temporal cortex
  publication-title: Science
– volume: 144
  year: 2021
  article-title: Predicting response to cognitive processing therapy for PTSD: A machine‐learning approach
  publication-title: Behaviour Research and Therapy
– volume: 4
  start-page: 485
  issue: 11
  year: 2015
  end-page: 487
  article-title: Functional neuroimaging studies in posttraumatic stress disorder: Review of current methods and findings
  publication-title: International Journal of Current Advanced Research
– volume: 14
  start-page: 704
  issue: 5
  year: 2018
  end-page: 715
  article-title: Image enhancement and segmentation techniques for detection of knee joint diseases: A survey
  publication-title: Current Medical Imaging
– volume: 81
  start-page: 449
  issue: 5
  year: 2018
  end-page: 457
  article-title: Microscopic abnormality classification of cardiac murmurs using ANFIS and HMM
  publication-title: Microscopy Research and Technique
– volume: 9
  start-page: 2471
  issue: 3
  year: 2020
  end-page: 2478
  article-title: Logistic regression for employability prediction
  publication-title: International Journal of Innovative Technology and Exploring Engineering
– volume: 206
  start-page: 408
  issue: 5
  year: 2015
  end-page: 416
  article-title: Predictive validity of the trauma screening questionnaire in detecting post‐traumatic stress disorder in patients with psychotic disorders
  publication-title: British Journal of Psychiatry
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 27
  article-title: Mobile‐health applications for the efficient delivery of health care facility to people with dementia (PwD) and support to their carers: A survey
  publication-title: BioMed Research International
– volume: 90
  start-page: 37
  year: 2019
  end-page: 42
  article-title: Neuroimaging research in posttraumatic stress disorder – Focus on amygdala, hippocampus and prefrontal cortex
  publication-title: Progress in Neuro‐Psychopharmacology and Biological Psychiatry
– ident: e_1_2_10_53_1
  doi: 10.1016/j.neulet.2013.04.032
– ident: e_1_2_10_11_1
  doi: 10.1192/bjp.bp.114.148486
– ident: e_1_2_10_8_1
  doi: 10.1016/j.psychres.2021.113712
– ident: e_1_2_10_57_1
  doi: 10.1186/s40535-016-0025-y
– ident: e_1_2_10_6_1
  doi: 10.35940/ijitee.C8170.019320
– ident: e_1_2_10_25_1
  doi: 10.1371/journal.pone.0168315
– ident: e_1_2_10_14_1
  doi: 10.1017/S0033291720001336
– ident: e_1_2_10_42_1
  doi: 10.1109/ACCESS.2021.3098453
– ident: e_1_2_10_15_1
  doi: 10.1002/jemt.22998
– ident: e_1_2_10_47_1
  doi: 10.1109/ICTC.2015.7354606
– ident: e_1_2_10_19_1
  doi: 10.1586/ern.10.198
– volume: 4
  start-page: 485
  issue: 11
  year: 2015
  ident: e_1_2_10_16_1
  article-title: Functional neuroimaging studies in posttraumatic stress disorder: Review of current methods and findings
  publication-title: International Journal of Current Advanced Research
– ident: e_1_2_10_3_1
  doi: 10.1007/s11042-019-7324-y
– ident: e_1_2_10_59_1
  doi: 10.1177/0284185114537927
– ident: e_1_2_10_38_1
  doi: 10.2174/1573405613666170912164546
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jocs.2018.09.015
– ident: e_1_2_10_55_1
  doi: 10.3389/fpsyt.2018.00532
– ident: e_1_2_10_2_1
  doi: 10.1007/s00521-016-2474-6
– ident: e_1_2_10_23_1
  doi: 10.1002/jemt.22867
– ident: e_1_2_10_58_1
  doi: 10.2147/JPR.S177502
– ident: e_1_2_10_9_1
  doi: 10.1007/s11920-020-1140-y
– ident: e_1_2_10_36_1
  doi: 10.1002/jemt.23597
– ident: e_1_2_10_44_1
  doi: 10.1038/s41398-021-01324-8
– ident: e_1_2_10_46_1
  doi: 10.1186/s12888-016-0957-8
– ident: e_1_2_10_45_1
  doi: 10.3389/fpsyt.2020.00588
– ident: e_1_2_10_41_1
  doi: 10.1109/EMBC.2016.7591508
– ident: e_1_2_10_52_1
  doi: 10.3389/fnins.2019.00743
– ident: e_1_2_10_33_1
  doi: 10.1016/j.patcog.2020.107298
– ident: e_1_2_10_30_1
  doi: 10.1017/S0033291718002866
– ident: e_1_2_10_31_1
  doi: 10.1016/j.brat.2021.103920
– ident: e_1_2_10_50_1
  doi: 10.31782/IJCRR.2021.SP173
– ident: e_1_2_10_56_1
  doi: 10.1038/s41398-020-00879-2
– ident: e_1_2_10_7_1
  doi: 10.3389/fpsyt.2018.00516
– ident: e_1_2_10_21_1
  doi: 10.1002/jemt.23281
– ident: e_1_2_10_26_1
  doi: 10.1371/journal.pone.0032766
– ident: e_1_2_10_43_1
  doi: 10.1016/j.neuroimage.2021.118242
– ident: e_1_2_10_40_1
  doi: 10.1002/jts.22384
– ident: e_1_2_10_51_1
  doi: 10.1016/j.bandc.2012.10.002
– volume: 28
  start-page: 3451
  issue: 8
  year: 2017
  ident: e_1_2_10_20_1
  article-title: An evolution based hybrid approach for heart diseases classification and associated risk factors identification
  publication-title: Biomedical Research
– ident: e_1_2_10_24_1
  doi: 10.1111/psyp.13357
– ident: e_1_2_10_10_1
  doi: 10.1038/s41598-020-80776-2
– ident: e_1_2_10_17_1
  doi: 10.1126/science.1063736
– ident: e_1_2_10_28_1
  doi: 10.1515/jisys-2013-0010
– ident: e_1_2_10_49_1
  doi: 10.1002/hbm.24242
– ident: e_1_2_10_13_1
  doi: 10.1111/j.1475-6773.2005.00404.x
– ident: e_1_2_10_4_1
  doi: 10.1007/s10115-019-01337-2
– ident: e_1_2_10_27_1
  doi: 10.1155/2019/6743489
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jiph.2020.06.033
– ident: e_1_2_10_61_1
  doi: 10.1038/s41398-019-0663-7
– ident: e_1_2_10_34_1
  doi: 10.1056/NEJMp2008017
– ident: e_1_2_10_12_1
  doi: 10.2147/NDT.S202418
– ident: e_1_2_10_29_1
  doi: 10.1109/ICCISci.2019.8716413
– ident: e_1_2_10_32_1
  doi: 10.1016/j.tics.2006.07.005
– ident: e_1_2_10_5_1
  doi: 10.1093/pubmed/fdz026
– ident: e_1_2_10_48_1
  doi: 10.1016/j.neulet.2017.04.042
– ident: e_1_2_10_35_1
  doi: 10.1002/jemt.23429
– ident: e_1_2_10_60_1
  doi: 10.1016/j.biopsych.2018.02.918
– ident: e_1_2_10_22_1
  doi: 10.1371/journal.pone.0194526
– ident: e_1_2_10_54_1
  doi: 10.1155/2019/7151475
– ident: e_1_2_10_18_1
  doi: 10.1016/j.pnpbp.2018.11.003
SSID ssj0011514
Score 2.4189098
Snippet Early detection of post‐traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose...
Early detection of post-traumatic stress disorder (PTSD) is essential for proper treatment of the patients to recover from this disorder. The aligned purpose...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2083
SubjectTerms Algorithms
Brain
Brain - diagnostic imaging
Brain - pathology
Brain cancer
Brain mapping
Brain Mapping - methods
brain tumor
functional connectivity
Functional magnetic resonance imaging
healthcare
human & diseases
Humans
Kernel functions
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neural networks
Neuroimaging
Patients
Polynomials
Post traumatic stress disorder
Psychological stress
Radial basis function
resting‐state functional magnetic resonance imaging
Stress Disorders, Post-Traumatic - diagnostic imaging
Stress Disorders, Post-Traumatic - pathology
Support Vector Machine
Support vector machines
Variance analysis
Title Machine learning for post‐traumatic stress disorder identification utilizing resting‐state functional magnetic resonance imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjemt.24065
https://www.ncbi.nlm.nih.gov/pubmed/35088496
https://www.proquest.com/docview/2668022042
https://www.proquest.com/docview/2623891106
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EELz4fqwvInpR6FqbtNuCFxFFBD2Iwl6kpGkiq25X3O5BTx78Af5Gf4kzSbfiA0FPLWRC-pjJfElmvgHYbMVql6Ob9CTOdZ7gSngyUtrLaTkUBroVSxvlexYdX4qTdtgegb1hLozjh6g33Mgy7HxNBi6z_s4HaeiN7pZN8keUYU7BWoSIzmvuKEQ6ltib8ANatN-uuUmDnY-un73RN4j5GbFal3M0CVfDh3WRJrfNQZk11dMXHsf_vs0UTFRYlO075ZmGEV3MwJirTvk4Cy-nNtBSs6qyxDVDgMvue_3y7fm1fJADy_bKXLYJyysaT9bJqwAk-88ZKvZd54l6UxUQvGJnm8XEyKW6nUjWldcFZVOSTI8oQDTrdG39pDm4PDq8ODj2qqINnuKJPVXfNUmLa8VNnnFOxX10IriJI6MioUSOiIsbmcS-MQhOQt-XceTHJjSxwmV6wudhtOgVehEYQikRizzASTUXUWgyLpWMWrjmQ1gZZrwBW8Ofl6qK0ZwKa9yljos5SOmrpvarNmCjlr13PB4_Sq0MdSCtbLmfIoSx-cgiaMB63YxWSEcrstC9AckEdOCL6-sGLDjdqYfhhIFFgi3bVgN-GT89OTy9sHdLfxFehvGAsjLs5tAKjJYPA72KWKnM1qxNvAM7ThLp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQgupfxvKWAEHEDKNms72eyBA6Kttj_bA9pKewuOY1fbdrNVNyvUnjjwAH0RXoWH4EmYsZNUBYTEoQdOiZSJEtnz89me-QbgVTfRHYFhMlDo6wIptAxUrE2Q03Io4qabKJfluxf39-X2KBotwLe6FsbzQzQbbmQZzl-TgdOG9Nola-ihmZRtCkh1TuWOOfuMK7bZu611nN7XnG9uDD_0g6qpQKBxeU-nvh3b6wqjhc0zIaj5jOlJYZPY6lhqmSMiEFb1ktBaDJ5RGKokDhMb2UTjMpK4l9Dj36AW4kTVv_6xYatCbOWoxAmxoA8JRw0bKl-7_Ner8e83UHsVI7sgt3kHvtfD43NbjtrzMmvr81-YI_-b8VuGpQpus_fePu7CginuwU3fgPPsPnwduFxSw6rmGQcMMTw7mc7KH18uylM1d4S2zBfUsLxiKmXjvMqxcmrN0HaPx-f0NjU6wSu-7Aq1GKEGv9nKJuqgoIJRkpkSy4lh44lrEfUA9q9lCB7CYjEtzGNgiBZlInOOcSNHlbKZUFrFXVzWInKOMtGCN7W2pLoibafeIcepp5vmKc1i6maxBS8b2RNPVfJHqdVa6dLKXc1SRGmu5FryFrxoHqOjodMjVZjpnGQ4nWl3wrgFj7yyNp8RBPNlD5-8dSr3l--n2xuDobtb-Rfh53CrPxzsprtbeztP4DanIhS3F7YKi-Xp3DxFaFhmz5xBMvh03Rr8Ezx-bkY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRSAu_P8sFDACDiBlm40db3LggNiu-kMrhFppb8Fx7GrbbnbVzQq1Jw48AA_Cq_ASPAkzdpKqgJA49MApkTJRInt-Ptsz3wA87ye6xzFMBgp9XSC4FoGS2gQFLYfiyPQT5bJ8d-T6ntgcxaMl-NbUwnh-iHbDjSzD-Wsy8FlhV89IQw_MpOpSPGpSKrfMySdcsM1fbwxwdl9E0XBt9-16UPcUCDSu7unQt2fTPjea2yLnnHrPmFRwm0irpdCiQEDArUqT0FqMnXEYqkSGiY1tonEVSdRL6PAvCRmm1Chi8KElq0Jo5ZjECbCgCwlHLRlqtHr2r-fD32-Y9jxEdjFueB2-N6PjU1sOu4sq7-rTX4gj_5fhuwHXarDN3njruAlLprwFl337zZPb8GXbZZIaVrfO2GeI4NlsOq9-fP5aHauFo7NlvpyGFTVPKRsXdYaVU2qGlns0PqW3qc0JXvFlV6bFCDP4rVY2UfsllYuSzJQ4TgwbT1yDqDuwdyFDcBeWy2lp7gNDrCgSUUQYNQohY5tzpZXs46IWcXOc8w68bJQl0zVlO3UOOco82XSU0SxmbhY78KyVnXmikj9KrTQ6l9XOap4hRnMF1yLqwNP2MboZOjtSpZkuSCaiE-1eKDtwz-tq-xlOIF-k-OSV07i_fD_bXNvedXcP_kX4CVx5Pxhm7zZ2th7C1YgqUNxG2AosV8cL8whxYZU_dubI4ONFK_BPcqRs9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+post%E2%80%90traumatic+stress+disorder+identification+utilizing+resting%E2%80%90state+functional+magnetic+resonance+imaging&rft.jtitle=Microscopy+research+and+technique&rft.au=Saba%2C+Tanzila&rft.au=Rehman%2C+Amjad&rft.au=Mirza%2C+Naveed+Shahzad&rft.au=Latif%2C+Rabia&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1059-910X&rft.eissn=1097-0029&rft.volume=85&rft.issue=6&rft.spage=2083&rft.epage=2094&rft_id=info:doi/10.1002%2Fjemt.24065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon