Effects of low‐frequency magnetic field on solubility, structural and functional properties of soy 11S globulin
BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical p...
Saved in:
Published in | Journal of the science of food and agriculture Vol. 104; no. 10; pp. 5944 - 5954 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
15.08.2024
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.
RESULTS
Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min.
CONCLUSION
LF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry. |
---|---|
AbstractList | BACKGROUND: Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS: Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min. CONCLUSION: LF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry. BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min. CONCLUSION LF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry. BACKGROUNDSoy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.RESULTSCompared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min.CONCLUSIONLF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry. Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry. Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.BACKGROUNDSoy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min.RESULTSCompared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min.LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.CONCLUSIONLF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry. |
Author | Yao, Peng‐Lei Li, Yan‐ping Kang, Zhuang‐Li Xie, Jing‐jie Ma, Han‐Jun |
Author_xml | – sequence: 1 givenname: Zhuang‐Li orcidid: 0000-0002-5052-0173 surname: Kang fullname: Kang, Zhuang‐Li email: kzlnj1988@163.com organization: Ministry of Culture and Tourism – sequence: 2 givenname: Peng‐Lei surname: Yao fullname: Yao, Peng‐Lei organization: Henan Institute of Science and Technology – sequence: 3 givenname: Jing‐jie surname: Xie fullname: Xie, Jing‐jie organization: Henan Institute of Science and Technology – sequence: 4 givenname: Yan‐ping surname: Li fullname: Li, Yan‐ping organization: Shangqiu Academy of Agricultural and Forestry Sciences – sequence: 5 givenname: Han‐Jun surname: Ma fullname: Ma, Han‐Jun organization: Henan Institute of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38415770$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1KHTEUB_BQlHq13fgAJdBNEceeTCYzk6WItorQhe16yGQSySU3ueYDmV0foc_YJzHXa7sQ0VUI-Z0_Oefsox3nnULokMAJAai_LqMWJ4Q2hL1DCwK8qwAI7KBFeawrRpp6D-3HuAQAztv2PdqjfcFdBwt0d661kilir7H1939__9FB3WXl5IxX4tapZCTWRtkJe4ejt3k01qT5GMcUskw5CIuFm7DOTibjXbmug1-rkIx6TI1-xoTc4Fvrx2yN-4B2tbBRfXw6D9Cvi_OfZ9-r6x_fLs9OrytJObCKghhHqjmf6qZnQrKmAdqDhmYUE6NS8knXlBGQHdBJK6AFj7rXHe0lEQ09QF-2ueU7paGYhpWJUlkrnPI5DpQw2taEEniT1pzWvAHC20I_P6NLn0PpugRC23NOW9YX9elJ5XGlpmEdzEqEefg39wKOtkAGH2NQ-j8hMGyWOmyWOjwutWB4hqVJYjPsFISxL5eQbcm9sWp-JXy4urk43dY8ACLVtIQ |
CitedBy_id | crossref_primary_10_1016_j_ultsonch_2024_107143 |
Cites_doi | 10.1016/j.lwt.2022.113164 10.1016/j.foodhyd.2020.106124 10.1016/j.foodhyd.2020.105920 10.1016/j.foodhyd.2020.106036 10.1016/S0268-005X(02)00100-5 10.1111/jfpe.14008 10.1111/ijfs.15353 10.1016/j.foodhyd.2021.106962 10.1016/j.foodhyd.2008.03.011 10.1002/aocs.12003 10.1016/j.foodchem.2017.10.137 10.1016/j.foodhyd.2015.04.025 10.1016/j.colsurfb.2004.06.004 10.1016/j.ifset.2016.02.007 10.1016/j.foodchem.2019.125651 10.1080/00387010.2021.1987271 10.1016/j.ifset.2017.03.006 10.1016/j.foodhyd.2020.105976 10.1016/j.lwt.2021.112457 10.1111/ijfs.15297 10.1111/ijfs.15607 10.1016/j.meatsci.2020.108420 10.1016/j.lwt.2021.112272 10.1111/ijfs.14717 10.1016/j.foodhyd.2021.107409 10.1016/j.foodchem.2021.131598 10.1016/j.molstruc.2009.08.037 10.1021/jf101425j 10.1016/j.lwt.2021.112458 10.1016/j.foodchem.2020.126896 10.1021/jf990560l 10.1016/j.foodchem.2021.129703 10.3390/molecules25040875 10.1016/j.foodhyd.2021.107345 10.1016/j.meatsci.2022.109087 10.1016/j.foodhyd.2021.107470 10.1016/j.lwt.2020.110134 10.1016/j.meatsci.2021.108471 10.1016/j.foodhyd.2021.107261 10.3390/polym11020282 10.1063/5.0006060 10.1111/j.1365-2621.2003.tb05795.x 10.1080/10942912.2014.999375 10.1016/j.tifs.2020.09.012 10.1016/j.foodhyd.2023.108775 10.1016/j.foodhyd.2020.106345 10.1016/j.foodchem.2018.09.028 10.1021/jf980977b 10.1016/j.ultsonch.2021.105659 10.1016/j.ifset.2020.102567 10.1002/1097-0282(20010405)58:4<398::AID-BIP1016>3.0.CO;2-9 10.1016/0005-2795(75)90036-7 10.1016/j.jfoodeng.2017.08.011 10.1016/j.foodchem.2020.126728 10.1016/j.foodhyd.2018.05.047 10.1016/j.foodhyd.2021.106811 |
ContentType | Journal Article |
Copyright | 2024 Society of Chemical Industry. 2024 Society of Chemical Industry |
Copyright_xml | – notice: 2024 Society of Chemical Industry. – notice: 2024 Society of Chemical Industry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QL 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7ST 7T5 7T7 7TA 7TB 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 SOI 7X8 7S9 L.6 |
DOI | 10.1002/jsfa.13415 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Agriculture Diet & Clinical Nutrition |
EISSN | 1097-0010 |
EndPage | 5954 |
ExternalDocumentID | 38415770 10_1002_jsfa_13415 JSFA13415 |
Genre | article Evaluation Study Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Henan Province funderid: 212300410344 – fundername: Natural Science Foundation of Henan Province grantid: 212300410344 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29L 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAIKC AAMMB AAMNL AAMNW AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 Y6R ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT CGR CUY CVF ECM EIF NPM RWI WRC WWF 7QF 7QL 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7ST 7T5 7T7 7TA 7TB 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3905-30abb3f99d2485ac5440380f04bad53cc9df23510c703dfe033f9bf8f738c1a43 |
IEDL.DBID | DR2 |
ISSN | 0022-5142 1097-0010 |
IngestDate | Fri Jul 11 18:32:43 EDT 2025 Fri Jul 11 14:07:35 EDT 2025 Sun Jul 13 04:52:55 EDT 2025 Wed Feb 19 02:18:12 EST 2025 Tue Jul 01 02:01:44 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 Wed Aug 20 07:26:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | sulfhydryl content foaming capacity low‐frequency magnetic field rheological property soy 11S globulin |
Language | English |
License | 2024 Society of Chemical Industry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3905-30abb3f99d2485ac5440380f04bad53cc9df23510c703dfe033f9bf8f738c1a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-5052-0173 |
PMID | 38415770 |
PQID | 3068993658 |
PQPubID | 37930 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3153621310 proquest_miscellaneous_2932940196 proquest_journals_3068993658 pubmed_primary_38415770 crossref_primary_10_1002_jsfa_13415 crossref_citationtrail_10_1002_jsfa_13415 wiley_primary_10_1002_jsfa_13415_JSFA13415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 August 2024 |
PublicationDateYYYYMMDD | 2024-08-15 |
PublicationDate_xml | – month: 08 year: 2024 text: 15 August 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: London |
PublicationTitle | Journal of the science of food and agriculture |
PublicationTitleAlternate | J Sci Food Agric |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: John Wiley and Sons, Limited |
References | 2022; 373 2017; 41 2010; 58 2021; 67 2023; 142 2000; 47 2000; 48 2021; 365 2019; 11 2020; 326 2020; 321 2003; 17 2021; 120 2018; 84 2016; 34 2021; 76 2021; 112 2018; 217 2004; 37 2021; 118 2021; 152 2020; 134 2017; 245 2001; 58 2022; 126 2022; 124 2019; 274 2022; 125 2009; 23 2022; 153 2009; 938 2015; 18 2022; 45 2020; 105 2020; 107 2020; 32 1975; 412 2022; 159 2020; 108 2020; 109 2020; 309 2021; 54 2021; 56 2023; 198 2003; 68 2022; 57 2020; 25 2021; 175 2016; 60 2018; 95 2021; 176 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 18 start-page: 2593 year: 2015 end-page: 2602 article-title: Synergistic functionality of soybean 7S and 11S fractions in oil‐in‐water emulsions: effect of protein heat treatment publication-title: Int J Food Prop – volume: 68 start-page: 2724 year: 2003 end-page: 2729 article-title: Effects of soy glycinin addition on the conformation and gel strength of two pork myosin types publication-title: J Food Sci – volume: 105 start-page: 261 year: 2020 end-page: 272 article-title: Dairy and plant proteins as natural food emulsifiers publication-title: Trends Food Sci Technol – volume: 309 year: 2020 article-title: Effects of low frequency magnetic field on myoglobin oxidation stability publication-title: Food Chem – volume: 67 year: 2021 article-title: Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study publication-title: Innov Food Sci Emerg Technol – volume: 245 start-page: 542 year: 2017 end-page: 550 article-title: Effects of succinylation on the structure and thermal aggregation of soy protein isolate publication-title: Food Chem – volume: 326 year: 2020 article-title: Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: a novel study combined with low field NMR and Raman spectroscopy publication-title: Food Chem – volume: 198 year: 2023 article-title: Effects of pre‐emulsified safflower oil with magnetic field modified soy 11S globulin on the gel, rheological, and sensory properties of reduced‐animal fat pork batter publication-title: Meat Sci – volume: 34 start-page: 205 year: 2016 end-page: 213 article-title: Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths publication-title: Innov Food Sci Emerg Technol – volume: 118 year: 2021 article-title: The effect of trehalose on the thermodynamic stability and emulsification of soybean 11S globulin in the molten globule state publication-title: Food Hydrocoll – volume: 107 year: 2020 article-title: Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates publication-title: Food Hydrocoll – volume: 107 year: 2020 article-title: Gel properties of grass carp myofibrillar protein modified by low‐frequency magnetic field during two‐stage water bath heating publication-title: Food Hydrocoll – volume: 365 year: 2021 article-title: Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels publication-title: Food Chem – volume: 126 year: 2022 article-title: Foaming and air‐water interfacial properties of camel milk proteins compared to bovine milk proteins publication-title: Food Hydrocoll – volume: 176 year: 2021 article-title: Effects of soy protein isolate on gel properties and water holding capacity of low‐salt pork myofibrillar protein under high pressure processing publication-title: Meat Sci – volume: 76 year: 2021 article-title: Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties publication-title: Ultrason Sonochem – volume: 56 start-page: 5211 year: 2021 end-page: 5219 article-title: The effects of ultra‐high‐pressure treatments combined with heat treatments on the antigenicity and structure of soy glycinin publication-title: Int J Food Sci Technol – volume: 17 start-page: 365 year: 2003 end-page: 377 article-title: Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation publication-title: Food Hydrocoll – volume: 274 start-page: 775 year: 2019 end-page: 781 article-title: Effect of low‐frequency magnetic field on the gel properties of pork myofibrillar proteins publication-title: Food Chem – volume: 41 start-page: 150 year: 2017 end-page: 159 article-title: Effects of high‐pressure treatments on water characteristics and juiciness of rabbit meat sausages: role of microstructure and chemical interactions publication-title: Innov Food Sci Emerg Technol – volume: 109 year: 2020 article-title: Improved physicochemical properties of peanut protein isolate glycated by atmospheric pressure cold plasma (ACP) treatment publication-title: Food Hydrocoll – volume: 11 start-page: 282 year: 2019 article-title: Effects of an electric field on the conformational transition of the protein: a molecular dynamics simulation study publication-title: Polymers – volume: 134 year: 2020 article-title: Fabrication and characterization of food‐grade pickering high internal emulsions stabilized with β‐cyclodextrin publication-title: LWT‐ Food Sci Technol – volume: 321 year: 2020 article-title: Gel properties of myofibrillar proteins heated at different heating rates under a low‐frequency magnetic field publication-title: Food Chem – volume: 58 start-page: 398 year: 2001 end-page: 409 article-title: The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X‐ray databases for the numerical calculation of dipole moment publication-title: Biopolymers – volume: 45 year: 2022 article-title: Effects of combined high pressure and temperature onsolubility, foaming, and rheological properties of soy 11S globulin publication-title: J Food Process Eng – volume: 108 year: 2020 article-title: Effect of protein aggregation on rheological properties of pea protein gels publication-title: Food Hydrocoll – volume: 175 year: 2021 article-title: Changes in the thermal stability and structure of myofibrillar protein from quick‐frozen pork patties with different fat addition under freeze‐thaw cycles publication-title: Meat Sci – volume: 142 year: 2023 article-title: Effect of safflower oil and magnetic field‐modified soy 11S globulin on rheological and emulsifying properties of oil‐in‐water emulsions publication-title: Food Hydrocoll – volume: 412 start-page: 214 year: 1975 end-page: 228 article-title: The structure, physical and chemical properties of the soy bean protein glycinin publication-title: Biochim Biophys Acta – volume: 60 start-page: 606 year: 2016 end-page: 619 article-title: Soy glycinin as food‐grade Pickering stabilizers: part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface publication-title: Food Hydrocoll – volume: 153 year: 2022 article-title: Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat publication-title: LWT‐ Food Sci Technol – volume: 112 year: 2021 article-title: Comparison of surface and foaming properties of soy lipophilic protein with those of glycinin and β‐conglycinin publication-title: Food Hydrocoll – volume: 159 year: 2022 article-title: Effect of low‐frequency alternating magnetic field on the rheological properties, water distribution and microstructure of low‐salt pork batters publication-title: LWT‐ Food Sci Technol – volume: 54 start-page: 685 year: 2021 end-page: 692 article-title: Hydrogen bonding and surface tension properties of aqueous solutions of tetrahydrofuran publication-title: Spectrosc Lett – volume: 32 year: 2020 article-title: Simultaneous measurement of rheological properties in a microfluidic rheometer publication-title: Phys Fluids – volume: 373 year: 2022 article-title: Insight into ultrasound‐assisted phosphorylation on the structural and emulsifying properties of goose liver protein publication-title: Food Chem – volume: 124 year: 2022 article-title: Effect of low frequency ultrasound on the functional characteristics of isolated lupin protein publication-title: Food Hydrocoll – volume: 152 year: 2021 article-title: Ultrasonic modification of whey protein isolate: implications for the structural and functional properties publication-title: LWT‐ Food Sci Technol – volume: 57 start-page: 2459 year: 2022 end-page: 2466 article-title: Effects of high‐pressure‐modified soy 11S globulin on the gel properties and water‐holding capacity of pork batter publication-title: Int J Food Sci Technol – volume: 125 year: 2022 article-title: Structure characteristics and functionality of water‐soluble fraction from high‐intensity ultrasound treated pea protein isolate publication-title: Food Hydrocoll – volume: 56 start-page: 6572 year: 2021 end-page: 6579 article-title: Effects of NaCl and soy protein isolate on the physicochemical, water distribution, and mobility in frankfurters publication-title: Int J Food Sci Technol – volume: 95 start-page: 313 year: 2018 end-page: 323 article-title: Effect of acid modification of soy glycinin on its interfacial and emulsifying properties publication-title: J Am Oil Chem Soc – volume: 25 start-page: 875 year: 2020 article-title: Ultrasound‐assisted mild heating treatment improves the emulsifying properties of 11S globulins publication-title: Molecules – volume: 58 start-page: 9171 year: 2010 end-page: 9180 article-title: Heat‐induced changes occurring in oil/water emulsions stabilized by soy glycinin and β‐conglycinin publication-title: J Agric Food Chem – volume: 48 start-page: 1111 year: 2000 end-page: 1117 article-title: Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin publication-title: J Agric Food Chem – volume: 120 year: 2021 article-title: Linear and non‐linear rheology of heat‐set soy protein gels: effects of selective proteolysis of β‐conglycinin and glycinin publication-title: Food Hydrocoll – volume: 84 start-page: 181 year: 2018 end-page: 192 article-title: Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein publication-title: Food Hydrocoll – volume: 47 start-page: 2173 year: 2000 end-page: 2180 article-title: Surface functional properties of native, acid‐treated, and reduced soy glycinin. 1. Foaming properties publication-title: J Agric Food Chem – volume: 938 start-page: 15 year: 2009 end-page: 19 article-title: The effects of magnetic fields on water molecular hydrogen bonds publication-title: J Mol Struct – volume: 153 year: 2022 article-title: The effect of fibrin on rheological behavior, gelling properties and microstructure of myofibrillar proteins publication-title: LWT‐ Food Sci Technol – volume: 37 start-page: 1 year: 2004 end-page: 8 article-title: Soy glycinin microcapsules by simple coacervation method publication-title: Colloids Surf B Biointerfaces – volume: 124 year: 2022 article-title: Effects of high pressure homogenization on the solubility, foaming, and gel properties of soy 11S globulin publication-title: Food Hydrocoll – volume: 56 start-page: 733 year: 2021 end-page: 741 article-title: Effects of direct current magnetic field treatment time on the properties of pork myofibrillar protein publication-title: Int J Food Sci Technol – volume: 217 start-page: 24 year: 2018 end-page: 33 article-title: The effect of treatment with the combined static magnetic field and cold water shock on the physicochemical properties of cucumbers publication-title: J Food Eng – volume: 23 start-page: 377 year: 2009 end-page: 386 article-title: Improving the functional properties of soy glycinin by enzymatic treatment. Adsorption and foaming characteristics publication-title: Food Hydrocoll – ident: e_1_2_9_17_1 doi: 10.1016/j.lwt.2022.113164 – ident: e_1_2_9_22_1 doi: 10.1016/j.foodhyd.2020.106124 – ident: e_1_2_9_20_1 doi: 10.1016/j.foodhyd.2020.105920 – ident: e_1_2_9_53_1 doi: 10.1016/j.foodhyd.2020.106036 – ident: e_1_2_9_38_1 doi: 10.1016/S0268-005X(02)00100-5 – ident: e_1_2_9_23_1 doi: 10.1111/jfpe.14008 – ident: e_1_2_9_33_1 doi: 10.1111/ijfs.15353 – ident: e_1_2_9_43_1 doi: 10.1016/j.foodhyd.2021.106962 – ident: e_1_2_9_50_1 doi: 10.1016/j.foodhyd.2008.03.011 – ident: e_1_2_9_44_1 doi: 10.1002/aocs.12003 – ident: e_1_2_9_39_1 doi: 10.1016/j.foodchem.2017.10.137 – ident: e_1_2_9_4_1 doi: 10.1016/j.foodhyd.2015.04.025 – ident: e_1_2_9_5_1 doi: 10.1016/j.colsurfb.2004.06.004 – ident: e_1_2_9_13_1 doi: 10.1016/j.ifset.2016.02.007 – ident: e_1_2_9_19_1 doi: 10.1016/j.foodchem.2019.125651 – ident: e_1_2_9_56_1 doi: 10.1080/00387010.2021.1987271 – ident: e_1_2_9_57_1 doi: 10.1016/j.ifset.2017.03.006 – ident: e_1_2_9_55_1 doi: 10.1016/j.foodhyd.2020.105976 – ident: e_1_2_9_30_1 doi: 10.1016/j.lwt.2021.112457 – ident: e_1_2_9_12_1 doi: 10.1111/ijfs.15297 – ident: e_1_2_9_9_1 doi: 10.1111/ijfs.15607 – ident: e_1_2_9_25_1 doi: 10.1016/j.meatsci.2020.108420 – ident: e_1_2_9_28_1 doi: 10.1016/j.lwt.2021.112272 – ident: e_1_2_9_34_1 doi: 10.1111/ijfs.14717 – ident: e_1_2_9_48_1 doi: 10.1016/j.foodhyd.2021.107409 – ident: e_1_2_9_52_1 doi: 10.1016/j.foodchem.2021.131598 – ident: e_1_2_9_15_1 doi: 10.1016/j.molstruc.2009.08.037 – ident: e_1_2_9_2_1 doi: 10.1021/jf101425j – ident: e_1_2_9_31_1 doi: 10.1016/j.lwt.2021.112458 – ident: e_1_2_9_40_1 doi: 10.1016/j.foodchem.2020.126896 – ident: e_1_2_9_7_1 doi: 10.1021/jf990560l – ident: e_1_2_9_26_1 doi: 10.1016/j.foodchem.2021.129703 – ident: e_1_2_9_11_1 doi: 10.3390/molecules25040875 – ident: e_1_2_9_32_1 doi: 10.1016/j.foodhyd.2021.107345 – ident: e_1_2_9_18_1 doi: 10.1016/j.meatsci.2022.109087 – ident: e_1_2_9_29_1 doi: 10.1016/j.foodhyd.2021.107470 – ident: e_1_2_9_46_1 doi: 10.1016/j.lwt.2020.110134 – ident: e_1_2_9_54_1 doi: 10.1016/j.meatsci.2021.108471 – ident: e_1_2_9_3_1 doi: 10.1016/j.foodhyd.2021.107261 – ident: e_1_2_9_42_1 doi: 10.3390/polym11020282 – ident: e_1_2_9_45_1 doi: 10.1063/5.0006060 – ident: e_1_2_9_6_1 doi: 10.1111/j.1365-2621.2003.tb05795.x – ident: e_1_2_9_10_1 doi: 10.1080/10942912.2014.999375 – ident: e_1_2_9_47_1 doi: 10.1016/j.tifs.2020.09.012 – ident: e_1_2_9_14_1 doi: 10.1016/j.foodhyd.2023.108775 – ident: e_1_2_9_49_1 doi: 10.1016/j.foodhyd.2020.106345 – ident: e_1_2_9_35_1 doi: 10.1016/j.foodchem.2018.09.028 – ident: e_1_2_9_51_1 doi: 10.1021/jf980977b – ident: e_1_2_9_36_1 doi: 10.1016/j.ultsonch.2021.105659 – ident: e_1_2_9_24_1 doi: 10.1016/j.ifset.2020.102567 – ident: e_1_2_9_41_1 doi: 10.1002/1097-0282(20010405)58:4<398::AID-BIP1016>3.0.CO;2-9 – ident: e_1_2_9_8_1 doi: 10.1016/0005-2795(75)90036-7 – ident: e_1_2_9_16_1 doi: 10.1016/j.jfoodeng.2017.08.011 – ident: e_1_2_9_21_1 doi: 10.1016/j.foodchem.2020.126728 – ident: e_1_2_9_27_1 doi: 10.1016/j.foodhyd.2018.05.047 – ident: e_1_2_9_37_1 doi: 10.1016/j.foodhyd.2021.106811 |
SSID | ssj0009966 |
Score | 2.4343073 |
Snippet | BACKGROUND
Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the... Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic... BACKGROUNDSoy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the... BACKGROUND: Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5944 |
SubjectTerms | agriculture Disulfide bonds disulfides Foaming foaming capacity Food industry gel strength gels Globulins Globulins - chemistry Globulins - metabolism Glycine max - chemistry Hydrophobic and Hydrophilic Interactions Hydrophobicity low‐frequency magnetic field Magnetic Fields Magnetic properties Physicochemical properties Protein Conformation Protein folding Protein structure Proteins Rheological properties rheological property Rheology Solubility soy 11S globulin Soybean Proteins - chemistry Soybean Proteins - metabolism Soybeans Structure-function relationships sulfhydryl content Surface properties Thermal stability Viscosity water holding capacity Zeta potential |
Title | Effects of low‐frequency magnetic field on solubility, structural and functional properties of soy 11S globulin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsfa.13415 https://www.ncbi.nlm.nih.gov/pubmed/38415770 https://www.proquest.com/docview/3068993658 https://www.proquest.com/docview/2932940196 https://www.proquest.com/docview/3153621310 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHVS_AgcLyaKAgIxASiGyT2NnEEpcVsKoq0QOlUi8ocvyooEtSNluh5cRH4DPySZiJk6zKS4JbpEw23mTG87c9_gXgESoGTPM2DbnSaSgUN6GM3CTUNstMLnFIZGge8vXBZO9I7B-nxxvwvN8L4_kQw4QbRUbbX1OAq7LZXUNDPzROjQlHRjvMqViLFNGbNTuKhHyPCkdVkAxs0mR3fenFbPSLxLyoWNuUM9uCd31jfaXJ6fh8WY71l584jv_7b67B1U6Lsql3nuuwYasRXJmeLDoehx1B8PK9XbLHrMOHztlBT-8fwaV-U3NzAz55CnLDasfm9efvX7-5hS_SXrGP6qSirZKsrZZjdcXI39ui3NUz5gG2BP9gqjKM8qyfnmRntE6wIOAr_WpTr1gcHzIimFD1_E04mr16-2Iv7L7mEGouabk9UmXJnZSGKGroGUJEPI9cJEplUq61NC7h2EVo7ISMsxFH49LlLuO5jpXgt2Czqiu7DQwvLG0uUS0KKWKRKoWjRG2sTSeKO5cF8KR_q4XuUOf0xY154SHNSUGPu2gfdwAPB9szD_j4rdVO7xxFF-RNgaMtHK2i5-UBPBhOY3jSmouqbH3eFKimEikIQvRnG45ZZ5LEGDYB3PaONzSF53j3LMMzT1v3-Usbi_3D2bQ9uvMvxnfhcoJCjebJ43QHNvGt23sotJbl_TagfgBTwCSM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPMB4GDwzKr7ABRiAkJtIlsdMkjxWjKmPrA9ukvUWOY08bJRlNJ1Se9ifsb-Qv4S5OUo1fErxVstMm6Z3v6_P5Y4CXqBgwzOvQ5VKFrpA8dxPPDFyloyiPE5wS5ZSH3JsMxodi5yg8ampzaC-M5UN0CTfyjHq8JgenhPTWkhp6WhnZJx5ZeB1u0JHehM7f_rikR5GUb2Hh2Bp0dNJga3nt1Xj0i8i8qlnroDNasyerVjWrkGpNPvXP51lfffuJ5Pjfz3MHbjdylA2t_dyFa7rowa3h8axBcugeONsnes5esYYgOmWTFuDfg9V2X3N1D75YEHLFSsOm5dfvF5dmZuu0F-yzPC5otySrC-ZYWTAy-boud_GGWYYt8T-YLHJGodZmKNkZLRXMiPlK31qVC-b7-4wgJlRAfx8OR-8O3o7d5kAHV_GEVtw9mWXcJElOIDU0DiE8HnvGE5nMQ65UkpuA4yihcBzKjfY4ds5MbCIeK18K_gBWirLQj4DhhZmOExSMIhG-CKXEiaLKtQ4HkhsTOfC6_VtT1dDO6dCNaWo5zUFKrzutX7cDL7q-Z5bx8dteG611pI2fVylOuHDCylHGOfC8a0YPpWUXWejyvEpRUAWJIA7Rn_twDDyDwEfPceChtbzuVniMvx5F2LJZ289f7jHd2R8N60-P_6XzM1gdH-ztprvvJx_W4WaAuo3S5n64AStoAfoJ6q559rT2rh-BISio |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Zj9MwEMdHyyJxPHCUK7CAEQgJRLpJ7ByWeKko1bJAhVhW2hcUOY69AkpSmq5QeeIj8Bn5JMzkqpZLgrdKmbROOuP52x7_DHAPFQOmeRO6XOnQFYrnrvRs5GoTx3kicUiU0zzky2m0sy92D8KDDXjc7YVp-BD9hBtFRt1fU4DPc7u9hoa-r6waEo4sPAEnReRJOrhh_HoNjyIl37HCURYEPZw02F7fezwd_aIxj0vWOudMzsPbrrVNqcmH4dEyG-ovP4Ec__dxLsC5VoyyUeM9F2HDFAM4OzpctEAOMwBn_M4s2X3W8kNnbNrh-wdwutvVXF2CTw0GuWKlZbPy8_ev3-yiqdJesY_qsKC9kqwul2Nlwcjh66rc1SPWEGyJ_sFUkTNKtM38JJvTQsGCiK_0rVW5Yr6_xwhhQuXzl2F_8vTNkx23Pc7B1VzSerunsoxbKXPCqKFrCOHxxLOeyFQecq1lbgOOfYTGXii3xuNonNnExjzRvhL8CmwWZWGuAcMbM5NIlItCCl-ESuEwUefGhJHi1sYOPOj-1VS3rHM6cmOWNpTmIKXXndav24G7ve28IXz81mqrc460jfIqxeEWDlc5ijgH7vSXMT5p0UUVpjyqUpRTgRREIfqzDce0EwU-xo0DVxvH65vCE_z1OMYrD2v3-Usb0929yaj-dP1fjG_DqVfjSfri2fT5DTgToGijOXM_3IJNdABzE0XXMrtVx9YP7HonVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+low%E2%80%90frequency+magnetic+field+on+solubility%2C+structural+and+functional+properties+of+soy+11S+globulin&rft.jtitle=Journal+of+the+science+of+food+and+agriculture&rft.au=Zhuang%E2%80%90Li+Kang&rft.au=Peng%E2%80%90Lei+Yao&rft.au=Jing%E2%80%90jie+Xie&rft.au=Yan%E2%80%90ping+Li&rft.date=2024-08-15&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0022-5142&rft.eissn=1097-0010&rft.volume=104&rft.issue=10&rft.spage=5944&rft.epage=5954&rft_id=info:doi/10.1002%2Fjsfa.13415&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5142&client=summon |