Effects of low‐frequency magnetic field on solubility, structural and functional properties of soy 11S globulin

BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical p...

Full description

Saved in:
Bibliographic Details
Published inJournal of the science of food and agriculture Vol. 104; no. 10; pp. 5944 - 5954
Main Authors Kang, Zhuang‐Li, Yao, Peng‐Lei, Xie, Jing‐jie, Li, Yan‐ping, Ma, Han‐Jun
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.08.2024
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min. CONCLUSION LF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry.
AbstractList BACKGROUND: Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS: Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min. CONCLUSION: LF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry.
BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min. CONCLUSION LF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry.
BACKGROUNDSoy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the low‐frequency magnetic field (LF‐MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.RESULTSCompared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water‐holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF‐MF treatment. The LF‐MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF‐MF modification time being 90 min.CONCLUSIONLF‐MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant‐based proteins in the food industry. © 2024 Society of Chemical Industry.
Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.
Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.BACKGROUNDSoy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin.Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min.RESULTSCompared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min.LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.CONCLUSIONLF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.
Author Yao, Peng‐Lei
Li, Yan‐ping
Kang, Zhuang‐Li
Xie, Jing‐jie
Ma, Han‐Jun
Author_xml – sequence: 1
  givenname: Zhuang‐Li
  orcidid: 0000-0002-5052-0173
  surname: Kang
  fullname: Kang, Zhuang‐Li
  email: kzlnj1988@163.com
  organization: Ministry of Culture and Tourism
– sequence: 2
  givenname: Peng‐Lei
  surname: Yao
  fullname: Yao, Peng‐Lei
  organization: Henan Institute of Science and Technology
– sequence: 3
  givenname: Jing‐jie
  surname: Xie
  fullname: Xie, Jing‐jie
  organization: Henan Institute of Science and Technology
– sequence: 4
  givenname: Yan‐ping
  surname: Li
  fullname: Li, Yan‐ping
  organization: Shangqiu Academy of Agricultural and Forestry Sciences
– sequence: 5
  givenname: Han‐Jun
  surname: Ma
  fullname: Ma, Han‐Jun
  organization: Henan Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38415770$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1KHTEUB_BQlHq13fgAJdBNEceeTCYzk6WItorQhe16yGQSySU3ueYDmV0foc_YJzHXa7sQ0VUI-Z0_Oefsox3nnULokMAJAai_LqMWJ4Q2hL1DCwK8qwAI7KBFeawrRpp6D-3HuAQAztv2PdqjfcFdBwt0d661kilir7H1939__9FB3WXl5IxX4tapZCTWRtkJe4ejt3k01qT5GMcUskw5CIuFm7DOTibjXbmug1-rkIx6TI1-xoTc4Fvrx2yN-4B2tbBRfXw6D9Cvi_OfZ9-r6x_fLs9OrytJObCKghhHqjmf6qZnQrKmAdqDhmYUE6NS8knXlBGQHdBJK6AFj7rXHe0lEQ09QF-2ueU7paGYhpWJUlkrnPI5DpQw2taEEniT1pzWvAHC20I_P6NLn0PpugRC23NOW9YX9elJ5XGlpmEdzEqEefg39wKOtkAGH2NQ-j8hMGyWOmyWOjwutWB4hqVJYjPsFISxL5eQbcm9sWp-JXy4urk43dY8ACLVtIQ
CitedBy_id crossref_primary_10_1016_j_ultsonch_2024_107143
Cites_doi 10.1016/j.lwt.2022.113164
10.1016/j.foodhyd.2020.106124
10.1016/j.foodhyd.2020.105920
10.1016/j.foodhyd.2020.106036
10.1016/S0268-005X(02)00100-5
10.1111/jfpe.14008
10.1111/ijfs.15353
10.1016/j.foodhyd.2021.106962
10.1016/j.foodhyd.2008.03.011
10.1002/aocs.12003
10.1016/j.foodchem.2017.10.137
10.1016/j.foodhyd.2015.04.025
10.1016/j.colsurfb.2004.06.004
10.1016/j.ifset.2016.02.007
10.1016/j.foodchem.2019.125651
10.1080/00387010.2021.1987271
10.1016/j.ifset.2017.03.006
10.1016/j.foodhyd.2020.105976
10.1016/j.lwt.2021.112457
10.1111/ijfs.15297
10.1111/ijfs.15607
10.1016/j.meatsci.2020.108420
10.1016/j.lwt.2021.112272
10.1111/ijfs.14717
10.1016/j.foodhyd.2021.107409
10.1016/j.foodchem.2021.131598
10.1016/j.molstruc.2009.08.037
10.1021/jf101425j
10.1016/j.lwt.2021.112458
10.1016/j.foodchem.2020.126896
10.1021/jf990560l
10.1016/j.foodchem.2021.129703
10.3390/molecules25040875
10.1016/j.foodhyd.2021.107345
10.1016/j.meatsci.2022.109087
10.1016/j.foodhyd.2021.107470
10.1016/j.lwt.2020.110134
10.1016/j.meatsci.2021.108471
10.1016/j.foodhyd.2021.107261
10.3390/polym11020282
10.1063/5.0006060
10.1111/j.1365-2621.2003.tb05795.x
10.1080/10942912.2014.999375
10.1016/j.tifs.2020.09.012
10.1016/j.foodhyd.2023.108775
10.1016/j.foodhyd.2020.106345
10.1016/j.foodchem.2018.09.028
10.1021/jf980977b
10.1016/j.ultsonch.2021.105659
10.1016/j.ifset.2020.102567
10.1002/1097-0282(20010405)58:4<398::AID-BIP1016>3.0.CO;2-9
10.1016/0005-2795(75)90036-7
10.1016/j.jfoodeng.2017.08.011
10.1016/j.foodchem.2020.126728
10.1016/j.foodhyd.2018.05.047
10.1016/j.foodhyd.2021.106811
ContentType Journal Article
Copyright 2024 Society of Chemical Industry.
2024 Society of Chemical Industry
Copyright_xml – notice: 2024 Society of Chemical Industry.
– notice: 2024 Society of Chemical Industry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1002/jsfa.13415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Agriculture
Diet & Clinical Nutrition
EISSN 1097-0010
EndPage 5954
ExternalDocumentID 38415770
10_1002_jsfa_13415
JSFA13415
Genre article
Evaluation Study
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Henan Province
  funderid: 212300410344
– fundername: Natural Science Foundation of Henan Province
  grantid: 212300410344
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29L
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
NPM
RWI
WRC
WWF
7QF
7QL
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7ST
7T5
7T7
7TA
7TB
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c3905-30abb3f99d2485ac5440380f04bad53cc9df23510c703dfe033f9bf8f738c1a43
IEDL.DBID DR2
ISSN 0022-5142
1097-0010
IngestDate Fri Jul 11 18:32:43 EDT 2025
Fri Jul 11 14:07:35 EDT 2025
Sun Jul 13 04:52:55 EDT 2025
Wed Feb 19 02:18:12 EST 2025
Tue Jul 01 02:01:44 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
Wed Aug 20 07:26:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords sulfhydryl content
foaming capacity
low‐frequency magnetic field
rheological property
soy 11S globulin
Language English
License 2024 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3905-30abb3f99d2485ac5440380f04bad53cc9df23510c703dfe033f9bf8f738c1a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-5052-0173
PMID 38415770
PQID 3068993658
PQPubID 37930
PageCount 11
ParticipantIDs proquest_miscellaneous_3153621310
proquest_miscellaneous_2932940196
proquest_journals_3068993658
pubmed_primary_38415770
crossref_primary_10_1002_jsfa_13415
crossref_citationtrail_10_1002_jsfa_13415
wiley_primary_10_1002_jsfa_13415_JSFA13415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 August 2024
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 15 August 2024
  day: 15
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: London
PublicationTitle Journal of the science of food and agriculture
PublicationTitleAlternate J Sci Food Agric
PublicationYear 2024
Publisher John Wiley & Sons, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons, Ltd
– name: John Wiley and Sons, Limited
References 2022; 373
2017; 41
2010; 58
2021; 67
2023; 142
2000; 47
2000; 48
2021; 365
2019; 11
2020; 326
2020; 321
2003; 17
2021; 120
2018; 84
2016; 34
2021; 76
2021; 112
2018; 217
2004; 37
2021; 118
2021; 152
2020; 134
2017; 245
2001; 58
2022; 126
2022; 124
2019; 274
2022; 125
2009; 23
2022; 153
2009; 938
2015; 18
2022; 45
2020; 105
2020; 107
2020; 32
1975; 412
2022; 159
2020; 108
2020; 109
2020; 309
2021; 54
2021; 56
2023; 198
2003; 68
2022; 57
2020; 25
2021; 175
2016; 60
2018; 95
2021; 176
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 18
  start-page: 2593
  year: 2015
  end-page: 2602
  article-title: Synergistic functionality of soybean 7S and 11S fractions in oil‐in‐water emulsions: effect of protein heat treatment
  publication-title: Int J Food Prop
– volume: 68
  start-page: 2724
  year: 2003
  end-page: 2729
  article-title: Effects of soy glycinin addition on the conformation and gel strength of two pork myosin types
  publication-title: J Food Sci
– volume: 105
  start-page: 261
  year: 2020
  end-page: 272
  article-title: Dairy and plant proteins as natural food emulsifiers
  publication-title: Trends Food Sci Technol
– volume: 309
  year: 2020
  article-title: Effects of low frequency magnetic field on myoglobin oxidation stability
  publication-title: Food Chem
– volume: 67
  year: 2021
  article-title: Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study
  publication-title: Innov Food Sci Emerg Technol
– volume: 245
  start-page: 542
  year: 2017
  end-page: 550
  article-title: Effects of succinylation on the structure and thermal aggregation of soy protein isolate
  publication-title: Food Chem
– volume: 326
  year: 2020
  article-title: Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: a novel study combined with low field NMR and Raman spectroscopy
  publication-title: Food Chem
– volume: 198
  year: 2023
  article-title: Effects of pre‐emulsified safflower oil with magnetic field modified soy 11S globulin on the gel, rheological, and sensory properties of reduced‐animal fat pork batter
  publication-title: Meat Sci
– volume: 34
  start-page: 205
  year: 2016
  end-page: 213
  article-title: Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths
  publication-title: Innov Food Sci Emerg Technol
– volume: 118
  year: 2021
  article-title: The effect of trehalose on the thermodynamic stability and emulsification of soybean 11S globulin in the molten globule state
  publication-title: Food Hydrocoll
– volume: 107
  year: 2020
  article-title: Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates
  publication-title: Food Hydrocoll
– volume: 107
  year: 2020
  article-title: Gel properties of grass carp myofibrillar protein modified by low‐frequency magnetic field during two‐stage water bath heating
  publication-title: Food Hydrocoll
– volume: 365
  year: 2021
  article-title: Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels
  publication-title: Food Chem
– volume: 126
  year: 2022
  article-title: Foaming and air‐water interfacial properties of camel milk proteins compared to bovine milk proteins
  publication-title: Food Hydrocoll
– volume: 176
  year: 2021
  article-title: Effects of soy protein isolate on gel properties and water holding capacity of low‐salt pork myofibrillar protein under high pressure processing
  publication-title: Meat Sci
– volume: 76
  year: 2021
  article-title: Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties
  publication-title: Ultrason Sonochem
– volume: 56
  start-page: 5211
  year: 2021
  end-page: 5219
  article-title: The effects of ultra‐high‐pressure treatments combined with heat treatments on the antigenicity and structure of soy glycinin
  publication-title: Int J Food Sci Technol
– volume: 17
  start-page: 365
  year: 2003
  end-page: 377
  article-title: Gelation of soy glycinin; influence of pH and ionic strength on network structure in relation to protein conformation
  publication-title: Food Hydrocoll
– volume: 274
  start-page: 775
  year: 2019
  end-page: 781
  article-title: Effect of low‐frequency magnetic field on the gel properties of pork myofibrillar proteins
  publication-title: Food Chem
– volume: 41
  start-page: 150
  year: 2017
  end-page: 159
  article-title: Effects of high‐pressure treatments on water characteristics and juiciness of rabbit meat sausages: role of microstructure and chemical interactions
  publication-title: Innov Food Sci Emerg Technol
– volume: 109
  year: 2020
  article-title: Improved physicochemical properties of peanut protein isolate glycated by atmospheric pressure cold plasma (ACP) treatment
  publication-title: Food Hydrocoll
– volume: 11
  start-page: 282
  year: 2019
  article-title: Effects of an electric field on the conformational transition of the protein: a molecular dynamics simulation study
  publication-title: Polymers
– volume: 134
  year: 2020
  article-title: Fabrication and characterization of food‐grade pickering high internal emulsions stabilized with β‐cyclodextrin
  publication-title: LWT‐ Food Sci Technol
– volume: 321
  year: 2020
  article-title: Gel properties of myofibrillar proteins heated at different heating rates under a low‐frequency magnetic field
  publication-title: Food Chem
– volume: 58
  start-page: 398
  year: 2001
  end-page: 409
  article-title: The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X‐ray databases for the numerical calculation of dipole moment
  publication-title: Biopolymers
– volume: 45
  year: 2022
  article-title: Effects of combined high pressure and temperature onsolubility, foaming, and rheological properties of soy 11S globulin
  publication-title: J Food Process Eng
– volume: 108
  year: 2020
  article-title: Effect of protein aggregation on rheological properties of pea protein gels
  publication-title: Food Hydrocoll
– volume: 175
  year: 2021
  article-title: Changes in the thermal stability and structure of myofibrillar protein from quick‐frozen pork patties with different fat addition under freeze‐thaw cycles
  publication-title: Meat Sci
– volume: 142
  year: 2023
  article-title: Effect of safflower oil and magnetic field‐modified soy 11S globulin on rheological and emulsifying properties of oil‐in‐water emulsions
  publication-title: Food Hydrocoll
– volume: 412
  start-page: 214
  year: 1975
  end-page: 228
  article-title: The structure, physical and chemical properties of the soy bean protein glycinin
  publication-title: Biochim Biophys Acta
– volume: 60
  start-page: 606
  year: 2016
  end-page: 619
  article-title: Soy glycinin as food‐grade Pickering stabilizers: part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface
  publication-title: Food Hydrocoll
– volume: 153
  year: 2022
  article-title: Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat
  publication-title: LWT‐ Food Sci Technol
– volume: 112
  year: 2021
  article-title: Comparison of surface and foaming properties of soy lipophilic protein with those of glycinin and β‐conglycinin
  publication-title: Food Hydrocoll
– volume: 159
  year: 2022
  article-title: Effect of low‐frequency alternating magnetic field on the rheological properties, water distribution and microstructure of low‐salt pork batters
  publication-title: LWT‐ Food Sci Technol
– volume: 54
  start-page: 685
  year: 2021
  end-page: 692
  article-title: Hydrogen bonding and surface tension properties of aqueous solutions of tetrahydrofuran
  publication-title: Spectrosc Lett
– volume: 32
  year: 2020
  article-title: Simultaneous measurement of rheological properties in a microfluidic rheometer
  publication-title: Phys Fluids
– volume: 373
  year: 2022
  article-title: Insight into ultrasound‐assisted phosphorylation on the structural and emulsifying properties of goose liver protein
  publication-title: Food Chem
– volume: 124
  year: 2022
  article-title: Effect of low frequency ultrasound on the functional characteristics of isolated lupin protein
  publication-title: Food Hydrocoll
– volume: 152
  year: 2021
  article-title: Ultrasonic modification of whey protein isolate: implications for the structural and functional properties
  publication-title: LWT‐ Food Sci Technol
– volume: 57
  start-page: 2459
  year: 2022
  end-page: 2466
  article-title: Effects of high‐pressure‐modified soy 11S globulin on the gel properties and water‐holding capacity of pork batter
  publication-title: Int J Food Sci Technol
– volume: 125
  year: 2022
  article-title: Structure characteristics and functionality of water‐soluble fraction from high‐intensity ultrasound treated pea protein isolate
  publication-title: Food Hydrocoll
– volume: 56
  start-page: 6572
  year: 2021
  end-page: 6579
  article-title: Effects of NaCl and soy protein isolate on the physicochemical, water distribution, and mobility in frankfurters
  publication-title: Int J Food Sci Technol
– volume: 95
  start-page: 313
  year: 2018
  end-page: 323
  article-title: Effect of acid modification of soy glycinin on its interfacial and emulsifying properties
  publication-title: J Am Oil Chem Soc
– volume: 25
  start-page: 875
  year: 2020
  article-title: Ultrasound‐assisted mild heating treatment improves the emulsifying properties of 11S globulins
  publication-title: Molecules
– volume: 58
  start-page: 9171
  year: 2010
  end-page: 9180
  article-title: Heat‐induced changes occurring in oil/water emulsions stabilized by soy glycinin and β‐conglycinin
  publication-title: J Agric Food Chem
– volume: 48
  start-page: 1111
  year: 2000
  end-page: 1117
  article-title: Properties of tofus and soy milks prepared from soybeans having different subunits of glycinin
  publication-title: J Agric Food Chem
– volume: 120
  year: 2021
  article-title: Linear and non‐linear rheology of heat‐set soy protein gels: effects of selective proteolysis of β‐conglycinin and glycinin
  publication-title: Food Hydrocoll
– volume: 84
  start-page: 181
  year: 2018
  end-page: 192
  article-title: Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein
  publication-title: Food Hydrocoll
– volume: 47
  start-page: 2173
  year: 2000
  end-page: 2180
  article-title: Surface functional properties of native, acid‐treated, and reduced soy glycinin. 1. Foaming properties
  publication-title: J Agric Food Chem
– volume: 938
  start-page: 15
  year: 2009
  end-page: 19
  article-title: The effects of magnetic fields on water molecular hydrogen bonds
  publication-title: J Mol Struct
– volume: 153
  year: 2022
  article-title: The effect of fibrin on rheological behavior, gelling properties and microstructure of myofibrillar proteins
  publication-title: LWT‐ Food Sci Technol
– volume: 37
  start-page: 1
  year: 2004
  end-page: 8
  article-title: Soy glycinin microcapsules by simple coacervation method
  publication-title: Colloids Surf B Biointerfaces
– volume: 124
  year: 2022
  article-title: Effects of high pressure homogenization on the solubility, foaming, and gel properties of soy 11S globulin
  publication-title: Food Hydrocoll
– volume: 56
  start-page: 733
  year: 2021
  end-page: 741
  article-title: Effects of direct current magnetic field treatment time on the properties of pork myofibrillar protein
  publication-title: Int J Food Sci Technol
– volume: 217
  start-page: 24
  year: 2018
  end-page: 33
  article-title: The effect of treatment with the combined static magnetic field and cold water shock on the physicochemical properties of cucumbers
  publication-title: J Food Eng
– volume: 23
  start-page: 377
  year: 2009
  end-page: 386
  article-title: Improving the functional properties of soy glycinin by enzymatic treatment. Adsorption and foaming characteristics
  publication-title: Food Hydrocoll
– ident: e_1_2_9_17_1
  doi: 10.1016/j.lwt.2022.113164
– ident: e_1_2_9_22_1
  doi: 10.1016/j.foodhyd.2020.106124
– ident: e_1_2_9_20_1
  doi: 10.1016/j.foodhyd.2020.105920
– ident: e_1_2_9_53_1
  doi: 10.1016/j.foodhyd.2020.106036
– ident: e_1_2_9_38_1
  doi: 10.1016/S0268-005X(02)00100-5
– ident: e_1_2_9_23_1
  doi: 10.1111/jfpe.14008
– ident: e_1_2_9_33_1
  doi: 10.1111/ijfs.15353
– ident: e_1_2_9_43_1
  doi: 10.1016/j.foodhyd.2021.106962
– ident: e_1_2_9_50_1
  doi: 10.1016/j.foodhyd.2008.03.011
– ident: e_1_2_9_44_1
  doi: 10.1002/aocs.12003
– ident: e_1_2_9_39_1
  doi: 10.1016/j.foodchem.2017.10.137
– ident: e_1_2_9_4_1
  doi: 10.1016/j.foodhyd.2015.04.025
– ident: e_1_2_9_5_1
  doi: 10.1016/j.colsurfb.2004.06.004
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ifset.2016.02.007
– ident: e_1_2_9_19_1
  doi: 10.1016/j.foodchem.2019.125651
– ident: e_1_2_9_56_1
  doi: 10.1080/00387010.2021.1987271
– ident: e_1_2_9_57_1
  doi: 10.1016/j.ifset.2017.03.006
– ident: e_1_2_9_55_1
  doi: 10.1016/j.foodhyd.2020.105976
– ident: e_1_2_9_30_1
  doi: 10.1016/j.lwt.2021.112457
– ident: e_1_2_9_12_1
  doi: 10.1111/ijfs.15297
– ident: e_1_2_9_9_1
  doi: 10.1111/ijfs.15607
– ident: e_1_2_9_25_1
  doi: 10.1016/j.meatsci.2020.108420
– ident: e_1_2_9_28_1
  doi: 10.1016/j.lwt.2021.112272
– ident: e_1_2_9_34_1
  doi: 10.1111/ijfs.14717
– ident: e_1_2_9_48_1
  doi: 10.1016/j.foodhyd.2021.107409
– ident: e_1_2_9_52_1
  doi: 10.1016/j.foodchem.2021.131598
– ident: e_1_2_9_15_1
  doi: 10.1016/j.molstruc.2009.08.037
– ident: e_1_2_9_2_1
  doi: 10.1021/jf101425j
– ident: e_1_2_9_31_1
  doi: 10.1016/j.lwt.2021.112458
– ident: e_1_2_9_40_1
  doi: 10.1016/j.foodchem.2020.126896
– ident: e_1_2_9_7_1
  doi: 10.1021/jf990560l
– ident: e_1_2_9_26_1
  doi: 10.1016/j.foodchem.2021.129703
– ident: e_1_2_9_11_1
  doi: 10.3390/molecules25040875
– ident: e_1_2_9_32_1
  doi: 10.1016/j.foodhyd.2021.107345
– ident: e_1_2_9_18_1
  doi: 10.1016/j.meatsci.2022.109087
– ident: e_1_2_9_29_1
  doi: 10.1016/j.foodhyd.2021.107470
– ident: e_1_2_9_46_1
  doi: 10.1016/j.lwt.2020.110134
– ident: e_1_2_9_54_1
  doi: 10.1016/j.meatsci.2021.108471
– ident: e_1_2_9_3_1
  doi: 10.1016/j.foodhyd.2021.107261
– ident: e_1_2_9_42_1
  doi: 10.3390/polym11020282
– ident: e_1_2_9_45_1
  doi: 10.1063/5.0006060
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1365-2621.2003.tb05795.x
– ident: e_1_2_9_10_1
  doi: 10.1080/10942912.2014.999375
– ident: e_1_2_9_47_1
  doi: 10.1016/j.tifs.2020.09.012
– ident: e_1_2_9_14_1
  doi: 10.1016/j.foodhyd.2023.108775
– ident: e_1_2_9_49_1
  doi: 10.1016/j.foodhyd.2020.106345
– ident: e_1_2_9_35_1
  doi: 10.1016/j.foodchem.2018.09.028
– ident: e_1_2_9_51_1
  doi: 10.1021/jf980977b
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ultsonch.2021.105659
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ifset.2020.102567
– ident: e_1_2_9_41_1
  doi: 10.1002/1097-0282(20010405)58:4<398::AID-BIP1016>3.0.CO;2-9
– ident: e_1_2_9_8_1
  doi: 10.1016/0005-2795(75)90036-7
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jfoodeng.2017.08.011
– ident: e_1_2_9_21_1
  doi: 10.1016/j.foodchem.2020.126728
– ident: e_1_2_9_27_1
  doi: 10.1016/j.foodhyd.2018.05.047
– ident: e_1_2_9_37_1
  doi: 10.1016/j.foodhyd.2021.106811
SSID ssj0009966
Score 2.4343073
Snippet BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the...
Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic...
BACKGROUNDSoy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the...
BACKGROUND: Soy 11S globulin has high thermal stability, limiting its application in the production of low‐temperature gel foods. In this study, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5944
SubjectTerms agriculture
Disulfide bonds
disulfides
Foaming
foaming capacity
Food industry
gel strength
gels
Globulins
Globulins - chemistry
Globulins - metabolism
Glycine max - chemistry
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
low‐frequency magnetic field
Magnetic Fields
Magnetic properties
Physicochemical properties
Protein Conformation
Protein folding
Protein structure
Proteins
Rheological properties
rheological property
Rheology
Solubility
soy 11S globulin
Soybean Proteins - chemistry
Soybean Proteins - metabolism
Soybeans
Structure-function relationships
sulfhydryl content
Surface properties
Thermal stability
Viscosity
water holding capacity
Zeta potential
Title Effects of low‐frequency magnetic field on solubility, structural and functional properties of soy 11S globulin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsfa.13415
https://www.ncbi.nlm.nih.gov/pubmed/38415770
https://www.proquest.com/docview/3068993658
https://www.proquest.com/docview/2932940196
https://www.proquest.com/docview/3153621310
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHVS_AgcLyaKAgIxASiGyT2NnEEpcVsKoq0QOlUi8ocvyooEtSNluh5cRH4DPySZiJk6zKS4JbpEw23mTG87c9_gXgESoGTPM2DbnSaSgUN6GM3CTUNstMLnFIZGge8vXBZO9I7B-nxxvwvN8L4_kQw4QbRUbbX1OAq7LZXUNDPzROjQlHRjvMqViLFNGbNTuKhHyPCkdVkAxs0mR3fenFbPSLxLyoWNuUM9uCd31jfaXJ6fh8WY71l584jv_7b67B1U6Lsql3nuuwYasRXJmeLDoehx1B8PK9XbLHrMOHztlBT-8fwaV-U3NzAz55CnLDasfm9efvX7-5hS_SXrGP6qSirZKsrZZjdcXI39ui3NUz5gG2BP9gqjKM8qyfnmRntE6wIOAr_WpTr1gcHzIimFD1_E04mr16-2Iv7L7mEGouabk9UmXJnZSGKGroGUJEPI9cJEplUq61NC7h2EVo7ISMsxFH49LlLuO5jpXgt2Czqiu7DQwvLG0uUS0KKWKRKoWjRG2sTSeKO5cF8KR_q4XuUOf0xY154SHNSUGPu2gfdwAPB9szD_j4rdVO7xxFF-RNgaMtHK2i5-UBPBhOY3jSmouqbH3eFKimEikIQvRnG45ZZ5LEGDYB3PaONzSF53j3LMMzT1v3-Usbi_3D2bQ9uvMvxnfhcoJCjebJ43QHNvGt23sotJbl_TagfgBTwCSM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPMB4GDwzKr7ABRiAkJtIlsdMkjxWjKmPrA9ukvUWOY08bJRlNJ1Se9ifsb-Qv4S5OUo1fErxVstMm6Z3v6_P5Y4CXqBgwzOvQ5VKFrpA8dxPPDFyloyiPE5wS5ZSH3JsMxodi5yg8ampzaC-M5UN0CTfyjHq8JgenhPTWkhp6WhnZJx5ZeB1u0JHehM7f_rikR5GUb2Hh2Bp0dNJga3nt1Xj0i8i8qlnroDNasyerVjWrkGpNPvXP51lfffuJ5Pjfz3MHbjdylA2t_dyFa7rowa3h8axBcugeONsnes5esYYgOmWTFuDfg9V2X3N1D75YEHLFSsOm5dfvF5dmZuu0F-yzPC5otySrC-ZYWTAy-boud_GGWYYt8T-YLHJGodZmKNkZLRXMiPlK31qVC-b7-4wgJlRAfx8OR-8O3o7d5kAHV_GEVtw9mWXcJElOIDU0DiE8HnvGE5nMQ65UkpuA4yihcBzKjfY4ds5MbCIeK18K_gBWirLQj4DhhZmOExSMIhG-CKXEiaLKtQ4HkhsTOfC6_VtT1dDO6dCNaWo5zUFKrzutX7cDL7q-Z5bx8dteG611pI2fVylOuHDCylHGOfC8a0YPpWUXWejyvEpRUAWJIA7Rn_twDDyDwEfPceChtbzuVniMvx5F2LJZ289f7jHd2R8N60-P_6XzM1gdH-ztprvvJx_W4WaAuo3S5n64AStoAfoJ6q559rT2rh-BISio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Zj9MwEMdHyyJxPHCUK7CAEQgJRLpJ7ByWeKko1bJAhVhW2hcUOY69AkpSmq5QeeIj8Bn5JMzkqpZLgrdKmbROOuP52x7_DHAPFQOmeRO6XOnQFYrnrvRs5GoTx3kicUiU0zzky2m0sy92D8KDDXjc7YVp-BD9hBtFRt1fU4DPc7u9hoa-r6waEo4sPAEnReRJOrhh_HoNjyIl37HCURYEPZw02F7fezwd_aIxj0vWOudMzsPbrrVNqcmH4dEyG-ovP4Ec__dxLsC5VoyyUeM9F2HDFAM4OzpctEAOMwBn_M4s2X3W8kNnbNrh-wdwutvVXF2CTw0GuWKlZbPy8_ev3-yiqdJesY_qsKC9kqwul2Nlwcjh66rc1SPWEGyJ_sFUkTNKtM38JJvTQsGCiK_0rVW5Yr6_xwhhQuXzl2F_8vTNkx23Pc7B1VzSerunsoxbKXPCqKFrCOHxxLOeyFQecq1lbgOOfYTGXii3xuNonNnExjzRvhL8CmwWZWGuAcMbM5NIlItCCl-ESuEwUefGhJHi1sYOPOj-1VS3rHM6cmOWNpTmIKXXndav24G7ve28IXz81mqrc460jfIqxeEWDlc5ijgH7vSXMT5p0UUVpjyqUpRTgRREIfqzDce0EwU-xo0DVxvH65vCE_z1OMYrD2v3-Usb0929yaj-dP1fjG_DqVfjSfri2fT5DTgToGijOXM_3IJNdABzE0XXMrtVx9YP7HonVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+low%E2%80%90frequency+magnetic+field+on+solubility%2C+structural+and+functional+properties+of+soy+11S+globulin&rft.jtitle=Journal+of+the+science+of+food+and+agriculture&rft.au=Zhuang%E2%80%90Li+Kang&rft.au=Peng%E2%80%90Lei+Yao&rft.au=Jing%E2%80%90jie+Xie&rft.au=Yan%E2%80%90ping+Li&rft.date=2024-08-15&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0022-5142&rft.eissn=1097-0010&rft.volume=104&rft.issue=10&rft.spage=5944&rft.epage=5954&rft_id=info:doi/10.1002%2Fjsfa.13415&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5142&client=summon