Development and Alterations in Cerebellar Glutamate Levels and Structure in Preterm Infants

With the development of neuroscience and psychology, the cerebellar role in higher-order functions has been increasingly recognized. Premature birth has an impact on cerebellar development and increases the risk of neurodevelopmental disorders. This study aimed to evaluate the development and altera...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E108.D; no. 9; pp. 1119 - 1127
Main Authors GONG, He, REN, Qingfa, YIN, Zhijie, LIU, Quanyuan, WANG, Jing, LIU, Yuwei, XU, Donghao, XU, Lumeng, QI, Kai, XIA, Shuyuan, JIANG, Zhongde, LI, Xianglin
Format Journal Article
LanguageEnglish
Published The Institute of Electronics, Information and Communication Engineers 01.09.2025
一般社団法人 電子情報通信学会
Subjects
Online AccessGet full text
ISSN0916-8532
1745-1361
DOI10.1587/transinf.2025EDP7004

Cover

Abstract With the development of neuroscience and psychology, the cerebellar role in higher-order functions has been increasingly recognized. Premature birth has an impact on cerebellar development and increases the risk of neurodevelopmental disorders. This study aimed to evaluate the development and alterations of glutamate levels and volumes in cerebellar subregions in preterm infants and investigate the relationship of glutamate and volumes. 70 preterm infants and 22 full-term infants underwent glutamate chemical exchange saturation transfer (GluCEST) and sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE). Custom-written scripts in MATLAB were used to process GluCEST images to obtain glutamate levels, and volumes were obtained by ITK-SNAP. Both glutamate levels and volumes in cerebellar subregions in preterm infants were positively correlated with postmenstrual age. Furthermore, when compared to full-term infants, the glutamate levels of preterm infants at term-equivalent age were higher. No correlation was found between glutamate and volume. The metabolite and structure of preterm infants in cerebellar subregions were altered even in the absence of significant brain structure damage. These findings may help probe the pattern of brain maturation and identify potential neurodevelopmental disorders in preterm infants.
AbstractList With the development of neuroscience and psychology, the cerebellar role in higher-order functions has been increasingly recognized. Premature birth has an impact on cerebellar development and increases the risk of neurodevelopmental disorders. This study aimed to evaluate the development and alterations of glutamate levels and volumes in cerebellar subregions in preterm infants and investigate the relationship of glutamate and volumes. 70 preterm infants and 22 full-term infants underwent glutamate chemical exchange saturation transfer (GluCEST) and sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE). Custom-written scripts in MATLAB were used to process GluCEST images to obtain glutamate levels, and volumes were obtained by ITK-SNAP. Both glutamate levels and volumes in cerebellar subregions in preterm infants were positively correlated with postmenstrual age. Furthermore, when compared to full-term infants, the glutamate levels of preterm infants at term-equivalent age were higher. No correlation was found between glutamate and volume. The metabolite and structure of preterm infants in cerebellar subregions were altered even in the absence of significant brain structure damage. These findings may help probe the pattern of brain maturation and identify potential neurodevelopmental disorders in preterm infants.
ArticleNumber 2025EDP7004
Author Qingfa REN
Zhongde JIANG
Zhijie YIN
Quanyuan LIU
Jing WANG
Shuyuan XIA
Xianglin LI
Kai QI
Donghao XU
He GONG
Lumeng XU
Yuwei LIU
Author_xml – sequence: 1
  givenname: He
  surname: GONG
  fullname: GONG, He
– sequence: 2
  givenname: Qingfa
  surname: REN
  fullname: REN, Qingfa
– sequence: 3
  givenname: Zhijie
  surname: YIN
  fullname: YIN, Zhijie
– sequence: 4
  givenname: Quanyuan
  surname: LIU
  fullname: LIU, Quanyuan
– sequence: 5
  givenname: Jing
  surname: WANG
  fullname: WANG, Jing
– sequence: 6
  givenname: Yuwei
  surname: LIU
  fullname: LIU, Yuwei
– sequence: 7
  givenname: Donghao
  surname: XU
  fullname: XU, Donghao
– sequence: 8
  givenname: Lumeng
  surname: XU
  fullname: XU, Lumeng
– sequence: 9
  givenname: Kai
  surname: QI
  fullname: QI, Kai
– sequence: 10
  givenname: Shuyuan
  surname: XIA
  fullname: XIA, Shuyuan
– sequence: 11
  givenname: Zhongde
  surname: JIANG
  fullname: JIANG, Zhongde
– sequence: 12
  givenname: Xianglin
  surname: LI
  fullname: LI, Xianglin
BackLink https://cir.nii.ac.jp/crid/1390021920649605760$$DView record in CiNii
BookMark eNpNkEtPwzAQhC0EEuXxDzjkwDVl7cSJfazaUipVouJx4mBt4g2kSt3KdpH496SU12VnD9_MruaMHbuNI8auOAy5VOVN9OhC65qhACGnk2UJkB-xAS9zmfKs4MdsAJoXqZKZOGVnIawAuBJcDtjLhN6p22zX5GKCziajLpLH2G5cSFqXjMlTRV2HPpl1u4hrjJQs9p7whT9Gv6vjztMeXnrqzetk7hp0MVywkwa7QJffes6eb6dP47t0cT-bj0eLtM405KnIrVVZY1VV9goAJBBRctSitJklFEoWoEAUVaVVY2XJreaItmyayuoiO2f5Ibf2mxA8NWbr2zX6D8PB7AsyPwWZfwX1tuuDzbWtqdv95P1DILgWUOS6AFkW0GMPB2wVIr7Sbzb62NYd_WVPOSgzMfpn-XfrF67f0Bty2Sd-rIYZ
ContentType Journal Article
Copyright 2025 The Institute of Electronics, Information and Communication Engineers
Copyright_xml – notice: 2025 The Institute of Electronics, Information and Communication Engineers
DBID RYH
AAYXX
CITATION
DOI 10.1587/transinf.2025EDP7004
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 1127
ExternalDocumentID 10_1587_transinf_2025EDP7004
article_transinf_E108_D_9_E108_D_2025EDP7004_article_char_en
GroupedDBID -~X
5GY
ABJNI
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
ZKX
1TH
AFFNX
C1A
CKLRP
H13
RIG
RYH
RYL
VOH
ZE2
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c3904-24dd83fd8b7d83000e2aaa51a927d3dea285608026bb98fd571d91aad7ffbd963
ISSN 0916-8532
IngestDate Wed Sep 03 16:41:09 EDT 2025
Thu Jun 26 22:03:13 EDT 2025
Mon Sep 01 00:08:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3904-24dd83fd8b7d83000e2aaa51a927d3dea285608026bb98fd571d91aad7ffbd963
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E108.D/9/E108.D_2025EDP7004/_article/-char/en
PageCount 9
ParticipantIDs crossref_primary_10_1587_transinf_2025EDP7004
nii_cinii_1390021920649605760
jstage_primary_article_transinf_E108_D_9_E108_D_2025EDP7004_article_char_en
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationTitle_FL IEICE Trans. Inf. & Syst
PublicationYear 2025
Publisher The Institute of Electronics, Information and Communication Engineers
一般社団法人 電子情報通信学会
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: 一般社団法人 電子情報通信学会
References [3] S. Ji, B. Liu, Y. Li, N. Chen, Y. Fu, J. Shi, Z. Zhao, Z. Yao, and B. Hu, “Trait and state alterations in excitatory connectivity between subgenual anterior cingulate cortex and cerebellum in patients with current and remitted depression,” Psychiatry Res Neuroimaging, vol.317, p.111356, 2021. 10.1016/j.pscychresns.2021.111356
[43] J.C. Soliva, A. Moreno, J. Fauquet, A. Bielsa, S. Carmona, J.D. Gispert, M. Rovira, A. Bulbena, and O. Vilarroya, “Cerebellar neurometabolite abnormalities in pediatric attention/deficit hyperactivity disorder: A proton mr spectroscopic study,” Neurosci. Lett., vol.470, no.1, pp.60-64, 2010. 10.1016/j.neulet.2009.12.056
[20] Q. Ren, B. Wan, X. Luo, Q. Liu, H. Gong, H. Li, M. Luo, D. Xu, P. Liu, J. Wang, Z. Yin, and X. Li, “Glutamate alterations in the premature infant brain during different gestational ages with glutamate chemical exchange saturation transfer imaging: A pilot study,” Eur. Radiol., vol.33, no.6, pp.4214-4222, 2023. 10.1007/s00330-022-09374-2
[24] A. Dimitrova, D. Zeljko, F. Schwarze, M. Maschke, M. Gerwig, M. Frings, A. Beck, V. Aurich, M. Forsting, and D. Timmann, “Probabilistic 3d MRI atlas of the human cerebellar dentate/interposed nuclei,” Neuroimage, vol.30, no.1, pp.12-25, 2006. 10.1016/j.neuroimage.2005.09.020
[17] Y. Jia, Y. Chen, K. Geng, Y. Cheng, Y. Li, J. Qiu, H. Huang, R. Wang, Y. Zhang, and R. Wu, “Glutamate chemical exchange saturation transfer (GluCEST) magnetic resonance imaging in pre-clinical and clinical applications for encephalitis,” Front. Neurosci., vol.14, p.750, 2020. 10.3389/fnins.2020.00750
[5] I.Y. Iskusnykh and V.V. Chizhikov, “Cerebellar development after preterm birth,” Front. Cell Dev. Biol., vol.10, 1068288, 2022. 10.3389/fcell.2022.1068288
[18] L. Luo, L. Zhang, H. Huang, J. Guan, X. Zhang, Y. Lin, and R. Wu, “3.0T multi-parametric MRI reveals metabolic and microstructural abnormalities in the posterior visual pathways in patients with thyroid eye disease,” Front. Neurosci., vol.17, 1306364, 2024. 10.3389/fnins.2023.1306364
[22] L.G. Matthews, T.E. Inder, L. Pascoe, K. Kapur, K.J. Lee, B.B. Monson, L.W. Doyle, D.K. Thompson, and P.J. Anderson, “Longitudinal preterm cerebellar volume: Perinatal and neurodevelopmental outcome associations,” Cerebellum, vol.17, no.5, pp.610-627, 2018. 10.1007/s12311-018-0946-1
[31] C.J. Stoodley and J.D. Schmahmann, “Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing,” Cortex, vol.46, no.7, pp.831-844, 2010. 10.1016/j.cortex.2009.11.008
[11] S. Bakhshi, M. Tehrani-Doost, and S.A.H. Batouli, “Evaluation of fronto-cerebellar neurometabolites in youth with ADHD compared to the healthy group and their associations with cognitive and behavioral characteristics: A proton magnetic spectroscopy study,” Int. J. Psychophysiol., vol.182, pp.190-199, 2022. 10.1016/j.ijpsycho.2022.10.005
[32] P. Haldipur, K.J. Millen, and K.A. Aldinger, “Human cerebellar development and transcriptomics: Implications for neurodevelopmental disorders,” Annu. Rev. Neurosci., vol.45, pp.515-531, 2022. 10.1146/annurev-neuro-111020-091953
[8] M.V. Perdue, M.M. DeMayo, T.K. Bell, E. Boudes, M. Bagshawe, A.D. Harris, and C. Lebel, “Changes in brain metabolite levels across childhood,” Neuroimage, vol.274, 120087, 2023. 10.1101/2022.11.30.518618
[7] J. De Asis-Cruz, K. Kapse, S.K. Basu, M. Said, D. Scheinost, J. Murnick, T. Chang, A. du Plessis, and C. Limperopoulos, “Functional brain connectivity in ex utero premature infants compared to in utero fetuses,” Neuroimage, vol.219, p.117043, 2020. 10.1016/j.neuroimage.2020.117043
[29] S.A. Anteraper, X. Guell, H.P. Taylor, A. D’Mello, S. Whitfield-Gabrieli, and G. Joshi, “Intrinsic functional connectivity of dentate nuclei in autism spectrum disorder,” Brain Connect, vol.9, no.9, pp.692-702, 2019. 10.1089/brain.2019.0692
[33] A. Sathyanesan, J. Zhou, J. Scafidi, D.H. Heck, R.V. Sillitoe, and V. Gallo, “Emerging connections between cerebellar development, behaviour and complex brain disorders,” Nat. Rev. Neurosci., vol.20, no.5, pp.298-313, 2019. 10.1038/s41583-019-0152-2
[10] A.J. Johnson, E. Shankland, T. Richards, N. Corrigan, D. Shusterman, R. Edden, A. Estes, T. St. John, S. Dager, and N.M. Kleinhans, “Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder,” Psychiatry Res. Neuroimaging, vol.336, p.111745, 2023. 10.1016/j.pscychresns.2023.111745
[16] K.E. Mamoune, L. Barantin, H. Adriaensen, and Y. Tillet, “Application of chemical exchange saturation transfer (CEST) in neuroimaging,” J. Chem. Neuroanat, vol.114, p.101944, 2021. 10.1016/j.jchemneu.2021.101944
[30] C. Vias and A.S. Dick, “Cerebellar contributions to language in typical and atypical development: A review,” Dev. Neuropsychol, vol.42, no.6, pp.404-421, 2017. 10.1080/87565641.2017.1334783
[13] C. Crump, J. Sundquist, and K. Sundquist, “Preterm or early term birth and risk of autism,” Pediatrics, vol.148, no.3, e2020032300, 2021. 10.1542/peds.2020-032300
[38] S. Pregnolato, E. Chakkarapani, A.R. Isles, and K. Luyt, “Glutamate transport and preterm brain injury,” Front. Physiol., vol.10, p.417, 2019. 10.3389/fphys.2019.00417
[34] R. Luján, R. Shigemoto, and G. López-Bendito, “Glutamate and GABA receptor signalling in the developing brain,” Neuroscience, vol.130, no.3, pp.567-580, 2005. 10.1016/j.neuroscience.2004.09.042
[1] S. Rudolph, A. Badura, S. Lutzu, S.S. Pathak, A. Thieme, J.L. Verpeut, M.J. Wagner, Y.-M. Yang, and D. Fioravante, “Cognitive-affective functions of the cerebellum,” J. Neurosci., vol.43, no.45, pp.7554-7564, 2023. 10.1523/jneurosci.1451-23.2023
[26] S. Cai, G. Zhang, H. Zhang, and J. Wang, “Normative linear and volumetric biometric measurements of fetal brain development in magnetic resonance imaging,” Childs Nerv. Syst., vol.36, no.12, pp.2997-3005, 2020. 10.1007/s00381-020-04633-3
[27] N. He, J. Langley, D.E. Huddleston, H. Ling, H. Xu, C. Liu, F. Yan, and X.P. Hu, “Improved neuroimaging atlas of the dentate nucleus,” Cerebellum, vol.16, no.5-6, pp.951-956, 2017. 10.1007/s12311-017-0872-7
[42] J.L. Wisnowski, R.C. Ceschin, S.Y. Choi, V.J. Schmithorst, M.J. Painter, M.D. Nelson, S. Blüml, and A. Panigrahy, “Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury,” Neuroradiology, vol.57, no.5, pp.515-525, 2015. 10.1007/s00234-015-1495-7
[28] Y. Xie, Y. Xi, L.-B. Cui, C. Li, Y. Xu, Y. Zhang, Q. Yan, P. Fang, and H. Yin, “Altered functional connectivity of the dentate nuclei in patients with schizophrenia,” Schizophr. Res., vol.233, pp.16-23, 2021. 10.1016/j.schres.2021.06.035
[4] C. Zhuo, C. Wang, L. Wang, X. Guo, Q. Xu, Y. Liu, and J. Zhu, “Altered resting-state functional connectivity of the cerebellum in schizophrenia,” Brain Imaging Behav, vol.12, no.2, pp.383-389, 2018. 10.1007/s11682-017-9704-0
[14] S.K. Basu, S. Pradhan, A.J. du Plessis, Y. Ben-Ari, and C. Limperopoulos, “GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy,” Neuroimage, vol.238, p.118215, 2021. 10.1016/j.neuroimage.2021.118215
[15] B. Schnider, R. Tuura, V. Disselhoff, B. Latal, F.M. Wehrle, and C.F. Hagmann, “Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm,” Pediatr Res., vol.88, no.5, pp.739-748, 2020. 10.1038/s41390-020-1024-1
[23] Y. Zhang, H.-Y. Heo, D.-H. Lee, X. Zhao, S. Jiang, K. Zhang, H. Li, and J. Zhou, “Selecting the reference image for registration of cest series,” J. Magn. Reson. Imaging, vol.43, no.3, pp.756-761, 2016. 10.1002/jmri.25027
[21] A.M. Pagnozzi, L. van Eijk, K. Pannek, R.N. Boyd, S. Saha, J. George, S. Bora, D.K. Bradford, M. Fahey, M. Ditchfield, A. Malhotra, H. Liley, P.B. Colditz, S. Rose, and J. Fripp, “Early brain morphometrics from neonatal MRI predict motor and cognitive outcomes at 2-years corrected age in very preterm infants,” Neuroimage, vol.267, p.119815, 2023. 10.1016/j.neuroimage.2022.119815
[37] A. Starowicz-Filip, K. Prochwicz, J. Kłosowska, A.A. Chrobak, A. Myszka, B. Bętkowska-Korpała, and B. Kwinta, “Cerebellar functional lateralization from the perspective of clinical neuropsychology,” Front. Psychol., vol.12, 775308, 2021. 10.3389/fpsyg.2021.775308
[40] M. Bouyssi-Kobar, J. Murnick, M. Brossard-Racine, T. Chang, E. Mahdi, M. Jacobs, and C. Limperopoulos, “Altered cerebral perfusion in infants born preterm compared with infants born full term,” J. Pediatr., vol.193, pp.54-61.e2, 2018. 10.1016/j.jpeds.2017.09.083
[36] S.K. Basu, S. Pradhan, M.B. Jacobs, M. Said, K. Kapse, J. Murnick, M.T. Whitehead, T. Chang, A.J. du Plessis, and C. Limperopoulos, “Age and sex influences gamma-aminobutyric acid concentrations in the developing brain of very premature infants,” Sci. Rep., vol.10, no.1, 10549, 2020. 10.1038/s41598-020-67188-y
[9] L.C. Jansson and K.E. Åkerman, “The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells,” J. Neural Transm., vol.121, no.8, pp.819-836, 2014. 10.1007/s00702-014-1174-6
[39] F. Xu, Y. Wang, W. Wang, W. Liang, Y. Tang, and S. Liu, “Preterm birth alters the regional development and structural covariance of cerebellum at term-equivalent age,” Cerebellum, vol.23, no.5, pp.1932-1941, 2024. 10.1007/s12311-024-01691-0
[12] W.W.-Y. Tso, F.K.W. Ho, D. Coghill, T.M.-C. Lee, Y. Wang, S.-L. Lee, M.S.-C. Wong, J.C.S. Yam, I.C.K. Wong, and P. Ip, “Preterm postnatal complications and risk of attention - deficit/hyperactivity disorder,” Dev. Med. Child Neurol., vol.65, no.3, pp.358-366, 2023. 10.1111/dmcn.15401
[35] S.K. Basu, S. Pradhan, Y.M. Sharker, K.J. Kapse, J. Murnick, T. Chang, C.A. Lopez, N. Andescavage, A.J. duPlessis, and C. Limperopoulos, “Severity of prematurity and age impact early postnatal development of GABA and glutamate systems,” Cereb. Cortex, vol.33, no.12, pp.7386-7394, 2023. 10.1093/cercor/bhad046
[6] E. Villa
References_xml – reference: [24] A. Dimitrova, D. Zeljko, F. Schwarze, M. Maschke, M. Gerwig, M. Frings, A. Beck, V. Aurich, M. Forsting, and D. Timmann, “Probabilistic 3d MRI atlas of the human cerebellar dentate/interposed nuclei,” Neuroimage, vol.30, no.1, pp.12-25, 2006. 10.1016/j.neuroimage.2005.09.020
– reference: [28] Y. Xie, Y. Xi, L.-B. Cui, C. Li, Y. Xu, Y. Zhang, Q. Yan, P. Fang, and H. Yin, “Altered functional connectivity of the dentate nuclei in patients with schizophrenia,” Schizophr. Res., vol.233, pp.16-23, 2021. 10.1016/j.schres.2021.06.035
– reference: [19] Y. Mao, Z. Zhuang, Y. Chen, X. Zhang, Y. Shen, G. Lin, and R. Wu, “Imaging of glutamate in acute traumatic brain injury using chemical exchange saturation transfer,” Quant Imaging Med Surg, vol.9, no.10, pp.1652-1663, 2019. 10.21037/qims.2019.09.08
– reference: [40] M. Bouyssi-Kobar, J. Murnick, M. Brossard-Racine, T. Chang, E. Mahdi, M. Jacobs, and C. Limperopoulos, “Altered cerebral perfusion in infants born preterm compared with infants born full term,” J. Pediatr., vol.193, pp.54-61.e2, 2018. 10.1016/j.jpeds.2017.09.083
– reference: [39] F. Xu, Y. Wang, W. Wang, W. Liang, Y. Tang, and S. Liu, “Preterm birth alters the regional development and structural covariance of cerebellum at term-equivalent age,” Cerebellum, vol.23, no.5, pp.1932-1941, 2024. 10.1007/s12311-024-01691-0
– reference: [1] S. Rudolph, A. Badura, S. Lutzu, S.S. Pathak, A. Thieme, J.L. Verpeut, M.J. Wagner, Y.-M. Yang, and D. Fioravante, “Cognitive-affective functions of the cerebellum,” J. Neurosci., vol.43, no.45, pp.7554-7564, 2023. 10.1523/jneurosci.1451-23.2023
– reference: [7] J. De Asis-Cruz, K. Kapse, S.K. Basu, M. Said, D. Scheinost, J. Murnick, T. Chang, A. du Plessis, and C. Limperopoulos, “Functional brain connectivity in ex utero premature infants compared to in utero fetuses,” Neuroimage, vol.219, p.117043, 2020. 10.1016/j.neuroimage.2020.117043
– reference: [30] C. Vias and A.S. Dick, “Cerebellar contributions to language in typical and atypical development: A review,” Dev. Neuropsychol, vol.42, no.6, pp.404-421, 2017. 10.1080/87565641.2017.1334783
– reference: [2] R.L. Buckner, “The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging,” Neuron, vol.80, no.3, pp.807-815, 2013. 10.1016/j.neuron.2013.10.044
– reference: [3] S. Ji, B. Liu, Y. Li, N. Chen, Y. Fu, J. Shi, Z. Zhao, Z. Yao, and B. Hu, “Trait and state alterations in excitatory connectivity between subgenual anterior cingulate cortex and cerebellum in patients with current and remitted depression,” Psychiatry Res Neuroimaging, vol.317, p.111356, 2021. 10.1016/j.pscychresns.2021.111356
– reference: [6] E. Villamor-Martinez, M. Fumagalli, Y.I. Alomar, S. Passera, G. Cavallaro, F. Mosca, and E. Villamor, “Cerebellar hemorrhage in preterm infants: A meta-analysis on risk factors and neurodevelopmental outcome,” Front. Physiol., vol.10, p.800, 2019. 10.3389/fphys.2019.00800
– reference: [15] B. Schnider, R. Tuura, V. Disselhoff, B. Latal, F.M. Wehrle, and C.F. Hagmann, “Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm,” Pediatr Res., vol.88, no.5, pp.739-748, 2020. 10.1038/s41390-020-1024-1
– reference: [16] K.E. Mamoune, L. Barantin, H. Adriaensen, and Y. Tillet, “Application of chemical exchange saturation transfer (CEST) in neuroimaging,” J. Chem. Neuroanat, vol.114, p.101944, 2021. 10.1016/j.jchemneu.2021.101944
– reference: [25] Y. Wu, C. Stoodley, M. Brossard-Racine, K. Kapse, G. Vezina, J. Murnick, A.J. du Plessis, and C. Limperopoulos, “Altered local cerebellar and brainstem development in preterm infants,” Neuroimage, vol.213, p.116702, 2020. 10.1016/j.neuroimage.2020.116702
– reference: [8] M.V. Perdue, M.M. DeMayo, T.K. Bell, E. Boudes, M. Bagshawe, A.D. Harris, and C. Lebel, “Changes in brain metabolite levels across childhood,” Neuroimage, vol.274, 120087, 2023. 10.1101/2022.11.30.518618
– reference: [31] C.J. Stoodley and J.D. Schmahmann, “Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing,” Cortex, vol.46, no.7, pp.831-844, 2010. 10.1016/j.cortex.2009.11.008
– reference: [12] W.W.-Y. Tso, F.K.W. Ho, D. Coghill, T.M.-C. Lee, Y. Wang, S.-L. Lee, M.S.-C. Wong, J.C.S. Yam, I.C.K. Wong, and P. Ip, “Preterm postnatal complications and risk of attention - deficit/hyperactivity disorder,” Dev. Med. Child Neurol., vol.65, no.3, pp.358-366, 2023. 10.1111/dmcn.15401
– reference: [26] S. Cai, G. Zhang, H. Zhang, and J. Wang, “Normative linear and volumetric biometric measurements of fetal brain development in magnetic resonance imaging,” Childs Nerv. Syst., vol.36, no.12, pp.2997-3005, 2020. 10.1007/s00381-020-04633-3
– reference: [35] S.K. Basu, S. Pradhan, Y.M. Sharker, K.J. Kapse, J. Murnick, T. Chang, C.A. Lopez, N. Andescavage, A.J. duPlessis, and C. Limperopoulos, “Severity of prematurity and age impact early postnatal development of GABA and glutamate systems,” Cereb. Cortex, vol.33, no.12, pp.7386-7394, 2023. 10.1093/cercor/bhad046
– reference: [17] Y. Jia, Y. Chen, K. Geng, Y. Cheng, Y. Li, J. Qiu, H. Huang, R. Wang, Y. Zhang, and R. Wu, “Glutamate chemical exchange saturation transfer (GluCEST) magnetic resonance imaging in pre-clinical and clinical applications for encephalitis,” Front. Neurosci., vol.14, p.750, 2020. 10.3389/fnins.2020.00750
– reference: [37] A. Starowicz-Filip, K. Prochwicz, J. Kłosowska, A.A. Chrobak, A. Myszka, B. Bętkowska-Korpała, and B. Kwinta, “Cerebellar functional lateralization from the perspective of clinical neuropsychology,” Front. Psychol., vol.12, 775308, 2021. 10.3389/fpsyg.2021.775308
– reference: [13] C. Crump, J. Sundquist, and K. Sundquist, “Preterm or early term birth and risk of autism,” Pediatrics, vol.148, no.3, e2020032300, 2021. 10.1542/peds.2020-032300
– reference: [29] S.A. Anteraper, X. Guell, H.P. Taylor, A. D’Mello, S. Whitfield-Gabrieli, and G. Joshi, “Intrinsic functional connectivity of dentate nuclei in autism spectrum disorder,” Brain Connect, vol.9, no.9, pp.692-702, 2019. 10.1089/brain.2019.0692
– reference: [23] Y. Zhang, H.-Y. Heo, D.-H. Lee, X. Zhao, S. Jiang, K. Zhang, H. Li, and J. Zhou, “Selecting the reference image for registration of cest series,” J. Magn. Reson. Imaging, vol.43, no.3, pp.756-761, 2016. 10.1002/jmri.25027
– reference: [4] C. Zhuo, C. Wang, L. Wang, X. Guo, Q. Xu, Y. Liu, and J. Zhu, “Altered resting-state functional connectivity of the cerebellum in schizophrenia,” Brain Imaging Behav, vol.12, no.2, pp.383-389, 2018. 10.1007/s11682-017-9704-0
– reference: [33] A. Sathyanesan, J. Zhou, J. Scafidi, D.H. Heck, R.V. Sillitoe, and V. Gallo, “Emerging connections between cerebellar development, behaviour and complex brain disorders,” Nat. Rev. Neurosci., vol.20, no.5, pp.298-313, 2019. 10.1038/s41583-019-0152-2
– reference: [14] S.K. Basu, S. Pradhan, A.J. du Plessis, Y. Ben-Ari, and C. Limperopoulos, “GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy,” Neuroimage, vol.238, p.118215, 2021. 10.1016/j.neuroimage.2021.118215
– reference: [11] S. Bakhshi, M. Tehrani-Doost, and S.A.H. Batouli, “Evaluation of fronto-cerebellar neurometabolites in youth with ADHD compared to the healthy group and their associations with cognitive and behavioral characteristics: A proton magnetic spectroscopy study,” Int. J. Psychophysiol., vol.182, pp.190-199, 2022. 10.1016/j.ijpsycho.2022.10.005
– reference: [27] N. He, J. Langley, D.E. Huddleston, H. Ling, H. Xu, C. Liu, F. Yan, and X.P. Hu, “Improved neuroimaging atlas of the dentate nucleus,” Cerebellum, vol.16, no.5-6, pp.951-956, 2017. 10.1007/s12311-017-0872-7
– reference: [5] I.Y. Iskusnykh and V.V. Chizhikov, “Cerebellar development after preterm birth,” Front. Cell Dev. Biol., vol.10, 1068288, 2022. 10.3389/fcell.2022.1068288
– reference: [20] Q. Ren, B. Wan, X. Luo, Q. Liu, H. Gong, H. Li, M. Luo, D. Xu, P. Liu, J. Wang, Z. Yin, and X. Li, “Glutamate alterations in the premature infant brain during different gestational ages with glutamate chemical exchange saturation transfer imaging: A pilot study,” Eur. Radiol., vol.33, no.6, pp.4214-4222, 2023. 10.1007/s00330-022-09374-2
– reference: [22] L.G. Matthews, T.E. Inder, L. Pascoe, K. Kapur, K.J. Lee, B.B. Monson, L.W. Doyle, D.K. Thompson, and P.J. Anderson, “Longitudinal preterm cerebellar volume: Perinatal and neurodevelopmental outcome associations,” Cerebellum, vol.17, no.5, pp.610-627, 2018. 10.1007/s12311-018-0946-1
– reference: [34] R. Luján, R. Shigemoto, and G. López-Bendito, “Glutamate and GABA receptor signalling in the developing brain,” Neuroscience, vol.130, no.3, pp.567-580, 2005. 10.1016/j.neuroscience.2004.09.042
– reference: [38] S. Pregnolato, E. Chakkarapani, A.R. Isles, and K. Luyt, “Glutamate transport and preterm brain injury,” Front. Physiol., vol.10, p.417, 2019. 10.3389/fphys.2019.00417
– reference: [42] J.L. Wisnowski, R.C. Ceschin, S.Y. Choi, V.J. Schmithorst, M.J. Painter, M.D. Nelson, S. Blüml, and A. Panigrahy, “Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury,” Neuroradiology, vol.57, no.5, pp.515-525, 2015. 10.1007/s00234-015-1495-7
– reference: [9] L.C. Jansson and K.E. Åkerman, “The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells,” J. Neural Transm., vol.121, no.8, pp.819-836, 2014. 10.1007/s00702-014-1174-6
– reference: [18] L. Luo, L. Zhang, H. Huang, J. Guan, X. Zhang, Y. Lin, and R. Wu, “3.0T multi-parametric MRI reveals metabolic and microstructural abnormalities in the posterior visual pathways in patients with thyroid eye disease,” Front. Neurosci., vol.17, 1306364, 2024. 10.3389/fnins.2023.1306364
– reference: [32] P. Haldipur, K.J. Millen, and K.A. Aldinger, “Human cerebellar development and transcriptomics: Implications for neurodevelopmental disorders,” Annu. Rev. Neurosci., vol.45, pp.515-531, 2022. 10.1146/annurev-neuro-111020-091953
– reference: [41] K.M. Cook, J. De Asis-Cruz, J.-H. Kim, S.K. Basu, N. Andescavage, J. Murnick, E. Spoehr, M. Liggett, A.J. du Plessis, and C. Limperopoulos, “Experience of early-life pain in premature infants is associated with atypical cerebellar development and later neurodevelopmental deficits,” BMC Med., vol.21, no.1, p.435, 2023. 10.1186/s12916-023-03141-w
– reference: [10] A.J. Johnson, E. Shankland, T. Richards, N. Corrigan, D. Shusterman, R. Edden, A. Estes, T. St. John, S. Dager, and N.M. Kleinhans, “Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder,” Psychiatry Res. Neuroimaging, vol.336, p.111745, 2023. 10.1016/j.pscychresns.2023.111745
– reference: [36] S.K. Basu, S. Pradhan, M.B. Jacobs, M. Said, K. Kapse, J. Murnick, M.T. Whitehead, T. Chang, A.J. du Plessis, and C. Limperopoulos, “Age and sex influences gamma-aminobutyric acid concentrations in the developing brain of very premature infants,” Sci. Rep., vol.10, no.1, 10549, 2020. 10.1038/s41598-020-67188-y
– reference: [21] A.M. Pagnozzi, L. van Eijk, K. Pannek, R.N. Boyd, S. Saha, J. George, S. Bora, D.K. Bradford, M. Fahey, M. Ditchfield, A. Malhotra, H. Liley, P.B. Colditz, S. Rose, and J. Fripp, “Early brain morphometrics from neonatal MRI predict motor and cognitive outcomes at 2-years corrected age in very preterm infants,” Neuroimage, vol.267, p.119815, 2023. 10.1016/j.neuroimage.2022.119815
– reference: [43] J.C. Soliva, A. Moreno, J. Fauquet, A. Bielsa, S. Carmona, J.D. Gispert, M. Rovira, A. Bulbena, and O. Vilarroya, “Cerebellar neurometabolite abnormalities in pediatric attention/deficit hyperactivity disorder: A proton mr spectroscopic study,” Neurosci. Lett., vol.470, no.1, pp.60-64, 2010. 10.1016/j.neulet.2009.12.056
SSID ssj0018215
Score 2.3881562
Snippet With the development of neuroscience and psychology, the cerebellar role in higher-order functions has been increasingly recognized. Premature birth has an...
SourceID crossref
nii
jstage
SourceType Index Database
Publisher
StartPage 1119
SubjectTerms Brain development
Cerebellum
Magnetic resonance imaging
Preterm infants
Title Development and Alterations in Cerebellar Glutamate Levels and Structure in Preterm Infants
URI https://www.jstage.jst.go.jp/article/transinf/E108.D/9/E108.D_2025EDP7004/_article/-char/en
https://cir.nii.ac.jp/crid/1390021920649605760
Volume E108.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2025/09/01, Vol.E108.D(9), pp.1119-1127
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK4AEe-BggCgzlAT9VGUkcJ_Zj0rpbGZRNrNKAh8iJHZEJhanqkOCP4m_k7Hw0SJX4kCo3ss9pevez7xzfnRF6GRSacCU91y9gkIcFp26uaehSX8sSzCQS26i0t8voeBW-vqAXo9HPgdfS9SY_LH7sjCv5H6lCHcjVRMn-g2T7m0IFXIN8oQQJQ_lXMh54_NhNgOSLzZHceYdP9VqbfQW5nhzBY0gwTk38DvRpEjO_t7ljzQ4CEJ-urWMMTBilbNM7dUbrQiymokmD3oRB2C2GNpBp0_kzD3OfG4eed8sjUGr9ho5YTs5ATZa9GviwWE4-fq4uq57mzWJlnEzr79ctZNu3EQHt3a0a_GAR4pQZJw0BJcPJFIsYJ1ApsKCYpzghWEQ4JZhTS5zAZ4IFN21paoiSGeaeIWIEM2prPJz6hsY4fyS22xwnfkucRLZmCk3D15t-5IIp0sz0upnc45C6PmmSv3ezv1Tf4MF3KhNqXsfMN4a7UH9o_q5WV7FNP3sziGPrFnBytt21YkFzYkb3222oJtzn1a67_GYK3bqE1YBJ83CjrqqBiXN-H91t1yZO0gDtARrpeh_d6879cFo1sI_uDJJYPkSfBih0AAjOAIVOVTtbFDo9Cp0GhZa8R6EhblHotCh8hFZzcT49dtsjO9yCcC90g1ApRkrF8hi-Qd3qQEpJfcmDWBGlZcDAxGaw8M9zzkpFY19xX0oVl2WuQBk8Rnv111o_QU7B_LDIpY7KgoeeJDmnHsmhG9FhXMpojNyOe9lVk5klMyta4HbWcTsz3BazU8PtMTppWNxTt-N2Sy18j2WzjHcXg949sQmGhLlnjA5ATllRmRJWUcZW5gHY9zyCFVDkPf1D-zN0ezt8nqM9YLU-APN2k7-wmPoFrmiXvg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Alterations+in+Cerebellar+Glutamate+Levels+and+Structure+in+Preterm+Infants&rft.jtitle=IEICE+Transactions+on+Information+and+Systems&rft.au=GONG+He&rft.au=REN+Qingfa&rft.au=YIN+Zhijie&rft.au=LIU+Quanyuan&rft.date=2025-09-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E9%9B%BB%E5%AD%90%E6%83%85%E5%A0%B1%E9%80%9A%E4%BF%A1%E5%AD%A6%E4%BC%9A&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=advpub&rft_id=info:doi/10.1587%2Ftransinf.2025edp7004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon