Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beij...
Saved in:
Published in | Biotechnology and bioengineering Vol. 117; no. 7; pp. 2008 - 2022 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169‐(pXY1‐Pthl‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.
The mutualism of Clostridium cellulovorans and Clostridium beijerinckii on lignocelluloses by nutrition‐detoxify cooperation yet relies on pH‐stat control. Here, combined evolutionary engineering and genetic manipulation improved the ability of C. cellulovorans to tolerate and produce butanol at a pH of 5.5. The engineered twin‐clostridium consortium produced 3.94 g/L butanol directly from alkali‐extracted deshelled corn cobs without pH control. This work explores a proof of concept on how to improve the robustness of a synthetic microbial community for bioproduction. |
---|---|
AbstractList | Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169‐(pXY1‐Pthl‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community. Abstract Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes ( Clocel_0798 and Clocel_2169 ), and overexpressing agmatine deiminase genes ( augA , encoded by Cbei_1922 ) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△ lyt0798 △ lyt2169 ‐(pXY1‐P thl ‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community. Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169‐(pXY1‐Pthl‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community. The mutualism of Clostridium cellulovorans and Clostridium beijerinckii on lignocelluloses by nutrition‐detoxify cooperation yet relies on pH‐stat control. Here, combined evolutionary engineering and genetic manipulation improved the ability of C. cellulovorans to tolerate and produce butanol at a pH of 5.5. The engineered twin‐clostridium consortium produced 3.94 g/L butanol directly from alkali‐extracted deshelled corn cobs without pH control. This work explores a proof of concept on how to improve the robustness of a synthetic microbial community for bioproduction. Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5-5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169-(pXY1-P -augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community. |
Author | Yang, Sheng Gao, Shuliang Jin, Mingjie Wen, Zhiqiang Ledesma‐Amaro, Rodrigo Lu, Minrui Jiang, Yu |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Wen fullname: Wen, Zhiqiang organization: School of Environmental and Biological Engineering, Nanjing University of Science & Technology – sequence: 2 givenname: Rodrigo surname: Ledesma‐Amaro fullname: Ledesma‐Amaro, Rodrigo organization: Imperial College London – sequence: 3 givenname: Minrui surname: Lu fullname: Lu, Minrui organization: School of Environmental and Biological Engineering, Nanjing University of Science & Technology – sequence: 4 givenname: Yu surname: Jiang fullname: Jiang, Yu organization: Shanghai TaoYuSheng Biotechnology Co., Ltd – sequence: 5 givenname: Shuliang surname: Gao fullname: Gao, Shuliang organization: Zhejiang Huarui Biotechnology Co., Ltd – sequence: 6 givenname: Mingjie orcidid: 0000-0002-9493-305X surname: Jin fullname: Jin, Mingjie email: jinmingjie@njust.edu.cn organization: School of Environmental and Biological Engineering, Nanjing University of Science & Technology – sequence: 7 givenname: Sheng orcidid: 0000-0003-3742-9989 surname: Yang fullname: Yang, Sheng email: syang@sibs.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32170874$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ctu1DAYBWALFdFpYcELIEtsYJHWt9jxko6AVqrEpqwjx_kzuPJliONW8yi8LW5TuqjEyrL1-fhyTtBRTBEQek_JGSWEnQ9uOWOKc_4KbSjRqiFMkyO0IYTIhreaHaOTnG_rVHVSvkHHnFFFOiU26M82hcFFGDHcJV8Wl6KZDxjiri7C7OIOmzjiHURYnMXBRLcv3jw47MJ-TneAfbrH-0u8JA-ziRYedwxlMTF5XMlY7OojNjgf4vJrzXJ2ToMzHm99ysvsRlcCtimEEt1yeIteT8ZnePc0nqKf377ebC-b6x_fr7ZfrhvLNeENMKJYNzEDUqhRMjYRQ60YiSLCKiqVGJhuRTtJMXCrpW6t4drqgU2t6mjHT9GnNbfe9HeBvPTBZQvemwip5J5xpbgQHRWVfnxBb1OZY71dzwRlSup6XlWfV1Wfl_MMU7-fXai_2lPSP_TV1776x76q_fCUWIYA47P8V1AF5yu4dx4O_0_qL65u1si_PoijYA |
CitedBy_id | crossref_primary_10_1016_j_biombioe_2020_105919 crossref_primary_10_1016_j_engmic_2024_100139 crossref_primary_10_1016_j_csbj_2021_06_048 crossref_primary_10_1021_acssuschemeng_1c08486 crossref_primary_10_1111_1751_7915_14148 crossref_primary_10_3390_fermentation7040248 crossref_primary_10_1016_j_cofs_2023_101074 crossref_primary_10_1016_j_biotechadv_2024_108348 crossref_primary_10_1016_j_biotechadv_2021_107795 crossref_primary_10_1016_j_jenvman_2021_113268 crossref_primary_10_1002_cssc_202301460 crossref_primary_10_1039_D3EE01471A crossref_primary_10_1002_elsc_202100152 crossref_primary_10_1016_j_fuel_2023_130751 crossref_primary_10_1021_acs_chemrev_2c00403 crossref_primary_10_3389_fbioe_2022_1051233 crossref_primary_10_1016_j_indcrop_2023_117117 crossref_primary_10_1093_ijlct_ctac068 crossref_primary_10_1016_j_nbt_2021_12_003 crossref_primary_10_1016_j_biortech_2023_128770 crossref_primary_10_1021_acs_jafc_0c00050 crossref_primary_10_1016_j_synbio_2024_06_006 crossref_primary_10_3390_molecules26175411 crossref_primary_10_1016_j_tibtech_2020_11_016 crossref_primary_10_1093_jambio_lxae158 crossref_primary_10_3389_fbioe_2021_661694 |
Cites_doi | 10.1016/j.copbio.2015.03.012 10.1099/00221287-148-11-3599 10.1073/pnas.1405641111 10.1038/ncomms10390 10.1016/j.ymben.2010.05.002 10.1073/pnas.1423143112 10.1016/j.procbio.2014.07.009 10.1016/j.copbio.2012.02.001 10.1016/j.tibtech.2018.11.002 10.1046/j.1365-2958.2001.02242.x 10.1128/MMBR.00025-14 10.1073/pnas.1716888115 10.1186/s12934-014-0092-5 10.1263/jbb.103.13 10.1002/biot.201600053 10.1186/1754-6834-7-25 10.1007/BF01199870 10.1002/9781118794623.ch2 10.1016/j.mib.2016.03.010 10.1038/nbt.3095 10.1002/bit.1072 10.1016/j.ymben.2017.01.011 10.1128/mBio.01932-14 10.1128/AEM.02560-18 10.1016/j.anaerobe.2016.05.011 10.1007/s00253-013-5093-5 10.1111/1751-7915.13478 10.1016/j.ymben.2015.07.001 10.1128/MMBR.67.3.429-453.2003 10.1016/j.ymben.2016.10.013 10.1111/j.1574-6968.1995.tb07427.x 10.3389/fchem.2014.00066 10.1128/JB.00219-19 10.1128/AEM.48.1.88-93.1984 10.1021/acssynbio.9b00331 10.1016/j.ymben.2012.05.003 10.1186/s13068-016-0507-0 10.1039/C4CS00114A 10.1186/s12934-018-0884-0 10.1073/pnas.1218447110 10.1007/s00253-014-6249-7 10.1038/cr.2013.13 10.1126/science.aab0946 10.1371/journal.pbio.1002540 10.1186/s13068-019-1524-6 10.1016/j.ymben.2015.01.006 10.1038/nrmicro1021 10.1002/bit.260290306 10.1186/s13068-015-0266-3 10.1002/biot.201900284 10.1021/acssynbio.5b00286 10.1099/00207713-34-2-155 10.1007/s00253-018-8970-0 10.1016/j.biotechadv.2015.06.001 10.1016/j.mimet.2014.11.004 10.1007/s002849900099 10.1186/1754-6834-6-117 10.1128/JB.183.23.6875-6884.2001 10.1016/j.biortech.2017.03.073 10.1016/j.biortech.2014.10.128 10.1002/j.1460-2075.1996.tb00936.x 10.1128/AEM.00706-11 10.1038/nmicrobiol.2016.198 10.1016/j.biortech.2018.02.125 10.1093/bioinformatics/btw062 10.1002/bit.26949 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals, Inc. 2020 Wiley Periodicals LLC |
Copyright_xml | – notice: 2020 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals LLC |
DBID | NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.27333 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 2022 |
ExternalDocumentID | 10_1002_bit_27333 32170874 BIT27333 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21706133; 21825804; 31670094; 31971343 – fundername: Funds for Creative Research Groups of China funderid: 31921006 – fundername: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University funderid: 2018BCE003 – fundername: Fundamental Research Funds for the Central Universities funderid: 30918011310 – fundername: Biotechnology and Biological Sciences Research Council Grant funderid: BB/R01602X/1 – fundername: Funds for Creative Research Groups of China grantid: 31921006 – fundername: Fundamental Research Funds for the Central Universities grantid: 30918011310 – fundername: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University grantid: 2018BCE003 – fundername: National Natural Science Foundation of China grantid: 21825804 – fundername: National Natural Science Foundation of China grantid: 31670094 – fundername: National Natural Science Foundation of China grantid: 31971343 – fundername: Biotechnology and Biological Sciences Research Council Grant grantid: BB/R01602X/1 – fundername: National Natural Science Foundation of China grantid: 21706133 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3903-e20728f2ae647d622f0a1c4d0704c71674b29545f64b3c9695ca39c9b2f578183 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 |
IngestDate | Sat Aug 17 02:48:36 EDT 2024 Thu Oct 10 18:56:10 EDT 2024 Fri Aug 23 02:01:43 EDT 2024 Sat Sep 28 08:29:05 EDT 2024 Sat Aug 24 01:41:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | low pH resistance consolidated bioprocessing agmatine deiminase adaptive laboratory evolution cell wall lyases |
Language | English |
License | 2020 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3903-e20728f2ae647d622f0a1c4d0704c71674b29545f64b3c9695ca39c9b2f578183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9493-305X 0000-0003-3742-9989 |
PMID | 32170874 |
PQID | 2412769167 |
PQPubID | 48814 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2377344814 proquest_journals_2412769167 crossref_primary_10_1002_bit_27333 pubmed_primary_32170874 wiley_primary_10_1002_bit_27333_BIT27333 |
PublicationCentury | 2000 |
PublicationDate | July 2020 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol Bioeng |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 79 2007; 103 2010; 12 2017; 40 2001; 183 2013; 23 2015; 31 2019; 12 2015; 33 2016; 32 2016; 31 2019; 201 2020; 15 2014a; 13 2020; 13 2015; 108 2004; 2 2015; 348 2012; 14 2017; 234 2013; 6 1996; 33 2014; 5 2014; 2 2015; 179 2017; 39 2018; 258 2013; 97 2020; 9 2019; 116 2002; 148 2016; 41 1995; 126 2013; 110 2014; 7 2012; 23 2014b; 49 1984; 48 2018; 102 2019; 37 2015; 99 1985; 7 2011; 77 2002; 81 2014; 111 2015; 8 1996; 15 2016; 14 2014; 43 2016; 11 2016; 5 2018; 17 2016; 7 2015; 28 2016; 2 2019; 85 2015; 112 1984; 34 2018; 115 2014 2001; 39 2001; 73 1987; 29 2016; 9 2003; 67 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Li Y. H. (e_1_2_8_26_1) 2002; 81 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – start-page: 23 year: 2014 end-page: 38 – volume: 23 start-page: 798 issue: 5 year: 2012 end-page: 802 article-title: Towards synthetic microbial consortia for bioprocessing publication-title: Current Opinion in Biotechnology – volume: 48 start-page: 88 issue: 1 year: 1984 end-page: 93 article-title: Isolation and characterization of an anaerobic, cellulolytic bacterium, sp. nov publication-title: Applied and Environmental Microbiology – volume: 31 start-page: 44 year: 2015 end-page: 52 article-title: Consolidated bioprocessing of cellulose to isobutanol using publication-title: Metabolic Engineering – volume: 5 start-page: 969 issue: 9 year: 2016 end-page: 977 article-title: Quorum sensing communication modules for microbial consortia publication-title: ACS Synthetic Biology – volume: 110 start-page: 14592 issue: 36 year: 2013 end-page: 14597 article-title: Design and characterization of synthetic fungal‐bacterial consortia for direct production of isobutanol from cellulosic biomass publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 234 start-page: 389 year: 2017 end-page: 396 article-title: Butyric acid production from lignocellulosic biomass hydrolysates by engineered overexpressing xylose catabolism genes for glucose and xylose co‐utilization publication-title: Bioresource Technology – volume: 28 start-page: 169 year: 2015 end-page: 179 article-title: Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent‐producing publication-title: Metabolic Engineering – volume: 39 start-page: 469 issue: 2 year: 2001 end-page: 479 article-title: Low external pH induces HOG1‐dependent changes in the organization of the cell wall publication-title: Molecular Microbiology – volume: 6 start-page: 117 issue: 1 year: 2013 article-title: Secretion and assembly of functional mini‐cellulosomes from synthetic chromosomal operons in ATCC 824 publication-title: Biotechnology for Biofuels – volume: 116 start-page: 1475 year: 2019 end-page: 1483 article-title: CRISPR‐Cas9(D10A) nickase‐assisted base editing in the solvent producer publication-title: Biotechnology and Bioengineering – volume: 201 issue: 16 year: 2019 article-title: CRISPR genome editing systems in the genus Clostridium: A timely advancement publication-title: Journal of Bacteriology – volume: 97 start-page: 7517 issue: 16 year: 2013 end-page: 7525 article-title: Short‐term adaptation improves the fermentation performance of in the presence of acetic acid at low pH publication-title: Applied Microbiology and Biotechnology – volume: 13 start-page: 1 issue: 1 year: 2014a end-page: 11 article-title: Artificial symbiosis for acetone‐butanol‐ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co‐culture of and publication-title: Microbial Cell Factories – volume: 148 start-page: 3599 year: 2002 end-page: 3608 article-title: cis‐acting elements that regulate the low‐pH‐inducible urease operon of publication-title: Microbiology‐Sgm – volume: 33 start-page: 1484 issue: 7 year: 2015 end-page: 1492 article-title: Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation publication-title: Biotechnology Advances – volume: 85 issue: 7 year: 2019 article-title: Improved n‐Butanol production from by integrated metabolic and evolutionary engineering publication-title: Applied and Environmental Microbiology – volume: 17 start-page: 17 year: 2018 article-title: Enhanced phenolic compounds tolerance response of NCIMB 8052 by inactivation of Cbei_3304 publication-title: Microbial Cell Factories – volume: 7 start-page: 509 issue: 7 year: 1985 end-page: 514 article-title: Butanol production from cellulosic substrates by sequential co‐culture of and publication-title: Biotechnology Letters – volume: 13 start-page: 410 issue: 2 year: 2020 end-page: 422 article-title: Consolidated bioprocessing for butanol production of cellulolytic Clostridia: Development and optimization publication-title: Microbial Biotechnology – volume: 49 start-page: 1941 issue: 11 year: 2014b end-page: 1949 article-title: A novel strategy for sequential co‐culture of and to produce solvents from alkali extracted corn cobs publication-title: Process Biochemistry – volume: 31 start-page: 146 year: 2016 end-page: 153 article-title: Principles for designing synthetic microbial communities publication-title: Current Opinion in Microbiology – volume: 12 start-page: 186 issue: 1 year: 2019 article-title: Metabolic engineering of for n‐butanol production from cellulose publication-title: Biotechnology for Biofuels – volume: 77 start-page: 6470 issue: 18 year: 2011 end-page: 6475 article-title: Butanol production from crystalline cellulose by cocultured and N1‐4 publication-title: Applied and Environmental Microbiology – volume: 12 start-page: 446 issue: 5 year: 2010 end-page: 454 article-title: Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in publication-title: Metabolic Engineering – volume: 2 year: 2016 article-title: Genome reduction in an abundant and ubiquitous soil bacterium “Candidatus Udaeobacter copiosus” publication-title: Nature Microbiology – volume: 9 start-page: 304 year: 2020 end-page: 315 article-title: Metabolic Engineering of to improve butanol production by consolidated bioprocessing publication-title: ACS Synthetic Biology – volume: 108 start-page: 49 year: 2015 end-page: 60 article-title: I‐SceI‐mediated scarless gene modification via allelic exchange in Clostridium publication-title: Journal of Microbiological Methods – volume: 7 start-page: 25 year: 2014 article-title: Improvement of cellulose catabolism in by sporulation abolishment and carbon alleviation publication-title: Biotechnology for Biofuels – volume: 39 start-page: 38 year: 2017 end-page: 48 article-title: Enhanced solvent production by metabolic engineering of a twin‐clostridial consortium publication-title: Metabolic Engineering – volume: 348 start-page: 1425 issue: 6242 year: 2015 end-page: 1427 article-title: Ecological communities by design publication-title: Science – volume: 8 start-page: 84 year: 2015 article-title: Developing a mesophilic co‐culture for direct conversion of cellulose to butanol in consolidated bioprocess publication-title: Biotechnology for Biofuels – volume: 103 start-page: 13 issue: 1 year: 2007 end-page: 21 article-title: Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis publication-title: Journal of Bioscience and Bioengineering – volume: 126 start-page: 257 issue: 3 year: 1995 end-page: 261 article-title: Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency publication-title: FEMS Microbiology Letters – volume: 5 issue: 6 year: 2014 article-title: Improving microbial biogasoline production in using tolerance engineering publication-title: mBio – volume: 37 start-page: 181 issue: 2 year: 2019 end-page: 197 article-title: Synthetic biology tools to engineer microbial communities for biotechnology publication-title: Trends in Biotechnology – volume: 9 start-page: 92 year: 2016 article-title: Elucidation of the roles of adhE1 and adhE2 in the primary metabolism of by combining in‐frame gene deletion and a quantitative system‐scale approach publication-title: Biotechnology for Biofuels – volume: 23 start-page: 635 issue: 5 year: 2013 end-page: 644 article-title: L‐glutamine provides acid resistance for through enzymatic release of ammonia publication-title: Cell Research – volume: 14 start-page: 569 issue: 5 year: 2012 end-page: 578 article-title: Metabolic engineering of D‐xylose pathway in to optimize solvent production from xylose mother liquid publication-title: Metabolic Engineering – volume: 258 start-page: 18 year: 2018 end-page: 25 article-title: Integrated bioethanol production from mixtures of corn and corn stover publication-title: Bioresource Technology – volume: 40 start-page: 138 year: 2017 end-page: 147 article-title: Metabolic flexibility of a butyrate pathway mutant of publication-title: Metabolic Engineering – volume: 15 start-page: 5513 issue: 20 year: 1996 end-page: 5526 article-title: Single point mutations in various domains of a plant plasma membrane H(+)‐ATPase expressed in increase H(+)‐pumping and permit yeast growth at low pH publication-title: The EMBO Journal – volume: 115 start-page: 2526 issue: 10 year: 2018 end-page: 2531 article-title: Metabolic division of labor in microbial systems publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 179 start-page: 595 year: 2015 end-page: 601 article-title: Effect of the accuracy of pH control on hydrogen fermentation publication-title: Bioresource Technology – volume: 111 start-page: E2149 issue: 20 year: 2014 end-page: E2156 article-title: Syntrophic exchange in synthetic microbial communities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 79 start-page: 19 issue: 1 year: 2015 end-page: 37 article-title: The Clostridium sporulation programs: Diversity and preservation of endospore differentiation publication-title: Microbiology and Molecular Biology Reviews – volume: 43 start-page: 6954 issue: 20 year: 2014 end-page: 6981 article-title: Synthetic microbial consortia: From systematic analysis to construction and applications publication-title: Chemical Society Reviews – volume: 15 issue: 1 year: 2020 article-title: TargeTron technology applicable in solventogenic Clostridia: Revisiting 12 years' advances publication-title: Biotechnology Journal – volume: 11 start-page: 961 issue: 7 year: 2016 end-page: 972 article-title: CRISPR‐based genome editing and expression control systems in and publication-title: Biotechnology Journal – volume: 32 start-page: 1733 issue: 11 year: 2016 end-page: 1739 article-title: Model‐based media selection to minimize the cost of metabolic cooperation in microbial ecosystems publication-title: Bioinformatics – volume: 2 start-page: 18 year: 2014 article-title: The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications publication-title: Frontiers in Chemistry – volume: 67 start-page: 429 issue: 3 year: 2003 end-page: 453 article-title: Surviving the acid test: Responses of Gram‐positive bacteria to low pH publication-title: Microbiology and Molecular Biology Reviews – volume: 2 start-page: 898 issue: 11 year: 2004 end-page: 907 article-title: acid resistance: Tales of an amateur acidophile publication-title: Nature Reviews Microbiology – volume: 33 start-page: 305 year: 2015 end-page: 317 article-title: Deciphering microbial community robustness through synthetic ecology and molecular systems synecology publication-title: Current Opinion in Biotechnology – volume: 41 start-page: 104 year: 2016 end-page: 112 article-title: A roadmap for gene system development in Clostridium publication-title: Anaerobe – volume: 14 issue: 8 year: 2016 article-title: Resource availability modulates the cooperative and competitive nature of a microbial cross‐feeding mutualism publication-title: PLoS Biology – volume: 102 start-page: 5419 issue: 13 year: 2018 end-page: 5425 article-title: Microbial co‐culturing systems: Butanol production from organic wastes through consolidated bioprocessing publication-title: Applied Microbiology and Biotechnology – volume: 34 start-page: 155 issue: 2 year: 1984 end-page: 159 article-title: sp. nov., a cellulolytic, mesophilic species from decayed grass publication-title: International Journal of Systematic Bacteriology – volume: 81 year: 2002 article-title: A novel two‐component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans publication-title: Journal of Dental Research – volume: 29 start-page: 329 issue: 3 year: 1987 end-page: 334 article-title: The effect of pH and lactose concentration on solvent production from whey permeate using publication-title: Biotechnology & Bioengineering – volume: 33 start-page: 194 issue: 3 year: 1996 end-page: 199 article-title: The lactic acid stress response of subsp. lactis publication-title: Current Microbiology – volume: 112 start-page: 8505 issue: 27 year: 2015 end-page: 8510 article-title: Integrated, systems metabolic picture of acetone‐butanol‐ethanol fermentation by publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 73 start-page: 390 issue: 5 year: 2001 end-page: 399 article-title: Scale‐down model to simulate spatial pH variations in large‐scale bioreactors publication-title: Biotechnology and Bioengineering – volume: 99 start-page: 1011 issue: 2 year: 2015 end-page: 1022 article-title: Engineering with a histidine kinase knockout for enhanced n‐butanol tolerance and production publication-title: Applied Microbiology and Biotechnology – volume: 33 start-page: 377 issue: 4 year: 2015 end-page: 383 article-title: Distributing a metabolic pathway among a microbial consortium enhances production of natural products publication-title: Nature Biotechnology – volume: 7 year: 2016 article-title: Total biosynthesis of opiates by stepwise fermentation using engineered publication-title: Nature Communications – volume: 183 start-page: 6875 issue: 23 year: 2001 end-page: 6884 article-title: Cell density modulates acid adaptation in Streptococcus mutans: Implications for survival in biofilms publication-title: Journal of Bacteriology – ident: e_1_2_8_49_1 doi: 10.1016/j.copbio.2015.03.012 – ident: e_1_2_8_8_1 doi: 10.1099/00221287-148-11-3599 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1405641111 – ident: e_1_2_8_39_1 doi: 10.1038/ncomms10390 – volume: 81 start-page: A444 year: 2002 ident: e_1_2_8_26_1 article-title: A novel two‐component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans publication-title: Journal of Dental Research contributor: fullname: Li Y. H. – ident: e_1_2_8_43_1 doi: 10.1016/j.ymben.2010.05.002 – ident: e_1_2_8_27_1 doi: 10.1073/pnas.1423143112 – ident: e_1_2_8_59_1 doi: 10.1016/j.procbio.2014.07.009 – ident: e_1_2_8_46_1 doi: 10.1016/j.copbio.2012.02.001 – ident: e_1_2_8_33_1 doi: 10.1016/j.tibtech.2018.11.002 – ident: e_1_2_8_19_1 doi: 10.1046/j.1365-2958.2001.02242.x – ident: e_1_2_8_3_1 doi: 10.1128/MMBR.00025-14 – ident: e_1_2_8_51_1 doi: 10.1073/pnas.1716888115 – ident: e_1_2_8_58_1 doi: 10.1186/s12934-014-0092-5 – ident: e_1_2_8_20_1 doi: 10.1263/jbb.103.13 – ident: e_1_2_8_22_1 doi: 10.1002/biot.201600053 – ident: e_1_2_8_24_1 doi: 10.1186/1754-6834-7-25 – ident: e_1_2_8_66_1 doi: 10.1007/BF01199870 – ident: e_1_2_8_5_1 doi: 10.1002/9781118794623.ch2 – ident: e_1_2_8_18_1 doi: 10.1016/j.mib.2016.03.010 – ident: e_1_2_8_69_1 doi: 10.1038/nbt.3095 – ident: e_1_2_8_4_1 doi: 10.1002/bit.1072 – ident: e_1_2_8_65_1 doi: 10.1016/j.ymben.2017.01.011 – ident: e_1_2_8_11_1 doi: 10.1128/mBio.01932-14 – ident: e_1_2_8_53_1 doi: 10.1128/AEM.02560-18 – ident: e_1_2_8_35_1 doi: 10.1016/j.anaerobe.2016.05.011 – ident: e_1_2_8_44_1 doi: 10.1007/s00253-013-5093-5 – ident: e_1_2_8_55_1 doi: 10.1111/1751-7915.13478 – ident: e_1_2_8_28_1 doi: 10.1016/j.ymben.2015.07.001 – ident: e_1_2_8_9_1 doi: 10.1128/MMBR.67.3.429-453.2003 – ident: e_1_2_8_57_1 doi: 10.1016/j.ymben.2016.10.013 – ident: e_1_2_8_42_1 doi: 10.1111/j.1574-6968.1995.tb07427.x – ident: e_1_2_8_2_1 doi: 10.3389/fchem.2014.00066 – ident: e_1_2_8_32_1 doi: 10.1128/JB.00219-19 – ident: e_1_2_8_47_1 doi: 10.1128/AEM.48.1.88-93.1984 – ident: e_1_2_8_54_1 doi: 10.1021/acssynbio.9b00331 – ident: e_1_2_8_61_1 doi: 10.1016/j.ymben.2012.05.003 – ident: e_1_2_8_64_1 doi: 10.1186/s13068-016-0507-0 – ident: e_1_2_8_48_1 doi: 10.1039/C4CS00114A – ident: e_1_2_8_62_1 doi: 10.1016/j.ymben.2012.05.003 – ident: e_1_2_8_29_1 doi: 10.1186/s12934-018-0884-0 – ident: e_1_2_8_36_1 doi: 10.1073/pnas.1218447110 – ident: e_1_2_8_63_1 doi: 10.1007/s00253-014-6249-7 – ident: e_1_2_8_31_1 doi: 10.1038/cr.2013.13 – ident: e_1_2_8_13_1 doi: 10.1126/science.aab0946 – ident: e_1_2_8_16_1 doi: 10.1371/journal.pbio.1002540 – ident: e_1_2_8_50_1 doi: 10.1186/s13068-019-1524-6 – ident: e_1_2_8_60_1 doi: 10.1016/j.ymben.2015.01.006 – ident: e_1_2_8_12_1 doi: 10.1038/nrmicro1021 – ident: e_1_2_8_10_1 doi: 10.1002/bit.260290306 – ident: e_1_2_8_52_1 doi: 10.1186/s13068-015-0266-3 – ident: e_1_2_8_56_1 doi: 10.1002/biot.201900284 – ident: e_1_2_8_45_1 doi: 10.1021/acssynbio.5b00286 – ident: e_1_2_8_41_1 doi: 10.1099/00207713-34-2-155 – ident: e_1_2_8_17_1 doi: 10.1007/s00253-018-8970-0 – ident: e_1_2_8_30_1 doi: 10.1016/j.biotechadv.2015.06.001 – ident: e_1_2_8_68_1 doi: 10.1016/j.mimet.2014.11.004 – ident: e_1_2_8_15_1 doi: 10.1007/s002849900099 – ident: e_1_2_8_21_1 doi: 10.1186/1754-6834-6-117 – ident: e_1_2_8_25_1 doi: 10.1128/JB.183.23.6875-6884.2001 – ident: e_1_2_8_14_1 doi: 10.1016/j.biortech.2017.03.073 – ident: e_1_2_8_37_1 doi: 10.1016/j.biortech.2014.10.128 – ident: e_1_2_8_38_1 doi: 10.1002/j.1460-2075.1996.tb00936.x – ident: e_1_2_8_40_1 doi: 10.1128/AEM.00706-11 – ident: e_1_2_8_6_1 doi: 10.1038/nmicrobiol.2016.198 – ident: e_1_2_8_7_1 doi: 10.1016/j.biortech.2018.02.125 – ident: e_1_2_8_67_1 doi: 10.1093/bioinformatics/btw062 – ident: e_1_2_8_23_1 doi: 10.1002/bit.26949 |
SSID | ssj0007866 |
Score | 2.498288 |
Snippet | Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures.... Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures.... Abstract Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2008 |
SubjectTerms | adaptive laboratory evolution Agmatine Agmatine deiminase Aldehyde dehydrogenase Aldehydes Bioprocessing Butanol cell wall lyases Cell walls consolidated bioprocessing Consortia Evolutionary genetics Fermentation Genes Lignocellulose low pH resistance Metabolic engineering Microbial activity Microorganisms pH control pH effects Sugar |
Title | Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27333 https://www.ncbi.nlm.nih.gov/pubmed/32170874 https://www.proquest.com/docview/2412769167 https://search.proquest.com/docview/2377344814 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoKQ9tM2mj20eqKWUXryxJdta0VOySdj20ENJIIeC0cuwdGMvXbtl80_ybzOS1rtJS6HkJpBkWWhm9M1I-gbgPdVpIpnKIq04OihSGFQpwyORWypSayy1nu3zaz6-SL9cZpcb8Kl7CxP4IVYBN6cZ3l47BZdqfrgmDVWTZoB7L3NMnwnj7jrXybc1dRQfhnNK5zGzTNCOVSimh6ue9_eivwDmfbzqN5yzZ_C9-9Vwz-THoG3UQF__weL4wLk8h6dLIEqOguRsw4aterBzVKETfrUgH4i_Gupj7j14dNyVtkZdgrgePLnDZbgDN2hZ0Mu2hthfS3HG_yF23YbIyhCUV_dskjjajS51GJn4yIYl0_o3mY1JU0-ty_dhfQ_VIn6tp2QWuGl9-4pIMl9UCF79tyaeTQpnM5rWLg-JmbRXRIenL83iBVycnZ6PxtEy70OkmYhZZGnM6bCk0uYpNzmlZSwTnRq0Tqnm7tmEcqeTWZmnimmRi0xLJrRQtET7gzbqJWxWdWVfA8k5Sl9iReKY2gwthUTAJSjVsRhqKeM-vOskoJgFeo8iEDnTAhel8IvSh71ONoqlhs8LRD6U5wiueR_erqpxBdyBi6xs3WIbxjlD_zdJ-_AqyNRqFIa-YDzkWPPRS8a_hy-OP5_7wpv_b7oLj6kLDPh7xXuw2fxs7T6ip0YdeDW5BQq8Fzw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITR44KODURhgEEK8pEvsJK4lXrbC1MHYA-qkvaDIX5EquqTaElD5T_hvOdtNy0BIiDdLtuNYvjv_7mz_DuAl1WkimcoirTg6KFIYVCnDI5FbKlJrLLWe7fMkH5-m78-ysw14072FCfwQq4Cb0wxvr52Cu4D03po1VE2bAW6-jF2D66juzCVuePtpTR7Fh-Gk0vnMLBO04xWK6d6q69Xd6A-IeRWx-i3n8A587n423DT5MmgbNdDff-Nx_N_Z3IXbSyxK9oPw3IMNW_Vge79CP_x8QV4RfzvUh917cOOgK22NuhxxPbj1C53hNvxA44KOtjXEfl1KNP4Qses2RFaGoMi6l5PEMW902cPI1Ac3LJnV38h8TJp6Zl3KD-t7qBYhbD0j80BP69tXRJLLRYX41X9r6gmlcDajWe1SkZhpe050eP3SLO7D6eG7yWgcLVM_RJqJmEWWxpwOSyptnnKTU1rGMtGpQQOVau5eTih3QJmVeaqYFrnItGRCC0VLNEFoph7AZlVX9iGQnKMAJlYkjqzN0FJIxFyCUh2LoZYy7sOLTgSKeWD4KAKXMy1wUQq_KH3Y7YSjWCr5ZYHgh_Ic8TXvw_NVNa6AO3ORla1bbMM4Z-gCJ2kfdoJQrUZh6A7GQ441r71o_H344uBo4guP_r3pM9gaTz4eF8dHJx8ew03q4gT-mvEubDYXrX2CYKpRT73O_ARaMRtU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIb4e-OgYFAYYhBAv6RI7sWvxtBWqDtCE0CbtYVLk2I5UrUsqloDKf8J_y9luWgZCQrxZsh3H8t35d2f7dwAvqU4TxYos0oVAB0VJgyplRCS5pTK1xlLr2T4P-eQ4fX-SnWzAm-4tTOCHWAXcnGZ4e-0UfG7K3TVpaDFtBrj3MnYFrqYcka9DRJ_X3FFiGA4qncvMMkk7WqGY7q66Xt6M_kCYlwGr33HGd-C0-9dw0eRs0DbFQH__jcbxPydzF24vkSjZC6JzDzZs1YOtvQq98PMFeUX83VAfdO_Btf2udGPUZYjrwa1fyAy34AeaFnSzrSH261Ke8X-IXbchqjIEBda9mySOd6PLHUamPrRhyaz-RuYT0tQz6xJ-WN-jaBHA1jMyD-S0vn1FFLlYVIhe_bemnk4KZzOa1S4RiZm250SHty_N4j4cj98djSbRMvFDpJmMWWRpLOiwpMryVBhOaRmrRKcGzVOqhXs3UbjjyazkacG05DLTikktC1qiAUIjtQ2bVV3Zh0C4QPFLrEwcVZuhpVSIuCSlOpZDrVTchxedBOTzwO-RByZnmuOi5H5R-rDTyUa-VPGLHKEPFRzRtejD81U1roA7cVGVrVtsw4Rg6AAnaR8eBJlajcLQGYyHAmtee8n4-_D5_sGRLzz696bP4Pqnt-P848Hhh8dwk7oggb9jvAObzZfWPkEk1RRPvcb8BPqlGgM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+evolutionary+engineering+and+genetic+manipulation+improve+low+pH+tolerance+and+butanol+production+in+a+synthetic+microbial+Clostridium+community&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Wen%2C+Zhiqiang&rft.au=Ledesma-Amaro%2C+Rodrigo&rft.au=Lu%2C+Minrui&rft.au=Jiang%2C+Yu&rft.date=2020-07-01&rft.eissn=1097-0290&rft.volume=117&rft.issue=7&rft.spage=2008&rft.epage=2022&rft_id=info:doi/10.1002%2Fbit.27333&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |