Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community

Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beij...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 117; no. 7; pp. 2008 - 2022
Main Authors Wen, Zhiqiang, Ledesma‐Amaro, Rodrigo, Lu, Minrui, Jiang, Yu, Gao, Shuliang, Jin, Mingjie, Yang, Sheng
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169‐(pXY1‐Pthl‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community. The mutualism of Clostridium cellulovorans and Clostridium beijerinckii on lignocelluloses by nutrition‐detoxify cooperation yet relies on pH‐stat control. Here, combined evolutionary engineering and genetic manipulation improved the ability of C. cellulovorans to tolerate and produce butanol at a pH of 5.5. The engineered twin‐clostridium consortium produced 3.94 g/L butanol directly from alkali‐extracted deshelled corn cobs without pH control. This work explores a proof of concept on how to improve the robustness of a synthetic microbial community for bioproduction.
AbstractList Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169‐(pXY1‐Pthl‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.
Abstract Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes ( Clocel_0798 and Clocel_2169 ), and overexpressing agmatine deiminase genes ( augA , encoded by Cbei_1922 ) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△ lyt0798 △ lyt2169 ‐(pXY1‐P thl ‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169‐(pXY1‐Pthl‐augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5‐fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community. The mutualism of Clostridium cellulovorans and Clostridium beijerinckii on lignocelluloses by nutrition‐detoxify cooperation yet relies on pH‐stat control. Here, combined evolutionary engineering and genetic manipulation improved the ability of C. cellulovorans to tolerate and produce butanol at a pH of 5.5. The engineered twin‐clostridium consortium produced 3.94 g/L butanol directly from alkali‐extracted deshelled corn cobs without pH control. This work explores a proof of concept on how to improve the robustness of a synthetic microbial community for bioproduction.
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5-5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169-(pXY1-P -augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.
Author Yang, Sheng
Gao, Shuliang
Jin, Mingjie
Wen, Zhiqiang
Ledesma‐Amaro, Rodrigo
Lu, Minrui
Jiang, Yu
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Wen
  fullname: Wen, Zhiqiang
  organization: School of Environmental and Biological Engineering, Nanjing University of Science & Technology
– sequence: 2
  givenname: Rodrigo
  surname: Ledesma‐Amaro
  fullname: Ledesma‐Amaro, Rodrigo
  organization: Imperial College London
– sequence: 3
  givenname: Minrui
  surname: Lu
  fullname: Lu, Minrui
  organization: School of Environmental and Biological Engineering, Nanjing University of Science & Technology
– sequence: 4
  givenname: Yu
  surname: Jiang
  fullname: Jiang, Yu
  organization: Shanghai TaoYuSheng Biotechnology Co., Ltd
– sequence: 5
  givenname: Shuliang
  surname: Gao
  fullname: Gao, Shuliang
  organization: Zhejiang Huarui Biotechnology Co., Ltd
– sequence: 6
  givenname: Mingjie
  orcidid: 0000-0002-9493-305X
  surname: Jin
  fullname: Jin, Mingjie
  email: jinmingjie@njust.edu.cn
  organization: School of Environmental and Biological Engineering, Nanjing University of Science & Technology
– sequence: 7
  givenname: Sheng
  orcidid: 0000-0003-3742-9989
  surname: Yang
  fullname: Yang, Sheng
  email: syang@sibs.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32170874$$D View this record in MEDLINE/PubMed
BookMark eNp10ctu1DAYBWALFdFpYcELIEtsYJHWt9jxko6AVqrEpqwjx_kzuPJliONW8yi8LW5TuqjEyrL1-fhyTtBRTBEQek_JGSWEnQ9uOWOKc_4KbSjRqiFMkyO0IYTIhreaHaOTnG_rVHVSvkHHnFFFOiU26M82hcFFGDHcJV8Wl6KZDxjiri7C7OIOmzjiHURYnMXBRLcv3jw47MJ-TneAfbrH-0u8JA-ziRYedwxlMTF5XMlY7OojNjgf4vJrzXJ2ToMzHm99ysvsRlcCtimEEt1yeIteT8ZnePc0nqKf377ebC-b6x_fr7ZfrhvLNeENMKJYNzEDUqhRMjYRQ60YiSLCKiqVGJhuRTtJMXCrpW6t4drqgU2t6mjHT9GnNbfe9HeBvPTBZQvemwip5J5xpbgQHRWVfnxBb1OZY71dzwRlSup6XlWfV1Wfl_MMU7-fXai_2lPSP_TV1776x76q_fCUWIYA47P8V1AF5yu4dx4O_0_qL65u1si_PoijYA
CitedBy_id crossref_primary_10_1016_j_biombioe_2020_105919
crossref_primary_10_1016_j_engmic_2024_100139
crossref_primary_10_1016_j_csbj_2021_06_048
crossref_primary_10_1021_acssuschemeng_1c08486
crossref_primary_10_1111_1751_7915_14148
crossref_primary_10_3390_fermentation7040248
crossref_primary_10_1016_j_cofs_2023_101074
crossref_primary_10_1016_j_biotechadv_2024_108348
crossref_primary_10_1016_j_biotechadv_2021_107795
crossref_primary_10_1016_j_jenvman_2021_113268
crossref_primary_10_1002_cssc_202301460
crossref_primary_10_1039_D3EE01471A
crossref_primary_10_1002_elsc_202100152
crossref_primary_10_1016_j_fuel_2023_130751
crossref_primary_10_1021_acs_chemrev_2c00403
crossref_primary_10_3389_fbioe_2022_1051233
crossref_primary_10_1016_j_indcrop_2023_117117
crossref_primary_10_1093_ijlct_ctac068
crossref_primary_10_1016_j_nbt_2021_12_003
crossref_primary_10_1016_j_biortech_2023_128770
crossref_primary_10_1021_acs_jafc_0c00050
crossref_primary_10_1016_j_synbio_2024_06_006
crossref_primary_10_3390_molecules26175411
crossref_primary_10_1016_j_tibtech_2020_11_016
crossref_primary_10_1093_jambio_lxae158
crossref_primary_10_3389_fbioe_2021_661694
Cites_doi 10.1016/j.copbio.2015.03.012
10.1099/00221287-148-11-3599
10.1073/pnas.1405641111
10.1038/ncomms10390
10.1016/j.ymben.2010.05.002
10.1073/pnas.1423143112
10.1016/j.procbio.2014.07.009
10.1016/j.copbio.2012.02.001
10.1016/j.tibtech.2018.11.002
10.1046/j.1365-2958.2001.02242.x
10.1128/MMBR.00025-14
10.1073/pnas.1716888115
10.1186/s12934-014-0092-5
10.1263/jbb.103.13
10.1002/biot.201600053
10.1186/1754-6834-7-25
10.1007/BF01199870
10.1002/9781118794623.ch2
10.1016/j.mib.2016.03.010
10.1038/nbt.3095
10.1002/bit.1072
10.1016/j.ymben.2017.01.011
10.1128/mBio.01932-14
10.1128/AEM.02560-18
10.1016/j.anaerobe.2016.05.011
10.1007/s00253-013-5093-5
10.1111/1751-7915.13478
10.1016/j.ymben.2015.07.001
10.1128/MMBR.67.3.429-453.2003
10.1016/j.ymben.2016.10.013
10.1111/j.1574-6968.1995.tb07427.x
10.3389/fchem.2014.00066
10.1128/JB.00219-19
10.1128/AEM.48.1.88-93.1984
10.1021/acssynbio.9b00331
10.1016/j.ymben.2012.05.003
10.1186/s13068-016-0507-0
10.1039/C4CS00114A
10.1186/s12934-018-0884-0
10.1073/pnas.1218447110
10.1007/s00253-014-6249-7
10.1038/cr.2013.13
10.1126/science.aab0946
10.1371/journal.pbio.1002540
10.1186/s13068-019-1524-6
10.1016/j.ymben.2015.01.006
10.1038/nrmicro1021
10.1002/bit.260290306
10.1186/s13068-015-0266-3
10.1002/biot.201900284
10.1021/acssynbio.5b00286
10.1099/00207713-34-2-155
10.1007/s00253-018-8970-0
10.1016/j.biotechadv.2015.06.001
10.1016/j.mimet.2014.11.004
10.1007/s002849900099
10.1186/1754-6834-6-117
10.1128/JB.183.23.6875-6884.2001
10.1016/j.biortech.2017.03.073
10.1016/j.biortech.2014.10.128
10.1002/j.1460-2075.1996.tb00936.x
10.1128/AEM.00706-11
10.1038/nmicrobiol.2016.198
10.1016/j.biortech.2018.02.125
10.1093/bioinformatics/btw062
10.1002/bit.26949
ContentType Journal Article
Copyright 2020 Wiley Periodicals, Inc.
2020 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals LLC
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.27333
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 2022
ExternalDocumentID 10_1002_bit_27333
32170874
BIT27333
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21706133; 21825804; 31670094; 31971343
– fundername: Funds for Creative Research Groups of China
  funderid: 31921006
– fundername: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University
  funderid: 2018BCE003
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 30918011310
– fundername: Biotechnology and Biological Sciences Research Council Grant
  funderid: BB/R01602X/1
– fundername: Funds for Creative Research Groups of China
  grantid: 31921006
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30918011310
– fundername: Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University
  grantid: 2018BCE003
– fundername: National Natural Science Foundation of China
  grantid: 21825804
– fundername: National Natural Science Foundation of China
  grantid: 31670094
– fundername: National Natural Science Foundation of China
  grantid: 31971343
– fundername: Biotechnology and Biological Sciences Research Council Grant
  grantid: BB/R01602X/1
– fundername: National Natural Science Foundation of China
  grantid: 21706133
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3903-e20728f2ae647d622f0a1c4d0704c71674b29545f64b3c9695ca39c9b2f578183
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Sat Aug 17 02:48:36 EDT 2024
Thu Oct 10 18:56:10 EDT 2024
Fri Aug 23 02:01:43 EDT 2024
Sat Sep 28 08:29:05 EDT 2024
Sat Aug 24 01:41:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords low pH resistance
consolidated bioprocessing
agmatine deiminase
adaptive laboratory evolution
cell wall lyases
Language English
License 2020 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3903-e20728f2ae647d622f0a1c4d0704c71674b29545f64b3c9695ca39c9b2f578183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9493-305X
0000-0003-3742-9989
PMID 32170874
PQID 2412769167
PQPubID 48814
PageCount 15
ParticipantIDs proquest_miscellaneous_2377344814
proquest_journals_2412769167
crossref_primary_10_1002_bit_27333
pubmed_primary_32170874
wiley_primary_10_1002_bit_27333_BIT27333
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 79
2007; 103
2010; 12
2017; 40
2001; 183
2013; 23
2015; 31
2019; 12
2015; 33
2016; 32
2016; 31
2019; 201
2020; 15
2014a; 13
2020; 13
2015; 108
2004; 2
2015; 348
2012; 14
2017; 234
2013; 6
1996; 33
2014; 5
2014; 2
2015; 179
2017; 39
2018; 258
2013; 97
2020; 9
2019; 116
2002; 148
2016; 41
1995; 126
2013; 110
2014; 7
2012; 23
2014b; 49
1984; 48
2018; 102
2019; 37
2015; 99
1985; 7
2011; 77
2002; 81
2014; 111
2015; 8
1996; 15
2016; 14
2014; 43
2016; 11
2016; 5
2018; 17
2016; 7
2015; 28
2016; 2
2019; 85
2015; 112
1984; 34
2018; 115
2014
2001; 39
2001; 73
1987; 29
2016; 9
2003; 67
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Li Y. H. (e_1_2_8_26_1) 2002; 81
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 23
  year: 2014
  end-page: 38
– volume: 23
  start-page: 798
  issue: 5
  year: 2012
  end-page: 802
  article-title: Towards synthetic microbial consortia for bioprocessing
  publication-title: Current Opinion in Biotechnology
– volume: 48
  start-page: 88
  issue: 1
  year: 1984
  end-page: 93
  article-title: Isolation and characterization of an anaerobic, cellulolytic bacterium, sp. nov
  publication-title: Applied and Environmental Microbiology
– volume: 31
  start-page: 44
  year: 2015
  end-page: 52
  article-title: Consolidated bioprocessing of cellulose to isobutanol using
  publication-title: Metabolic Engineering
– volume: 5
  start-page: 969
  issue: 9
  year: 2016
  end-page: 977
  article-title: Quorum sensing communication modules for microbial consortia
  publication-title: ACS Synthetic Biology
– volume: 110
  start-page: 14592
  issue: 36
  year: 2013
  end-page: 14597
  article-title: Design and characterization of synthetic fungal‐bacterial consortia for direct production of isobutanol from cellulosic biomass
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 234
  start-page: 389
  year: 2017
  end-page: 396
  article-title: Butyric acid production from lignocellulosic biomass hydrolysates by engineered overexpressing xylose catabolism genes for glucose and xylose co‐utilization
  publication-title: Bioresource Technology
– volume: 28
  start-page: 169
  year: 2015
  end-page: 179
  article-title: Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent‐producing
  publication-title: Metabolic Engineering
– volume: 39
  start-page: 469
  issue: 2
  year: 2001
  end-page: 479
  article-title: Low external pH induces HOG1‐dependent changes in the organization of the cell wall
  publication-title: Molecular Microbiology
– volume: 6
  start-page: 117
  issue: 1
  year: 2013
  article-title: Secretion and assembly of functional mini‐cellulosomes from synthetic chromosomal operons in ATCC 824
  publication-title: Biotechnology for Biofuels
– volume: 116
  start-page: 1475
  year: 2019
  end-page: 1483
  article-title: CRISPR‐Cas9(D10A) nickase‐assisted base editing in the solvent producer
  publication-title: Biotechnology and Bioengineering
– volume: 201
  issue: 16
  year: 2019
  article-title: CRISPR genome editing systems in the genus Clostridium: A timely advancement
  publication-title: Journal of Bacteriology
– volume: 97
  start-page: 7517
  issue: 16
  year: 2013
  end-page: 7525
  article-title: Short‐term adaptation improves the fermentation performance of in the presence of acetic acid at low pH
  publication-title: Applied Microbiology and Biotechnology
– volume: 13
  start-page: 1
  issue: 1
  year: 2014a
  end-page: 11
  article-title: Artificial symbiosis for acetone‐butanol‐ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co‐culture of and
  publication-title: Microbial Cell Factories
– volume: 148
  start-page: 3599
  year: 2002
  end-page: 3608
  article-title: cis‐acting elements that regulate the low‐pH‐inducible urease operon of
  publication-title: Microbiology‐Sgm
– volume: 33
  start-page: 1484
  issue: 7
  year: 2015
  end-page: 1492
  article-title: Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation
  publication-title: Biotechnology Advances
– volume: 85
  issue: 7
  year: 2019
  article-title: Improved n‐Butanol production from by integrated metabolic and evolutionary engineering
  publication-title: Applied and Environmental Microbiology
– volume: 17
  start-page: 17
  year: 2018
  article-title: Enhanced phenolic compounds tolerance response of NCIMB 8052 by inactivation of Cbei_3304
  publication-title: Microbial Cell Factories
– volume: 7
  start-page: 509
  issue: 7
  year: 1985
  end-page: 514
  article-title: Butanol production from cellulosic substrates by sequential co‐culture of and
  publication-title: Biotechnology Letters
– volume: 13
  start-page: 410
  issue: 2
  year: 2020
  end-page: 422
  article-title: Consolidated bioprocessing for butanol production of cellulolytic Clostridia: Development and optimization
  publication-title: Microbial Biotechnology
– volume: 49
  start-page: 1941
  issue: 11
  year: 2014b
  end-page: 1949
  article-title: A novel strategy for sequential co‐culture of and to produce solvents from alkali extracted corn cobs
  publication-title: Process Biochemistry
– volume: 31
  start-page: 146
  year: 2016
  end-page: 153
  article-title: Principles for designing synthetic microbial communities
  publication-title: Current Opinion in Microbiology
– volume: 12
  start-page: 186
  issue: 1
  year: 2019
  article-title: Metabolic engineering of for n‐butanol production from cellulose
  publication-title: Biotechnology for Biofuels
– volume: 77
  start-page: 6470
  issue: 18
  year: 2011
  end-page: 6475
  article-title: Butanol production from crystalline cellulose by cocultured and N1‐4
  publication-title: Applied and Environmental Microbiology
– volume: 12
  start-page: 446
  issue: 5
  year: 2010
  end-page: 454
  article-title: Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in
  publication-title: Metabolic Engineering
– volume: 2
  year: 2016
  article-title: Genome reduction in an abundant and ubiquitous soil bacterium “Candidatus Udaeobacter copiosus”
  publication-title: Nature Microbiology
– volume: 9
  start-page: 304
  year: 2020
  end-page: 315
  article-title: Metabolic Engineering of to improve butanol production by consolidated bioprocessing
  publication-title: ACS Synthetic Biology
– volume: 108
  start-page: 49
  year: 2015
  end-page: 60
  article-title: I‐SceI‐mediated scarless gene modification via allelic exchange in Clostridium
  publication-title: Journal of Microbiological Methods
– volume: 7
  start-page: 25
  year: 2014
  article-title: Improvement of cellulose catabolism in by sporulation abolishment and carbon alleviation
  publication-title: Biotechnology for Biofuels
– volume: 39
  start-page: 38
  year: 2017
  end-page: 48
  article-title: Enhanced solvent production by metabolic engineering of a twin‐clostridial consortium
  publication-title: Metabolic Engineering
– volume: 348
  start-page: 1425
  issue: 6242
  year: 2015
  end-page: 1427
  article-title: Ecological communities by design
  publication-title: Science
– volume: 8
  start-page: 84
  year: 2015
  article-title: Developing a mesophilic co‐culture for direct conversion of cellulose to butanol in consolidated bioprocess
  publication-title: Biotechnology for Biofuels
– volume: 103
  start-page: 13
  issue: 1
  year: 2007
  end-page: 21
  article-title: Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis
  publication-title: Journal of Bioscience and Bioengineering
– volume: 126
  start-page: 257
  issue: 3
  year: 1995
  end-page: 261
  article-title: Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency
  publication-title: FEMS Microbiology Letters
– volume: 5
  issue: 6
  year: 2014
  article-title: Improving microbial biogasoline production in using tolerance engineering
  publication-title: mBio
– volume: 37
  start-page: 181
  issue: 2
  year: 2019
  end-page: 197
  article-title: Synthetic biology tools to engineer microbial communities for biotechnology
  publication-title: Trends in Biotechnology
– volume: 9
  start-page: 92
  year: 2016
  article-title: Elucidation of the roles of adhE1 and adhE2 in the primary metabolism of by combining in‐frame gene deletion and a quantitative system‐scale approach
  publication-title: Biotechnology for Biofuels
– volume: 23
  start-page: 635
  issue: 5
  year: 2013
  end-page: 644
  article-title: L‐glutamine provides acid resistance for through enzymatic release of ammonia
  publication-title: Cell Research
– volume: 14
  start-page: 569
  issue: 5
  year: 2012
  end-page: 578
  article-title: Metabolic engineering of D‐xylose pathway in to optimize solvent production from xylose mother liquid
  publication-title: Metabolic Engineering
– volume: 258
  start-page: 18
  year: 2018
  end-page: 25
  article-title: Integrated bioethanol production from mixtures of corn and corn stover
  publication-title: Bioresource Technology
– volume: 40
  start-page: 138
  year: 2017
  end-page: 147
  article-title: Metabolic flexibility of a butyrate pathway mutant of
  publication-title: Metabolic Engineering
– volume: 15
  start-page: 5513
  issue: 20
  year: 1996
  end-page: 5526
  article-title: Single point mutations in various domains of a plant plasma membrane H(+)‐ATPase expressed in increase H(+)‐pumping and permit yeast growth at low pH
  publication-title: The EMBO Journal
– volume: 115
  start-page: 2526
  issue: 10
  year: 2018
  end-page: 2531
  article-title: Metabolic division of labor in microbial systems
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 179
  start-page: 595
  year: 2015
  end-page: 601
  article-title: Effect of the accuracy of pH control on hydrogen fermentation
  publication-title: Bioresource Technology
– volume: 111
  start-page: E2149
  issue: 20
  year: 2014
  end-page: E2156
  article-title: Syntrophic exchange in synthetic microbial communities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 79
  start-page: 19
  issue: 1
  year: 2015
  end-page: 37
  article-title: The Clostridium sporulation programs: Diversity and preservation of endospore differentiation
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 43
  start-page: 6954
  issue: 20
  year: 2014
  end-page: 6981
  article-title: Synthetic microbial consortia: From systematic analysis to construction and applications
  publication-title: Chemical Society Reviews
– volume: 15
  issue: 1
  year: 2020
  article-title: TargeTron technology applicable in solventogenic Clostridia: Revisiting 12 years' advances
  publication-title: Biotechnology Journal
– volume: 11
  start-page: 961
  issue: 7
  year: 2016
  end-page: 972
  article-title: CRISPR‐based genome editing and expression control systems in and
  publication-title: Biotechnology Journal
– volume: 32
  start-page: 1733
  issue: 11
  year: 2016
  end-page: 1739
  article-title: Model‐based media selection to minimize the cost of metabolic cooperation in microbial ecosystems
  publication-title: Bioinformatics
– volume: 2
  start-page: 18
  year: 2014
  article-title: The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications
  publication-title: Frontiers in Chemistry
– volume: 67
  start-page: 429
  issue: 3
  year: 2003
  end-page: 453
  article-title: Surviving the acid test: Responses of Gram‐positive bacteria to low pH
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 2
  start-page: 898
  issue: 11
  year: 2004
  end-page: 907
  article-title: acid resistance: Tales of an amateur acidophile
  publication-title: Nature Reviews Microbiology
– volume: 33
  start-page: 305
  year: 2015
  end-page: 317
  article-title: Deciphering microbial community robustness through synthetic ecology and molecular systems synecology
  publication-title: Current Opinion in Biotechnology
– volume: 41
  start-page: 104
  year: 2016
  end-page: 112
  article-title: A roadmap for gene system development in Clostridium
  publication-title: Anaerobe
– volume: 14
  issue: 8
  year: 2016
  article-title: Resource availability modulates the cooperative and competitive nature of a microbial cross‐feeding mutualism
  publication-title: PLoS Biology
– volume: 102
  start-page: 5419
  issue: 13
  year: 2018
  end-page: 5425
  article-title: Microbial co‐culturing systems: Butanol production from organic wastes through consolidated bioprocessing
  publication-title: Applied Microbiology and Biotechnology
– volume: 34
  start-page: 155
  issue: 2
  year: 1984
  end-page: 159
  article-title: sp. nov., a cellulolytic, mesophilic species from decayed grass
  publication-title: International Journal of Systematic Bacteriology
– volume: 81
  year: 2002
  article-title: A novel two‐component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans
  publication-title: Journal of Dental Research
– volume: 29
  start-page: 329
  issue: 3
  year: 1987
  end-page: 334
  article-title: The effect of pH and lactose concentration on solvent production from whey permeate using
  publication-title: Biotechnology & Bioengineering
– volume: 33
  start-page: 194
  issue: 3
  year: 1996
  end-page: 199
  article-title: The lactic acid stress response of subsp. lactis
  publication-title: Current Microbiology
– volume: 112
  start-page: 8505
  issue: 27
  year: 2015
  end-page: 8510
  article-title: Integrated, systems metabolic picture of acetone‐butanol‐ethanol fermentation by
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 73
  start-page: 390
  issue: 5
  year: 2001
  end-page: 399
  article-title: Scale‐down model to simulate spatial pH variations in large‐scale bioreactors
  publication-title: Biotechnology and Bioengineering
– volume: 99
  start-page: 1011
  issue: 2
  year: 2015
  end-page: 1022
  article-title: Engineering with a histidine kinase knockout for enhanced n‐butanol tolerance and production
  publication-title: Applied Microbiology and Biotechnology
– volume: 33
  start-page: 377
  issue: 4
  year: 2015
  end-page: 383
  article-title: Distributing a metabolic pathway among a microbial consortium enhances production of natural products
  publication-title: Nature Biotechnology
– volume: 7
  year: 2016
  article-title: Total biosynthesis of opiates by stepwise fermentation using engineered
  publication-title: Nature Communications
– volume: 183
  start-page: 6875
  issue: 23
  year: 2001
  end-page: 6884
  article-title: Cell density modulates acid adaptation in Streptococcus mutans: Implications for survival in biofilms
  publication-title: Journal of Bacteriology
– ident: e_1_2_8_49_1
  doi: 10.1016/j.copbio.2015.03.012
– ident: e_1_2_8_8_1
  doi: 10.1099/00221287-148-11-3599
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1405641111
– ident: e_1_2_8_39_1
  doi: 10.1038/ncomms10390
– volume: 81
  start-page: A444
  year: 2002
  ident: e_1_2_8_26_1
  article-title: A novel two‐component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans
  publication-title: Journal of Dental Research
  contributor:
    fullname: Li Y. H.
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ymben.2010.05.002
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.1423143112
– ident: e_1_2_8_59_1
  doi: 10.1016/j.procbio.2014.07.009
– ident: e_1_2_8_46_1
  doi: 10.1016/j.copbio.2012.02.001
– ident: e_1_2_8_33_1
  doi: 10.1016/j.tibtech.2018.11.002
– ident: e_1_2_8_19_1
  doi: 10.1046/j.1365-2958.2001.02242.x
– ident: e_1_2_8_3_1
  doi: 10.1128/MMBR.00025-14
– ident: e_1_2_8_51_1
  doi: 10.1073/pnas.1716888115
– ident: e_1_2_8_58_1
  doi: 10.1186/s12934-014-0092-5
– ident: e_1_2_8_20_1
  doi: 10.1263/jbb.103.13
– ident: e_1_2_8_22_1
  doi: 10.1002/biot.201600053
– ident: e_1_2_8_24_1
  doi: 10.1186/1754-6834-7-25
– ident: e_1_2_8_66_1
  doi: 10.1007/BF01199870
– ident: e_1_2_8_5_1
  doi: 10.1002/9781118794623.ch2
– ident: e_1_2_8_18_1
  doi: 10.1016/j.mib.2016.03.010
– ident: e_1_2_8_69_1
  doi: 10.1038/nbt.3095
– ident: e_1_2_8_4_1
  doi: 10.1002/bit.1072
– ident: e_1_2_8_65_1
  doi: 10.1016/j.ymben.2017.01.011
– ident: e_1_2_8_11_1
  doi: 10.1128/mBio.01932-14
– ident: e_1_2_8_53_1
  doi: 10.1128/AEM.02560-18
– ident: e_1_2_8_35_1
  doi: 10.1016/j.anaerobe.2016.05.011
– ident: e_1_2_8_44_1
  doi: 10.1007/s00253-013-5093-5
– ident: e_1_2_8_55_1
  doi: 10.1111/1751-7915.13478
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ymben.2015.07.001
– ident: e_1_2_8_9_1
  doi: 10.1128/MMBR.67.3.429-453.2003
– ident: e_1_2_8_57_1
  doi: 10.1016/j.ymben.2016.10.013
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1574-6968.1995.tb07427.x
– ident: e_1_2_8_2_1
  doi: 10.3389/fchem.2014.00066
– ident: e_1_2_8_32_1
  doi: 10.1128/JB.00219-19
– ident: e_1_2_8_47_1
  doi: 10.1128/AEM.48.1.88-93.1984
– ident: e_1_2_8_54_1
  doi: 10.1021/acssynbio.9b00331
– ident: e_1_2_8_61_1
  doi: 10.1016/j.ymben.2012.05.003
– ident: e_1_2_8_64_1
  doi: 10.1186/s13068-016-0507-0
– ident: e_1_2_8_48_1
  doi: 10.1039/C4CS00114A
– ident: e_1_2_8_62_1
  doi: 10.1016/j.ymben.2012.05.003
– ident: e_1_2_8_29_1
  doi: 10.1186/s12934-018-0884-0
– ident: e_1_2_8_36_1
  doi: 10.1073/pnas.1218447110
– ident: e_1_2_8_63_1
  doi: 10.1007/s00253-014-6249-7
– ident: e_1_2_8_31_1
  doi: 10.1038/cr.2013.13
– ident: e_1_2_8_13_1
  doi: 10.1126/science.aab0946
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.pbio.1002540
– ident: e_1_2_8_50_1
  doi: 10.1186/s13068-019-1524-6
– ident: e_1_2_8_60_1
  doi: 10.1016/j.ymben.2015.01.006
– ident: e_1_2_8_12_1
  doi: 10.1038/nrmicro1021
– ident: e_1_2_8_10_1
  doi: 10.1002/bit.260290306
– ident: e_1_2_8_52_1
  doi: 10.1186/s13068-015-0266-3
– ident: e_1_2_8_56_1
  doi: 10.1002/biot.201900284
– ident: e_1_2_8_45_1
  doi: 10.1021/acssynbio.5b00286
– ident: e_1_2_8_41_1
  doi: 10.1099/00207713-34-2-155
– ident: e_1_2_8_17_1
  doi: 10.1007/s00253-018-8970-0
– ident: e_1_2_8_30_1
  doi: 10.1016/j.biotechadv.2015.06.001
– ident: e_1_2_8_68_1
  doi: 10.1016/j.mimet.2014.11.004
– ident: e_1_2_8_15_1
  doi: 10.1007/s002849900099
– ident: e_1_2_8_21_1
  doi: 10.1186/1754-6834-6-117
– ident: e_1_2_8_25_1
  doi: 10.1128/JB.183.23.6875-6884.2001
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biortech.2017.03.073
– ident: e_1_2_8_37_1
  doi: 10.1016/j.biortech.2014.10.128
– ident: e_1_2_8_38_1
  doi: 10.1002/j.1460-2075.1996.tb00936.x
– ident: e_1_2_8_40_1
  doi: 10.1128/AEM.00706-11
– ident: e_1_2_8_6_1
  doi: 10.1038/nmicrobiol.2016.198
– ident: e_1_2_8_7_1
  doi: 10.1016/j.biortech.2018.02.125
– ident: e_1_2_8_67_1
  doi: 10.1093/bioinformatics/btw062
– ident: e_1_2_8_23_1
  doi: 10.1002/bit.26949
SSID ssj0007866
Score 2.498288
Snippet Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie cultures....
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures....
Abstract Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single‐specie...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2008
SubjectTerms adaptive laboratory evolution
Agmatine
Agmatine deiminase
Aldehyde dehydrogenase
Aldehydes
Bioprocessing
Butanol
cell wall lyases
Cell walls
consolidated bioprocessing
Consortia
Evolutionary genetics
Fermentation
Genes
Lignocellulose
low pH resistance
Metabolic engineering
Microbial activity
Microorganisms
pH control
pH effects
Sugar
Title Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27333
https://www.ncbi.nlm.nih.gov/pubmed/32170874
https://www.proquest.com/docview/2412769167
https://search.proquest.com/docview/2377344814
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoKQ9tM2mj20eqKWUXryxJdta0VOySdj20ENJIIeC0cuwdGMvXbtl80_ybzOS1rtJS6HkJpBkWWhm9M1I-gbgPdVpIpnKIq04OihSGFQpwyORWypSayy1nu3zaz6-SL9cZpcb8Kl7CxP4IVYBN6cZ3l47BZdqfrgmDVWTZoB7L3NMnwnj7jrXybc1dRQfhnNK5zGzTNCOVSimh6ue9_eivwDmfbzqN5yzZ_C9-9Vwz-THoG3UQF__weL4wLk8h6dLIEqOguRsw4aterBzVKETfrUgH4i_Gupj7j14dNyVtkZdgrgePLnDZbgDN2hZ0Mu2hthfS3HG_yF23YbIyhCUV_dskjjajS51GJn4yIYl0_o3mY1JU0-ty_dhfQ_VIn6tp2QWuGl9-4pIMl9UCF79tyaeTQpnM5rWLg-JmbRXRIenL83iBVycnZ6PxtEy70OkmYhZZGnM6bCk0uYpNzmlZSwTnRq0Tqnm7tmEcqeTWZmnimmRi0xLJrRQtET7gzbqJWxWdWVfA8k5Sl9iReKY2gwthUTAJSjVsRhqKeM-vOskoJgFeo8iEDnTAhel8IvSh71ONoqlhs8LRD6U5wiueR_erqpxBdyBi6xs3WIbxjlD_zdJ-_AqyNRqFIa-YDzkWPPRS8a_hy-OP5_7wpv_b7oLj6kLDPh7xXuw2fxs7T6ip0YdeDW5BQq8Fzw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITR44KODURhgEEK8pEvsJK4lXrbC1MHYA-qkvaDIX5EquqTaElD5T_hvOdtNy0BIiDdLtuNYvjv_7mz_DuAl1WkimcoirTg6KFIYVCnDI5FbKlJrLLWe7fMkH5-m78-ysw14072FCfwQq4Cb0wxvr52Cu4D03po1VE2bAW6-jF2D66juzCVuePtpTR7Fh-Gk0vnMLBO04xWK6d6q69Xd6A-IeRWx-i3n8A587n423DT5MmgbNdDff-Nx_N_Z3IXbSyxK9oPw3IMNW_Vge79CP_x8QV4RfzvUh917cOOgK22NuhxxPbj1C53hNvxA44KOtjXEfl1KNP4Qses2RFaGoMi6l5PEMW902cPI1Ac3LJnV38h8TJp6Zl3KD-t7qBYhbD0j80BP69tXRJLLRYX41X9r6gmlcDajWe1SkZhpe050eP3SLO7D6eG7yWgcLVM_RJqJmEWWxpwOSyptnnKTU1rGMtGpQQOVau5eTih3QJmVeaqYFrnItGRCC0VLNEFoph7AZlVX9iGQnKMAJlYkjqzN0FJIxFyCUh2LoZYy7sOLTgSKeWD4KAKXMy1wUQq_KH3Y7YSjWCr5ZYHgh_Ic8TXvw_NVNa6AO3ORla1bbMM4Z-gCJ2kfdoJQrUZh6A7GQ441r71o_H344uBo4guP_r3pM9gaTz4eF8dHJx8ew03q4gT-mvEubDYXrX2CYKpRT73O_ARaMRtU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIb4e-OgYFAYYhBAv6RI7sWvxtBWqDtCE0CbtYVLk2I5UrUsqloDKf8J_y9luWgZCQrxZsh3H8t35d2f7dwAvqU4TxYos0oVAB0VJgyplRCS5pTK1xlLr2T4P-eQ4fX-SnWzAm-4tTOCHWAXcnGZ4e-0UfG7K3TVpaDFtBrj3MnYFrqYcka9DRJ_X3FFiGA4qncvMMkk7WqGY7q66Xt6M_kCYlwGr33HGd-C0-9dw0eRs0DbFQH__jcbxPydzF24vkSjZC6JzDzZs1YOtvQq98PMFeUX83VAfdO_Btf2udGPUZYjrwa1fyAy34AeaFnSzrSH261Ke8X-IXbchqjIEBda9mySOd6PLHUamPrRhyaz-RuYT0tQz6xJ-WN-jaBHA1jMyD-S0vn1FFLlYVIhe_bemnk4KZzOa1S4RiZm250SHty_N4j4cj98djSbRMvFDpJmMWWRpLOiwpMryVBhOaRmrRKcGzVOqhXs3UbjjyazkacG05DLTikktC1qiAUIjtQ2bVV3Zh0C4QPFLrEwcVZuhpVSIuCSlOpZDrVTchxedBOTzwO-RByZnmuOi5H5R-rDTyUa-VPGLHKEPFRzRtejD81U1roA7cVGVrVtsw4Rg6AAnaR8eBJlajcLQGYyHAmtee8n4-_D5_sGRLzz696bP4Pqnt-P848Hhh8dwk7oggb9jvAObzZfWPkEk1RRPvcb8BPqlGgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+evolutionary+engineering+and+genetic+manipulation+improve+low+pH+tolerance+and+butanol+production+in+a+synthetic+microbial+Clostridium+community&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Wen%2C+Zhiqiang&rft.au=Ledesma-Amaro%2C+Rodrigo&rft.au=Lu%2C+Minrui&rft.au=Jiang%2C+Yu&rft.date=2020-07-01&rft.eissn=1097-0290&rft.volume=117&rft.issue=7&rft.spage=2008&rft.epage=2022&rft_id=info:doi/10.1002%2Fbit.27333&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon