Protocol for assisting frequency band definition and decoding neural dynamics using hierarchical clustering and multivariate pattern analysis

Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preproces...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 6; no. 2; p. 103870
Main Authors Li, Chengpeng, Hasegawa, Isao, Tanigawa, Hisashi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.06.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2666-1667
2666-1667
DOI10.1016/j.xpro.2025.103870

Cover

Abstract Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1 [Display omitted] •Steps for defining frequency bands via hierarchical clustering•Procedures for time-frequency analysis and data clustering•Instructions for MVPA validation of derived frequency bands•Guidance on identifying functionally distinct neural sub-bands Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.
AbstractList Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al. 1 • Steps for defining frequency bands via hierarchical clustering • Procedures for time-frequency analysis and data clustering • Instructions for MVPA validation of derived frequency bands • Guidance on identifying functionally distinct neural sub-bands Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al. .
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1 [Display omitted] •Steps for defining frequency bands via hierarchical clustering•Procedures for time-frequency analysis and data clustering•Instructions for MVPA validation of derived frequency bands•Guidance on identifying functionally distinct neural sub-bands Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1.Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1.
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
ArticleNumber 103870
Author Hasegawa, Isao
Tanigawa, Hisashi
Li, Chengpeng
Author_xml – sequence: 1
  givenname: Chengpeng
  surname: Li
  fullname: Li, Chengpeng
  organization: Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Isao
  surname: Hasegawa
  fullname: Hasegawa, Isao
  organization: Department of Physiology, Niigata University School of Medical and Dental Sciences, Niigata, Japan
– sequence: 3
  givenname: Hisashi
  orcidid: 0000-0002-7736-0683
  surname: Tanigawa
  fullname: Tanigawa, Hisashi
  email: hisashi.q@gmail.com
  organization: Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40465456$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUHaRia-0f8EHm0Zddk0y-BgSR4kehoA_6HJKbzG6W2WRNMkv3R_ifzTi1tC9CIMm5554D596XzVmIwTXNa4zWGGH-bre-O6S4JoiwCnRSoGfNBeGcrzDn4uzR-7y5ynmHUGViQrF80ZxTRDmjjF80v7-nWCLEsR1ianXOPhcfNu2Q3K_JBTi1RgfbWjf44IuPoV2-EO1MC25KemztKei9h9xOeUa33iWdYOuh1mCccnFpxufW_TQWf9TJ6-Lagy61NGvq8VStXzXPBz1md3V_XzY_P3_6cf11dfvty831x9sVdD1CK0eNEcjRwQIQi7jVVkvTc2yBcdYRwQcGEgy1xBADYInsGFCMCO6s0Ka7bG4WXRv1Th2S3-t0UlF79ReIaaN0Kh5Gp6qLIT1jhpJ6BO97U20EwoJKyXtZtT4sWofJ7J0FF0qN5Ino00rwW7WJR4UJFlhiXBXe3iukWEPPRe19BjeOOrg4ZdURzHpJuBCV-uax2YPLv4FWAlkIkGLOyQ0PFIzUvDhqp-bFUfPiqGVxatP7pcnVzI91eCqDr8N31icHpYbi_9f-B_Cq0AU
Cites_doi 10.1007/BF02534144
10.1016/j.celrep.2023.113169
10.1155/2011/156869
10.1016/j.neuron.2012.06.037
10.1038/nn.3635
10.1016/0168-5597(85)90058-9
10.1016/j.nicl.2014.04.004
10.1016/j.neuroimage.2021.118746
10.1016/j.neuron.2013.10.002
10.3389/fnhum.2018.00521
10.1109/TBME.2015.2481482
10.1016/j.neuron.2012.04.014
10.1145/1961189.1961199
10.1016/j.celrep.2022.110676
10.1016/j.neuroimage.2014.01.049
10.1038/nn.4168
10.1016/j.jneumeth.2003.10.009
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
2025 The Author(s) 2025
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2025 The Author(s) 2025
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xpro.2025.103870
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_e4fb2955b42b427699b1dc7017488698
PMC12171811
40465456
10_1016_j_xpro_2025_103870
S266616672500276X
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c3900-e4bb70e4fdcc2d06dada8b961dc5653276f5c8cb4d2b2bccd2835c410213d7ab3
IEDL.DBID DOA
ISSN 2666-1667
IngestDate Wed Aug 27 01:22:18 EDT 2025
Thu Aug 21 18:27:18 EDT 2025
Wed Jul 02 02:47:51 EDT 2025
Thu Jun 26 01:52:20 EDT 2025
Thu Jul 24 02:16:50 EDT 2025
Sat Aug 16 17:02:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Biotechnology and bioengineering
Cognitive Neuroscience
Neuroscience
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3900-e4bb70e4fdcc2d06dada8b961dc5653276f5c8cb4d2b2bccd2835c410213d7ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
Lead contact
ORCID 0000-0002-7736-0683
OpenAccessLink https://doaj.org/article/e4fb2955b42b427699b1dc7017488698
PMID 40465456
PQID 3215982677
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e4fb2955b42b427699b1dc7017488698
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12171811
proquest_miscellaneous_3215982677
pubmed_primary_40465456
crossref_primary_10_1016_j_xpro_2025_103870
elsevier_sciencedirect_doi_10_1016_j_xpro_2025_103870
PublicationCentury 2000
PublicationDate 2025-06-20
PublicationDateYYYYMMDD 2025-06-20
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cichy, Pantazis, Oliva (bib16) 2014; 17
Fukushima, Saunders, Leopold, Mishkin, Averbeck (bib18) 2012; 74
Haegens, Cousijn, Wallis, Harrison, Nobre (bib4) 2014; 92
Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Jung, Cauwenberghs (bib11) 2015; 62
Chang, Lin (bib14) 2011; 2
Bosman, Schoffelen, Brunet, Oostenveld, Bastos, Womelsdorf, Rubehn, Stieglitz, De Weerd, Fries (bib6) 2012; 75
Noirhomme, Lesenfants, Gomez, Soddu, Schrouff, Garraux, Luxen, Phillips, Laureys (bib17) 2014; 4
Buzsáki, Logothetis, Singer (bib3) 2013; 80
Delorme, Makeig (bib9) 2004; 134
Tanigawa, Majima, Takei, Kawasaki, Sawahata, Nakahara, Iijima, Suzuki, Kamitani, Hasegawa (bib1) 2022; 39
Newson, Thiagarajan (bib2) 2018; 12
Iemi, Gwilliams, Samaha, Auksztulewicz, Cycowicz, King, Nikulin, Thesen, Doyle, Devinsky (bib5) 2022; 247
Uusitalo, Ilmoniemi (bib10) 1997; 35
Fan, Chang, Hsieh, Wang, Lin (bib13) 2008; 9
Zhou, Kawasaki, Suzuki, Hasegawa, Roe, Tanigawa (bib7) 2023; 42
Sarma, Masse, Wang, Freedman (bib15) 2016; 19
Oostenveld, Fries, Maris, Schoffelen (bib8) 2011; 2011
Bertrand, Perrin, Pernier (bib12) 1985; 62
Zhou (10.1016/j.xpro.2025.103870_bib7) 2023; 42
Chang (10.1016/j.xpro.2025.103870_bib14) 2011; 2
Delorme (10.1016/j.xpro.2025.103870_bib9) 2004; 134
Fukushima (10.1016/j.xpro.2025.103870_bib18) 2012; 74
Newson (10.1016/j.xpro.2025.103870_bib2) 2018; 12
Cichy (10.1016/j.xpro.2025.103870_bib16) 2014; 17
Bosman (10.1016/j.xpro.2025.103870_bib6) 2012; 75
Oostenveld (10.1016/j.xpro.2025.103870_bib8) 2011; 2011
Fan (10.1016/j.xpro.2025.103870_bib13) 2008; 9
Tanigawa (10.1016/j.xpro.2025.103870_bib1) 2022; 39
Bertrand (10.1016/j.xpro.2025.103870_bib12) 1985; 62
Sarma (10.1016/j.xpro.2025.103870_bib15) 2016; 19
Buzsáki (10.1016/j.xpro.2025.103870_bib3) 2013; 80
Haegens (10.1016/j.xpro.2025.103870_bib4) 2014; 92
Iemi (10.1016/j.xpro.2025.103870_bib5) 2022; 247
Uusitalo (10.1016/j.xpro.2025.103870_bib10) 1997; 35
Mullen (10.1016/j.xpro.2025.103870_bib11) 2015; 62
Noirhomme (10.1016/j.xpro.2025.103870_bib17) 2014; 4
References_xml – volume: 92
  start-page: 46
  year: 2014
  end-page: 55
  ident: bib4
  article-title: Inter- and intra-individual variability in alpha peak frequency
  publication-title: Neuroimage
– volume: 19
  start-page: 143
  year: 2016
  end-page: 149
  ident: bib15
  article-title: Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices
  publication-title: Nat. Neurosci.
– volume: 75
  start-page: 875
  year: 2012
  end-page: 888
  ident: bib6
  article-title: Attentional stimulus selection through selective synchronization between monkey visual areas
  publication-title: Neuron
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: bib13
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J. Mach. Learn. Res.
– volume: 80
  start-page: 751
  year: 2013
  end-page: 764
  ident: bib3
  article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms
  publication-title: Neuron
– volume: 35
  start-page: 135
  year: 1997
  end-page: 140
  ident: bib10
  article-title: Signal-space projection method for separating MEG or EEG into components
  publication-title: Med. Biol. Eng. Comput.
– volume: 42
  year: 2023
  ident: bib7
  article-title: Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance
  publication-title: Cell Rep.
– volume: 62
  start-page: 2553
  year: 2015
  end-page: 2567
  ident: bib11
  article-title: Real-time neuroimaging and cognitive monitoring using wearable dry EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 62
  start-page: 462
  year: 1985
  end-page: 464
  ident: bib12
  article-title: A theoretical justification of the average reference in topographic evoked potential studies
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 12
  start-page: 521
  year: 2018
  ident: bib2
  article-title: EEG frequency bands in psychiatric disorders: a review of resting state studies
  publication-title: Front. Hum. Neurosci.
– volume: 247
  year: 2022
  ident: bib5
  article-title: Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability
  publication-title: Neuroimage
– volume: 39
  year: 2022
  ident: bib1
  article-title: Decoding distributed oscillatory signals driven by memory and perception in the prefrontal cortex
  publication-title: Cell Rep.
– volume: 74
  start-page: 899
  year: 2012
  end-page: 910
  ident: bib18
  article-title: Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque
  publication-title: Neuron
– volume: 4
  start-page: 687
  year: 2014
  end-page: 694
  ident: bib17
  article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions
  publication-title: Neuroimage. Clin.
– volume: 2011
  year: 2011
  ident: bib8
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intel. Neurosc.
– volume: 17
  start-page: 455
  year: 2014
  end-page: 462
  ident: bib16
  article-title: Resolving human object recognition in space and time
  publication-title: Nat. Neurosci.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib9
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib14
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 35
  start-page: 135
  year: 1997
  ident: 10.1016/j.xpro.2025.103870_bib10
  article-title: Signal-space projection method for separating MEG or EEG into components
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02534144
– volume: 42
  year: 2023
  ident: 10.1016/j.xpro.2025.103870_bib7
  article-title: Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.113169
– volume: 2011
  year: 2011
  ident: 10.1016/j.xpro.2025.103870_bib8
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intel. Neurosc.
  doi: 10.1155/2011/156869
– volume: 75
  start-page: 875
  year: 2012
  ident: 10.1016/j.xpro.2025.103870_bib6
  article-title: Attentional stimulus selection through selective synchronization between monkey visual areas
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.037
– volume: 17
  start-page: 455
  year: 2014
  ident: 10.1016/j.xpro.2025.103870_bib16
  article-title: Resolving human object recognition in space and time
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3635
– volume: 62
  start-page: 462
  year: 1985
  ident: 10.1016/j.xpro.2025.103870_bib12
  article-title: A theoretical justification of the average reference in topographic evoked potential studies
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(85)90058-9
– volume: 4
  start-page: 687
  year: 2014
  ident: 10.1016/j.xpro.2025.103870_bib17
  article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions
  publication-title: Neuroimage. Clin.
  doi: 10.1016/j.nicl.2014.04.004
– volume: 9
  start-page: 1871
  year: 2008
  ident: 10.1016/j.xpro.2025.103870_bib13
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J. Mach. Learn. Res.
– volume: 247
  year: 2022
  ident: 10.1016/j.xpro.2025.103870_bib5
  article-title: Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118746
– volume: 80
  start-page: 751
  year: 2013
  ident: 10.1016/j.xpro.2025.103870_bib3
  article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.002
– volume: 12
  start-page: 521
  year: 2018
  ident: 10.1016/j.xpro.2025.103870_bib2
  article-title: EEG frequency bands in psychiatric disorders: a review of resting state studies
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00521
– volume: 62
  start-page: 2553
  year: 2015
  ident: 10.1016/j.xpro.2025.103870_bib11
  article-title: Real-time neuroimaging and cognitive monitoring using wearable dry EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2481482
– volume: 74
  start-page: 899
  year: 2012
  ident: 10.1016/j.xpro.2025.103870_bib18
  article-title: Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.04.014
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.xpro.2025.103870_bib14
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/1961189.1961199
– volume: 39
  year: 2022
  ident: 10.1016/j.xpro.2025.103870_bib1
  article-title: Decoding distributed oscillatory signals driven by memory and perception in the prefrontal cortex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110676
– volume: 92
  start-page: 46
  year: 2014
  ident: 10.1016/j.xpro.2025.103870_bib4
  article-title: Inter- and intra-individual variability in alpha peak frequency
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.049
– volume: 19
  start-page: 143
  year: 2016
  ident: 10.1016/j.xpro.2025.103870_bib15
  article-title: Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4168
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.xpro.2025.103870_bib9
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
SSID ssj0002512418
Score 2.2950537
Snippet Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103870
SubjectTerms Animals
Biotechnology and bioengineering
Brain - physiology
Cluster Analysis
Cognitive Neuroscience
Electrocorticography - methods
Macaca
Multivariate Analysis
Neuroscience
Protocol
Signal Processing, Computer-Assisted
Title Protocol for assisting frequency band definition and decoding neural dynamics using hierarchical clustering and multivariate pattern analysis
URI https://dx.doi.org/10.1016/j.xpro.2025.103870
https://www.ncbi.nlm.nih.gov/pubmed/40465456
https://www.proquest.com/docview/3215982677
https://pubmed.ncbi.nlm.nih.gov/PMC12171811
https://doaj.org/article/e4fb2955b42b427699b1dc7017488698
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggEK8UqIzEDUU4jh3Hx7aiWiGBOFCpNytjO8uiKlltdxH8iP5nZuxstUulckHKJa9JPDPOfJNMvmHsXTQQqa126TvdlCr2AqeUNGUPBCegjjGR6Xz-0swv1KdLfbnX6otqwjI9cFbch6h6kFZrUBIX01gLVfAGHQldr7HpN19hxV4yRc9gitqqaqe_ZHJB1y98JGFCKHUiBafuxHuRKBH2HwSku4Dz77rJvUB0_pg9mhAkP8l3_oQ9iMNTdvN1PW5GNCpHEMoRENPUHRa8X-dS6d8cuiHwEPvlkIq0eF71I8UuTqyWKDPk9vTXnKrhF5zaZKcPDWhH7q-2xKlA2-nUVIj4ExNtxKp8lUg6SWZmOHnGLs4_fjubl1OnhdLXVogyKgAjUNXBexlEE7rQtWAb1DQCvhrV3mvfelBBggTvA7G0eUVtwetgOqifs9kwDvEl4yCCDygUICJyQDmVtVHLvmn7YHSsCvZ-p3W3yoQabldp9sORjRzZyGUbFeyUDHN7JJFhpw3oIm5yEfcvFymY3pnVTbgi4wUUtbz34m93PuBw0tGXlG6I4_ba1QiULCZmxhTsRfaJ21tUgijqdFOw9sBbDsZwuGdYfk_E3hXmh4i4qqP_MepX7CGNhcrapHjNZpv1Nr5BALWB4zRXjtObrT8IoB6n
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+for+assisting+frequency+band+definition+and+decoding+neural+dynamics+using+hierarchical+clustering+and+multivariate+pattern+analysis&rft.jtitle=STAR+protocols&rft.au=Li%2C+Chengpeng&rft.au=Hasegawa%2C+Isao&rft.au=Tanigawa%2C+Hisashi&rft.date=2025-06-20&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=6&rft.issue=2&rft.spage=103870&rft_id=info:doi/10.1016%2Fj.xpro.2025.103870&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon