Protocol for assisting frequency band definition and decoding neural dynamics using hierarchical clustering and multivariate pattern analysis
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preproces...
Saved in:
Published in | STAR protocols Vol. 6; no. 2; p. 103870 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.06.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-1667 2666-1667 |
DOI | 10.1016/j.xpro.2025.103870 |
Cover
Abstract | Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.
For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1
[Display omitted]
•Steps for defining frequency bands via hierarchical clustering•Procedures for time-frequency analysis and data clustering•Instructions for MVPA validation of derived frequency bands•Guidance on identifying functionally distinct neural sub-bands
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. |
---|---|
AbstractList | Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.
For complete details on the use and execution of this protocol, please refer to Tanigawa et al.
1
•
Steps for defining frequency bands via hierarchical clustering
•
Procedures for time-frequency analysis and data clustering
•
Instructions for MVPA validation of derived frequency bands
•
Guidance on identifying functionally distinct neural sub-bands
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al. . Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1 [Display omitted] •Steps for defining frequency bands via hierarchical clustering•Procedures for time-frequency analysis and data clustering•Instructions for MVPA validation of derived frequency bands•Guidance on identifying functionally distinct neural sub-bands Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1.Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding. For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1. Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for multichannel neural data using macaque electrocorticography (ECoG) data. We describe steps for performing time-frequency analysis on preprocessed signals and applying hierarchical clustering to frequency power profiles to identify data-informed groupings. We then detail procedures for defining frequency bands guided by these clusters and using multivariate pattern analysis (MVPA) on the derived bands for functional validation via time-series decoding.For complete details on the use and execution of this protocol, please refer to Tanigawa et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. |
ArticleNumber | 103870 |
Author | Hasegawa, Isao Tanigawa, Hisashi Li, Chengpeng |
Author_xml | – sequence: 1 givenname: Chengpeng surname: Li fullname: Li, Chengpeng organization: Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Isao surname: Hasegawa fullname: Hasegawa, Isao organization: Department of Physiology, Niigata University School of Medical and Dental Sciences, Niigata, Japan – sequence: 3 givenname: Hisashi orcidid: 0000-0002-7736-0683 surname: Tanigawa fullname: Tanigawa, Hisashi email: hisashi.q@gmail.com organization: Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40465456$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rFDEUHaRia-0f8EHm0Zddk0y-BgSR4kehoA_6HJKbzG6W2WRNMkv3R_ifzTi1tC9CIMm5554D596XzVmIwTXNa4zWGGH-bre-O6S4JoiwCnRSoGfNBeGcrzDn4uzR-7y5ynmHUGViQrF80ZxTRDmjjF80v7-nWCLEsR1ianXOPhcfNu2Q3K_JBTi1RgfbWjf44IuPoV2-EO1MC25KemztKei9h9xOeUa33iWdYOuh1mCccnFpxufW_TQWf9TJ6-Lagy61NGvq8VStXzXPBz1md3V_XzY_P3_6cf11dfvty831x9sVdD1CK0eNEcjRwQIQi7jVVkvTc2yBcdYRwQcGEgy1xBADYInsGFCMCO6s0Ka7bG4WXRv1Th2S3-t0UlF79ReIaaN0Kh5Gp6qLIT1jhpJ6BO97U20EwoJKyXtZtT4sWofJ7J0FF0qN5Ino00rwW7WJR4UJFlhiXBXe3iukWEPPRe19BjeOOrg4ZdURzHpJuBCV-uax2YPLv4FWAlkIkGLOyQ0PFIzUvDhqp-bFUfPiqGVxatP7pcnVzI91eCqDr8N31icHpYbi_9f-B_Cq0AU |
Cites_doi | 10.1007/BF02534144 10.1016/j.celrep.2023.113169 10.1155/2011/156869 10.1016/j.neuron.2012.06.037 10.1038/nn.3635 10.1016/0168-5597(85)90058-9 10.1016/j.nicl.2014.04.004 10.1016/j.neuroimage.2021.118746 10.1016/j.neuron.2013.10.002 10.3389/fnhum.2018.00521 10.1109/TBME.2015.2481482 10.1016/j.neuron.2012.04.014 10.1145/1961189.1961199 10.1016/j.celrep.2022.110676 10.1016/j.neuroimage.2014.01.049 10.1038/nn.4168 10.1016/j.jneumeth.2003.10.009 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. 2025 The Author(s) 2025 |
Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2025 The Author(s) 2025 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.xpro.2025.103870 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-1667 |
ExternalDocumentID | oai_doaj_org_article_e4fb2955b42b427699b1dc7017488698 PMC12171811 40465456 10_1016_j_xpro_2025_103870 S266616672500276X |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AEXQZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3900-e4bb70e4fdcc2d06dada8b961dc5653276f5c8cb4d2b2bccd2835c410213d7ab3 |
IEDL.DBID | DOA |
ISSN | 2666-1667 |
IngestDate | Wed Aug 27 01:22:18 EDT 2025 Thu Aug 21 18:27:18 EDT 2025 Wed Jul 02 02:47:51 EDT 2025 Thu Jun 26 01:52:20 EDT 2025 Thu Jul 24 02:16:50 EDT 2025 Sat Aug 16 17:02:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Biotechnology and bioengineering Cognitive Neuroscience Neuroscience |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3900-e4bb70e4fdcc2d06dada8b961dc5653276f5c8cb4d2b2bccd2835c410213d7ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Technical contact Lead contact |
ORCID | 0000-0002-7736-0683 |
OpenAccessLink | https://doaj.org/article/e4fb2955b42b427699b1dc7017488698 |
PMID | 40465456 |
PQID | 3215982677 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4fb2955b42b427699b1dc7017488698 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12171811 proquest_miscellaneous_3215982677 pubmed_primary_40465456 crossref_primary_10_1016_j_xpro_2025_103870 elsevier_sciencedirect_doi_10_1016_j_xpro_2025_103870 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-20 |
PublicationDateYYYYMMDD | 2025-06-20 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | STAR protocols |
PublicationTitleAlternate | STAR Protoc |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cichy, Pantazis, Oliva (bib16) 2014; 17 Fukushima, Saunders, Leopold, Mishkin, Averbeck (bib18) 2012; 74 Haegens, Cousijn, Wallis, Harrison, Nobre (bib4) 2014; 92 Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Jung, Cauwenberghs (bib11) 2015; 62 Chang, Lin (bib14) 2011; 2 Bosman, Schoffelen, Brunet, Oostenveld, Bastos, Womelsdorf, Rubehn, Stieglitz, De Weerd, Fries (bib6) 2012; 75 Noirhomme, Lesenfants, Gomez, Soddu, Schrouff, Garraux, Luxen, Phillips, Laureys (bib17) 2014; 4 Buzsáki, Logothetis, Singer (bib3) 2013; 80 Delorme, Makeig (bib9) 2004; 134 Tanigawa, Majima, Takei, Kawasaki, Sawahata, Nakahara, Iijima, Suzuki, Kamitani, Hasegawa (bib1) 2022; 39 Newson, Thiagarajan (bib2) 2018; 12 Iemi, Gwilliams, Samaha, Auksztulewicz, Cycowicz, King, Nikulin, Thesen, Doyle, Devinsky (bib5) 2022; 247 Uusitalo, Ilmoniemi (bib10) 1997; 35 Fan, Chang, Hsieh, Wang, Lin (bib13) 2008; 9 Zhou, Kawasaki, Suzuki, Hasegawa, Roe, Tanigawa (bib7) 2023; 42 Sarma, Masse, Wang, Freedman (bib15) 2016; 19 Oostenveld, Fries, Maris, Schoffelen (bib8) 2011; 2011 Bertrand, Perrin, Pernier (bib12) 1985; 62 Zhou (10.1016/j.xpro.2025.103870_bib7) 2023; 42 Chang (10.1016/j.xpro.2025.103870_bib14) 2011; 2 Delorme (10.1016/j.xpro.2025.103870_bib9) 2004; 134 Fukushima (10.1016/j.xpro.2025.103870_bib18) 2012; 74 Newson (10.1016/j.xpro.2025.103870_bib2) 2018; 12 Cichy (10.1016/j.xpro.2025.103870_bib16) 2014; 17 Bosman (10.1016/j.xpro.2025.103870_bib6) 2012; 75 Oostenveld (10.1016/j.xpro.2025.103870_bib8) 2011; 2011 Fan (10.1016/j.xpro.2025.103870_bib13) 2008; 9 Tanigawa (10.1016/j.xpro.2025.103870_bib1) 2022; 39 Bertrand (10.1016/j.xpro.2025.103870_bib12) 1985; 62 Sarma (10.1016/j.xpro.2025.103870_bib15) 2016; 19 Buzsáki (10.1016/j.xpro.2025.103870_bib3) 2013; 80 Haegens (10.1016/j.xpro.2025.103870_bib4) 2014; 92 Iemi (10.1016/j.xpro.2025.103870_bib5) 2022; 247 Uusitalo (10.1016/j.xpro.2025.103870_bib10) 1997; 35 Mullen (10.1016/j.xpro.2025.103870_bib11) 2015; 62 Noirhomme (10.1016/j.xpro.2025.103870_bib17) 2014; 4 |
References_xml | – volume: 92 start-page: 46 year: 2014 end-page: 55 ident: bib4 article-title: Inter- and intra-individual variability in alpha peak frequency publication-title: Neuroimage – volume: 19 start-page: 143 year: 2016 end-page: 149 ident: bib15 article-title: Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices publication-title: Nat. Neurosci. – volume: 75 start-page: 875 year: 2012 end-page: 888 ident: bib6 article-title: Attentional stimulus selection through selective synchronization between monkey visual areas publication-title: Neuron – volume: 9 start-page: 1871 year: 2008 end-page: 1874 ident: bib13 article-title: LIBLINEAR: A library for large linear classification publication-title: J. Mach. Learn. Res. – volume: 80 start-page: 751 year: 2013 end-page: 764 ident: bib3 article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms publication-title: Neuron – volume: 35 start-page: 135 year: 1997 end-page: 140 ident: bib10 article-title: Signal-space projection method for separating MEG or EEG into components publication-title: Med. Biol. Eng. Comput. – volume: 42 year: 2023 ident: bib7 article-title: Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance publication-title: Cell Rep. – volume: 62 start-page: 2553 year: 2015 end-page: 2567 ident: bib11 article-title: Real-time neuroimaging and cognitive monitoring using wearable dry EEG publication-title: IEEE Trans. Biomed. Eng. – volume: 62 start-page: 462 year: 1985 end-page: 464 ident: bib12 article-title: A theoretical justification of the average reference in topographic evoked potential studies publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 12 start-page: 521 year: 2018 ident: bib2 article-title: EEG frequency bands in psychiatric disorders: a review of resting state studies publication-title: Front. Hum. Neurosci. – volume: 247 year: 2022 ident: bib5 article-title: Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability publication-title: Neuroimage – volume: 39 year: 2022 ident: bib1 article-title: Decoding distributed oscillatory signals driven by memory and perception in the prefrontal cortex publication-title: Cell Rep. – volume: 74 start-page: 899 year: 2012 end-page: 910 ident: bib18 article-title: Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque publication-title: Neuron – volume: 4 start-page: 687 year: 2014 end-page: 694 ident: bib17 article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions publication-title: Neuroimage. Clin. – volume: 2011 year: 2011 ident: bib8 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intel. Neurosc. – volume: 17 start-page: 455 year: 2014 end-page: 462 ident: bib16 article-title: Resolving human object recognition in space and time publication-title: Nat. Neurosci. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib9 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bib14 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 35 start-page: 135 year: 1997 ident: 10.1016/j.xpro.2025.103870_bib10 article-title: Signal-space projection method for separating MEG or EEG into components publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02534144 – volume: 42 year: 2023 ident: 10.1016/j.xpro.2025.103870_bib7 article-title: Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.113169 – volume: 2011 year: 2011 ident: 10.1016/j.xpro.2025.103870_bib8 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intel. Neurosc. doi: 10.1155/2011/156869 – volume: 75 start-page: 875 year: 2012 ident: 10.1016/j.xpro.2025.103870_bib6 article-title: Attentional stimulus selection through selective synchronization between monkey visual areas publication-title: Neuron doi: 10.1016/j.neuron.2012.06.037 – volume: 17 start-page: 455 year: 2014 ident: 10.1016/j.xpro.2025.103870_bib16 article-title: Resolving human object recognition in space and time publication-title: Nat. Neurosci. doi: 10.1038/nn.3635 – volume: 62 start-page: 462 year: 1985 ident: 10.1016/j.xpro.2025.103870_bib12 article-title: A theoretical justification of the average reference in topographic evoked potential studies publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(85)90058-9 – volume: 4 start-page: 687 year: 2014 ident: 10.1016/j.xpro.2025.103870_bib17 article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions publication-title: Neuroimage. Clin. doi: 10.1016/j.nicl.2014.04.004 – volume: 9 start-page: 1871 year: 2008 ident: 10.1016/j.xpro.2025.103870_bib13 article-title: LIBLINEAR: A library for large linear classification publication-title: J. Mach. Learn. Res. – volume: 247 year: 2022 ident: 10.1016/j.xpro.2025.103870_bib5 article-title: Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118746 – volume: 80 start-page: 751 year: 2013 ident: 10.1016/j.xpro.2025.103870_bib3 article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms publication-title: Neuron doi: 10.1016/j.neuron.2013.10.002 – volume: 12 start-page: 521 year: 2018 ident: 10.1016/j.xpro.2025.103870_bib2 article-title: EEG frequency bands in psychiatric disorders: a review of resting state studies publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00521 – volume: 62 start-page: 2553 year: 2015 ident: 10.1016/j.xpro.2025.103870_bib11 article-title: Real-time neuroimaging and cognitive monitoring using wearable dry EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2481482 – volume: 74 start-page: 899 year: 2012 ident: 10.1016/j.xpro.2025.103870_bib18 article-title: Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque publication-title: Neuron doi: 10.1016/j.neuron.2012.04.014 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.xpro.2025.103870_bib14 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/1961189.1961199 – volume: 39 year: 2022 ident: 10.1016/j.xpro.2025.103870_bib1 article-title: Decoding distributed oscillatory signals driven by memory and perception in the prefrontal cortex publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110676 – volume: 92 start-page: 46 year: 2014 ident: 10.1016/j.xpro.2025.103870_bib4 article-title: Inter- and intra-individual variability in alpha peak frequency publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.049 – volume: 19 start-page: 143 year: 2016 ident: 10.1016/j.xpro.2025.103870_bib15 article-title: Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices publication-title: Nat. Neurosci. doi: 10.1038/nn.4168 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.xpro.2025.103870_bib9 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 |
SSID | ssj0002512418 |
Score | 2.2950537 |
Snippet | Traditional fixed frequency band divisions often limit neural data analysis accuracy. Here, we present a protocol for assisting frequency band definition for... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103870 |
SubjectTerms | Animals Biotechnology and bioengineering Brain - physiology Cluster Analysis Cognitive Neuroscience Electrocorticography - methods Macaca Multivariate Analysis Neuroscience Protocol Signal Processing, Computer-Assisted |
Title | Protocol for assisting frequency band definition and decoding neural dynamics using hierarchical clustering and multivariate pattern analysis |
URI | https://dx.doi.org/10.1016/j.xpro.2025.103870 https://www.ncbi.nlm.nih.gov/pubmed/40465456 https://www.proquest.com/docview/3215982677 https://pubmed.ncbi.nlm.nih.gov/PMC12171811 https://doaj.org/article/e4fb2955b42b427699b1dc7017488698 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggEK8UqIzEDUU4jh3Hx7aiWiGBOFCpNytjO8uiKlltdxH8iP5nZuxstUulckHKJa9JPDPOfJNMvmHsXTQQqa126TvdlCr2AqeUNGUPBCegjjGR6Xz-0swv1KdLfbnX6otqwjI9cFbch6h6kFZrUBIX01gLVfAGHQldr7HpN19hxV4yRc9gitqqaqe_ZHJB1y98JGFCKHUiBafuxHuRKBH2HwSku4Dz77rJvUB0_pg9mhAkP8l3_oQ9iMNTdvN1PW5GNCpHEMoRENPUHRa8X-dS6d8cuiHwEPvlkIq0eF71I8UuTqyWKDPk9vTXnKrhF5zaZKcPDWhH7q-2xKlA2-nUVIj4ExNtxKp8lUg6SWZmOHnGLs4_fjubl1OnhdLXVogyKgAjUNXBexlEE7rQtWAb1DQCvhrV3mvfelBBggTvA7G0eUVtwetgOqifs9kwDvEl4yCCDygUICJyQDmVtVHLvmn7YHSsCvZ-p3W3yoQabldp9sORjRzZyGUbFeyUDHN7JJFhpw3oIm5yEfcvFymY3pnVTbgi4wUUtbz34m93PuBw0tGXlG6I4_ba1QiULCZmxhTsRfaJ21tUgijqdFOw9sBbDsZwuGdYfk_E3hXmh4i4qqP_MepX7CGNhcrapHjNZpv1Nr5BALWB4zRXjtObrT8IoB6n |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+for+assisting+frequency+band+definition+and+decoding+neural+dynamics+using+hierarchical+clustering+and+multivariate+pattern+analysis&rft.jtitle=STAR+protocols&rft.au=Li%2C+Chengpeng&rft.au=Hasegawa%2C+Isao&rft.au=Tanigawa%2C+Hisashi&rft.date=2025-06-20&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=6&rft.issue=2&rft.spage=103870&rft_id=info:doi/10.1016%2Fj.xpro.2025.103870&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon |