State-of-the-art review on Bayesian inference in structural system identification and damage assessment
Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated by the fact that inverse problems in structural engineering, including structural health monitoring, are typically ill-conditioned and ill-po...
Saved in:
Published in | Advances in structural engineering Vol. 22; no. 6; pp. 1329 - 1351 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated by the fact that inverse problems in structural engineering, including structural health monitoring, are typically ill-conditioned and ill-posed when using noisy incomplete data because of various sources of modeling uncertainties. One should not just search for a single “optimal” value for the vector of model parameters but rather attempt to describe the whole family of plausible model parameters based on measured data using a Bayesian probabilistic framework. In this article, the fundamental principles of Bayesian analysis and computation are summarized; then a review is given of recent state-of-the-art practices of Bayesian inference in system identification and damage assessment for civil infrastructure. Discussions of the benefits and deficiencies of these approaches, as well as potentially useful avenues for future studies, are also provided. Our focus is on meeting challenges that arise from system identification and damage assessment for the civil infrastructure but our presented theories also have a considerably broader applicability for inverse problems in science and technology. |
---|---|
AbstractList | Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated by the fact that inverse problems in structural engineering, including structural health monitoring, are typically ill-conditioned and ill-posed when using noisy incomplete data because of various sources of modeling uncertainties. One should not just search for a single “optimal” value for the vector of model parameters but rather attempt to describe the whole family of plausible model parameters based on measured data using a Bayesian probabilistic framework. In this article, the fundamental principles of Bayesian analysis and computation are summarized; then a review is given of recent state-of-the-art practices of Bayesian inference in system identification and damage assessment for civil infrastructure. Discussions of the benefits and deficiencies of these approaches, as well as potentially useful avenues for future studies, are also provided. Our focus is on meeting challenges that arise from system identification and damage assessment for the civil infrastructure but our presented theories also have a considerably broader applicability for inverse problems in science and technology. |
Author | Wu, Biao Li, Hui Beck, James L. Huang, Yong Shao, Changsong |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-7963-0720 surname: Huang fullname: Huang, Yong email: huangyong@hit.edu.cn – sequence: 2 givenname: Changsong surname: Shao fullname: Shao, Changsong – sequence: 3 givenname: Biao orcidid: 0000-0002-7725-9980 surname: Wu fullname: Wu, Biao – sequence: 4 givenname: James L. surname: Beck fullname: Beck, James L. email: jimbeck@caltech.edu – sequence: 5 givenname: Hui surname: Li fullname: Li, Hui |
BookMark | eNp9kE9LAzEQxYNUsK3ePeYLRDObdLM5avEfFDyo52U2O1tT2qwkqdJv79Z6KujpDbz3G3hvwkahD8TYJcgrAGOuQZVWK1VAVQHMtDxh40LqSmgJMGLjvS32_hmbpLSSEgpjYMyWLxkzib4T-Z0ExswjfXr64n3gt7ij5DFwHzqKFBwNF085bl3eRlzztEuZNty3FLLvvMPsBwxDy1vc4JI4pkQpbQb7nJ12uE508atT9nZ_9zp_FIvnh6f5zUI4VdksuhYb1JUapKASqllrC22pQl1qC0ZSg01joW2sBCqlNZ1yriQJWpnGzIyaMnn462KfUqSu_oh-g3FXg6z3Q9XHQw1IeYQ4n3-q5Ih-_R8oDmAautarfhvDUO3v_Dc1gnyK |
CitedBy_id | crossref_primary_10_1016_j_engstruct_2020_110616 crossref_primary_10_1155_2022_3890255 crossref_primary_10_1002_stc_2936 crossref_primary_10_1016_j_conbuildmat_2023_134416 crossref_primary_10_1088_1361_665X_ad5504 crossref_primary_10_1007_s00707_023_03819_5 crossref_primary_10_1016_j_ymssp_2023_110324 crossref_primary_10_1142_S0219455420501230 crossref_primary_10_3390_infrastructures5030022 crossref_primary_10_1007_s13349_022_00594_0 crossref_primary_10_1017_dce_2023_18 crossref_primary_10_1177_1475921720926970 crossref_primary_10_1016_j_engstruct_2024_118352 crossref_primary_10_1177_14759217241273999 crossref_primary_10_3847_1538_4357_ad9f2f crossref_primary_10_1016_j_cma_2025_117753 crossref_primary_10_3390_s23063293 crossref_primary_10_1016_j_istruc_2023_05_020 crossref_primary_10_1016_j_measurement_2024_115665 crossref_primary_10_1016_j_cma_2021_113672 crossref_primary_10_1002_stc_2640 crossref_primary_10_1016_j_enganabound_2023_06_001 crossref_primary_10_1016_j_ymssp_2021_108782 crossref_primary_10_1016_j_istruc_2023_105247 crossref_primary_10_1016_j_ymssp_2024_111409 crossref_primary_10_1007_s11069_021_04729_2 crossref_primary_10_1177_14759217241256395 crossref_primary_10_3390_s22145079 crossref_primary_10_1016_j_ymssp_2023_111025 crossref_primary_10_1016_j_ress_2021_108043 crossref_primary_10_1016_j_strusafe_2024_102518 crossref_primary_10_1115_1_4054575 crossref_primary_10_3390_buildings12091324 crossref_primary_10_1016_j_probengmech_2024_103674 crossref_primary_10_1016_j_cma_2024_117686 crossref_primary_10_1016_j_ymssp_2021_107615 crossref_primary_10_1115_1_4065826 crossref_primary_10_1002_stc_2870 crossref_primary_10_1016_j_ymssp_2020_106884 crossref_primary_10_1016_j_ymssp_2019_106437 crossref_primary_10_1016_j_apm_2022_11_039 crossref_primary_10_1016_j_engstruct_2023_117317 crossref_primary_10_1002_stc_3047 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_1016_j_tws_2023_111138 crossref_primary_10_1177_13694332211069511 crossref_primary_10_1016_j_ymssp_2021_108150 crossref_primary_10_3390_app12030986 crossref_primary_10_1016_j_jobe_2024_111053 crossref_primary_10_1016_j_renene_2023_119430 crossref_primary_10_1155_2019_4652328 crossref_primary_10_1016_j_cma_2021_113915 crossref_primary_10_1016_j_cscm_2023_e02306 crossref_primary_10_1016_j_cma_2024_116868 crossref_primary_10_1016_j_istruc_2020_11_056 crossref_primary_10_1016_j_ymssp_2020_106998 crossref_primary_10_1016_j_ymssp_2019_106444 crossref_primary_10_1016_j_paerosci_2020_100641 crossref_primary_10_1016_j_engstruct_2021_113535 crossref_primary_10_1016_j_ymssp_2020_107563 crossref_primary_10_1002_stc_2343 crossref_primary_10_1007_s00366_024_01972_6 crossref_primary_10_1016_j_apm_2021_11_026 crossref_primary_10_1016_j_jsv_2020_115768 crossref_primary_10_1016_j_ymssp_2023_110318 crossref_primary_10_1007_s10518_023_01670_6 crossref_primary_10_1061__ASCE_ST_1943_541X_0003405 crossref_primary_10_1016_j_enganabound_2024_105855 crossref_primary_10_1016_j_jcsr_2025_109416 crossref_primary_10_1016_j_jobe_2022_105004 crossref_primary_10_32604_sdhm_2024_053662 crossref_primary_10_1016_j_measurement_2024_114666 crossref_primary_10_1016_j_cma_2024_117148 crossref_primary_10_1016_j_ymssp_2025_112395 crossref_primary_10_1177_14759217241247130 crossref_primary_10_1016_j_ymssp_2021_108204 crossref_primary_10_1016_j_ymssp_2020_107362 crossref_primary_10_1016_j_ultras_2022_106773 crossref_primary_10_3390_buildings13081903 crossref_primary_10_1016_j_ymssp_2023_110483 crossref_primary_10_2139_ssrn_4098753 crossref_primary_10_1007_s13349_020_00380_w crossref_primary_10_1016_j_probengmech_2022_103337 crossref_primary_10_1109_TR_2020_3032157 crossref_primary_10_1177_13694332251321196 crossref_primary_10_1016_j_ymssp_2023_110365 crossref_primary_10_3390_infrastructures6110158 crossref_primary_10_1177_10775463221081182 crossref_primary_10_1017_aer_2024_31 crossref_primary_10_1016_j_automatica_2022_110489 crossref_primary_10_1016_j_istruc_2022_05_041 crossref_primary_10_1016_j_engstruct_2023_117048 crossref_primary_10_3390_math9151758 crossref_primary_10_1088_1361_665X_aae9b4 crossref_primary_10_1016_j_engstruct_2021_113001 crossref_primary_10_3390_su15065391 crossref_primary_10_1016_j_jsv_2023_117669 crossref_primary_10_1016_j_istruc_2024_108098 crossref_primary_10_1002_eqe_4011 crossref_primary_10_1016_j_ymssp_2024_112137 crossref_primary_10_1016_j_jpse_2024_100223 crossref_primary_10_1088_1755_1315_1415_1_012098 crossref_primary_10_1016_j_jsv_2020_115741 crossref_primary_10_1061_AJRUA6_0001196 crossref_primary_10_1016_j_cma_2024_117489 crossref_primary_10_3390_infrastructures6040057 crossref_primary_10_1007_s13198_023_02101_0 crossref_primary_10_3390_sym14020339 crossref_primary_10_1016_j_ymssp_2020_106965 crossref_primary_10_3390_s21154971 crossref_primary_10_1016_j_kscej_2024_100139 crossref_primary_10_1002_eng2_12669 crossref_primary_10_3390_w14223672 crossref_primary_10_1007_s13349_023_00685_6 crossref_primary_10_3390_s24248123 crossref_primary_10_1017_dce_2022_28 crossref_primary_10_1061_AJRUA6_RUENG_1402 crossref_primary_10_1016_j_iintel_2024_100087 crossref_primary_10_1016_j_measurement_2022_111966 crossref_primary_10_1177_1475921720985143 crossref_primary_10_1016_j_ymssp_2022_109742 crossref_primary_10_1007_s00158_021_03120_w crossref_primary_10_1177_1475921720921256 crossref_primary_10_1007_s13349_022_00638_5 crossref_primary_10_1177_14759217251320044 crossref_primary_10_1016_j_compstruc_2024_107598 crossref_primary_10_1016_j_probengmech_2023_103507 |
Cites_doi | 10.1016/j.ymssp.2016.07.013 10.1119/1.1990764 10.1016/j.strusafe.2016.09.001 10.1061/(ASCE)0733-9399(2004)130:2(192) 10.2307/3318737 10.1007/s11222-008-9110-y 10.1061/(ASCE)0733-9399(2002)128:4(380) 10.1007/s11222-011-9288-2 10.1111/mice.12051 10.1061/(ASCE)0733-9399(2009)135:4(243) 10.1002/stc.2107 10.1111/j.1467-8667.2006.00432.x 10.1016/j.probengmech.2005.08.003 10.1002/stc.144 10.1016/j.ymssp.2017.01.040 10.1177/1475921718790212 10.56021/9780801869822 10.1177/1077546307079400 10.1016/j.ijnonlinmec.2017.03.012 10.1016/j.engstruct.2016.11.035 10.1061/(ASCE)EM.1943-7889.0000351 10.1615/Int.J.UncertaintyQuantification.2012004713 10.1016/j.strusafe.2014.06.004 10.1017/CBO9780511790423 10.1016/j.engstruct.2014.08.042 10.1061/(ASCE)0733-9399(1998)124:4(455) 10.1016/j.ymssp.2016.02.024 10.1007/978-1-4612-0745-0 10.1088/1361-665X/aac248 10.1007/978-1-4757-4145-2 10.1007/978-94-011-3692-1_12 10.1109/TSP.2004.831016 10.1002/stc.420 10.1016/j.scient.2012.09.002 10.1109/TIT.2005.862083 10.1016/j.jsv.2010.02.004 10.1088/0964-1726/22/3/035012 10.1002/stc.47 10.1016/j.jsv.2018.02.064 10.1142/S0219455412500526 10.1111/j.1467-8667.2006.00431.x 10.1016/j.strusafe.2015.01.003 10.1016/j.ymssp.2015.05.019 10.1007/978-94-009-3049-0_4 10.1061/(ASCE)0733-9399(1998)124:4(463) 10.1103/PhysRev.106.620 10.7551/mitpress/1120.003.0054 10.1061/(ASCE)0733-9399(2000)126:7(738) 10.1002/eqe.122 10.1016/j.engstruct.2014.08.035 10.1137/130932831 10.1088/1361-665X/aae9b4 10.1061/(ASCE)EM.1943-7889.0000839 10.1109/CDC.2011.6160563 10.1109/TIT.2007.909108 10.1016/j.engstruct.2016.10.033 10.1615/Int.J.UncertaintyQuantification.2015011808 10.1177/1475921704047499 10.1088/0964-1726/16/2/014 10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO;2-3 10.1177/1475921716665252 10.1061/(ASCE)0733-9399(2004)130:10(1233) 10.1177/1475921715604386 10.1023/A:1022635419332 10.1016/j.ndteint.2016.10.005 10.1080/15732479.2014.951867 10.1111/0885-9507.00209 10.1016/j.ymssp.2016.09.035 10.1016/j.engstruct.2008.03.012 10.1061/(ASCE)0733-9399(1995)121:2(255) 10.1111/mice.12408 10.1111/mice.12358 10.1016/j.cma.2017.01.030 10.1016/j.strusafe.2010.03.011 10.1061/(ASCE)0733-9399(2007)133:7(816) 10.1016/j.probengmech.2016.08.001 10.1002/stc.1684 10.1007/978-3-540-28650-9_3 10.1002/stc.424 10.1137/S1064827596304010 10.1016/j.ymssp.2016.11.007 10.1093/biomet/57.1.97 10.1109/TUFFC.2006.1610568 10.1121/1.2982414 10.1115/1.1849240 10.1016/j.engstruct.2009.07.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 |
Copyright_xml | – notice: The Author(s) 2018 |
DBID | AAYXX CITATION |
DOI | 10.1177/1369433218811540 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4011 |
EndPage | 1351 |
ExternalDocumentID | 10_1177_1369433218811540 10.1177_1369433218811540 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51638007 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFC1500605 – fundername: National Natural Science Foundation of China grantid: 51778192 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 51308161 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -TM -TN 0R~ 23M 4.4 54M 5GY 6KP AABPG AADUE AAGGD AAGLT AAJPV AANSI AAOTM AAOVH AAPEO AAQXI AARIX AATAA AATZT ABAWP ABCCA ABCJG ABDBF ABDWY ABEIX ABFNE ABFWQ ABGWC ABHKI ABIDT ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABUBZ ABUJY ABYTW ACDXX ACGBL ACGFS ACOFE ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADEBD ADEIA ADGDL ADMLS ADRRZ ADTBJ ADUKL ADVBO AEDFJ AENEX AEPTA AEQLS AESZF AEWDL AEWHI AEXNY AFEET AFGYO AFKRG AFMOU AFQAA AFUIA AGKLV AGNHF AGWFA AHDMH AIZZC AJEFB AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BBRGL BDDNI BPACV CBRKF CFDXU CKLRP CORYS CS3 DH. DOPDO DV7 EBS EJD ESX FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 I-F IL9 J8X K.F MET MV1 O9- Q1R ROL SASJQ SAUOL SCNPE SFC SPV TUS ZPPRI ZRKOI AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c389t-fdaba483dab2e6185d9249e8a4649170ebabb91db901e6097f3cc6e01437b7573 |
ISSN | 1369-4332 |
IngestDate | Tue Jul 01 05:24:01 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Tue Jun 17 22:31:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Bayesian model updating uncertainty quantification Bayesian model class assessment structural system identification structural health monitoring Bayesian inference sparse Bayesian learning damage assessment |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-fdaba483dab2e6185d9249e8a4649170ebabb91db901e6097f3cc6e01437b7573 |
ORCID | 0000-0002-7963-0720 0000-0002-7725-9980 |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1177/1369433218811540 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1177_1369433218811540 crossref_citationtrail_10_1177_1369433218811540 sage_journals_10_1177_1369433218811540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Advances in structural engineering |
PublicationYear | 2019 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Yuen, Beck, Au 2004; 11 Jaynes, Rosenkrantz 1983 Lam, Ng 2008; 30 Raghavan, Cesnik 2007; 16 Jefferys, Berger 1992; 80 Wang, Yajima, Liang 2015; 54 Arangio, Beck 2012; 19 Yan 2013; 22 Yuen 2010; 32 Arangio, Bontempi 2015; 11 Chen, Donoho, Saunders 1999; 20 Ching, Beck 2004; 130 Behmanesh, Moaveni 2015; 22 Tropp, Gilbert 2007; 53 Beck, Zuev 2013; 3 Candes, Romberg, Tao 2006; 52 Vanik, Beck, Au 2000; 126 Zhang, Harvey, Braden 2008; 124 Wipf, Rao 2004; 52 Wu, Huang, Chen 2017; 16 Chiachio, Bochud, Chiachio 2017; 88 Cheung, Beck 2009; 135 Nichols, Link, Murphy 2010; 329 Huang, Beck, Wu 2014; 29 Katafygiotis, Beck 1998; 124 Hou, Xia, Zhou 2018; 25 Straub, Papaioannou 2015; 141 Zhou, Xia, Weng 2015; 14 Hastings 1970; 57 Ching, Chen 2007; 133 Muto, Beck 2008; 14 Wu, Li, Huang 2018 Ching, Beck 2004; 3 Huang, Beck, Li 2017; 318 Huang, Beck, Li 2017; 64 Sohn, Law 1997; 26 Hou, Xia, Bao 2018; 423 Jaynes 1957; 106 Li, Der Kiureghian 2017; 88 Bao, Xia, Li 2013; 12 Goller, Beck, Schuëller 2012; 138 He, Ng 2017; 84 Beck, Yuen 2004; 130 Beck, Au, Vanik 2001; 16 Ching, Beck, Porter 2006; 21 Cox 1946; 14 Marin, Pudlo, Robert 2012; 22 Beck, Katafygiotis 1998; 124 Vakilzadeh, Huang, Beck 2017; 84 Yan, Katafygiotis 2015; 52 Astroza, Ebrahimian, Li 2017; 93 Huang, Beck 2018; 33 Hong, Sun, Kim 2006; 53 Huang, Beck 2015; 5 Huang, Beck, Li 2018 Wu, Huang, Krishnaswamy 2017; 85 Yuen, Beck, Katafygiotis 2006; 13 Ching, Muto, Beck 2006; 21 Lam, Hu, Wong 2014; 81 Andrieu, Thoms 2008; 18 Sirca, Adeli 2012; 19 Yin, Jiang, Yuen 2017; 132 Yuen, Kuok 2016; 66–67 Chiachio, Beck, Chiachio 2014; 36 Ching, Beck 2003 Ghanem, Shinozuka 1995; 121 Beck, Au 2002; 128 Katafygiotis, Lam 2002; 31 Lam, Yuen, Beck 2006; 21 Yang, Beck 1998; 97 Haario, Saksman, Tamminen 2001; 7 Beck 2010; 17 Figueiredo, Radu, Worden 2014; 80 Behmanesh, Moaveni, Papadimitriou 2017; 131 Neal 1996 Ng, Veidt, Lam 2009; 31 Huang, Li, Wu 2018; 27 Sohn, Allen, Worden 2005; 127 Huang, Beck, Wu 2016; 46 Catanach, Beck 2017; 94 bibr38-1369433218811540 Bishop CM (bibr18-1369433218811540) 2005 Tipping ME (bibr84-1369433218811540) 2001; 1 bibr46-1369433218811540 Mackay DJC (bibr69-1369433218811540) 1992 bibr9-1369433218811540 Jaynes ET (bibr60-1369433218811540) 1983 bibr7-1369433218811540 bibr56-1369433218811540 bibr48-1369433218811540 bibr21-1369433218811540 bibr64-1369433218811540 bibr105-1369433218811540 Cox RT (bibr34-1369433218811540) 1961 bibr99-1369433218811540 bibr13-1369433218811540 bibr82-1369433218811540 Beck JL (bibr8-1369433218811540) 2014 bibr95-1369433218811540 bibr87-1369433218811540 bibr74-1369433218811540 bibr79-1369433218811540 bibr66-1369433218811540 bibr101-1369433218811540 bibr103-1369433218811540 Jefferys WH (bibr62-1369433218811540) 1992; 80 bibr97-1369433218811540 bibr11-1369433218811540 Bernal D (bibr17-1369433218811540) 2002 bibr58-1369433218811540 bibr68-1369433218811540 bibr50-1369433218811540 bibr93-1369433218811540 bibr76-1369433218811540 bibr85-1369433218811540 bibr42-1369433218811540 bibr43-1369433218811540 bibr51-1369433218811540 Cover TM (bibr32-1369433218811540) 2006 bibr77-1369433218811540 bibr26-1369433218811540 Bishop CM (bibr19-1369433218811540) 2006 bibr31-1369433218811540 bibr90-1369433218811540 bibr102-1369433218811540 bibr23-1369433218811540 bibr96-1369433218811540 bibr5-1369433218811540 bibr88-1369433218811540 bibr2-1369433218811540 bibr15-1369433218811540 bibr54-1369433218811540 bibr63-1369433218811540 bibr20-1369433218811540 bibr104-1369433218811540 Faul AC (bibr36-1369433218811540) 2002 MacKay DJC (bibr70-1369433218811540) 1994 bibr29-1369433218811540 Huang Y (bibr57-1369433218811540) 2018 bibr12-1369433218811540 bibr55-1369433218811540 bibr98-1369433218811540 bibr30-1369433218811540 bibr22-1369433218811540 bibr47-1369433218811540 bibr39-1369433218811540 bibr65-1369433218811540 bibr73-1369433218811540 Vanik MW (bibr89-1369433218811540) 1997 bibr1-1369433218811540 bibr61-1369433218811540 bibr53-1369433218811540 bibr14-1369433218811540 Mises VR (bibr72-1369433218811540) 1981 bibr81-1369433218811540 bibr27-1369433218811540 bibr40-1369433218811540 bibr37-1369433218811540 bibr24-1369433218811540 bibr45-1369433218811540 Beck JL (bibr6-1369433218811540) 1989 Dyke SJ (bibr35-1369433218811540) 2003 bibr71-1369433218811540 bibr25-1369433218811540 bibr33-1369433218811540 Tipping ME (bibr86-1369433218811540) 2003 bibr59-1369433218811540 bibr16-1369433218811540 bibr92-1369433218811540 Tarantola A (bibr83-1369433218811540) 2005 bibr3-1369433218811540 bibr94-1369433218811540 bibr78-1369433218811540 bibr4-1369433218811540 bibr91-1369433218811540 bibr100-1369433218811540 bibr52-1369433218811540 Huang Y (bibr49-1369433218811540) 2011 bibr44-1369433218811540 bibr10-1369433218811540 bibr75-1369433218811540 bibr41-1369433218811540 bibr67-1369433218811540 bibr80-1369433218811540 bibr28-1369433218811540 |
References_xml | – volume: 124 start-page: 2963 issue: 5 year: 2008 end-page: 2972 article-title: Signal denoising and ultrasonic flaw detection via overcomplete and sparse representations publication-title: Journal of the Acoustical Society of America – volume: 57 start-page: 97 issue: 1 year: 1970 end-page: 109 article-title: Monte Carlo sampling methods using Markov Chains and their applications publication-title: Biometrika – volume: 5 start-page: 139 issue: 2 year: 2015 end-page: 169 article-title: Hierarchical sparse Bayesian learning for structural health monitoring with incomplete modal data publication-title: International Journal for Uncertainty Quantification – volume: 22 start-page: 035012 issue: 3 year: 2013 article-title: A Bayesian approach for damage localization in plate-like structures using Lamb waves publication-title: Smart Materials and Structures – volume: 3 start-page: 445 issue: 5 year: 2013 end-page: 474 article-title: Asymptotically independent Markov sampling: a new Markov Chain Monte Carlo scheme for Bayesian interference publication-title: International Journal for Uncertainty Quantification – volume: 130 start-page: 1233 issue: 10 year: 2004 end-page: 1244 article-title: Bayesian analysis of the Phase II IASC–ASCE Structural Health Monitoring experimental benchmark data publication-title: Journal of Engineering Mechanics – volume: 127 start-page: 125 issue: 1 year: 2005 end-page: 132 article-title: Structural damage classification using extreme value statistics publication-title: Journal of Dynamic Systems Measurement and Control – volume: 21 start-page: 81 issue: 1 year: 2006 end-page: 96 article-title: Bayesian state and parameter estimation of uncertain dynamical systems publication-title: Probabilistic Engineering Mechanics – volume: 121 start-page: 255 issue: 2 year: 1995 end-page: 264 article-title: Structural-system identification. I: theory publication-title: Journal of Engineering Mechanics – volume: 93 start-page: 661 year: 2017 end-page: 687 article-title: Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures publication-title: Mechanical Systems and Signal Processing – volume: 22 start-page: 1167 year: 2012 end-page: 1180 article-title: Approximate Bayesian computational methods publication-title: Statistics and Computing – volume: 141 start-page: 04014134 issue: 3 year: 2015 article-title: Bayesian updating with structural reliability methods publication-title: Journal of Engineering Mechanics – volume: 16 start-page: 1 issue: 1 year: 2001 end-page: 11 article-title: Monitoring structural health using a probabilistic measure publication-title: Computer-Aided Civil and Infrastructure Engineering – year: 1983 publication-title: Papers on Probability, Statistics and Statistical Physics – volume: 84 start-page: 324 year: 2017 end-page: 345 article-title: Guided wave-based identification of multiple cracks in beams using a Bayesian approach publication-title: Mechanical Systems and Signal Processing – volume: 14 start-page: 571 issue: 6 year: 2015 end-page: 582 article-title: L regularization approach to structural damage detection using frequency data publication-title: Structural Health Monitoring – volume: 81 start-page: 289 year: 2014 end-page: 301 article-title: The Bayesian methodology for the detection of railway ballast damage under a concrete sleeper publication-title: Engineering Structures – volume: 52 start-page: 2153 issue: 8 year: 2004 end-page: 2164 article-title: Sparse Bayesian learning for basis selection publication-title: IEEE Transactions on Signal Processing – volume: 133 start-page: 816 issue: 7 year: 2007 end-page: 832 article-title: Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging publication-title: Journal of Engineering Mechanics – volume: 318 start-page: 382 year: 2017 end-page: 411 article-title: Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 30 start-page: 2762 issue: 10 year: 2008 end-page: 2770 article-title: The selection of pattern features for structural damage detection using an extended Bayesian ANN algorithm publication-title: Engineering Structures – volume: 16 start-page: 355 issue: 2 year: 2007 end-page: 366 article-title: Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring publication-title: Smart Materials and Structures – volume: 16 start-page: 347 issue: 3 year: 2017 end-page: 362 article-title: Guided-wave signal processing by the sparse Bayesian learning approach employing Gabor pulse model publication-title: Structural Health Monitoring – year: 2003 – volume: 53 start-page: 4655 issue: 12 year: 2007 end-page: 4666 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Transactions on Information Theory – volume: 423 start-page: 141 year: 2018 end-page: 160 article-title: Selection of regularization parameter for -regularized damage detection publication-title: Journal of Sound and Vibration – volume: 11 start-page: 575 issue: 4 year: 2015 end-page: 587 article-title: Structural health monitoring of a cable-stayed bridge with Bayesian neural networks publication-title: Structure and Infrastructure Engineering – volume: 135 start-page: 243 year: 2009 end-page: 255 article-title: Bayesian model updating using Hybrid Monte Carlo Simulation with application to structural dynamics models with many uncertain parameters publication-title: Journal of Engineering Mechanics – volume: 22 start-page: 463 year: 2015 end-page: 483 article-title: Probabilistic identification of simulated damage on the Dowling Hall footbridge through Bayesian finite element model updating publication-title: Structural Control and Health Monitoring – volume: 66–67 start-page: 62 year: 2016 end-page: 77 article-title: Online updating and uncertainty quantification using nonstationary output-only measurement publication-title: Mechanical Systems and Signal Processing – volume: 11 start-page: 327 issue: 4 year: 2004 end-page: 347 article-title: Structural damage detection and assessment using adaptive Markov Chain Monte Carlo simulation publication-title: Structural Control and Health Monitoring – volume: 14 start-page: 7 year: 2008 end-page: 34 article-title: Bayesian updating and model class selection using stochastic simulation publication-title: Journal of Vibration and Control – volume: 12 issue: 6 year: 2013 article-title: Data fusion-based structural damage detection under varying temperature conditions publication-title: International Journal of Structural Stability and Dynamics – volume: 3 start-page: 313 issue: 4 year: 2004 end-page: 332 article-title: New Bayesian model updating algorithm applied to a Structural Health Monitoring benchmark publication-title: Structural Health Monitoring – volume: 84 start-page: 2 year: 2017 end-page: 20 article-title: Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models publication-title: Mechanical Systems and Signal Processing – volume: 130 start-page: 192 issue: 2 year: 2004 end-page: 203 article-title: Model selection using response measurements: Bayesian probabilistic approach publication-title: Journal of Engineering Mechanics – volume: 80 start-page: 1 year: 2014 end-page: 10 article-title: A Bayesian approach based on a Markov-chain Monte Carlo method for damage detection under unknown sources of variability publication-title: Engineering Structures – volume: 53 start-page: 592 issue: 3 year: 2006 end-page: 605 article-title: Waveguide damage detection by the matching pursuit approach employing the dispersion-based chirp functions publication-title: IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control – volume: 138 start-page: 430 issue: 5 year: 2012 end-page: 440 article-title: Evidence-based identification of weighting factors in Bayesian model updating using modal data publication-title: Journal of Engineering Mechanics – volume: 27 start-page: 075020 year: 2018 article-title: Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning publication-title: Smart Materials and Structures – volume: 131 start-page: 542 year: 2017 end-page: 552 article-title: Probabilistic damage identification of a designed 9-story building using modal data in the presence of modeling errors publication-title: Engineering Structures – volume: 26 start-page: 1259 issue: 12 year: 1997 end-page: 1281 article-title: A Bayesian probabilistic approach for structure damage detection publication-title: Earthquake Engineering & Structural Dynamics – volume: 31 start-page: 791 issue: 4 year: 2002 end-page: 812 article-title: Tangential-projection algorithm for manifold representation in unidentifiable model updating problems publication-title: Earthquake Engineering & Structural Dynamics – volume: 21 start-page: 242 issue: 4 year: 2006 end-page: 257 article-title: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 17 start-page: 825 year: 2010 end-page: 847 article-title: Bayesian system identification based on probability logic publication-title: Structural Control and Health Monitoring – volume: 64 start-page: 37 year: 2017 end-page: 53 article-title: Hierarchical sparse Bayesian learning for structural damage detection: theory, computation and application publication-title: Structural Safety – volume: 88 start-page: 377 year: 2017 end-page: 398 article-title: Operational modal identification using variational Bayes publication-title: Mechanical Systems and Signal Processing – volume: 126 start-page: 738 issue: 7 year: 2000 end-page: 745 article-title: Bayesian probabilistic approach to structural health monitoring publication-title: Journal of Engineering Mechanics – volume: 29 start-page: 160 issue: 3 year: 2014 end-page: 179 article-title: Robust Bayesian compressive sensing for signals in Structural Health Monitoring publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 54 start-page: 19 year: 2015 end-page: 31 article-title: A Bayesian model framework for calibrating ultrasonic in-line inspection data and estimating actual external corrosion depth in buried pipeline utilizing a clustering technique publication-title: Structural Safety – volume: 13 start-page: 91 issue: 1 year: 2006 end-page: 107 article-title: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching publication-title: Structural Control and Health Monitoring – volume: 128 start-page: 380 issue: 4 year: 2002 end-page: 391 article-title: Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation publication-title: Journal of Engineering Mechanics – volume: 7 start-page: 223 year: 2001 end-page: 242 article-title: An adaptive Metropolis algorithm publication-title: Bernouli – volume: 20 start-page: 33 issue: 1 year: 1999 end-page: 61 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Journal on Scientific and Statistical Computing – volume: 106 start-page: 620 issue: 4 year: 1957 end-page: 630 article-title: Information theory and statistical mechanics publication-title: Physical Review – year: 1996 article-title: Bayesian learning for neural networks publication-title: Lecture Notes in Statistics, Berlin – volume: 52 start-page: 260 year: 2015 end-page: 271 article-title: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups publication-title: Structural Safety – volume: 132 start-page: 260 year: 2017 end-page: 277 article-title: Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique publication-title: Engineering Structures – volume: 18 start-page: 343 year: 2008 end-page: 373 article-title: A tutorial on adaptive MCMC publication-title: Statistics and Computing – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Transactions on Information Theory – volume: 46 start-page: 62 year: 2016 end-page: 79 article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery publication-title: Probabilistic Engineering Mechanics – volume: 32 start-page: 338 issue: 5 year: 2010 end-page: 346 article-title: Recent developments of Bayesian model class selection and applications in civil engineering publication-title: Structural Safety – volume: 85 start-page: 76 year: 2017 end-page: 85 article-title: A Bayesian approach for sparse flaw detection from noisy signals for ultrasonic NDT publication-title: NDT&E International – volume: 36 start-page: A1339 issue: 3 year: 2014 end-page: A1358 article-title: Approximate Bayesian computation by subset simulation publication-title: SIAM Journal on Scientific Computing – volume: 14 start-page: 1 issue: 1 year: 1946 end-page: 13 article-title: Probability, frequency and reasonable expectation publication-title: American Journal of Physics – volume: 88 start-page: 462 year: 2017 end-page: 477 article-title: A multilevel Bayesian method for ultrasound-based damage identification in composite laminates publication-title: Mechanical Systems and Signal Processing – volume: 124 start-page: 463 issue: 4 year: 1998 end-page: 467 article-title: Updating models and their uncertainties. II: Model identifiability publication-title: Journal of Engineering Mechanics – volume: 31 start-page: 2842 issue: 12 year: 2009 end-page: 2850 article-title: Guided wave damage characterization in beams utilizing probabilistic optimization publication-title: Engineering Structures – year: 2018 article-title: Sparse recovery of multiple dispersive guided-wave modes for defect localization using a Bayesian approach publication-title: Structural Health Monitoring – year: 2018 article-title: Multi-task sparse Bayesian learning with applications in Structural Health Monitoring publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 80 start-page: 64 year: 1992 end-page: 72 article-title: Ockham’s Razor and Bayesian analysis publication-title: American Scientist – volume: 21 start-page: 232 year: 2006 end-page: 241 article-title: Structural health monitoring via measured Ritz vectors utilizing artificial neural networks publication-title: Civil and Infrastructure Engineering – volume: 97 start-page: 211 issue: 1 year: 1998 end-page: 227 article-title: Generalized trajectory methods for finding multiple extrema and roots of functions publication-title: Journal of Optimization Theory and Applications – volume: 329 start-page: 2995 issue: 15 year: 2010 end-page: 3007 article-title: A Bayesian approach to identifying structural nonlinearity using free-decay response: application to damage detection in composites publication-title: Journal of Sound and Vibration – volume: 19 start-page: 3 issue: 1 year: 2012 end-page: 21 article-title: Bayesian neural networks for bridge integrity assessment publication-title: Structural Control and Health Monitoring – volume: 124 start-page: 455 issue: 4 year: 1998 end-page: 461 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: Journal of Engineering Mechanics – volume: 94 start-page: 72 year: 2017 end-page: 83 article-title: Bayesian system identification using auxiliary stochastic dynamical systems publication-title: International Journal of Nonlinear Mechanics – volume: 33 start-page: 712 issue: 9 year: 2018 end-page: 730 article-title: Full Gibbs sampling procedure for Bayesian system identification incorporating sparse Bayesian learning with automatic relevance determination publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 25 start-page: e2107 issue: 3 year: 2018 article-title: Structural damage detection based on regularization using natural frequencies and mode shapes publication-title: Structural Control and Health Monitoring – volume: 19 start-page: 1355 issue: 6 year: 2012 end-page: 1364 article-title: System identification in structural engineering publication-title: Scientia Iranica – volume-title: Bayesian methods for adaptive models year: 1992 ident: bibr69-1369433218811540 – ident: bibr44-1369433218811540 doi: 10.1016/j.ymssp.2016.07.013 – ident: bibr33-1369433218811540 doi: 10.1119/1.1990764 – ident: bibr51-1369433218811540 doi: 10.1016/j.strusafe.2016.09.001 – ident: bibr12-1369433218811540 doi: 10.1061/(ASCE)0733-9399(2004)130:2(192) – volume-title: The 8th international workshop on structural health monitoring year: 2011 ident: bibr49-1369433218811540 – ident: bibr42-1369433218811540 doi: 10.2307/3318737 – ident: bibr1-1369433218811540 doi: 10.1007/s11222-008-9110-y – ident: bibr9-1369433218811540 doi: 10.1061/(ASCE)0733-9399(2002)128:4(380) – ident: bibr71-1369433218811540 doi: 10.1007/s11222-011-9288-2 – ident: bibr54-1369433218811540 doi: 10.1111/mice.12051 – ident: bibr23-1369433218811540 doi: 10.1061/(ASCE)0733-9399(2009)135:4(243) – volume-title: The 7th world conference on structural control and monitoring, 7WCSCM year: 2018 ident: bibr57-1369433218811540 – ident: bibr46-1369433218811540 doi: 10.1002/stc.2107 – ident: bibr31-1369433218811540 doi: 10.1111/j.1467-8667.2006.00432.x – ident: bibr30-1369433218811540 doi: 10.1016/j.probengmech.2005.08.003 – ident: bibr103-1369433218811540 doi: 10.1002/stc.144 – ident: bibr4-1369433218811540 doi: 10.1016/j.ymssp.2017.01.040 – ident: bibr95-1369433218811540 doi: 10.1177/1475921718790212 – volume-title: The Algebra of Probable Inference year: 1961 ident: bibr34-1369433218811540 doi: 10.56021/9780801869822 – ident: bibr73-1369433218811540 doi: 10.1177/1077546307079400 – ident: bibr21-1369433218811540 doi: 10.1016/j.ijnonlinmec.2017.03.012 – ident: bibr99-1369433218811540 doi: 10.1016/j.engstruct.2016.11.035 – volume-title: Proceedings of 16th Engineering Mechanics conference year: 2003 ident: bibr35-1369433218811540 – ident: bibr40-1369433218811540 doi: 10.1061/(ASCE)EM.1943-7889.0000351 – ident: bibr13-1369433218811540 doi: 10.1615/Int.J.UncertaintyQuantification.2012004713 – volume: 80 start-page: 64 year: 1992 ident: bibr62-1369433218811540 publication-title: American Scientist – volume-title: Proceedings of the 9th international conference on structural dynamics year: 2014 ident: bibr8-1369433218811540 – ident: bibr97-1369433218811540 doi: 10.1016/j.strusafe.2014.06.004 – ident: bibr61-1369433218811540 doi: 10.1017/CBO9780511790423 – ident: bibr37-1369433218811540 doi: 10.1016/j.engstruct.2014.08.042 – ident: bibr11-1369433218811540 doi: 10.1061/(ASCE)0733-9399(1998)124:4(455) – volume: 1 start-page: 211 volume-title: Journal of Machine Learning Research year: 2001 ident: bibr84-1369433218811540 – ident: bibr88-1369433218811540 doi: 10.1016/j.ymssp.2016.02.024 – ident: bibr74-1369433218811540 doi: 10.1007/978-1-4612-0745-0 – ident: bibr56-1369433218811540 doi: 10.1088/1361-665X/aac248 – ident: bibr78-1369433218811540 doi: 10.1007/978-1-4757-4145-2 – ident: bibr10-1369433218811540 doi: 10.1007/978-94-011-3692-1_12 – ident: bibr92-1369433218811540 doi: 10.1109/TSP.2004.831016 – ident: bibr2-1369433218811540 doi: 10.1002/stc.420 – ident: bibr79-1369433218811540 doi: 10.1016/j.scient.2012.09.002 – volume-title: Inverse Problem Theory year: 2005 ident: bibr83-1369433218811540 – ident: bibr20-1369433218811540 doi: 10.1109/TIT.2005.862083 – ident: bibr76-1369433218811540 doi: 10.1016/j.jsv.2010.02.004 – ident: bibr96-1369433218811540 doi: 10.1088/0964-1726/22/3/035012 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: bibr19-1369433218811540 – ident: bibr102-1369433218811540 doi: 10.1002/stc.47 – ident: bibr47-1369433218811540 doi: 10.1016/j.jsv.2018.02.064 – ident: bibr5-1369433218811540 doi: 10.1142/S0219455412500526 – ident: bibr67-1369433218811540 doi: 10.1111/j.1467-8667.2006.00431.x – start-page: 211 volume-title: Model of Neural Networks III year: 1994 ident: bibr70-1369433218811540 – ident: bibr91-1369433218811540 doi: 10.1016/j.strusafe.2015.01.003 – ident: bibr101-1369433218811540 doi: 10.1016/j.ymssp.2015.05.019 – ident: bibr41-1369433218811540 doi: 10.1007/978-94-009-3049-0_4 – volume-title: A Bayesian probabilistic approach to structural health monitoring year: 1997 ident: bibr89-1369433218811540 – volume-title: Neural Networks for Pattern Recognition year: 2005 ident: bibr18-1369433218811540 – ident: bibr63-1369433218811540 doi: 10.1061/(ASCE)0733-9399(1998)124:4(463) – ident: bibr59-1369433218811540 doi: 10.1103/PhysRev.106.620 – start-page: 383 volume-title: Advances in Neural Information Processing Systems 14 year: 2002 ident: bibr36-1369433218811540 doi: 10.7551/mitpress/1120.003.0054 – ident: bibr90-1369433218811540 doi: 10.1061/(ASCE)0733-9399(2000)126:7(738) – ident: bibr64-1369433218811540 doi: 10.1002/eqe.122 – ident: bibr66-1369433218811540 doi: 10.1016/j.engstruct.2014.08.035 – ident: bibr26-1369433218811540 – ident: bibr25-1369433218811540 doi: 10.1137/130932831 – ident: bibr58-1369433218811540 doi: 10.1088/1361-665X/aae9b4 – year: 1983 ident: bibr60-1369433218811540 publication-title: Papers on Probability, Statistics and Statistical Physics – ident: bibr82-1369433218811540 doi: 10.1061/(ASCE)EM.1943-7889.0000839 – volume-title: Proceedings of 9th international workshop on artificial intelligence and statistics year: 2003 ident: bibr86-1369433218811540 – ident: bibr38-1369433218811540 doi: 10.1109/CDC.2011.6160563 – ident: bibr87-1369433218811540 doi: 10.1109/TIT.2007.909108 – ident: bibr16-1369433218811540 doi: 10.1016/j.engstruct.2016.10.033 – ident: bibr48-1369433218811540 doi: 10.1615/Int.J.UncertaintyQuantification.2015011808 – ident: bibr28-1369433218811540 doi: 10.1177/1475921704047499 – ident: bibr77-1369433218811540 doi: 10.1088/0964-1726/16/2/014 – ident: bibr81-1369433218811540 doi: 10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO;2-3 – volume-title: Elements of Information Theory year: 2006 ident: bibr32-1369433218811540 – ident: bibr94-1369433218811540 doi: 10.1177/1475921716665252 – volume-title: Proceedings of 5th international conference on structural safety and reliability year: 1989 ident: bibr6-1369433218811540 – ident: bibr27-1369433218811540 doi: 10.1061/(ASCE)0733-9399(2004)130:10(1233) – ident: bibr105-1369433218811540 doi: 10.1177/1475921715604386 – ident: bibr98-1369433218811540 doi: 10.1023/A:1022635419332 – ident: bibr93-1369433218811540 doi: 10.1016/j.ndteint.2016.10.005 – ident: bibr3-1369433218811540 doi: 10.1080/15732479.2014.951867 – ident: bibr14-1369433218811540 doi: 10.1111/0885-9507.00209 – volume-title: Probability, Statistics, and Truth year: 1981 ident: bibr72-1369433218811540 – ident: bibr24-1369433218811540 doi: 10.1016/j.ymssp.2016.09.035 – ident: bibr65-1369433218811540 doi: 10.1016/j.engstruct.2008.03.012 – ident: bibr39-1369433218811540 doi: 10.1061/(ASCE)0733-9399(1995)121:2(255) – ident: bibr53-1369433218811540 doi: 10.1111/mice.12408 – ident: bibr50-1369433218811540 doi: 10.1111/mice.12358 – ident: bibr52-1369433218811540 doi: 10.1016/j.cma.2017.01.030 – ident: bibr100-1369433218811540 doi: 10.1016/j.strusafe.2010.03.011 – ident: bibr29-1369433218811540 doi: 10.1061/(ASCE)0733-9399(2007)133:7(816) – ident: bibr55-1369433218811540 doi: 10.1016/j.probengmech.2016.08.001 – ident: bibr15-1369433218811540 doi: 10.1002/stc.1684 – ident: bibr85-1369433218811540 doi: 10.1007/978-3-540-28650-9_3 – ident: bibr7-1369433218811540 doi: 10.1002/stc.424 – ident: bibr22-1369433218811540 doi: 10.1137/S1064827596304010 – ident: bibr68-1369433218811540 doi: 10.1016/j.ymssp.2016.11.007 – ident: bibr43-1369433218811540 doi: 10.1093/biomet/57.1.97 – ident: bibr45-1369433218811540 doi: 10.1109/TUFFC.2006.1610568 – ident: bibr104-1369433218811540 doi: 10.1121/1.2982414 – ident: bibr80-1369433218811540 doi: 10.1115/1.1849240 – start-page: 1048 volume-title: Proceedings of 15th ASCE engineering mechanics conference year: 2002 ident: bibr17-1369433218811540 – ident: bibr75-1369433218811540 doi: 10.1016/j.engstruct.2009.07.009 |
SSID | ssj0012771 |
Score | 2.521159 |
SecondaryResourceType | review_article |
Snippet | Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1329 |
Title | State-of-the-art review on Bayesian inference in structural system identification and damage assessment |
URI | https://journals.sagepub.com/doi/full/10.1177/1369433218811540 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZKe4EDWhYQ7Es-rJBQlZJX8zi2u1RotXABRDlVdmKXSpCs1HJg_wx_lZnYjU3UXRUuaeS6jur5Mp4Zz3wm5DusiYLzDOu2GHNCDjZc2vcleK2MuVHmJTLA4uTzi-jsOvw17o9brWcra-lxwXvZ35V1Je-RKrSBXLFK9g2SrQeFBrgH-cIVJAzXtWRcWYpOKR2w4jDFrS5EKbpD9iSq-sjZsqIPIxuKLbZi2lAUzt1ZrtOFFBAwjJ6zB0zkYTVnp23ADlTOwLwxmjC0hgYoOhR9W5rGyztW6l3-Yjq3vrh5rJA2Y2UdIBBKU1d5vN3fPTs-4aVWWovZGFsZgvSCKMWKLaWNRdWGPMLg02oFrDW071tItNUtuNKptXTjaYOrl4VqYxqfh4_zkgRJiFyzBNaJibrzpNl1g3R88ENAkXYGw5_DUb1RBa26tE_9FbMTftIc45XlY6UNVpbM1QeyrV0QOlB42iEtUXwkWxYx5S6ZNpFFFbJoWdAlsmiNLLijBgtUIYu-RhYFZFGFLGqQtUeuR6dXP84cfSSHk4Flu3BkzjgLkwA-fBGBrZej_y4SFkYhOP6u4Izz1Ms5mJkictMYXvUsEkgiGfO4Hwf7pF2UhTggNPDymEtXYBlIKLI-T2UccemnIpcul-EhOVlO1yTTfPV4bMr9xNMU9c0JPiTH9S_-KK6W__Q9QglM9Ns8_2fHT-t2_Ew2Dfy_kDZMu_gKBuuCf9OgeQHvRZD9 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-the-art+review+on+Bayesian+inference+in+structural+system+identification+and+damage+assessment&rft.jtitle=Advances+in+structural+engineering&rft.au=Huang%2C+Yong&rft.au=Shao%2C+Changsong&rft.au=Wu%2C+Biao&rft.au=Beck%2C+James+L.&rft.date=2019-04-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=22&rft.issue=6&rft.spage=1329&rft.epage=1351&rft_id=info:doi/10.1177%2F1369433218811540&rft.externalDocID=10.1177_1369433218811540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon |