State-of-the-art review on Bayesian inference in structural system identification and damage assessment

Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated by the fact that inverse problems in structural engineering, including structural health monitoring, are typically ill-conditioned and ill-po...

Full description

Saved in:
Bibliographic Details
Published inAdvances in structural engineering Vol. 22; no. 6; pp. 1329 - 1351
Main Authors Huang, Yong, Shao, Changsong, Wu, Biao, Beck, James L., Li, Hui
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated by the fact that inverse problems in structural engineering, including structural health monitoring, are typically ill-conditioned and ill-posed when using noisy incomplete data because of various sources of modeling uncertainties. One should not just search for a single “optimal” value for the vector of model parameters but rather attempt to describe the whole family of plausible model parameters based on measured data using a Bayesian probabilistic framework. In this article, the fundamental principles of Bayesian analysis and computation are summarized; then a review is given of recent state-of-the-art practices of Bayesian inference in system identification and damage assessment for civil infrastructure. Discussions of the benefits and deficiencies of these approaches, as well as potentially useful avenues for future studies, are also provided. Our focus is on meeting challenges that arise from system identification and damage assessment for the civil infrastructure but our presented theories also have a considerably broader applicability for inverse problems in science and technology.
AbstractList Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated by the fact that inverse problems in structural engineering, including structural health monitoring, are typically ill-conditioned and ill-posed when using noisy incomplete data because of various sources of modeling uncertainties. One should not just search for a single “optimal” value for the vector of model parameters but rather attempt to describe the whole family of plausible model parameters based on measured data using a Bayesian probabilistic framework. In this article, the fundamental principles of Bayesian analysis and computation are summarized; then a review is given of recent state-of-the-art practices of Bayesian inference in system identification and damage assessment for civil infrastructure. Discussions of the benefits and deficiencies of these approaches, as well as potentially useful avenues for future studies, are also provided. Our focus is on meeting challenges that arise from system identification and damage assessment for the civil infrastructure but our presented theories also have a considerably broader applicability for inverse problems in science and technology.
Author Wu, Biao
Li, Hui
Beck, James L.
Huang, Yong
Shao, Changsong
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-7963-0720
  surname: Huang
  fullname: Huang, Yong
  email: huangyong@hit.edu.cn
– sequence: 2
  givenname: Changsong
  surname: Shao
  fullname: Shao, Changsong
– sequence: 3
  givenname: Biao
  orcidid: 0000-0002-7725-9980
  surname: Wu
  fullname: Wu, Biao
– sequence: 4
  givenname: James L.
  surname: Beck
  fullname: Beck, James L.
  email: jimbeck@caltech.edu
– sequence: 5
  givenname: Hui
  surname: Li
  fullname: Li, Hui
BookMark eNp9kE9LAzEQxYNUsK3ePeYLRDObdLM5avEfFDyo52U2O1tT2qwkqdJv79Z6KujpDbz3G3hvwkahD8TYJcgrAGOuQZVWK1VAVQHMtDxh40LqSmgJMGLjvS32_hmbpLSSEgpjYMyWLxkzib4T-Z0ExswjfXr64n3gt7ij5DFwHzqKFBwNF085bl3eRlzztEuZNty3FLLvvMPsBwxDy1vc4JI4pkQpbQb7nJ12uE508atT9nZ_9zp_FIvnh6f5zUI4VdksuhYb1JUapKASqllrC22pQl1qC0ZSg01joW2sBCqlNZ1yriQJWpnGzIyaMnn462KfUqSu_oh-g3FXg6z3Q9XHQw1IeYQ4n3-q5Ih-_R8oDmAautarfhvDUO3v_Dc1gnyK
CitedBy_id crossref_primary_10_1016_j_engstruct_2020_110616
crossref_primary_10_1155_2022_3890255
crossref_primary_10_1002_stc_2936
crossref_primary_10_1016_j_conbuildmat_2023_134416
crossref_primary_10_1088_1361_665X_ad5504
crossref_primary_10_1007_s00707_023_03819_5
crossref_primary_10_1016_j_ymssp_2023_110324
crossref_primary_10_1142_S0219455420501230
crossref_primary_10_3390_infrastructures5030022
crossref_primary_10_1007_s13349_022_00594_0
crossref_primary_10_1017_dce_2023_18
crossref_primary_10_1177_1475921720926970
crossref_primary_10_1016_j_engstruct_2024_118352
crossref_primary_10_1177_14759217241273999
crossref_primary_10_3847_1538_4357_ad9f2f
crossref_primary_10_1016_j_cma_2025_117753
crossref_primary_10_3390_s23063293
crossref_primary_10_1016_j_istruc_2023_05_020
crossref_primary_10_1016_j_measurement_2024_115665
crossref_primary_10_1016_j_cma_2021_113672
crossref_primary_10_1002_stc_2640
crossref_primary_10_1016_j_enganabound_2023_06_001
crossref_primary_10_1016_j_ymssp_2021_108782
crossref_primary_10_1016_j_istruc_2023_105247
crossref_primary_10_1016_j_ymssp_2024_111409
crossref_primary_10_1007_s11069_021_04729_2
crossref_primary_10_1177_14759217241256395
crossref_primary_10_3390_s22145079
crossref_primary_10_1016_j_ymssp_2023_111025
crossref_primary_10_1016_j_ress_2021_108043
crossref_primary_10_1016_j_strusafe_2024_102518
crossref_primary_10_1115_1_4054575
crossref_primary_10_3390_buildings12091324
crossref_primary_10_1016_j_probengmech_2024_103674
crossref_primary_10_1016_j_cma_2024_117686
crossref_primary_10_1016_j_ymssp_2021_107615
crossref_primary_10_1115_1_4065826
crossref_primary_10_1002_stc_2870
crossref_primary_10_1016_j_ymssp_2020_106884
crossref_primary_10_1016_j_ymssp_2019_106437
crossref_primary_10_1016_j_apm_2022_11_039
crossref_primary_10_1016_j_engstruct_2023_117317
crossref_primary_10_1002_stc_3047
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_1016_j_tws_2023_111138
crossref_primary_10_1177_13694332211069511
crossref_primary_10_1016_j_ymssp_2021_108150
crossref_primary_10_3390_app12030986
crossref_primary_10_1016_j_jobe_2024_111053
crossref_primary_10_1016_j_renene_2023_119430
crossref_primary_10_1155_2019_4652328
crossref_primary_10_1016_j_cma_2021_113915
crossref_primary_10_1016_j_cscm_2023_e02306
crossref_primary_10_1016_j_cma_2024_116868
crossref_primary_10_1016_j_istruc_2020_11_056
crossref_primary_10_1016_j_ymssp_2020_106998
crossref_primary_10_1016_j_ymssp_2019_106444
crossref_primary_10_1016_j_paerosci_2020_100641
crossref_primary_10_1016_j_engstruct_2021_113535
crossref_primary_10_1016_j_ymssp_2020_107563
crossref_primary_10_1002_stc_2343
crossref_primary_10_1007_s00366_024_01972_6
crossref_primary_10_1016_j_apm_2021_11_026
crossref_primary_10_1016_j_jsv_2020_115768
crossref_primary_10_1016_j_ymssp_2023_110318
crossref_primary_10_1007_s10518_023_01670_6
crossref_primary_10_1061__ASCE_ST_1943_541X_0003405
crossref_primary_10_1016_j_enganabound_2024_105855
crossref_primary_10_1016_j_jcsr_2025_109416
crossref_primary_10_1016_j_jobe_2022_105004
crossref_primary_10_32604_sdhm_2024_053662
crossref_primary_10_1016_j_measurement_2024_114666
crossref_primary_10_1016_j_cma_2024_117148
crossref_primary_10_1016_j_ymssp_2025_112395
crossref_primary_10_1177_14759217241247130
crossref_primary_10_1016_j_ymssp_2021_108204
crossref_primary_10_1016_j_ymssp_2020_107362
crossref_primary_10_1016_j_ultras_2022_106773
crossref_primary_10_3390_buildings13081903
crossref_primary_10_1016_j_ymssp_2023_110483
crossref_primary_10_2139_ssrn_4098753
crossref_primary_10_1007_s13349_020_00380_w
crossref_primary_10_1016_j_probengmech_2022_103337
crossref_primary_10_1109_TR_2020_3032157
crossref_primary_10_1177_13694332251321196
crossref_primary_10_1016_j_ymssp_2023_110365
crossref_primary_10_3390_infrastructures6110158
crossref_primary_10_1177_10775463221081182
crossref_primary_10_1017_aer_2024_31
crossref_primary_10_1016_j_automatica_2022_110489
crossref_primary_10_1016_j_istruc_2022_05_041
crossref_primary_10_1016_j_engstruct_2023_117048
crossref_primary_10_3390_math9151758
crossref_primary_10_1088_1361_665X_aae9b4
crossref_primary_10_1016_j_engstruct_2021_113001
crossref_primary_10_3390_su15065391
crossref_primary_10_1016_j_jsv_2023_117669
crossref_primary_10_1016_j_istruc_2024_108098
crossref_primary_10_1002_eqe_4011
crossref_primary_10_1016_j_ymssp_2024_112137
crossref_primary_10_1016_j_jpse_2024_100223
crossref_primary_10_1088_1755_1315_1415_1_012098
crossref_primary_10_1016_j_jsv_2020_115741
crossref_primary_10_1061_AJRUA6_0001196
crossref_primary_10_1016_j_cma_2024_117489
crossref_primary_10_3390_infrastructures6040057
crossref_primary_10_1007_s13198_023_02101_0
crossref_primary_10_3390_sym14020339
crossref_primary_10_1016_j_ymssp_2020_106965
crossref_primary_10_3390_s21154971
crossref_primary_10_1016_j_kscej_2024_100139
crossref_primary_10_1002_eng2_12669
crossref_primary_10_3390_w14223672
crossref_primary_10_1007_s13349_023_00685_6
crossref_primary_10_3390_s24248123
crossref_primary_10_1017_dce_2022_28
crossref_primary_10_1061_AJRUA6_RUENG_1402
crossref_primary_10_1016_j_iintel_2024_100087
crossref_primary_10_1016_j_measurement_2022_111966
crossref_primary_10_1177_1475921720985143
crossref_primary_10_1016_j_ymssp_2022_109742
crossref_primary_10_1007_s00158_021_03120_w
crossref_primary_10_1177_1475921720921256
crossref_primary_10_1007_s13349_022_00638_5
crossref_primary_10_1177_14759217251320044
crossref_primary_10_1016_j_compstruc_2024_107598
crossref_primary_10_1016_j_probengmech_2023_103507
Cites_doi 10.1016/j.ymssp.2016.07.013
10.1119/1.1990764
10.1016/j.strusafe.2016.09.001
10.1061/(ASCE)0733-9399(2004)130:2(192)
10.2307/3318737
10.1007/s11222-008-9110-y
10.1061/(ASCE)0733-9399(2002)128:4(380)
10.1007/s11222-011-9288-2
10.1111/mice.12051
10.1061/(ASCE)0733-9399(2009)135:4(243)
10.1002/stc.2107
10.1111/j.1467-8667.2006.00432.x
10.1016/j.probengmech.2005.08.003
10.1002/stc.144
10.1016/j.ymssp.2017.01.040
10.1177/1475921718790212
10.56021/9780801869822
10.1177/1077546307079400
10.1016/j.ijnonlinmec.2017.03.012
10.1016/j.engstruct.2016.11.035
10.1061/(ASCE)EM.1943-7889.0000351
10.1615/Int.J.UncertaintyQuantification.2012004713
10.1016/j.strusafe.2014.06.004
10.1017/CBO9780511790423
10.1016/j.engstruct.2014.08.042
10.1061/(ASCE)0733-9399(1998)124:4(455)
10.1016/j.ymssp.2016.02.024
10.1007/978-1-4612-0745-0
10.1088/1361-665X/aac248
10.1007/978-1-4757-4145-2
10.1007/978-94-011-3692-1_12
10.1109/TSP.2004.831016
10.1002/stc.420
10.1016/j.scient.2012.09.002
10.1109/TIT.2005.862083
10.1016/j.jsv.2010.02.004
10.1088/0964-1726/22/3/035012
10.1002/stc.47
10.1016/j.jsv.2018.02.064
10.1142/S0219455412500526
10.1111/j.1467-8667.2006.00431.x
10.1016/j.strusafe.2015.01.003
10.1016/j.ymssp.2015.05.019
10.1007/978-94-009-3049-0_4
10.1061/(ASCE)0733-9399(1998)124:4(463)
10.1103/PhysRev.106.620
10.7551/mitpress/1120.003.0054
10.1061/(ASCE)0733-9399(2000)126:7(738)
10.1002/eqe.122
10.1016/j.engstruct.2014.08.035
10.1137/130932831
10.1088/1361-665X/aae9b4
10.1061/(ASCE)EM.1943-7889.0000839
10.1109/CDC.2011.6160563
10.1109/TIT.2007.909108
10.1016/j.engstruct.2016.10.033
10.1615/Int.J.UncertaintyQuantification.2015011808
10.1177/1475921704047499
10.1088/0964-1726/16/2/014
10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO;2-3
10.1177/1475921716665252
10.1061/(ASCE)0733-9399(2004)130:10(1233)
10.1177/1475921715604386
10.1023/A:1022635419332
10.1016/j.ndteint.2016.10.005
10.1080/15732479.2014.951867
10.1111/0885-9507.00209
10.1016/j.ymssp.2016.09.035
10.1016/j.engstruct.2008.03.012
10.1061/(ASCE)0733-9399(1995)121:2(255)
10.1111/mice.12408
10.1111/mice.12358
10.1016/j.cma.2017.01.030
10.1016/j.strusafe.2010.03.011
10.1061/(ASCE)0733-9399(2007)133:7(816)
10.1016/j.probengmech.2016.08.001
10.1002/stc.1684
10.1007/978-3-540-28650-9_3
10.1002/stc.424
10.1137/S1064827596304010
10.1016/j.ymssp.2016.11.007
10.1093/biomet/57.1.97
10.1109/TUFFC.2006.1610568
10.1121/1.2982414
10.1115/1.1849240
10.1016/j.engstruct.2009.07.009
ContentType Journal Article
Copyright The Author(s) 2018
Copyright_xml – notice: The Author(s) 2018
DBID AAYXX
CITATION
DOI 10.1177/1369433218811540
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2048-4011
EndPage 1351
ExternalDocumentID 10_1177_1369433218811540
10.1177_1369433218811540
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51638007
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFC1500605
– fundername: National Natural Science Foundation of China
  grantid: 51778192
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 51308161
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -TM
-TN
0R~
23M
4.4
54M
5GY
6KP
AABPG
AADUE
AAGGD
AAGLT
AAJPV
AANSI
AAOTM
AAOVH
AAPEO
AAQXI
AARIX
AATAA
AATZT
ABAWP
ABCCA
ABCJG
ABDBF
ABDWY
ABEIX
ABFNE
ABFWQ
ABGWC
ABHKI
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABUBZ
ABUJY
ABYTW
ACDXX
ACGBL
ACGFS
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADEBD
ADEIA
ADGDL
ADMLS
ADRRZ
ADTBJ
ADUKL
ADVBO
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEWDL
AEWHI
AEXNY
AFEET
AFGYO
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHDMH
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYAKG
BBRGL
BDDNI
BPACV
CBRKF
CFDXU
CKLRP
CORYS
CS3
DH.
DOPDO
DV7
EBS
EJD
ESX
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
I-F
IL9
J8X
K.F
MET
MV1
O9-
Q1R
ROL
SASJQ
SAUOL
SCNPE
SFC
SPV
TUS
ZPPRI
ZRKOI
AAYXX
AJGYC
CITATION
ID FETCH-LOGICAL-c389t-fdaba483dab2e6185d9249e8a4649170ebabb91db901e6097f3cc6e01437b7573
ISSN 1369-4332
IngestDate Tue Jul 01 05:24:01 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Tue Jun 17 22:31:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Bayesian model updating
uncertainty quantification
Bayesian model class assessment
structural system identification
structural health monitoring
Bayesian inference
sparse Bayesian learning
damage assessment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-fdaba483dab2e6185d9249e8a4649170ebabb91db901e6097f3cc6e01437b7573
ORCID 0000-0002-7963-0720
0000-0002-7725-9980
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/1369433218811540
PageCount 23
ParticipantIDs crossref_primary_10_1177_1369433218811540
crossref_citationtrail_10_1177_1369433218811540
sage_journals_10_1177_1369433218811540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Advances in structural engineering
PublicationYear 2019
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Yuen, Beck, Au 2004; 11
Jaynes, Rosenkrantz 1983
Lam, Ng 2008; 30
Raghavan, Cesnik 2007; 16
Jefferys, Berger 1992; 80
Wang, Yajima, Liang 2015; 54
Arangio, Beck 2012; 19
Yan 2013; 22
Yuen 2010; 32
Arangio, Bontempi 2015; 11
Chen, Donoho, Saunders 1999; 20
Ching, Beck 2004; 130
Behmanesh, Moaveni 2015; 22
Tropp, Gilbert 2007; 53
Beck, Zuev 2013; 3
Candes, Romberg, Tao 2006; 52
Vanik, Beck, Au 2000; 126
Zhang, Harvey, Braden 2008; 124
Wipf, Rao 2004; 52
Wu, Huang, Chen 2017; 16
Chiachio, Bochud, Chiachio 2017; 88
Cheung, Beck 2009; 135
Nichols, Link, Murphy 2010; 329
Huang, Beck, Wu 2014; 29
Katafygiotis, Beck 1998; 124
Hou, Xia, Zhou 2018; 25
Straub, Papaioannou 2015; 141
Zhou, Xia, Weng 2015; 14
Hastings 1970; 57
Ching, Chen 2007; 133
Muto, Beck 2008; 14
Wu, Li, Huang 2018
Ching, Beck 2004; 3
Huang, Beck, Li 2017; 318
Huang, Beck, Li 2017; 64
Sohn, Law 1997; 26
Hou, Xia, Bao 2018; 423
Jaynes 1957; 106
Li, Der Kiureghian 2017; 88
Bao, Xia, Li 2013; 12
Goller, Beck, Schuëller 2012; 138
He, Ng 2017; 84
Beck, Yuen 2004; 130
Beck, Au, Vanik 2001; 16
Ching, Beck, Porter 2006; 21
Cox 1946; 14
Marin, Pudlo, Robert 2012; 22
Beck, Katafygiotis 1998; 124
Vakilzadeh, Huang, Beck 2017; 84
Yan, Katafygiotis 2015; 52
Astroza, Ebrahimian, Li 2017; 93
Huang, Beck 2018; 33
Hong, Sun, Kim 2006; 53
Huang, Beck 2015; 5
Huang, Beck, Li 2018
Wu, Huang, Krishnaswamy 2017; 85
Yuen, Beck, Katafygiotis 2006; 13
Ching, Muto, Beck 2006; 21
Lam, Hu, Wong 2014; 81
Andrieu, Thoms 2008; 18
Sirca, Adeli 2012; 19
Yin, Jiang, Yuen 2017; 132
Yuen, Kuok 2016; 66–67
Chiachio, Beck, Chiachio 2014; 36
Ching, Beck 2003
Ghanem, Shinozuka 1995; 121
Beck, Au 2002; 128
Katafygiotis, Lam 2002; 31
Lam, Yuen, Beck 2006; 21
Yang, Beck 1998; 97
Haario, Saksman, Tamminen 2001; 7
Beck 2010; 17
Figueiredo, Radu, Worden 2014; 80
Behmanesh, Moaveni, Papadimitriou 2017; 131
Neal 1996
Ng, Veidt, Lam 2009; 31
Huang, Li, Wu 2018; 27
Sohn, Allen, Worden 2005; 127
Huang, Beck, Wu 2016; 46
Catanach, Beck 2017; 94
bibr38-1369433218811540
Bishop CM (bibr18-1369433218811540) 2005
Tipping ME (bibr84-1369433218811540) 2001; 1
bibr46-1369433218811540
Mackay DJC (bibr69-1369433218811540) 1992
bibr9-1369433218811540
Jaynes ET (bibr60-1369433218811540) 1983
bibr7-1369433218811540
bibr56-1369433218811540
bibr48-1369433218811540
bibr21-1369433218811540
bibr64-1369433218811540
bibr105-1369433218811540
Cox RT (bibr34-1369433218811540) 1961
bibr99-1369433218811540
bibr13-1369433218811540
bibr82-1369433218811540
Beck JL (bibr8-1369433218811540) 2014
bibr95-1369433218811540
bibr87-1369433218811540
bibr74-1369433218811540
bibr79-1369433218811540
bibr66-1369433218811540
bibr101-1369433218811540
bibr103-1369433218811540
Jefferys WH (bibr62-1369433218811540) 1992; 80
bibr97-1369433218811540
bibr11-1369433218811540
Bernal D (bibr17-1369433218811540) 2002
bibr58-1369433218811540
bibr68-1369433218811540
bibr50-1369433218811540
bibr93-1369433218811540
bibr76-1369433218811540
bibr85-1369433218811540
bibr42-1369433218811540
bibr43-1369433218811540
bibr51-1369433218811540
Cover TM (bibr32-1369433218811540) 2006
bibr77-1369433218811540
bibr26-1369433218811540
Bishop CM (bibr19-1369433218811540) 2006
bibr31-1369433218811540
bibr90-1369433218811540
bibr102-1369433218811540
bibr23-1369433218811540
bibr96-1369433218811540
bibr5-1369433218811540
bibr88-1369433218811540
bibr2-1369433218811540
bibr15-1369433218811540
bibr54-1369433218811540
bibr63-1369433218811540
bibr20-1369433218811540
bibr104-1369433218811540
Faul AC (bibr36-1369433218811540) 2002
MacKay DJC (bibr70-1369433218811540) 1994
bibr29-1369433218811540
Huang Y (bibr57-1369433218811540) 2018
bibr12-1369433218811540
bibr55-1369433218811540
bibr98-1369433218811540
bibr30-1369433218811540
bibr22-1369433218811540
bibr47-1369433218811540
bibr39-1369433218811540
bibr65-1369433218811540
bibr73-1369433218811540
Vanik MW (bibr89-1369433218811540) 1997
bibr1-1369433218811540
bibr61-1369433218811540
bibr53-1369433218811540
bibr14-1369433218811540
Mises VR (bibr72-1369433218811540) 1981
bibr81-1369433218811540
bibr27-1369433218811540
bibr40-1369433218811540
bibr37-1369433218811540
bibr24-1369433218811540
bibr45-1369433218811540
Beck JL (bibr6-1369433218811540) 1989
Dyke SJ (bibr35-1369433218811540) 2003
bibr71-1369433218811540
bibr25-1369433218811540
bibr33-1369433218811540
Tipping ME (bibr86-1369433218811540) 2003
bibr59-1369433218811540
bibr16-1369433218811540
bibr92-1369433218811540
Tarantola A (bibr83-1369433218811540) 2005
bibr3-1369433218811540
bibr94-1369433218811540
bibr78-1369433218811540
bibr4-1369433218811540
bibr91-1369433218811540
bibr100-1369433218811540
bibr52-1369433218811540
Huang Y (bibr49-1369433218811540) 2011
bibr44-1369433218811540
bibr10-1369433218811540
bibr75-1369433218811540
bibr41-1369433218811540
bibr67-1369433218811540
bibr80-1369433218811540
bibr28-1369433218811540
References_xml – volume: 124
  start-page: 2963
  issue: 5
  year: 2008
  end-page: 2972
  article-title: Signal denoising and ultrasonic flaw detection via overcomplete and sparse representations
  publication-title: Journal of the Acoustical Society of America
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  end-page: 109
  article-title: Monte Carlo sampling methods using Markov Chains and their applications
  publication-title: Biometrika
– volume: 5
  start-page: 139
  issue: 2
  year: 2015
  end-page: 169
  article-title: Hierarchical sparse Bayesian learning for structural health monitoring with incomplete modal data
  publication-title: International Journal for Uncertainty Quantification
– volume: 22
  start-page: 035012
  issue: 3
  year: 2013
  article-title: A Bayesian approach for damage localization in plate-like structures using Lamb waves
  publication-title: Smart Materials and Structures
– volume: 3
  start-page: 445
  issue: 5
  year: 2013
  end-page: 474
  article-title: Asymptotically independent Markov sampling: a new Markov Chain Monte Carlo scheme for Bayesian interference
  publication-title: International Journal for Uncertainty Quantification
– volume: 130
  start-page: 1233
  issue: 10
  year: 2004
  end-page: 1244
  article-title: Bayesian analysis of the Phase II IASC–ASCE Structural Health Monitoring experimental benchmark data
  publication-title: Journal of Engineering Mechanics
– volume: 127
  start-page: 125
  issue: 1
  year: 2005
  end-page: 132
  article-title: Structural damage classification using extreme value statistics
  publication-title: Journal of Dynamic Systems Measurement and Control
– volume: 21
  start-page: 81
  issue: 1
  year: 2006
  end-page: 96
  article-title: Bayesian state and parameter estimation of uncertain dynamical systems
  publication-title: Probabilistic Engineering Mechanics
– volume: 121
  start-page: 255
  issue: 2
  year: 1995
  end-page: 264
  article-title: Structural-system identification. I: theory
  publication-title: Journal of Engineering Mechanics
– volume: 93
  start-page: 661
  year: 2017
  end-page: 687
  article-title: Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures
  publication-title: Mechanical Systems and Signal Processing
– volume: 22
  start-page: 1167
  year: 2012
  end-page: 1180
  article-title: Approximate Bayesian computational methods
  publication-title: Statistics and Computing
– volume: 141
  start-page: 04014134
  issue: 3
  year: 2015
  article-title: Bayesian updating with structural reliability methods
  publication-title: Journal of Engineering Mechanics
– volume: 16
  start-page: 1
  issue: 1
  year: 2001
  end-page: 11
  article-title: Monitoring structural health using a probabilistic measure
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– year: 1983
  publication-title: Papers on Probability, Statistics and Statistical Physics
– volume: 84
  start-page: 324
  year: 2017
  end-page: 345
  article-title: Guided wave-based identification of multiple cracks in beams using a Bayesian approach
  publication-title: Mechanical Systems and Signal Processing
– volume: 14
  start-page: 571
  issue: 6
  year: 2015
  end-page: 582
  article-title: L regularization approach to structural damage detection using frequency data
  publication-title: Structural Health Monitoring
– volume: 81
  start-page: 289
  year: 2014
  end-page: 301
  article-title: The Bayesian methodology for the detection of railway ballast damage under a concrete sleeper
  publication-title: Engineering Structures
– volume: 52
  start-page: 2153
  issue: 8
  year: 2004
  end-page: 2164
  article-title: Sparse Bayesian learning for basis selection
  publication-title: IEEE Transactions on Signal Processing
– volume: 133
  start-page: 816
  issue: 7
  year: 2007
  end-page: 832
  article-title: Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging
  publication-title: Journal of Engineering Mechanics
– volume: 318
  start-page: 382
  year: 2017
  end-page: 411
  article-title: Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 30
  start-page: 2762
  issue: 10
  year: 2008
  end-page: 2770
  article-title: The selection of pattern features for structural damage detection using an extended Bayesian ANN algorithm
  publication-title: Engineering Structures
– volume: 16
  start-page: 355
  issue: 2
  year: 2007
  end-page: 366
  article-title: Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring
  publication-title: Smart Materials and Structures
– volume: 16
  start-page: 347
  issue: 3
  year: 2017
  end-page: 362
  article-title: Guided-wave signal processing by the sparse Bayesian learning approach employing Gabor pulse model
  publication-title: Structural Health Monitoring
– year: 2003
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  end-page: 4666
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Transactions on Information Theory
– volume: 423
  start-page: 141
  year: 2018
  end-page: 160
  article-title: Selection of regularization parameter for -regularized damage detection
  publication-title: Journal of Sound and Vibration
– volume: 11
  start-page: 575
  issue: 4
  year: 2015
  end-page: 587
  article-title: Structural health monitoring of a cable-stayed bridge with Bayesian neural networks
  publication-title: Structure and Infrastructure Engineering
– volume: 135
  start-page: 243
  year: 2009
  end-page: 255
  article-title: Bayesian model updating using Hybrid Monte Carlo Simulation with application to structural dynamics models with many uncertain parameters
  publication-title: Journal of Engineering Mechanics
– volume: 22
  start-page: 463
  year: 2015
  end-page: 483
  article-title: Probabilistic identification of simulated damage on the Dowling Hall footbridge through Bayesian finite element model updating
  publication-title: Structural Control and Health Monitoring
– volume: 66–67
  start-page: 62
  year: 2016
  end-page: 77
  article-title: Online updating and uncertainty quantification using nonstationary output-only measurement
  publication-title: Mechanical Systems and Signal Processing
– volume: 11
  start-page: 327
  issue: 4
  year: 2004
  end-page: 347
  article-title: Structural damage detection and assessment using adaptive Markov Chain Monte Carlo simulation
  publication-title: Structural Control and Health Monitoring
– volume: 14
  start-page: 7
  year: 2008
  end-page: 34
  article-title: Bayesian updating and model class selection using stochastic simulation
  publication-title: Journal of Vibration and Control
– volume: 12
  issue: 6
  year: 2013
  article-title: Data fusion-based structural damage detection under varying temperature conditions
  publication-title: International Journal of Structural Stability and Dynamics
– volume: 3
  start-page: 313
  issue: 4
  year: 2004
  end-page: 332
  article-title: New Bayesian model updating algorithm applied to a Structural Health Monitoring benchmark
  publication-title: Structural Health Monitoring
– volume: 84
  start-page: 2
  year: 2017
  end-page: 20
  article-title: Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
  publication-title: Mechanical Systems and Signal Processing
– volume: 130
  start-page: 192
  issue: 2
  year: 2004
  end-page: 203
  article-title: Model selection using response measurements: Bayesian probabilistic approach
  publication-title: Journal of Engineering Mechanics
– volume: 80
  start-page: 1
  year: 2014
  end-page: 10
  article-title: A Bayesian approach based on a Markov-chain Monte Carlo method for damage detection under unknown sources of variability
  publication-title: Engineering Structures
– volume: 53
  start-page: 592
  issue: 3
  year: 2006
  end-page: 605
  article-title: Waveguide damage detection by the matching pursuit approach employing the dispersion-based chirp functions
  publication-title: IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
– volume: 138
  start-page: 430
  issue: 5
  year: 2012
  end-page: 440
  article-title: Evidence-based identification of weighting factors in Bayesian model updating using modal data
  publication-title: Journal of Engineering Mechanics
– volume: 27
  start-page: 075020
  year: 2018
  article-title: Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
  publication-title: Smart Materials and Structures
– volume: 131
  start-page: 542
  year: 2017
  end-page: 552
  article-title: Probabilistic damage identification of a designed 9-story building using modal data in the presence of modeling errors
  publication-title: Engineering Structures
– volume: 26
  start-page: 1259
  issue: 12
  year: 1997
  end-page: 1281
  article-title: A Bayesian probabilistic approach for structure damage detection
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 31
  start-page: 791
  issue: 4
  year: 2002
  end-page: 812
  article-title: Tangential-projection algorithm for manifold representation in unidentifiable model updating problems
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 21
  start-page: 242
  issue: 4
  year: 2006
  end-page: 257
  article-title: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 17
  start-page: 825
  year: 2010
  end-page: 847
  article-title: Bayesian system identification based on probability logic
  publication-title: Structural Control and Health Monitoring
– volume: 64
  start-page: 37
  year: 2017
  end-page: 53
  article-title: Hierarchical sparse Bayesian learning for structural damage detection: theory, computation and application
  publication-title: Structural Safety
– volume: 88
  start-page: 377
  year: 2017
  end-page: 398
  article-title: Operational modal identification using variational Bayes
  publication-title: Mechanical Systems and Signal Processing
– volume: 126
  start-page: 738
  issue: 7
  year: 2000
  end-page: 745
  article-title: Bayesian probabilistic approach to structural health monitoring
  publication-title: Journal of Engineering Mechanics
– volume: 29
  start-page: 160
  issue: 3
  year: 2014
  end-page: 179
  article-title: Robust Bayesian compressive sensing for signals in Structural Health Monitoring
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 54
  start-page: 19
  year: 2015
  end-page: 31
  article-title: A Bayesian model framework for calibrating ultrasonic in-line inspection data and estimating actual external corrosion depth in buried pipeline utilizing a clustering technique
  publication-title: Structural Safety
– volume: 13
  start-page: 91
  issue: 1
  year: 2006
  end-page: 107
  article-title: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching
  publication-title: Structural Control and Health Monitoring
– volume: 128
  start-page: 380
  issue: 4
  year: 2002
  end-page: 391
  article-title: Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation
  publication-title: Journal of Engineering Mechanics
– volume: 7
  start-page: 223
  year: 2001
  end-page: 242
  article-title: An adaptive Metropolis algorithm
  publication-title: Bernouli
– volume: 20
  start-page: 33
  issue: 1
  year: 1999
  end-page: 61
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 106
  start-page: 620
  issue: 4
  year: 1957
  end-page: 630
  article-title: Information theory and statistical mechanics
  publication-title: Physical Review
– year: 1996
  article-title: Bayesian learning for neural networks
  publication-title: Lecture Notes in Statistics, Berlin
– volume: 52
  start-page: 260
  year: 2015
  end-page: 271
  article-title: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups
  publication-title: Structural Safety
– volume: 132
  start-page: 260
  year: 2017
  end-page: 277
  article-title: Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique
  publication-title: Engineering Structures
– volume: 18
  start-page: 343
  year: 2008
  end-page: 373
  article-title: A tutorial on adaptive MCMC
  publication-title: Statistics and Computing
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Transactions on Information Theory
– volume: 46
  start-page: 62
  year: 2016
  end-page: 79
  article-title: Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery
  publication-title: Probabilistic Engineering Mechanics
– volume: 32
  start-page: 338
  issue: 5
  year: 2010
  end-page: 346
  article-title: Recent developments of Bayesian model class selection and applications in civil engineering
  publication-title: Structural Safety
– volume: 85
  start-page: 76
  year: 2017
  end-page: 85
  article-title: A Bayesian approach for sparse flaw detection from noisy signals for ultrasonic NDT
  publication-title: NDT&E International
– volume: 36
  start-page: A1339
  issue: 3
  year: 2014
  end-page: A1358
  article-title: Approximate Bayesian computation by subset simulation
  publication-title: SIAM Journal on Scientific Computing
– volume: 14
  start-page: 1
  issue: 1
  year: 1946
  end-page: 13
  article-title: Probability, frequency and reasonable expectation
  publication-title: American Journal of Physics
– volume: 88
  start-page: 462
  year: 2017
  end-page: 477
  article-title: A multilevel Bayesian method for ultrasound-based damage identification in composite laminates
  publication-title: Mechanical Systems and Signal Processing
– volume: 124
  start-page: 463
  issue: 4
  year: 1998
  end-page: 467
  article-title: Updating models and their uncertainties. II: Model identifiability
  publication-title: Journal of Engineering Mechanics
– volume: 31
  start-page: 2842
  issue: 12
  year: 2009
  end-page: 2850
  article-title: Guided wave damage characterization in beams utilizing probabilistic optimization
  publication-title: Engineering Structures
– year: 2018
  article-title: Sparse recovery of multiple dispersive guided-wave modes for defect localization using a Bayesian approach
  publication-title: Structural Health Monitoring
– year: 2018
  article-title: Multi-task sparse Bayesian learning with applications in Structural Health Monitoring
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 80
  start-page: 64
  year: 1992
  end-page: 72
  article-title: Ockham’s Razor and Bayesian analysis
  publication-title: American Scientist
– volume: 21
  start-page: 232
  year: 2006
  end-page: 241
  article-title: Structural health monitoring via measured Ritz vectors utilizing artificial neural networks
  publication-title: Civil and Infrastructure Engineering
– volume: 97
  start-page: 211
  issue: 1
  year: 1998
  end-page: 227
  article-title: Generalized trajectory methods for finding multiple extrema and roots of functions
  publication-title: Journal of Optimization Theory and Applications
– volume: 329
  start-page: 2995
  issue: 15
  year: 2010
  end-page: 3007
  article-title: A Bayesian approach to identifying structural nonlinearity using free-decay response: application to damage detection in composites
  publication-title: Journal of Sound and Vibration
– volume: 19
  start-page: 3
  issue: 1
  year: 2012
  end-page: 21
  article-title: Bayesian neural networks for bridge integrity assessment
  publication-title: Structural Control and Health Monitoring
– volume: 124
  start-page: 455
  issue: 4
  year: 1998
  end-page: 461
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: Journal of Engineering Mechanics
– volume: 94
  start-page: 72
  year: 2017
  end-page: 83
  article-title: Bayesian system identification using auxiliary stochastic dynamical systems
  publication-title: International Journal of Nonlinear Mechanics
– volume: 33
  start-page: 712
  issue: 9
  year: 2018
  end-page: 730
  article-title: Full Gibbs sampling procedure for Bayesian system identification incorporating sparse Bayesian learning with automatic relevance determination
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 25
  start-page: e2107
  issue: 3
  year: 2018
  article-title: Structural damage detection based on regularization using natural frequencies and mode shapes
  publication-title: Structural Control and Health Monitoring
– volume: 19
  start-page: 1355
  issue: 6
  year: 2012
  end-page: 1364
  article-title: System identification in structural engineering
  publication-title: Scientia Iranica
– volume-title: Bayesian methods for adaptive models
  year: 1992
  ident: bibr69-1369433218811540
– ident: bibr44-1369433218811540
  doi: 10.1016/j.ymssp.2016.07.013
– ident: bibr33-1369433218811540
  doi: 10.1119/1.1990764
– ident: bibr51-1369433218811540
  doi: 10.1016/j.strusafe.2016.09.001
– ident: bibr12-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(2004)130:2(192)
– volume-title: The 8th international workshop on structural health monitoring
  year: 2011
  ident: bibr49-1369433218811540
– ident: bibr42-1369433218811540
  doi: 10.2307/3318737
– ident: bibr1-1369433218811540
  doi: 10.1007/s11222-008-9110-y
– ident: bibr9-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)
– ident: bibr71-1369433218811540
  doi: 10.1007/s11222-011-9288-2
– ident: bibr54-1369433218811540
  doi: 10.1111/mice.12051
– ident: bibr23-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(2009)135:4(243)
– volume-title: The 7th world conference on structural control and monitoring, 7WCSCM
  year: 2018
  ident: bibr57-1369433218811540
– ident: bibr46-1369433218811540
  doi: 10.1002/stc.2107
– ident: bibr31-1369433218811540
  doi: 10.1111/j.1467-8667.2006.00432.x
– ident: bibr30-1369433218811540
  doi: 10.1016/j.probengmech.2005.08.003
– ident: bibr103-1369433218811540
  doi: 10.1002/stc.144
– ident: bibr4-1369433218811540
  doi: 10.1016/j.ymssp.2017.01.040
– ident: bibr95-1369433218811540
  doi: 10.1177/1475921718790212
– volume-title: The Algebra of Probable Inference
  year: 1961
  ident: bibr34-1369433218811540
  doi: 10.56021/9780801869822
– ident: bibr73-1369433218811540
  doi: 10.1177/1077546307079400
– ident: bibr21-1369433218811540
  doi: 10.1016/j.ijnonlinmec.2017.03.012
– ident: bibr99-1369433218811540
  doi: 10.1016/j.engstruct.2016.11.035
– volume-title: Proceedings of 16th Engineering Mechanics conference
  year: 2003
  ident: bibr35-1369433218811540
– ident: bibr40-1369433218811540
  doi: 10.1061/(ASCE)EM.1943-7889.0000351
– ident: bibr13-1369433218811540
  doi: 10.1615/Int.J.UncertaintyQuantification.2012004713
– volume: 80
  start-page: 64
  year: 1992
  ident: bibr62-1369433218811540
  publication-title: American Scientist
– volume-title: Proceedings of the 9th international conference on structural dynamics
  year: 2014
  ident: bibr8-1369433218811540
– ident: bibr97-1369433218811540
  doi: 10.1016/j.strusafe.2014.06.004
– ident: bibr61-1369433218811540
  doi: 10.1017/CBO9780511790423
– ident: bibr37-1369433218811540
  doi: 10.1016/j.engstruct.2014.08.042
– ident: bibr11-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)
– volume: 1
  start-page: 211
  volume-title: Journal of Machine Learning Research
  year: 2001
  ident: bibr84-1369433218811540
– ident: bibr88-1369433218811540
  doi: 10.1016/j.ymssp.2016.02.024
– ident: bibr74-1369433218811540
  doi: 10.1007/978-1-4612-0745-0
– ident: bibr56-1369433218811540
  doi: 10.1088/1361-665X/aac248
– ident: bibr78-1369433218811540
  doi: 10.1007/978-1-4757-4145-2
– ident: bibr10-1369433218811540
  doi: 10.1007/978-94-011-3692-1_12
– ident: bibr92-1369433218811540
  doi: 10.1109/TSP.2004.831016
– ident: bibr2-1369433218811540
  doi: 10.1002/stc.420
– ident: bibr79-1369433218811540
  doi: 10.1016/j.scient.2012.09.002
– volume-title: Inverse Problem Theory
  year: 2005
  ident: bibr83-1369433218811540
– ident: bibr20-1369433218811540
  doi: 10.1109/TIT.2005.862083
– ident: bibr76-1369433218811540
  doi: 10.1016/j.jsv.2010.02.004
– ident: bibr96-1369433218811540
  doi: 10.1088/0964-1726/22/3/035012
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: bibr19-1369433218811540
– ident: bibr102-1369433218811540
  doi: 10.1002/stc.47
– ident: bibr47-1369433218811540
  doi: 10.1016/j.jsv.2018.02.064
– ident: bibr5-1369433218811540
  doi: 10.1142/S0219455412500526
– ident: bibr67-1369433218811540
  doi: 10.1111/j.1467-8667.2006.00431.x
– start-page: 211
  volume-title: Model of Neural Networks III
  year: 1994
  ident: bibr70-1369433218811540
– ident: bibr91-1369433218811540
  doi: 10.1016/j.strusafe.2015.01.003
– ident: bibr101-1369433218811540
  doi: 10.1016/j.ymssp.2015.05.019
– ident: bibr41-1369433218811540
  doi: 10.1007/978-94-009-3049-0_4
– volume-title: A Bayesian probabilistic approach to structural health monitoring
  year: 1997
  ident: bibr89-1369433218811540
– volume-title: Neural Networks for Pattern Recognition
  year: 2005
  ident: bibr18-1369433218811540
– ident: bibr63-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(1998)124:4(463)
– ident: bibr59-1369433218811540
  doi: 10.1103/PhysRev.106.620
– start-page: 383
  volume-title: Advances in Neural Information Processing Systems 14
  year: 2002
  ident: bibr36-1369433218811540
  doi: 10.7551/mitpress/1120.003.0054
– ident: bibr90-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(2000)126:7(738)
– ident: bibr64-1369433218811540
  doi: 10.1002/eqe.122
– ident: bibr66-1369433218811540
  doi: 10.1016/j.engstruct.2014.08.035
– ident: bibr26-1369433218811540
– ident: bibr25-1369433218811540
  doi: 10.1137/130932831
– ident: bibr58-1369433218811540
  doi: 10.1088/1361-665X/aae9b4
– year: 1983
  ident: bibr60-1369433218811540
  publication-title: Papers on Probability, Statistics and Statistical Physics
– ident: bibr82-1369433218811540
  doi: 10.1061/(ASCE)EM.1943-7889.0000839
– volume-title: Proceedings of 9th international workshop on artificial intelligence and statistics
  year: 2003
  ident: bibr86-1369433218811540
– ident: bibr38-1369433218811540
  doi: 10.1109/CDC.2011.6160563
– ident: bibr87-1369433218811540
  doi: 10.1109/TIT.2007.909108
– ident: bibr16-1369433218811540
  doi: 10.1016/j.engstruct.2016.10.033
– ident: bibr48-1369433218811540
  doi: 10.1615/Int.J.UncertaintyQuantification.2015011808
– ident: bibr28-1369433218811540
  doi: 10.1177/1475921704047499
– ident: bibr77-1369433218811540
  doi: 10.1088/0964-1726/16/2/014
– ident: bibr81-1369433218811540
  doi: 10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO;2-3
– volume-title: Elements of Information Theory
  year: 2006
  ident: bibr32-1369433218811540
– ident: bibr94-1369433218811540
  doi: 10.1177/1475921716665252
– volume-title: Proceedings of 5th international conference on structural safety and reliability
  year: 1989
  ident: bibr6-1369433218811540
– ident: bibr27-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(2004)130:10(1233)
– ident: bibr105-1369433218811540
  doi: 10.1177/1475921715604386
– ident: bibr98-1369433218811540
  doi: 10.1023/A:1022635419332
– ident: bibr93-1369433218811540
  doi: 10.1016/j.ndteint.2016.10.005
– ident: bibr3-1369433218811540
  doi: 10.1080/15732479.2014.951867
– ident: bibr14-1369433218811540
  doi: 10.1111/0885-9507.00209
– volume-title: Probability, Statistics, and Truth
  year: 1981
  ident: bibr72-1369433218811540
– ident: bibr24-1369433218811540
  doi: 10.1016/j.ymssp.2016.09.035
– ident: bibr65-1369433218811540
  doi: 10.1016/j.engstruct.2008.03.012
– ident: bibr39-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(1995)121:2(255)
– ident: bibr53-1369433218811540
  doi: 10.1111/mice.12408
– ident: bibr50-1369433218811540
  doi: 10.1111/mice.12358
– ident: bibr52-1369433218811540
  doi: 10.1016/j.cma.2017.01.030
– ident: bibr100-1369433218811540
  doi: 10.1016/j.strusafe.2010.03.011
– ident: bibr29-1369433218811540
  doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)
– ident: bibr55-1369433218811540
  doi: 10.1016/j.probengmech.2016.08.001
– ident: bibr15-1369433218811540
  doi: 10.1002/stc.1684
– ident: bibr85-1369433218811540
  doi: 10.1007/978-3-540-28650-9_3
– ident: bibr7-1369433218811540
  doi: 10.1002/stc.424
– ident: bibr22-1369433218811540
  doi: 10.1137/S1064827596304010
– ident: bibr68-1369433218811540
  doi: 10.1016/j.ymssp.2016.11.007
– ident: bibr43-1369433218811540
  doi: 10.1093/biomet/57.1.97
– ident: bibr45-1369433218811540
  doi: 10.1109/TUFFC.2006.1610568
– ident: bibr104-1369433218811540
  doi: 10.1121/1.2982414
– ident: bibr80-1369433218811540
  doi: 10.1115/1.1849240
– start-page: 1048
  volume-title: Proceedings of 15th ASCE engineering mechanics conference
  year: 2002
  ident: bibr17-1369433218811540
– ident: bibr75-1369433218811540
  doi: 10.1016/j.engstruct.2009.07.009
SSID ssj0012771
Score 2.521159
SecondaryResourceType review_article
Snippet Bayesian inference provides a powerful approach to system identification and damage assessment for structures. The application of Bayesian method is motivated...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 1329
Title State-of-the-art review on Bayesian inference in structural system identification and damage assessment
URI https://journals.sagepub.com/doi/full/10.1177/1369433218811540
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZKe4EDWhYQ7Es-rJBQlZJX8zi2u1RotXABRDlVdmKXSpCs1HJg_wx_lZnYjU3UXRUuaeS6jur5Mp4Zz3wm5DusiYLzDOu2GHNCDjZc2vcleK2MuVHmJTLA4uTzi-jsOvw17o9brWcra-lxwXvZ35V1Je-RKrSBXLFK9g2SrQeFBrgH-cIVJAzXtWRcWYpOKR2w4jDFrS5EKbpD9iSq-sjZsqIPIxuKLbZi2lAUzt1ZrtOFFBAwjJ6zB0zkYTVnp23ADlTOwLwxmjC0hgYoOhR9W5rGyztW6l3-Yjq3vrh5rJA2Y2UdIBBKU1d5vN3fPTs-4aVWWovZGFsZgvSCKMWKLaWNRdWGPMLg02oFrDW071tItNUtuNKptXTjaYOrl4VqYxqfh4_zkgRJiFyzBNaJibrzpNl1g3R88ENAkXYGw5_DUb1RBa26tE_9FbMTftIc45XlY6UNVpbM1QeyrV0QOlB42iEtUXwkWxYx5S6ZNpFFFbJoWdAlsmiNLLijBgtUIYu-RhYFZFGFLGqQtUeuR6dXP84cfSSHk4Flu3BkzjgLkwA-fBGBrZej_y4SFkYhOP6u4Izz1Ms5mJkictMYXvUsEkgiGfO4Hwf7pF2UhTggNPDymEtXYBlIKLI-T2UccemnIpcul-EhOVlO1yTTfPV4bMr9xNMU9c0JPiTH9S_-KK6W__Q9QglM9Ns8_2fHT-t2_Ew2Dfy_kDZMu_gKBuuCf9OgeQHvRZD9
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-the-art+review+on+Bayesian+inference+in+structural+system+identification+and+damage+assessment&rft.jtitle=Advances+in+structural+engineering&rft.au=Huang%2C+Yong&rft.au=Shao%2C+Changsong&rft.au=Wu%2C+Biao&rft.au=Beck%2C+James+L.&rft.date=2019-04-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=22&rft.issue=6&rft.spage=1329&rft.epage=1351&rft_id=info:doi/10.1177%2F1369433218811540&rft.externalDocID=10.1177_1369433218811540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon