Directed electron regulation promoted sandwich-like CoO@FeBTC/NF with p-n heterojunctions by gel electrodeposition for oxygen evolution reaction
[Display omitted] Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it wi...
Saved in:
Published in | Journal of colloid and interface science Vol. 645; pp. 410 - 419 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2023.04.036 |
Cover
Loading…
Abstract | [Display omitted]
Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm−2, and can maintain 100 h long time stability at 500 mA cm−2 high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid–liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm−2, and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process. |
---|---|
AbstractList | Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm⁻², and can maintain 100 h long time stability at 500 mA cm⁻² high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid–liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm⁻², and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process. Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm , and can maintain 100 h long time stability at 500 mA cm high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid-liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm , and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process. [Display omitted] Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm−2, and can maintain 100 h long time stability at 500 mA cm−2 high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid–liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm−2, and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process. Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm-2, and can maintain 100 h long time stability at 500 mA cm-2 high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid-liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm-2, and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process.Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm-2, and can maintain 100 h long time stability at 500 mA cm-2 high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid-liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm-2, and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process. |
Author | Chai, Yong-Ming Lv, Ren-Qing Wu, Yang Dong, Yi-Wen Dong, Bin Zhang, Xin-Yu Xu, Na Wang, Fu-Li Zhai, Xue-Jun |
Author_xml | – sequence: 1 givenname: Yi-Wen surname: Dong fullname: Dong, Yi-Wen – sequence: 2 givenname: Fu-Li surname: Wang fullname: Wang, Fu-Li – sequence: 3 givenname: Yang surname: Wu fullname: Wu, Yang – sequence: 4 givenname: Xue-Jun surname: Zhai fullname: Zhai, Xue-Jun – sequence: 5 givenname: Na surname: Xu fullname: Xu, Na – sequence: 6 givenname: Xin-Yu surname: Zhang fullname: Zhang, Xin-Yu – sequence: 7 givenname: Ren-Qing surname: Lv fullname: Lv, Ren-Qing – sequence: 8 givenname: Yong-Ming surname: Chai fullname: Chai, Yong-Ming email: ymchai@upc.edu.cn – sequence: 9 givenname: Bin surname: Dong fullname: Dong, Bin email: dongbin@upc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37156149$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAQhS1URLeFP8AB-cglW08cO7HEAVi6gFTRSzlbjjPZdcjGi5207L_gJzfJdi8cKk4zGr_vSX7vgpx1vkNC3gJbAgN51Swb6-IyZSlfsmzJuHxBFsCUSHJg_IwsGEshUbnKz8lFjA1jAEKoV-Sc5yAkZGpB_n5xAW2PFcV2nMF3NOBmaE3vxnUf_M5Pj9F01YOz26R1v5Cu_O3HNX6-W139WNMH12_pPunoFnsMvhk6O7GRlge6wfbkW-HeRze71j5Q_-ewwY7ivW-H-RjQzNxr8rI2bcQ3T_OS_Fxf362-JTe3X7-vPt0klheqT-o8B4WmhpRhVgJXUigQrCpEYQFlmuUlFDkDZaHCQpaGV1hba2ouQKal4pfk_dF3_OPvAWOvdy5abFvToR-iTguepZBKnv2HdMxVSgFilL57kg7lDiu9D25nwkGfAh8FxVFgg48xYK2t6-ew-2Bcq4HpqVvd6KlbPXWrWabHbkc0_Qc9uT8LfThCOGZ57zDoaB12Fqu5d1159xz-CIvsv1o |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_151490 crossref_primary_10_1016_j_apsusc_2024_160649 crossref_primary_10_1021_acscatal_4c03700 crossref_primary_10_1016_j_apcatb_2023_123440 crossref_primary_10_1016_j_fuel_2024_133915 crossref_primary_10_1016_j_jcis_2023_12_080 crossref_primary_10_1016_j_ijhydene_2023_12_277 crossref_primary_10_1016_j_jcis_2023_12_159 |
Cites_doi | 10.1002/anie.202015060 10.1016/j.jcis.2022.07.114 10.1016/j.cclet.2021.10.002 10.1016/j.jcis.2021.12.031 10.1021/acs.jpcc.5b11185 10.1016/j.jcis.2022.04.007 10.1016/j.nanoen.2022.107315 10.1039/C9TA02017A 10.1002/smll.202105150 10.1039/D0NA00267D 10.1002/aelm.202100542 10.1016/j.colsurfb.2021.112147 10.1039/C9CC01039D 10.1002/aenm.202002285 10.1016/j.jcis.2022.01.109 10.1021/acsami.0c13547 10.1016/j.jcis.2022.02.129 10.1016/j.jcis.2021.12.179 10.1021/acssuschemeng.0c02993 10.1088/2053-1583/aa89fc 10.1039/D2EE01073A 10.1002/aelm.202000979 10.1038/s41598-019-49988-z 10.1016/j.apcatb.2021.120160 10.1039/D1TA90130C 10.1038/s41377-022-00814-8 10.1016/j.cej.2022.140291 10.1021/acsami.6b16826 10.1016/j.colsurfa.2018.04.016 10.1021/acsami.1c21445 10.1016/j.apcatb.2022.121824 10.1016/j.fuel.2022.124343 10.1016/j.cej.2021.134040 10.1021/acscatal.2c02181 10.1038/s41929-020-0465-6 10.1039/D0EE03500A 10.1021/acs.chemmater.9b02737 10.1016/j.cej.2021.131576 10.1002/anie.202108485 10.1021/acsnano.2c09888 10.1002/adma.202000130 10.1007/s00339-018-1980-z 10.1007/s12274-022-4724-5 10.1016/j.ijhydene.2017.07.158 10.1007/s40820-022-00889-3 10.1021/jacs.8b08744 10.1016/0921-5093(93)90280-R 10.1039/C6RA12634K 10.1038/s41467-018-05019-5 10.1016/j.cej.2021.130742 10.1016/j.apcatb.2023.122464 10.1007/s10008-019-04444-w 10.1016/j.ijhydene.2017.01.176 10.1021/acs.nanolett.8b00816 10.1002/cctc.201801908 10.1039/D0TA12336F 10.1016/j.jcis.2022.03.139 10.1007/s40820-022-00933-2 10.1016/j.jechem.2022.08.011 10.1088/0268-1242/31/6/065020 10.1016/j.apcatb.2022.121226 10.1021/jacs.9b12005 10.1039/C9NR07002H 10.1002/anie.202102632 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.04.036 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 419 |
ExternalDocumentID | 37156149 10_1016_j_jcis_2023_04_036 S0021979723006197 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-f7719eaf120e4b139659150d858c1e6247b187019c1de86ba3defccaf35162b93 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 10:21:09 EDT 2025 Mon Jul 21 10:48:35 EDT 2025 Thu Apr 03 07:05:38 EDT 2025 Tue Jul 01 04:19:03 EDT 2025 Thu Apr 24 23:08:05 EDT 2025 Fri Feb 23 02:35:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxygen evolution Gel electrodeposition CoO@FeBTC Heterojunction |
Language | English |
License | Copyright © 2023. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-f7719eaf120e4b139659150d858c1e6247b187019c1de86ba3defccaf35162b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37156149 |
PQID | 2811566515 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2834212634 proquest_miscellaneous_2811566515 pubmed_primary_37156149 crossref_citationtrail_10_1016_j_jcis_2023_04_036 crossref_primary_10_1016_j_jcis_2023_04_036 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_04_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 2023-Sep 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Heidari, Rabani, Ramezanzadeh (b0170) 2017; 42 Duan, Lee, Xi, Sun, Ge, Ong, Chen, Dou, Meng, Diao, Fisher, Wang, Scherer, Grimaud, Xu (b0040) 2021; 60 Kim, Kim, Kim (b0295) 2022; 308 Wang, Liu, Wang, Lin, Dong, Yu, Luan, Chai, Dong (b0075) 2022; 610 Dong, Liu, Wang, Wang, Zhang, Lv, Liu, Chai, Dong (b0035) 2023; 328 Torres, Galicia, Plasencia, Cano, Echevarría, Desdin-Garcia, Reguera (b0265) 2018; 549 Grillo, Di Bartolomeo (b0235) 2021; 7 Pan, Dan, Wang, Ye, Zhang, Quhe, Zhang, Li, Guo, Yang, Lu (b0240) 2017; 9 Zhang, Li, Yang, Zhou, Zhang, Wang (b0195) 2019; 23 Co-MOF for efficient electrocatalytic oxygen evolution, J. Mater. Chem. A 9 (2021) 14607. Liu, Yang, Ma, Dou, Wang (b0140) 2022; 98 Xie, Monnens, Wan, Zhang, Guo, Xu, Vankelecom, Zhang, Fransaer (b0305) 2021; 60 Zeng, Cao, Liao, Liang, Wei, Xu, Xu, Zheng, Zhu, Cavallo, Wang (b0215) 2021; 292 Zhang, Xu, Li, Wang, Guan, Zhang, Wu, Ma, Wu, Qi (b0060) 2023; 454 Zhao, Liu, Wang, Xiong, Yang, Qin, Xiong, Lei (b0300) 2022; 16 Park, Liu, Diercks, Braaten, Liu, Duan (b0325) 2022; 318 Fan, Xie, Liu, Wang, Li, Yu, Luan, Chai, Dong (b0045) 2022; 431 Struzhkin, Goncharov, Syassen (b0260) 1993; 168 Zhang, Yan, Mei, Qi, He, Wang, Fang, Zaman, Su, Ding, Xia (b0080) 2021; 14 Xie, Liu, Zhen, Dong, Luan, Yu, Liu, Chai, Dong (b0030) 2022; 614 Pal, Maity, Sarkar, Sarkar, Khan (b0090) 2022; 620 Yang, Bai, Zhao, Yao, Yi, Xuan, Chen (b0275) 2016; 6 H. Xia, M. Luo, W. Wang, H. Wang, T. Li, Z. Wang, H. Xu, Y. Chen, Y. Zhou, F. Wang, R. Xie, P. Wang, W. Hu, W. Lu, Pristine PN junction toward atomic layer devices, Light: Sci. Appl. 11 (2022) 170. Li, Pan, Lai, Wang, Feng (b0160) 2022; 41 Wang, Zhao, Ma, Zhang (b0115) 2022; 15 Fan, Du, Pang, Zhang, Liu, Yue (b0070) 2022; 14 He, Yan, Geng, Zhu, Zhang, Zhang, Chen (b0135) 2022; 619 Qian, Lee, Vajargah, Novikov, Guiney, Zhang, Zaidi, Jiang, Wallis, Foxon, Humphreys, Houston (b0185) 2016; 31 Sheng, Wang, Hu, Sun, Dong, Yu, Zhang, Zhou, Zhang (b0200) 2023; 16 Liu, Liang, Gu, Zhang, Li, Zou, Chen (b0010) 2018; 9 Kanygin, Joy, Bahreyni (b0190) 2019; 9 Ichikawa, Ichimura, Kato (b0210) 2017; 42 Sun, Sun, Zhou, Shen, Mandler, Neumann, Xu (b0280) 2019; 31 Xu, Ali Shah, Khan, Sayyar, Shen, Khan, Yuan, Yaseen, Ali Ghazi, Naeem, Ullah, Li, Wang (b0055) 2022; 617 Park, Jeong, Jang, Kwon, Kim, Jeong, Lee, Lee, Choi (b0320) 2022; 75 Gao, Lai, Gong, Zhang, Xi, Sun, Zhang, Luo (b0150) 2022; 12 Huo, Yang, Yang, Gao, Qi, Liang, Liu, Chen, Zheng, Cao (b0245) 2019; 11 Sun, Liao, Wang, Chen, Sun, Ong, Xi, Diao, Du, Wang, Breese, Li, Zhang, Xu (b0005) 2020; 2 Zha, Li, Liu, Ni (b0105) 2020; 8 Chen, Hu (b0310) 2020; 10 Xie, Zhao, Dong, Wu, Liu, Chai, Dong (b0085) 2022; 41 Mao, Liu, Chen, Fan, Shen (b0250) 2022; 427 Li, Li, Ren, Hong, Liu, Liu, Wang (b0095) 2022; 14 Ge, Sun, Zhao, Yang, Wang, Zhang, Cao, Yang, Zhang, Pan, Zhu (b0125) 2021; 60 X. Ling, F. Du, Y. Zhang, Y. Shen, W. Gao, B. Zhou, Z. Wang, G. Li, T. Li, Q. Shen, Y. Xiong, X. Wang, Y. Zhou, Z. Zou, Correction: Bimetallic oxyhydroxide in situ derived from an Fe Wei, Sun, Scherer, Fisher, Sherburne, Ager, Xu (b0050) 2020; 142 Awaya, Takashiba, Taniguchi, Koinuma, Ishihara, Ida (b0220) 2019; 55 Dong, Guo, Gao, Hao, Lei, Xie, Tang (b0015) 2022; 627 Si, Jiang, Chung, Du, Alam, Ye (b0285) 2018; 18 Peng, Nie, Zhang, Liang, Liu, Liu, Men, Niu, Zhou, Cui, Pan (b0330) 2020; 12 Hamrouni, AlKhalifah, El-Bana, Zobaidi, Belgacem (b0290) 2018; 124 Masante, Kah, Hébert, Rouger, Pernot (b0180) 2022; 8 Deng, Liang, Yue, Li, Liu, Liu, Gao, Alshehri, Alzahrani, Luo, Sun (b0100) 2022; 33 D. Qi, Q. Wang, C. Han, J. Jiang, Y. Zheng, W. Chen, W. Zhang, A.T.S. Wee, Reducing the Schottky barrier between few-layer MoTe Dong, Zhou, Zhou, Ma, Yu, Luan, Dong, Chai (b0025) 2022; 324 Fu, Wang, Wang, Li, Shi, Peng, Chandrashekar, Liu, Amini, Cheng (b0145) 2019; 7 Meng, Li (b0225) 2020; 32 Chen, Ha, Wang, Liu, Xu, Shang, Wu, Pan (b0020) 2022; 14 Gu, Ji, Tian, Wu, Feng (b0165) 2022; 427 Tocco, Carucci, Todde, Shortall, Otero, Sanjust, Magner, Salis (b0270) 2021; 208 Park, Lee, Jang, Yang, Jeong, Park, Kim, Seo, Chen, Choi (b0315) 2021; 9 Li, Qiu, Qin, Fang, Hadjiev, Litvinov, Bao (b0255) 2016; 120 Lu, Deng, Lu, Liu, Lang, Cao, Gu (b0120) 2019; 11 Wang, Xiao, Li, Li, Liu, Zhang, Gong, Zheng, Zhu, Chen, Wang, Peng, Gu, Han, Li, Li (b0155) 2018; 140 Wu, Yu, Zhang, Niu, Zhao, Li, Xu (b0110) 2021; 17 Chaves, Feijoo, Jiménez (b0175) 2020; 2 and gold, 2D Materials 4 (2017) 045016. Zhou, Ma, Shi, Zhou, Dong, Li, Wang, Liu, Yu, Chai (b0065) 2022; 613 Li (10.1016/j.jcis.2023.04.036_b0255) 2016; 120 Chen (10.1016/j.jcis.2023.04.036_b0020) 2022; 14 Liu (10.1016/j.jcis.2023.04.036_b0140) 2022; 98 Huo (10.1016/j.jcis.2023.04.036_b0245) 2019; 11 Xu (10.1016/j.jcis.2023.04.036_b0055) 2022; 617 Masante (10.1016/j.jcis.2023.04.036_b0180) 2022; 8 Wang (10.1016/j.jcis.2023.04.036_b0115) 2022; 15 Mao (10.1016/j.jcis.2023.04.036_b0250) 2022; 427 Kim (10.1016/j.jcis.2023.04.036_b0295) 2022; 308 Zeng (10.1016/j.jcis.2023.04.036_b0215) 2021; 292 Sun (10.1016/j.jcis.2023.04.036_b0005) 2020; 2 Grillo (10.1016/j.jcis.2023.04.036_b0235) 2021; 7 Zhou (10.1016/j.jcis.2023.04.036_b0065) 2022; 613 Torres (10.1016/j.jcis.2023.04.036_b0265) 2018; 549 Zhang (10.1016/j.jcis.2023.04.036_b0195) 2019; 23 Lu (10.1016/j.jcis.2023.04.036_b0120) 2019; 11 Xie (10.1016/j.jcis.2023.04.036_b0030) 2022; 614 Park (10.1016/j.jcis.2023.04.036_b0315) 2021; 9 Si (10.1016/j.jcis.2023.04.036_b0285) 2018; 18 Dong (10.1016/j.jcis.2023.04.036_b0025) 2022; 324 Deng (10.1016/j.jcis.2023.04.036_b0100) 2022; 33 He (10.1016/j.jcis.2023.04.036_b0135) 2022; 619 Duan (10.1016/j.jcis.2023.04.036_b0040) 2021; 60 10.1016/j.jcis.2023.04.036_b0130 Dong (10.1016/j.jcis.2023.04.036_b0035) 2023; 328 Zhang (10.1016/j.jcis.2023.04.036_b0060) 2023; 454 Ge (10.1016/j.jcis.2023.04.036_b0125) 2021; 60 Yang (10.1016/j.jcis.2023.04.036_b0275) 2016; 6 Gao (10.1016/j.jcis.2023.04.036_b0150) 2022; 12 Park (10.1016/j.jcis.2023.04.036_b0320) 2022; 75 Zha (10.1016/j.jcis.2023.04.036_b0105) 2020; 8 Chaves (10.1016/j.jcis.2023.04.036_b0175) 2020; 2 Qian (10.1016/j.jcis.2023.04.036_b0185) 2016; 31 Park (10.1016/j.jcis.2023.04.036_b0325) 2022; 318 Wu (10.1016/j.jcis.2023.04.036_b0110) 2021; 17 10.1016/j.jcis.2023.04.036_b0205 Wang (10.1016/j.jcis.2023.04.036_b0075) 2022; 610 Wang (10.1016/j.jcis.2023.04.036_b0155) 2018; 140 Zhao (10.1016/j.jcis.2023.04.036_b0300) 2022; 16 Xie (10.1016/j.jcis.2023.04.036_b0085) 2022; 41 Heidari (10.1016/j.jcis.2023.04.036_b0170) 2017; 42 Li (10.1016/j.jcis.2023.04.036_b0095) 2022; 14 Sheng (10.1016/j.jcis.2023.04.036_b0200) 2023; 16 Li (10.1016/j.jcis.2023.04.036_b0160) 2022; 41 Sun (10.1016/j.jcis.2023.04.036_b0280) 2019; 31 Dong (10.1016/j.jcis.2023.04.036_b0015) 2022; 627 Fu (10.1016/j.jcis.2023.04.036_b0145) 2019; 7 Fan (10.1016/j.jcis.2023.04.036_b0045) 2022; 431 Kanygin (10.1016/j.jcis.2023.04.036_b0190) 2019; 9 Struzhkin (10.1016/j.jcis.2023.04.036_b0260) 1993; 168 Chen (10.1016/j.jcis.2023.04.036_b0310) 2020; 10 Zhang (10.1016/j.jcis.2023.04.036_b0080) 2021; 14 Tocco (10.1016/j.jcis.2023.04.036_b0270) 2021; 208 Meng (10.1016/j.jcis.2023.04.036_b0225) 2020; 32 Awaya (10.1016/j.jcis.2023.04.036_b0220) 2019; 55 Wei (10.1016/j.jcis.2023.04.036_b0050) 2020; 142 Gu (10.1016/j.jcis.2023.04.036_b0165) 2022; 427 Ichikawa (10.1016/j.jcis.2023.04.036_b0210) 2017; 42 10.1016/j.jcis.2023.04.036_b0230 Hamrouni (10.1016/j.jcis.2023.04.036_b0290) 2018; 124 Pal (10.1016/j.jcis.2023.04.036_b0090) 2022; 620 Pan (10.1016/j.jcis.2023.04.036_b0240) 2017; 9 Peng (10.1016/j.jcis.2023.04.036_b0330) 2020; 12 Liu (10.1016/j.jcis.2023.04.036_b0010) 2018; 9 Fan (10.1016/j.jcis.2023.04.036_b0070) 2022; 14 Xie (10.1016/j.jcis.2023.04.036_b0305) 2021; 60 |
References_xml | – volume: 610 start-page: 173 year: 2022 end-page: 181 ident: b0075 article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution publication-title: J. Colloid Interface Sci. – volume: 9 year: 2019 ident: b0190 article-title: Localized mechanical actuation using pn junctions publication-title: Sci. Rep. – volume: 60 start-page: 12097 year: 2021 end-page: 12102 ident: b0125 article-title: Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 2100542 year: 2022 ident: b0180 article-title: Non-volatile photo-switch using a diamond pn junction publication-title: Adv. Electron. Mater. – reference: and gold, 2D Materials 4 (2017) 045016. – volume: 142 start-page: 7765 year: 2020 end-page: 7775 ident: b0050 article-title: Surface composition dependent ligand effect in tuning the activity of nickel-copper bimetallic electrocatalysts toward hydrogen evolution in alkaline publication-title: J. Am. Chem. Soc. – volume: 617 start-page: 1 year: 2022 end-page: 10 ident: b0055 article-title: Ni3S2 nanostrips@FeNi-NiFe2O4 nanoparticles embedded in N-doped carbon microsphere: an improved electrocatalyst for oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 613 start-page: 224 year: 2022 end-page: 233 ident: b0065 article-title: Boosting oxygen evolution by nickel nitrate hydroxide with abundant grain boundaries via segregated high-valence molybdenum publication-title: J. Colloid Interface Sci. – volume: 14 start-page: 8549 year: 2022 end-page: 8556 ident: b0070 article-title: In situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR publication-title: ACS Appl. Mater. Interfaces – volume: 31 year: 2016 ident: b0185 article-title: Characterization of p-GaN publication-title: Semicond. Sci. Technol. – volume: 627 start-page: 891 year: 2022 end-page: 899 ident: b0015 article-title: Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO3 stacked heterostructure promoting the oxygen-evolving behavior publication-title: J. Colloid Interface Sci. – volume: 454 year: 2023 ident: b0060 article-title: Core-shell heterojunction engineering of Ni0.85Se-O/CN electrocatalyst for efficient OER publication-title: Chem. Eng. J. – volume: 318 year: 2022 ident: b0325 article-title: High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: synergistic effect of doping and heterostructure publication-title: Appl. Catal. B – volume: 60 start-page: 7418 year: 2021 end-page: 7425 ident: b0040 article-title: Anodic oxidation enabled cation leaching for promoting surface reconstruction in water oxidation publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 9545 year: 2017 end-page: 9552 ident: b0170 article-title: Application of CuS–ZnS PN junction for photoelectrochemical water splitting publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 3830 year: 2022 end-page: 3841 ident: b0115 article-title: Confined interface transformation of metal–organic frameworks for highly efficient oxygen evolution reactions publication-title: Energ. Environ. Sci. – volume: 427 year: 2022 ident: b0165 article-title: Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction publication-title: Chem. Eng. J. – volume: 9 start-page: 9586 year: 2021 end-page: 9592 ident: b0315 article-title: High-performance anion exchange membrane alkaline seawater electrolysis publication-title: J. Mater. Chem. A – volume: 8 start-page: 12025 year: 2020 end-page: 12035 ident: b0105 article-title: Hierarchical Co, Fe-MOF-74/Co/carbon cloth hybrid electrode: simple construction and enhanced catalytic performance in full water splitting publication-title: ACS Sustain. Chem. Eng. – volume: 124 start-page: 555 year: 2018 ident: b0290 article-title: Deposition and characterization of spin-coated n-type ZnO thin film for potential window layer of solar cell publication-title: Appl. Phys. A – volume: 7 start-page: 17299 year: 2019 end-page: 17305 ident: b0145 article-title: MOFs-derived ZnCo–Fe core–shell nanocages with remarkable oxygen evolution reaction performance publication-title: J. Mater. Chem. A – volume: 12 start-page: 9101 year: 2022 end-page: 9113 ident: b0150 article-title: Robust Th-MOF-supported semirigid single-metal-site catalyst for an efficient acidic oxygen evolution reaction publication-title: ACS Catal. – volume: 55 start-page: 4586 year: 2019 end-page: 4588 ident: b0220 article-title: Photoelectrochemical properties of a well-structured 1.3 nm-thick pn junction crystal publication-title: Chem. Commun. – volume: 614 start-page: 84 year: 2022 end-page: 91 ident: b0030 article-title: Amorphous-crystalline cobalt phosphide hollow nanocubes induced by dual ligand environment for high efficiency hydrogen evolution publication-title: J. Colloid Interface Sci. – volume: 17 year: 2021 ident: b0110 article-title: Understanding the effect of second metal on CoM (M = Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction publication-title: Small – volume: 42 start-page: 22698 year: 2017 end-page: 22703 ident: b0210 article-title: Improved performance of 3CSiC photocathodes by using a pn junction publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 2609 year: 2018 ident: b0010 article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours publication-title: Nat. Commu. – volume: 619 start-page: 148 year: 2022 end-page: 157 ident: b0135 article-title: Metal-organic framework interface engineering for highly efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 324 year: 2022 ident: b0025 article-title: Underpotential deposition promoting low Pt loading on MoO publication-title: Fuel – volume: 16 start-page: 19959 year: 2022 end-page: 19979 ident: b0300 article-title: Designing a built-in electric field for efficient energy electrocatalysis publication-title: ACS Nano – volume: 98 year: 2022 ident: b0140 article-title: Surface engineering of MOFs as a route to cobalt phosphide electrocatalysts for efficient oxygen evolution reaction publication-title: Nano Energy – volume: 208 year: 2021 ident: b0270 article-title: Enzyme immobilization on metal organic frameworks: Laccase from publication-title: Colloids Surf. B: Biointerfaces – volume: 14 start-page: 365 year: 2021 end-page: 373 ident: b0080 article-title: Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution publication-title: Energ. Environ. Sci. – volume: 620 start-page: 209 year: 2022 end-page: 220 ident: b0090 article-title: Effect of defect-rich Co-CeOx OER cocatalyst on the photocarrier dynamics and electronic structure of Sb-doped TiO2 nanorods photoanode publication-title: J. Colloid Interface Sci. – volume: 427 year: 2022 ident: b0250 article-title: Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction publication-title: Chem. Eng. J. – reference: Co-MOF for efficient electrocatalytic oxygen evolution, J. Mater. Chem. A 9 (2021) 14607. – volume: 2 start-page: 554 year: 2020 end-page: 563 ident: b0005 article-title: Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides publication-title: Nat. Catal. – volume: 41 start-page: 2208003 year: 2022 end-page: 2208011 ident: b0160 article-title: Strong high entropy alloy-support interaction enables efficient electrocatalytic water splitting at high current density publication-title: Chin. J. Struct. Chem. – volume: 23 start-page: 3287 year: 2019 end-page: 3297 ident: b0195 article-title: Photo-deposition of ZnO/Co publication-title: J. Solid State Electrochem. – volume: 14 start-page: 148 year: 2022 ident: b0095 article-title: Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano-Micro Lett. – volume: 140 start-page: 15336 year: 2018 end-page: 15341 ident: b0155 article-title: Constructing NiCo/Fe publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 24950 year: 2021 end-page: 24957 ident: b0305 article-title: Cathodic electrodeposition of MOF films using hydrogen peroxide publication-title: Angew. Chem. Int. Ed. – reference: H. Xia, M. Luo, W. Wang, H. Wang, T. Li, Z. Wang, H. Xu, Y. Chen, Y. Zhou, F. Wang, R. Xie, P. Wang, W. Hu, W. Lu, Pristine PN junction toward atomic layer devices, Light: Sci. Appl. 11 (2022) 170. – reference: D. Qi, Q. Wang, C. Han, J. Jiang, Y. Zheng, W. Chen, W. Zhang, A.T.S. Wee, Reducing the Schottky barrier between few-layer MoTe – volume: 10 year: 2020 ident: b0310 article-title: High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts publication-title: Adv. Energy Mater. – volume: 16 start-page: 1252 year: 2023 end-page: 1258 ident: b0200 article-title: Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit publication-title: Nano Res. – volume: 328 year: 2023 ident: b0035 article-title: Manganese doping regulated the built-in electric field of FeBTC for enhanced photoelectrocatalytic hydrolysis publication-title: Appl. Catal. B – volume: 431 year: 2022 ident: b0045 article-title: Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction publication-title: Chem. Eng. J. – reference: X. Ling, F. Du, Y. Zhang, Y. Shen, W. Gao, B. Zhou, Z. Wang, G. Li, T. Li, Q. Shen, Y. Xiong, X. Wang, Y. Zhou, Z. Zou, Correction: Bimetallic oxyhydroxide in situ derived from an Fe – volume: 75 start-page: 127 year: 2022 end-page: 134 ident: b0320 article-title: Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis publication-title: J. Energy Chem. – volume: 2 start-page: 3252 year: 2020 end-page: 3262 ident: b0175 article-title: 2D pn junctions driven out-of-equilibrium publication-title: Nanoscale Adv. – volume: 120 start-page: 4511 year: 2016 end-page: 4516 ident: b0255 article-title: Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy publication-title: J. Phys. Chem. C – volume: 41 start-page: 2207053 year: 2022 end-page: 2207058 ident: b0085 article-title: Hollow Fe4C/FeP nanoboxes with heterostructure and carbon armor for efficient and stable hydrogen evolution publication-title: Chin. J. Struct. Chem. – volume: 18 start-page: 3682 year: 2018 end-page: 3687 ident: b0285 article-title: Steep-slope WSe publication-title: Nano Lett. – volume: 33 start-page: 890 year: 2022 end-page: 892 ident: b0100 article-title: CoFe-LDH nanowire arrays on graphite felt: a high-performance oxygen evolution electrocatalyst in alkaline media publication-title: Chin. Chem. Lett. – volume: 32 year: 2020 ident: b0225 article-title: Schottky-contacted nanowire sensors publication-title: Adv. Mater. – volume: 11 start-page: 21259 year: 2019 end-page: 21265 ident: b0120 article-title: MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction publication-title: Nanoscale – volume: 11 start-page: 1480 year: 2019 end-page: 1486 ident: b0245 article-title: Hierarchical Zn-doped CoO nanoflowers for electrocatalytic oxygen evolution reaction publication-title: ChemCatChem – volume: 9 start-page: 12694 year: 2017 end-page: 12705 ident: b0240 article-title: Schottky barriers in bilayer phosphorene transistors publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 67308 year: 2016 end-page: 67314 ident: b0275 article-title: Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate publication-title: RSC Adv. – volume: 14 start-page: 186 year: 2022 ident: b0020 article-title: Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis publication-title: Nano-Micro Lett. – volume: 31 start-page: 8106 year: 2019 end-page: 8111 ident: b0280 article-title: Switch of the rate-determining step of water oxidation by spin-selected electron transfer in spinel oxides publication-title: Chem. Mater. – volume: 168 start-page: 107 year: 1993 end-page: 110 ident: b0260 article-title: Effect of pressure on magnetic excitations in CoO publication-title: Mater. Sci. Eng. A – volume: 549 start-page: 138 year: 2018 end-page: 146 ident: b0265 article-title: Implications of structural differences between Cu-BTC and Fe-BTC on their hydrogen storage capacity publication-title: Colloids Surf. A: Physicochem. Eng. Asp. – volume: 292 year: 2021 ident: b0215 article-title: Construction of hydroxide pn junction for water splitting electrocatalysis publication-title: Appl. Catal. B – volume: 7 year: 2021 ident: b0235 article-title: A current-voltage model for double Schottky barrier devices publication-title: Adv. Electron. Mater. – volume: 308 year: 2022 ident: b0295 article-title: Modulating the active sites of nickel phosphorous by pulse-reverse electrodeposition for improving electrochemical water splitting publication-title: Appl. Catal. B – volume: 12 start-page: 56943 year: 2020 end-page: 56953 ident: b0330 article-title: Carbon-coated tungsten oxide nanospheres triggering flexible electron transfer for efficient electrocatalytic oxidation of water and glucose publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 7418 issue: 13 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0040 article-title: Anodic oxidation enabled cation leaching for promoting surface reconstruction in water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015060 – volume: 41 start-page: 2208003 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0160 article-title: Strong high entropy alloy-support interaction enables efficient electrocatalytic water splitting at high current density publication-title: Chin. J. Struct. Chem. – volume: 627 start-page: 891 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0015 article-title: Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO3 stacked heterostructure promoting the oxygen-evolving behavior publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.114 – volume: 33 start-page: 890 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0100 article-title: CoFe-LDH nanowire arrays on graphite felt: a high-performance oxygen evolution electrocatalyst in alkaline media publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.10.002 – volume: 610 start-page: 173 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0075 article-title: Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.031 – volume: 120 start-page: 4511 issue: 8 year: 2016 ident: 10.1016/j.jcis.2023.04.036_b0255 article-title: Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11185 – volume: 620 start-page: 209 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0090 article-title: Effect of defect-rich Co-CeOx OER cocatalyst on the photocarrier dynamics and electronic structure of Sb-doped TiO2 nanorods photoanode publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.04.007 – volume: 98 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0140 article-title: Surface engineering of MOFs as a route to cobalt phosphide electrocatalysts for efficient oxygen evolution reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107315 – volume: 7 start-page: 17299 issue: 29 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0145 article-title: MOFs-derived ZnCo–Fe core–shell nanocages with remarkable oxygen evolution reaction performance publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02017A – volume: 17 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0110 article-title: Understanding the effect of second metal on CoM (M = Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction publication-title: Small doi: 10.1002/smll.202105150 – volume: 2 start-page: 3252 issue: 8 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0175 article-title: 2D pn junctions driven out-of-equilibrium publication-title: Nanoscale Adv. doi: 10.1039/D0NA00267D – volume: 8 start-page: 2100542 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0180 article-title: Non-volatile photo-switch using a diamond pn junction publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202100542 – volume: 208 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0270 article-title: Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2021.112147 – volume: 55 start-page: 4586 issue: 31 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0220 article-title: Photoelectrochemical properties of a well-structured 1.3 nm-thick pn junction crystal publication-title: Chem. Commun. doi: 10.1039/C9CC01039D – volume: 10 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0310 article-title: High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002285 – volume: 614 start-page: 84 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0030 article-title: Amorphous-crystalline cobalt phosphide hollow nanocubes induced by dual ligand environment for high efficiency hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.109 – volume: 12 start-page: 56943 issue: 51 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0330 article-title: Carbon-coated tungsten oxide nanospheres triggering flexible electron transfer for efficient electrocatalytic oxidation of water and glucose publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13547 – volume: 617 start-page: 1 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0055 article-title: Ni3S2 nanostrips@FeNi-NiFe2O4 nanoparticles embedded in N-doped carbon microsphere: an improved electrocatalyst for oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.02.129 – volume: 613 start-page: 224 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0065 article-title: Boosting oxygen evolution by nickel nitrate hydroxide with abundant grain boundaries via segregated high-valence molybdenum publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.179 – volume: 8 start-page: 12025 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0105 article-title: Hierarchical Co, Fe-MOF-74/Co/carbon cloth hybrid electrode: simple construction and enhanced catalytic performance in full water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02993 – ident: 10.1016/j.jcis.2023.04.036_b0230 doi: 10.1088/2053-1583/aa89fc – volume: 15 start-page: 3830 issue: 9 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0115 article-title: Confined interface transformation of metal–organic frameworks for highly efficient oxygen evolution reactions publication-title: Energ. Environ. Sci. doi: 10.1039/D2EE01073A – volume: 7 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0235 article-title: A current-voltage model for double Schottky barrier devices publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000979 – volume: 9 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0190 article-title: Localized mechanical actuation using pn junctions publication-title: Sci. Rep. doi: 10.1038/s41598-019-49988-z – volume: 292 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0215 article-title: Construction of hydroxide pn junction for water splitting electrocatalysis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120160 – ident: 10.1016/j.jcis.2023.04.036_b0130 doi: 10.1039/D1TA90130C – ident: 10.1016/j.jcis.2023.04.036_b0205 doi: 10.1038/s41377-022-00814-8 – volume: 454 year: 2023 ident: 10.1016/j.jcis.2023.04.036_b0060 article-title: Core-shell heterojunction engineering of Ni0.85Se-O/CN electrocatalyst for efficient OER publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140291 – volume: 9 start-page: 12694 issue: 14 year: 2017 ident: 10.1016/j.jcis.2023.04.036_b0240 article-title: Schottky barriers in bilayer phosphorene transistors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16826 – volume: 549 start-page: 138 year: 2018 ident: 10.1016/j.jcis.2023.04.036_b0265 article-title: Implications of structural differences between Cu-BTC and Fe-BTC on their hydrogen storage capacity publication-title: Colloids Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.04.016 – volume: 14 start-page: 8549 issue: 6 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0070 article-title: In situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21445 – volume: 318 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0325 article-title: High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: synergistic effect of doping and heterostructure publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121824 – volume: 324 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0025 article-title: Underpotential deposition promoting low Pt loading on MoO2/MoS2 heterostructure towards efficient wide pH hydrogen evolution publication-title: Fuel doi: 10.1016/j.fuel.2022.124343 – volume: 431 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0045 article-title: Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134040 – volume: 12 start-page: 9101 issue: 15 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0150 article-title: Robust Th-MOF-supported semirigid single-metal-site catalyst for an efficient acidic oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.2c02181 – volume: 2 start-page: 554 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0005 article-title: Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides publication-title: Nat. Catal. doi: 10.1038/s41929-020-0465-6 – volume: 14 start-page: 365 issue: 1 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0080 article-title: Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution publication-title: Energ. Environ. Sci. doi: 10.1039/D0EE03500A – volume: 31 start-page: 8106 issue: 19 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0280 article-title: Switch of the rate-determining step of water oxidation by spin-selected electron transfer in spinel oxides publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02737 – volume: 427 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0165 article-title: Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131576 – volume: 60 start-page: 24950 issue: 47 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0305 article-title: Cathodic electrodeposition of MOF films using hydrogen peroxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108485 – volume: 16 start-page: 19959 issue: 12 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0300 article-title: Designing a built-in electric field for efficient energy electrocatalysis publication-title: ACS Nano doi: 10.1021/acsnano.2c09888 – volume: 32 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0225 article-title: Schottky-contacted nanowire sensors publication-title: Adv. Mater. doi: 10.1002/adma.202000130 – volume: 124 start-page: 555 year: 2018 ident: 10.1016/j.jcis.2023.04.036_b0290 article-title: Deposition and characterization of spin-coated n-type ZnO thin film for potential window layer of solar cell publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1980-z – volume: 16 start-page: 1252 issue: 1 year: 2023 ident: 10.1016/j.jcis.2023.04.036_b0200 article-title: Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit publication-title: Nano Res. doi: 10.1007/s12274-022-4724-5 – volume: 42 start-page: 22698 issue: 36 year: 2017 ident: 10.1016/j.jcis.2023.04.036_b0210 article-title: Improved performance of 3CSiC photocathodes by using a pn junction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.158 – volume: 14 start-page: 148 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0095 article-title: Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00889-3 – volume: 140 start-page: 15336 issue: 45 year: 2018 ident: 10.1016/j.jcis.2023.04.036_b0155 article-title: Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08744 – volume: 168 start-page: 107 year: 1993 ident: 10.1016/j.jcis.2023.04.036_b0260 article-title: Effect of pressure on magnetic excitations in CoO publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(93)90280-R – volume: 6 start-page: 67308 issue: 71 year: 2016 ident: 10.1016/j.jcis.2023.04.036_b0275 article-title: Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate publication-title: RSC Adv. doi: 10.1039/C6RA12634K – volume: 9 start-page: 2609 year: 2018 ident: 10.1016/j.jcis.2023.04.036_b0010 article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours publication-title: Nat. Commu. doi: 10.1038/s41467-018-05019-5 – volume: 427 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0250 article-title: Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130742 – volume: 328 year: 2023 ident: 10.1016/j.jcis.2023.04.036_b0035 article-title: Manganese doping regulated the built-in electric field of FeBTC for enhanced photoelectrocatalytic hydrolysis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.122464 – volume: 23 start-page: 3287 issue: 12 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0195 article-title: Photo-deposition of ZnO/Co3O4 core-shell nanorods with p-n junction for efficient oxygen evolution reaction publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-019-04444-w – volume: 42 start-page: 9545 issue: 15 year: 2017 ident: 10.1016/j.jcis.2023.04.036_b0170 article-title: Application of CuS–ZnS PN junction for photoelectrochemical water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.01.176 – volume: 18 start-page: 3682 issue: 6 year: 2018 ident: 10.1016/j.jcis.2023.04.036_b0285 article-title: Steep-slope WSe2 negative capacitance field-effect transistor publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00816 – volume: 11 start-page: 1480 issue: 5 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0245 article-title: Hierarchical Zn-doped CoO nanoflowers for electrocatalytic oxygen evolution reaction publication-title: ChemCatChem doi: 10.1002/cctc.201801908 – volume: 9 start-page: 9586 issue: 15 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0315 article-title: High-performance anion exchange membrane alkaline seawater electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12336F – volume: 619 start-page: 148 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0135 article-title: Metal-organic framework interface engineering for highly efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.03.139 – volume: 14 start-page: 186 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0020 article-title: Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00933-2 – volume: 75 start-page: 127 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0320 article-title: Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.08.011 – volume: 31 year: 2016 ident: 10.1016/j.jcis.2023.04.036_b0185 article-title: Characterization of p-GaN1−xAsx/n-GaN PN junction diodes publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/31/6/065020 – volume: 308 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0295 article-title: Modulating the active sites of nickel phosphorous by pulse-reverse electrodeposition for improving electrochemical water splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121226 – volume: 41 start-page: 2207053 year: 2022 ident: 10.1016/j.jcis.2023.04.036_b0085 article-title: Hollow Fe4C/FeP nanoboxes with heterostructure and carbon armor for efficient and stable hydrogen evolution publication-title: Chin. J. Struct. Chem. – volume: 142 start-page: 7765 issue: 17 year: 2020 ident: 10.1016/j.jcis.2023.04.036_b0050 article-title: Surface composition dependent ligand effect in tuning the activity of nickel-copper bimetallic electrocatalysts toward hydrogen evolution in alkaline publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12005 – volume: 11 start-page: 21259 issue: 44 year: 2019 ident: 10.1016/j.jcis.2023.04.036_b0120 article-title: MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C9NR07002H – volume: 60 start-page: 12097 issue: 21 year: 2021 ident: 10.1016/j.jcis.2023.04.036_b0125 article-title: Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102632 |
SSID | ssj0011559 |
Score | 2.4713593 |
Snippet | [Display omitted]
Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is... Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 410 |
SubjectTerms | catalysts catalytic activity cobalt oxide CoO@FeBTC coordination polymers electron transfer electroplating foams Gel electrodeposition gels Heterojunction hydrogen liquid-solid interface nickel Oxygen evolution oxygen production |
Title | Directed electron regulation promoted sandwich-like CoO@FeBTC/NF with p-n heterojunctions by gel electrodeposition for oxygen evolution reaction |
URI | https://dx.doi.org/10.1016/j.jcis.2023.04.036 https://www.ncbi.nlm.nih.gov/pubmed/37156149 https://www.proquest.com/docview/2811566515 https://www.proquest.com/docview/2834212634 |
Volume | 645 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCMprC1RG4obMxnHiJDdKxGoBsVxaqbfIjwnNskpWZVvohd_AT2YmTlYgwR44JhknlmcyM4m_-YaxF97YPMukETqxXiS2yIXRvhDOxV7X2mmQVI38caHnp8n7s_Rsj5VjLQzBKgffH3x6762HM9NhNafrpqEaX3zbMuqaRXG4oIpyYq9Dm371YwvzkLTtFmAeUpD0UDgTMF5L1xBld6x6utOepvmvwelfyWcfhGZ32Z0he-THYYL32B60B-xmOTZtO2C3f-MXvM9-BocGno_dbvhF6D2P2uDrHomHF7-a1n9r3LlYNV-Al92n1zN4c1JOFzNOv2n5WrT8nGAz3RKjYG-o3F7zz7Aa7-thBH9xTIJ59_0a7ZLD1WDX-NRQP_GAnc7enpRzMbRgEA4zmY2oUY8FmFrGESQWs0WdFphC-jzNnQQdJ5mVOTG6O-kh19YoDzUaRa1SqWNbqIdsv-1aeMx45DEMGicd2kOiIDIoHNcKvDRxpMBOmBzXvnIDPzm1yVhVIxBtWZG-KtJXFSUV6mvCXm7HrAM7x07pdFRp9YeNVRg-do57Puq_QnXSjoppobtEoVzS9y_mhLtkFO26a5VM2KNgPNu5qkwSE2tx-J8ze8Ju0VHAvD1l-5uLS3iGSdLGHvVvwRG7cfzuw3zxC0OuE98 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICiv5WkkbsjaOE6c5EaJWG1pu1y2Um-WX6FZVsmqbIH-C34yM3GyAgn2wDWxE8sznvmSmfmGkDdOmzzLuGYyMY4lpsiZlq5g1sZOVtJKz7Ea-WwuZ-fJx4v0Yo-UQy0MplX2tj_Y9M5a91cm_W5O1nWNNb5w2jLsmoV-uMhukX1kp0pGZP_o-GQ23wYTMPIWMj04wwl97UxI81raGlm7Y9ExnnZMzX_1T__Cn50fmt4jd3sASY_CGu-TPd8ckoNy6Nt2SO78RjH4gPwMNs07OjS8oVeh_TwIhK67ZDy4-VU37nttL9mq_uJp2X56N_XvF-VkPqX4p5auWUMvMXOmXYIj7HSVmhv62a-G5zo_5H9RwMG0_XEDqkn9t1614a2hhOIhOZ9-WJQz1ndhYBbAzIZVIMrC64rHkU8MAEaZFoAiXZ7mlnsZJ5nhOZK6W-58Lo0WzlegF5VIuYxNIR6RUdM2_gmhkQNPqC23oBKJ8JGGwXElvOM6joQ3Y8KHvVe2pyjHThkrNeSiLRXKS6G8VJQokNeYvN3OWQeCjp2j00Gk6g81U-BBds57PchfgTgxqKIb317DoJzjJzDAwl1jBAbepUjG5HFQnu1aRcaRjLV4-p8re0UOZouzU3V6PD95Rm7jnZAC95yMNlfX_gVgpo152Z-JX6UQFpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directed+electron+regulation+promoted+sandwich-like+CoO%40FeBTC%2FNF+with+p-n+heterojunctions+by+gel+electrodeposition+for+oxygen+evolution+reaction&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Dong%2C+Yi-Wen&rft.au=Wang%2C+Fuli&rft.au=Wu%2C+Yang&rft.au=Zhai%2C+Xue-Jun&rft.date=2023-09-01&rft.issn=0021-9797&rft.volume=645+p.410-419&rft.spage=410&rft.epage=419&rft_id=info:doi/10.1016%2Fj.jcis.2023.04.036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |