Analysis of Results of Digital Electroencephalography and Digital Vectors of Coronavirus Images upon Applying the Theory of Covariance Functions
This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-C...
Saved in:
Published in | Symmetry (Basel) Vol. 15; no. 7; p. 1330 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-CoV-2 variants (cor2 and cor4), where the magnitudes of intensity of the electroencephalography parameters and the parameters of the digital images of coronaviruses were encoded. The estimators of cross-covariance functions of the digital electroencephalography measurements’ vectors and the digital vectors of the coronavirus images and the estimators of auto-covariance functions of separate vectors were derived by applying random functions constructed according to the vectors’ parameter measurement data files. The estimators of covariance functions were derived by changing the values of the quantised interval k on the time and image pixel scales. The symmetric matrices of correlation coefficients were calculated to estimate the level of dependencies between the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images. The graphical images of the normalised cross-covariance functions for the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images within the period of all measurements are asymmetric. For all calculations, a computer program was developed by applying a package of Matlab procedures. A probabilistic interdependence between the results of the electroencephalography measurements and the parameters of the coronavirus vectors, as well as their variation on the time and image pixel scales, was established. |
---|---|
AbstractList | This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-CoV-2 variants (cor2 and cor4), where the magnitudes of intensity of the electroencephalography parameters and the parameters of the digital images of coronaviruses were encoded. The estimators of cross-covariance functions of the digital electroencephalography measurements’ vectors and the digital vectors of the coronavirus images and the estimators of auto-covariance functions of separate vectors were derived by applying random functions constructed according to the vectors’ parameter measurement data files. The estimators of covariance functions were derived by changing the values of the quantised interval k on the time and image pixel scales. The symmetric matrices of correlation coefficients were calculated to estimate the level of dependencies between the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images. The graphical images of the normalised cross-covariance functions for the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images within the period of all measurements are asymmetric. For all calculations, a computer program was developed by applying a package of Matlab procedures. A probabilistic interdependence between the results of the electroencephalography measurements and the parameters of the coronavirus vectors, as well as their variation on the time and image pixel scales, was established. |
Audience | Academic |
Author | Šlikas, Dominykas Paršeliūnas, Audrius Paršeliūnas, Eimuntas Skeivalas, Jonas |
Author_xml | – sequence: 1 givenname: Jonas surname: Skeivalas fullname: Skeivalas, Jonas – sequence: 2 givenname: Eimuntas orcidid: 0000-0002-9630-1267 surname: Paršeliūnas fullname: Paršeliūnas, Eimuntas – sequence: 3 givenname: Audrius orcidid: 0000-0002-2507-6744 surname: Paršeliūnas fullname: Paršeliūnas, Audrius – sequence: 4 givenname: Dominykas orcidid: 0000-0003-0562-2338 surname: Šlikas fullname: Šlikas, Dominykas |
BookMark | eNptks9qGzEQxpeSQtMkp76AoMfiVKs_3tXRuElrCBRC2qsYS6O1zFraSruBfYs8clW7mBSqOWiY-X0fSDPvq4sQA1bVh5recq7o5zwfakmbmnP6prpktOGLVilx8Sp_V93kvKflSCrFkl5WL6sA_Zx9JtGRR8xTPx7TL77zI_TkrkczpojB4LCDPnYJht1MINgz8rMQMR1V65higGefpkw2B-gwk2mIgayGoZ996Mi4Q_K0w5jmE_4MyUPxJvdTMKOPIV9Xbx30GW_-3lfVj_u7p_W3xcP3r5v16mFheKvGhRMo1FIJp6wQAkS7RcuB1Q4BJTJBrUFZbykFQAdcoaRCUtvIFnmjHONX1ebkayPs9ZD8AdKsI3h9LMTUaUijNz1qoRhDA45ZZ8RWLreGYovGom2ZpK0oXh9PXkOKvybMo97HKZWPzZqVds1oW8Zypjoopj64OCYwB5-NXjVSMb6sBS_U7X-oEhYP3pSJO1_q_wg-nQQmxZwTuvNjaqr_LIZ-tRj8N9tjroY |
Cites_doi | 10.1016/j.cell.2020.02.058 10.1021/acs.chemrev.9b00692 10.1186/s13662-022-03701-z 10.1016/j.jneumeth.2003.10.009 10.1007/978-3-642-56970-8 10.1016/S0140-6736(20)30154-9 10.1101/2020.03.02.972927 10.1080/17513758.2022.2078899 10.1117/1.OE.52.7.073106 10.1016/j.matt.2021.04.005 10.1080/17513758.2022.2111469 10.1080/10255842.2022.2109020 10.1080/17513758.2022.2116493 10.1126/science.abb7314 10.1056/NEJMoa2001017 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/sym15071330 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2073-8994 |
ExternalDocumentID | oai_doaj_org_article_4922ecaf2dfc4b56bc0e8ecded825084 A759236143 10_3390_sym15071330 |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GROUPED_DOAJ GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PIMPY PROAC PTHSS RIG TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC COVID DWQXO H8D JG9 JQ2 L7M L~C L~D PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c389t-f4e49694f9d444a48bed3a21feae5e240dce51b00aaefa39e50450d758e379f23 |
IEDL.DBID | 8FG |
ISSN | 2073-8994 |
IngestDate | Tue Oct 22 14:57:26 EDT 2024 Thu Oct 10 19:12:46 EDT 2024 Thu Feb 22 23:44:18 EST 2024 Wed Nov 13 00:30:27 EST 2024 Fri Aug 23 03:11:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-f4e49694f9d444a48bed3a21feae5e240dce51b00aaefa39e50450d758e379f23 |
ORCID | 0000-0003-0562-2338 0000-0002-9630-1267 0000-0002-2507-6744 |
OpenAccessLink | https://www.proquest.com/docview/2843120871?pq-origsite=%requestingapplication% |
PQID | 2843120871 |
PQPubID | 2032326 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4922ecaf2dfc4b56bc0e8ecded825084 proquest_journals_2843120871 gale_infotracmisc_A759236143 gale_infotracacademiconefile_A759236143 crossref_primary_10_3390_sym15071330 |
PublicationCentury | 2000 |
PublicationDate | 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230601 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Teklu (ref_13) 2022; 16 Delorme (ref_15) 2004; 134 ref_14 Rockx (ref_2) 2020; 368 ref_10 Tuncer (ref_11) 2022; 16 Bajiya (ref_12) 2022; 16 Walls (ref_6) 2020; 180 (ref_8) 2020; 29 ref_18 Liu (ref_1) 2020; 120 ref_17 Chan (ref_5) 2020; 395 Antoine (ref_16) 2000; 18 Zhu (ref_3) 2020; 382 ref_4 Skeivalas (ref_19) 2013; 52 Chen (ref_7) 2021; 4 Adnan (ref_9) 2022; 2022 |
References_xml | – volume: 180 start-page: 281 year: 2020 ident: ref_6 article-title: Structure, Function and Antigenicity of the SARS-CoV-2 Spike Glycoprotein 2020 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 contributor: fullname: Walls – volume: 120 start-page: 1936 year: 2020 ident: ref_1 article-title: Single-virus tracking: From imaging methodologies to virological applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00692 contributor: fullname: Liu – volume: 2022 start-page: 34 year: 2022 ident: ref_9 article-title: Investigation of a time-fractional COVID-19 mathematical model with Singular Kernel publication-title: Adv. Contin. Discret. Model. doi: 10.1186/s13662-022-03701-z contributor: fullname: Adnan – volume: 134 start-page: 9 year: 2004 ident: ref_15 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG Dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 contributor: fullname: Delorme – ident: ref_17 doi: 10.1007/978-3-642-56970-8 – volume: 395 start-page: 514 year: 2020 ident: ref_5 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster publication-title: Lancet doi: 10.1016/S0140-6736(20)30154-9 contributor: fullname: Chan – ident: ref_4 doi: 10.1101/2020.03.02.972927 – volume: 16 start-page: 412 year: 2022 ident: ref_11 article-title: Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2022.2078899 contributor: fullname: Tuncer – volume: 52 start-page: 073106 year: 2013 ident: ref_19 article-title: On identification of human eye retinas by the covariance analysis of their digital images publication-title: Opt. Eng. doi: 10.1117/1.OE.52.7.073106 contributor: fullname: Skeivalas – volume: 4 start-page: 2059 year: 2021 ident: ref_7 article-title: Nanotraps for the containment and clearance of SARS-CoV-2 publication-title: Matter doi: 10.1016/j.matt.2021.04.005 contributor: fullname: Chen – volume: 16 start-page: 640 year: 2022 ident: ref_13 article-title: Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2022.2111469 contributor: fullname: Teklu – ident: ref_14 – ident: ref_10 doi: 10.1080/10255842.2022.2109020 – volume: 18 start-page: 113 year: 2000 ident: ref_16 article-title: Wavelet analysis of signals and images, a grand tour publication-title: Cienc. Mat. contributor: fullname: Antoine – ident: ref_18 – volume: 29 start-page: 1 year: 2020 ident: ref_8 article-title: Fake images of the SARS-CoV-2 coronavirus in the communication of information at the beginning of the first COVID-19 pandemic publication-title: Prof. Inf. – volume: 16 start-page: 665 year: 2022 ident: ref_12 article-title: Deciphering the transmission dynamics of COVID-19 in India: Optimal control and cost effective analysis publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2022.2116493 contributor: fullname: Bajiya – volume: 368 start-page: 1012 year: 2020 ident: ref_2 article-title: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model publication-title: Science doi: 10.1126/science.abb7314 contributor: fullname: Rockx – volume: 382 start-page: 727 year: 2020 ident: ref_3 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 contributor: fullname: Zhu |
SSID | ssj0000505460 |
Score | 2.310465 |
Snippet | This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1330 |
SubjectTerms | Analysis Coronaviruses Correlation coefficients Covariance covariance function COVID-19 Digital imaging Electrodes Electroencephalography Estimators Health aspects Mathematical analysis Matrices (mathematics) Parameters Pixels quantised interval SARS-CoV-2 Standard deviation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4Qp14QtKAupVUOSMBhxGySeeQIlBVFggOCiluUSRyKVGZXO7NI_Rf9ydjJLFoOqJfe5uFIUWzHn6P4M2P7HoQItasyXxR0WgV11mBczZy1ubAOU4qK6p2vrsuLO3V5X9yvtPqiO2GJHjgt3LHSQoCzQfjgVFOUjcuhBufBY26T14kJNNcryVRi9UYoUuapIE9iXn_c_XmK2EfSfeeVEBSZ-t_bj2OQmWyyjQEd8pM0qy22Bu1HtjX4X8cPB5Loo0_s75JNhE8Dv4Fu8buPj98fH6gNCD9P7W1o3OyXXRJTc9v6V5Gf8cA-jjojHgP7_DhfdPzHE24xHV_Mpi0njEp1UBxhIk9l_En8GVNsshc-wbgYTXeb3U3Ob88usqG7QuYQpPRZUKB0qVXQXillVd2Al1aMA1goAAO9d1CM0SuthWClhgLRX-4xvwBZ6SDkDltvpy18ZjzguxYNAJUFCI-YxsrGaURqoMqmEiO2v1xwM0skGgaTD9KLWdHLiJ2SMl5FiPk6fkB7MIM9mH_Zw4gdkCoN-Wc_t84OZQY4U2K6MidVoYlwRskR23sjiX7l3v5eGoMZ_LozGMzlWOSYZe7-j8l-YR-ofX26erbH1vv5Ar4iyOmbb9GeXwDFo_5p priority: 102 providerName: Directory of Open Access Journals |
Title | Analysis of Results of Digital Electroencephalography and Digital Vectors of Coronavirus Images upon Applying the Theory of Covariance Functions |
URI | https://www.proquest.com/docview/2843120871 https://doaj.org/article/4922ecaf2dfc4b56bc0e8ecded825084 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF61cOmlKrRV09JoD0htDxb2ev06VRASoFJphQrKzVrvzgJSsdPYQeq_6E_uzHod4AAXx4nXkpV5fTPe-YaxXQNC2FxngUkSqlZBHlQYVwOtVCiUxpQio37n76fp8bn8Nk_mvuDW-m2Vg090jto0mmrke-hG40iEiO-_Lv4ENDWK3q76ERrP2WYksoySr3x2tK6x0JQ2mYZ9W16M2f1e-_fGIaCYdj3fC0SOr_8xr-xCzewVe-kxIt_vhbrFnkG9zba8Fbb8s6eK_vKa_Rs4RXhj-Rm0q9-dOz28vqRhIHzaD7mh-xZXaqCn5qo26yUXrmzv7poQm4G6vV6uWn5yg46m5atFU3NCqtQNxREs8r6Zv19-i4k2aQ2fYXR0CvyGnc-mvybHgZ-xEGiEKl1gJcgiLaQtjJRSybwCEysRWVCQAIZ7oyGJ0DaVAqviAhLEgKHBLAPirLAifss26qaGd4xb_F6ICoCaA4RBZKPiSheI10CmVSZGbHf4w8tFT6VRYgpCcinvyWXEDkgY6yXEf-1-aJaXpTenUhZCgFZWGKtllaSVDiEHbcBgxhvmcsQ-kShLstJuqbTyzQb4pMR3Ve5nSUG0MzIesZ0HK9G69MPLgzKU3rrb8k4X3z99-QN7QePp-61lO2yjW67gI4KYrho7TR2zzYPp6c8z_Jz8uDg5HLuSAB6P5tF_FMb5Xg |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74363,74630,74740 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFUR5ioRQfKgGHqFnbeZ1QH7vaQrtCVYt6sxx7XCrRZNlkK_Ev-MnMJM7SHuCWhyNFmdc3E883jO06EMLnNotcklC1CvKoxLgaWWNiYSymFBn1O5_O09mF-nyZXIaCWxO2VQ4-sXPUrrZUI99DNyrHIkZ8_2nxM6KpUfR3NYzQeMg2iaoKk6_Ng8n869m6ykJz2lQa9415EvP7vebXTYeBJO17vhOKOsb-f_nlLthMn7InASXy_V6sW-wBVM_YVrDDhn8IZNEfn7PfA6sIrz0_g2b1o-0Oj66vaBwIn_Rjbui5xXczEFRzU7n1km9d4b576pD4DMzt9XLV8OMbdDUNXy3qihNWpX4ojnCR9-38_fJbTLVJb_gU42Onwi_YxXRyfjiLwpSFyCJYaSOvQBVpoXzhlFJG5SU4acTYg4EEMOA7C8kYrdMY8EYWkCAKjB3mGSCzwgv5km1UdQWvGPd4XogSgNoDhENsY2RpC0RsoNIyEyO2O3xwvejJNDQmISQXfUcuI3ZAwlgvIQbs7kK9vNLBoLQqhABrvHDeqjJJSxtDDtaBw5w3ztWIvSdRarLTdmmsCe0G-KbEeKX3s6Qg4hklR2z73kq0L3v_9qAMOth3o_9q4-v_337HHs3OT0_0yfH8yxv2mIbV9xvNttlGu1zBW4Q0bbkT9PYPypr4lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiPIQCwV8qAQcos3azuuE-thVy2NVVRT1Zjn2uK1Ek2WTrcS_4CczkzhLe4BbHo4UZV7fODPfMLbrQAif2yxySUK7VZBHJcbVyBoTC2Mxpcio3_nrIj06U5_Ok_NQ_9SEssrBJ3aO2tWW9sgn6EblVMSI7yc-lEWcHM4_Ln9GNEGK_rSGcRr32VamUhmP2Nb-bHFyutlxoZltKo37Jj2Juf6k-XXd4SFJNdC3wlLH3v8vH90Fnvlj9iggRr7Xi3ib3YPqCdsONtnw94E4-sNT9ntgGOG156fQrH-03eHh1QWNBuGzfuQNPbe8NANZNTeV2yz53m3id08dELeBublarRt-fI1up-HrZV1xwq3UG8UROvK-tb9ffoNpN-kQn2Os7NT5GTubz74dHEVh4kJkEbi0kVegirRQvnBKKaPyEpw0YurBQAIY_J2FZIqWagx4IwtIEBHGDnMOkFnhhXzORlVdwQvGPZ4XogSgVgHhEOcYWdoC0RuotMzEmO0OH1wve2INjQkJyUXfksuY7ZMwNkuIDbu7UK8udDAurQohwBovnLeqTNLSxpCDdeAw_41zNWbvSJSabLZdGWtC6wG-KbFf6b0sKYiERskx27mzEm3N3r09KIMOtt7ov5r58v-337IHqLL6y_Hi8yv2kObW9zVnO2zUrtbwGtFNW74JavsHKbD8xQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Results+of+Digital+Electroencephalography+and+Digital+Vectors+of+Coronavirus+Images+upon+Applying+the+Theory+of+Covariance+Functions&rft.jtitle=Symmetry+%28Basel%29&rft.au=Skeivalas%2C+Jonas&rft.au=Par%C5%A1eli%C5%ABnas%2C+Eimuntas&rft.au=Par%C5%A1eli%C5%ABnas%2C+Audrius&rft.au=%C5%A0likas%2C+Dominykas&rft.date=2023-06-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=15&rft.issue=7&rft.spage=1330&rft_id=info:doi/10.3390%2Fsym15071330&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym15071330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |