Analysis of Results of Digital Electroencephalography and Digital Vectors of Coronavirus Images upon Applying the Theory of Covariance Functions

This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-C...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 15; no. 7; p. 1330
Main Authors Skeivalas, Jonas, Paršeliūnas, Eimuntas, Paršeliūnas, Audrius, Šlikas, Dominykas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-CoV-2 variants (cor2 and cor4), where the magnitudes of intensity of the electroencephalography parameters and the parameters of the digital images of coronaviruses were encoded. The estimators of cross-covariance functions of the digital electroencephalography measurements’ vectors and the digital vectors of the coronavirus images and the estimators of auto-covariance functions of separate vectors were derived by applying random functions constructed according to the vectors’ parameter measurement data files. The estimators of covariance functions were derived by changing the values of the quantised interval k on the time and image pixel scales. The symmetric matrices of correlation coefficients were calculated to estimate the level of dependencies between the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images. The graphical images of the normalised cross-covariance functions for the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images within the period of all measurements are asymmetric. For all calculations, a computer program was developed by applying a package of Matlab procedures. A probabilistic interdependence between the results of the electroencephalography measurements and the parameters of the coronavirus vectors, as well as their variation on the time and image pixel scales, was established.
AbstractList This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images. For this research, we used the measurement results of 30-channel electroencephalography (E1–E30) and digital vectors of images of two SARS-CoV-2 variants (cor2 and cor4), where the magnitudes of intensity of the electroencephalography parameters and the parameters of the digital images of coronaviruses were encoded. The estimators of cross-covariance functions of the digital electroencephalography measurements’ vectors and the digital vectors of the coronavirus images and the estimators of auto-covariance functions of separate vectors were derived by applying random functions constructed according to the vectors’ parameter measurement data files. The estimators of covariance functions were derived by changing the values of the quantised interval k on the time and image pixel scales. The symmetric matrices of correlation coefficients were calculated to estimate the level of dependencies between the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images. The graphical images of the normalised cross-covariance functions for the electroencephalography measurement results’ vectors and the digital vectors of the coronavirus images within the period of all measurements are asymmetric. For all calculations, a computer program was developed by applying a package of Matlab procedures. A probabilistic interdependence between the results of the electroencephalography measurements and the parameters of the coronavirus vectors, as well as their variation on the time and image pixel scales, was established.
Audience Academic
Author Šlikas, Dominykas
Paršeliūnas, Audrius
Paršeliūnas, Eimuntas
Skeivalas, Jonas
Author_xml – sequence: 1
  givenname: Jonas
  surname: Skeivalas
  fullname: Skeivalas, Jonas
– sequence: 2
  givenname: Eimuntas
  orcidid: 0000-0002-9630-1267
  surname: Paršeliūnas
  fullname: Paršeliūnas, Eimuntas
– sequence: 3
  givenname: Audrius
  orcidid: 0000-0002-2507-6744
  surname: Paršeliūnas
  fullname: Paršeliūnas, Audrius
– sequence: 4
  givenname: Dominykas
  orcidid: 0000-0003-0562-2338
  surname: Šlikas
  fullname: Šlikas, Dominykas
BookMark eNptks9qGzEQxpeSQtMkp76AoMfiVKs_3tXRuElrCBRC2qsYS6O1zFraSruBfYs8clW7mBSqOWiY-X0fSDPvq4sQA1bVh5recq7o5zwfakmbmnP6prpktOGLVilx8Sp_V93kvKflSCrFkl5WL6sA_Zx9JtGRR8xTPx7TL77zI_TkrkczpojB4LCDPnYJht1MINgz8rMQMR1V65higGefpkw2B-gwk2mIgayGoZ996Mi4Q_K0w5jmE_4MyUPxJvdTMKOPIV9Xbx30GW_-3lfVj_u7p_W3xcP3r5v16mFheKvGhRMo1FIJp6wQAkS7RcuB1Q4BJTJBrUFZbykFQAdcoaRCUtvIFnmjHONX1ebkayPs9ZD8AdKsI3h9LMTUaUijNz1qoRhDA45ZZ8RWLreGYovGom2ZpK0oXh9PXkOKvybMo97HKZWPzZqVds1oW8Zypjoopj64OCYwB5-NXjVSMb6sBS_U7X-oEhYP3pSJO1_q_wg-nQQmxZwTuvNjaqr_LIZ-tRj8N9tjroY
Cites_doi 10.1016/j.cell.2020.02.058
10.1021/acs.chemrev.9b00692
10.1186/s13662-022-03701-z
10.1016/j.jneumeth.2003.10.009
10.1007/978-3-642-56970-8
10.1016/S0140-6736(20)30154-9
10.1101/2020.03.02.972927
10.1080/17513758.2022.2078899
10.1117/1.OE.52.7.073106
10.1016/j.matt.2021.04.005
10.1080/17513758.2022.2111469
10.1080/10255842.2022.2109020
10.1080/17513758.2022.2116493
10.1126/science.abb7314
10.1056/NEJMoa2001017
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/sym15071330
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID oai_doaj_org_article_4922ecaf2dfc4b56bc0e8ecded825084
A759236143
10_3390_sym15071330
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c389t-f4e49694f9d444a48bed3a21feae5e240dce51b00aaefa39e50450d758e379f23
IEDL.DBID 8FG
ISSN 2073-8994
IngestDate Tue Oct 22 14:57:26 EDT 2024
Thu Oct 10 19:12:46 EDT 2024
Thu Feb 22 23:44:18 EST 2024
Wed Nov 13 00:30:27 EST 2024
Fri Aug 23 03:11:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-f4e49694f9d444a48bed3a21feae5e240dce51b00aaefa39e50450d758e379f23
ORCID 0000-0003-0562-2338
0000-0002-9630-1267
0000-0002-2507-6744
OpenAccessLink https://www.proquest.com/docview/2843120871?pq-origsite=%requestingapplication%
PQID 2843120871
PQPubID 2032326
ParticipantIDs doaj_primary_oai_doaj_org_article_4922ecaf2dfc4b56bc0e8ecded825084
proquest_journals_2843120871
gale_infotracmisc_A759236143
gale_infotracacademiconefile_A759236143
crossref_primary_10_3390_sym15071330
PublicationCentury 2000
PublicationDate 20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 20230601
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Teklu (ref_13) 2022; 16
Delorme (ref_15) 2004; 134
ref_14
Rockx (ref_2) 2020; 368
ref_10
Tuncer (ref_11) 2022; 16
Bajiya (ref_12) 2022; 16
Walls (ref_6) 2020; 180
(ref_8) 2020; 29
ref_18
Liu (ref_1) 2020; 120
ref_17
Chan (ref_5) 2020; 395
Antoine (ref_16) 2000; 18
Zhu (ref_3) 2020; 382
ref_4
Skeivalas (ref_19) 2013; 52
Chen (ref_7) 2021; 4
Adnan (ref_9) 2022; 2022
References_xml – volume: 180
  start-page: 281
  year: 2020
  ident: ref_6
  article-title: Structure, Function and Antigenicity of the SARS-CoV-2 Spike Glycoprotein 2020
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
  contributor:
    fullname: Walls
– volume: 120
  start-page: 1936
  year: 2020
  ident: ref_1
  article-title: Single-virus tracking: From imaging methodologies to virological applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00692
  contributor:
    fullname: Liu
– volume: 2022
  start-page: 34
  year: 2022
  ident: ref_9
  article-title: Investigation of a time-fractional COVID-19 mathematical model with Singular Kernel
  publication-title: Adv. Contin. Discret. Model.
  doi: 10.1186/s13662-022-03701-z
  contributor:
    fullname: Adnan
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_15
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG Dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
  contributor:
    fullname: Delorme
– ident: ref_17
  doi: 10.1007/978-3-642-56970-8
– volume: 395
  start-page: 514
  year: 2020
  ident: ref_5
  article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30154-9
  contributor:
    fullname: Chan
– ident: ref_4
  doi: 10.1101/2020.03.02.972927
– volume: 16
  start-page: 412
  year: 2022
  ident: ref_11
  article-title: Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2022.2078899
  contributor:
    fullname: Tuncer
– volume: 52
  start-page: 073106
  year: 2013
  ident: ref_19
  article-title: On identification of human eye retinas by the covariance analysis of their digital images
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.52.7.073106
  contributor:
    fullname: Skeivalas
– volume: 4
  start-page: 2059
  year: 2021
  ident: ref_7
  article-title: Nanotraps for the containment and clearance of SARS-CoV-2
  publication-title: Matter
  doi: 10.1016/j.matt.2021.04.005
  contributor:
    fullname: Chen
– volume: 16
  start-page: 640
  year: 2022
  ident: ref_13
  article-title: Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2022.2111469
  contributor:
    fullname: Teklu
– ident: ref_14
– ident: ref_10
  doi: 10.1080/10255842.2022.2109020
– volume: 18
  start-page: 113
  year: 2000
  ident: ref_16
  article-title: Wavelet analysis of signals and images, a grand tour
  publication-title: Cienc. Mat.
  contributor:
    fullname: Antoine
– ident: ref_18
– volume: 29
  start-page: 1
  year: 2020
  ident: ref_8
  article-title: Fake images of the SARS-CoV-2 coronavirus in the communication of information at the beginning of the first COVID-19 pandemic
  publication-title: Prof. Inf.
– volume: 16
  start-page: 665
  year: 2022
  ident: ref_12
  article-title: Deciphering the transmission dynamics of COVID-19 in India: Optimal control and cost effective analysis
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2022.2116493
  contributor:
    fullname: Bajiya
– volume: 368
  start-page: 1012
  year: 2020
  ident: ref_2
  article-title: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model
  publication-title: Science
  doi: 10.1126/science.abb7314
  contributor:
    fullname: Rockx
– volume: 382
  start-page: 727
  year: 2020
  ident: ref_3
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
  contributor:
    fullname: Zhu
SSID ssj0000505460
Score 2.310465
Snippet This paper analyses the structures of covariance functions of digital electroencephalography measurement vectors and digital vectors of two coronavirus images....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 1330
SubjectTerms Analysis
Coronaviruses
Correlation coefficients
Covariance
covariance function
COVID-19
Digital imaging
Electrodes
Electroencephalography
Estimators
Health aspects
Mathematical analysis
Matrices (mathematics)
Parameters
Pixels
quantised interval
SARS-CoV-2
Standard deviation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4Qp14QtKAupVUOSMBhxGySeeQIlBVFggOCiluUSRyKVGZXO7NI_Rf9ydjJLFoOqJfe5uFIUWzHn6P4M2P7HoQItasyXxR0WgV11mBczZy1ubAOU4qK6p2vrsuLO3V5X9yvtPqiO2GJHjgt3LHSQoCzQfjgVFOUjcuhBufBY26T14kJNNcryVRi9UYoUuapIE9iXn_c_XmK2EfSfeeVEBSZ-t_bj2OQmWyyjQEd8pM0qy22Bu1HtjX4X8cPB5Loo0_s75JNhE8Dv4Fu8buPj98fH6gNCD9P7W1o3OyXXRJTc9v6V5Gf8cA-jjojHgP7_DhfdPzHE24xHV_Mpi0njEp1UBxhIk9l_En8GVNsshc-wbgYTXeb3U3Ob88usqG7QuYQpPRZUKB0qVXQXillVd2Al1aMA1goAAO9d1CM0SuthWClhgLRX-4xvwBZ6SDkDltvpy18ZjzguxYNAJUFCI-YxsrGaURqoMqmEiO2v1xwM0skGgaTD9KLWdHLiJ2SMl5FiPk6fkB7MIM9mH_Zw4gdkCoN-Wc_t84OZQY4U2K6MidVoYlwRskR23sjiX7l3v5eGoMZ_LozGMzlWOSYZe7-j8l-YR-ofX26erbH1vv5Ar4iyOmbb9GeXwDFo_5p
  priority: 102
  providerName: Directory of Open Access Journals
Title Analysis of Results of Digital Electroencephalography and Digital Vectors of Coronavirus Images upon Applying the Theory of Covariance Functions
URI https://www.proquest.com/docview/2843120871
https://doaj.org/article/4922ecaf2dfc4b56bc0e8ecded825084
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF61cOmlKrRV09JoD0htDxb2ev06VRASoFJphQrKzVrvzgJSsdPYQeq_6E_uzHod4AAXx4nXkpV5fTPe-YaxXQNC2FxngUkSqlZBHlQYVwOtVCiUxpQio37n76fp8bn8Nk_mvuDW-m2Vg090jto0mmrke-hG40iEiO-_Lv4ENDWK3q76ERrP2WYksoySr3x2tK6x0JQ2mYZ9W16M2f1e-_fGIaCYdj3fC0SOr_8xr-xCzewVe-kxIt_vhbrFnkG9zba8Fbb8s6eK_vKa_Rs4RXhj-Rm0q9-dOz28vqRhIHzaD7mh-xZXaqCn5qo26yUXrmzv7poQm4G6vV6uWn5yg46m5atFU3NCqtQNxREs8r6Zv19-i4k2aQ2fYXR0CvyGnc-mvybHgZ-xEGiEKl1gJcgiLaQtjJRSybwCEysRWVCQAIZ7oyGJ0DaVAqviAhLEgKHBLAPirLAifss26qaGd4xb_F6ICoCaA4RBZKPiSheI10CmVSZGbHf4w8tFT6VRYgpCcinvyWXEDkgY6yXEf-1-aJaXpTenUhZCgFZWGKtllaSVDiEHbcBgxhvmcsQ-kShLstJuqbTyzQb4pMR3Ve5nSUG0MzIesZ0HK9G69MPLgzKU3rrb8k4X3z99-QN7QePp-61lO2yjW67gI4KYrho7TR2zzYPp6c8z_Jz8uDg5HLuSAB6P5tF_FMb5Xg
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74363,74630,74740
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAFUR5ioRQfKgGHqFnbeZ1QH7vaQrtCVYt6sxx7XCrRZNlkK_Ev-MnMJM7SHuCWhyNFmdc3E883jO06EMLnNotcklC1CvKoxLgaWWNiYSymFBn1O5_O09mF-nyZXIaCWxO2VQ4-sXPUrrZUI99DNyrHIkZ8_2nxM6KpUfR3NYzQeMg2iaoKk6_Ng8n869m6ykJz2lQa9415EvP7vebXTYeBJO17vhOKOsb-f_nlLthMn7InASXy_V6sW-wBVM_YVrDDhn8IZNEfn7PfA6sIrz0_g2b1o-0Oj66vaBwIn_Rjbui5xXczEFRzU7n1km9d4b576pD4DMzt9XLV8OMbdDUNXy3qihNWpX4ojnCR9-38_fJbTLVJb_gU42Onwi_YxXRyfjiLwpSFyCJYaSOvQBVpoXzhlFJG5SU4acTYg4EEMOA7C8kYrdMY8EYWkCAKjB3mGSCzwgv5km1UdQWvGPd4XogSgNoDhENsY2RpC0RsoNIyEyO2O3xwvejJNDQmISQXfUcuI3ZAwlgvIQbs7kK9vNLBoLQqhABrvHDeqjJJSxtDDtaBw5w3ztWIvSdRarLTdmmsCe0G-KbEeKX3s6Qg4hklR2z73kq0L3v_9qAMOth3o_9q4-v_337HHs3OT0_0yfH8yxv2mIbV9xvNttlGu1zBW4Q0bbkT9PYPypr4lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiPIQCwV8qAQcos3azuuE-thVy2NVVRT1Zjn2uK1Ek2WTrcS_4CczkzhLe4BbHo4UZV7fODPfMLbrQAif2yxySUK7VZBHJcbVyBoTC2Mxpcio3_nrIj06U5_Ok_NQ_9SEssrBJ3aO2tWW9sgn6EblVMSI7yc-lEWcHM4_Ln9GNEGK_rSGcRr32VamUhmP2Nb-bHFyutlxoZltKo37Jj2Juf6k-XXd4SFJNdC3wlLH3v8vH90Fnvlj9iggRr7Xi3ib3YPqCdsONtnw94E4-sNT9ntgGOG156fQrH-03eHh1QWNBuGzfuQNPbe8NANZNTeV2yz53m3id08dELeBublarRt-fI1up-HrZV1xwq3UG8UROvK-tb9ffoNpN-kQn2Os7NT5GTubz74dHEVh4kJkEbi0kVegirRQvnBKKaPyEpw0YurBQAIY_J2FZIqWagx4IwtIEBHGDnMOkFnhhXzORlVdwQvGPZ4XogSgVgHhEOcYWdoC0RuotMzEmO0OH1wve2INjQkJyUXfksuY7ZMwNkuIDbu7UK8udDAurQohwBovnLeqTNLSxpCDdeAw_41zNWbvSJSabLZdGWtC6wG-KbFf6b0sKYiERskx27mzEm3N3r09KIMOtt7ov5r58v-337IHqLL6y_Hi8yv2kObW9zVnO2zUrtbwGtFNW74JavsHKbD8xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Results+of+Digital+Electroencephalography+and+Digital+Vectors+of+Coronavirus+Images+upon+Applying+the+Theory+of+Covariance+Functions&rft.jtitle=Symmetry+%28Basel%29&rft.au=Skeivalas%2C+Jonas&rft.au=Par%C5%A1eli%C5%ABnas%2C+Eimuntas&rft.au=Par%C5%A1eli%C5%ABnas%2C+Audrius&rft.au=%C5%A0likas%2C+Dominykas&rft.date=2023-06-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=15&rft.issue=7&rft.spage=1330&rft_id=info:doi/10.3390%2Fsym15071330&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym15071330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon