Microbial carbon use efficiency along an altitudinal gradient
Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial C...
Saved in:
Published in | Soil biology & biochemistry Vol. 173; p. 108799 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial CUE when estimated using different methods. Furthermore, the significance of many fundamental drivers of CUE remains largely unknown and inconclusive, especially for tropical ecosystems. For these reasons, we determined CUE and microbial indicators of soil nutrient availability in seven tropical forest soils along an altitudinal gradient (circa 900–2200 m a.s.l) occurring at Taita Hills, Kenya. We used this gradient to study the soil nutrient (N and P) availability and its relation to microbial CUE estimates. For assessing the soil nutrient availability, we determined both the soil bulk stoichiometric nutrient ratios (soil C:N, C:P and N:P), as well as SOM degradation related enzyme activities. We estimated soil microbial CUE using two methods: substrate independent 18O-water tracing and 13C-glucose tracing method. Based on these two approaches, we estimated the microbial uptake efficiency of added glucose versus native SOM, with the latter defined by 18O-water tracing method. Based on the bulk soil C:N stoichiometry, the studied soils did not reveal N limitation. However, soil bulk P limitation increased slightly with elevation. Additionally, based on extracellular enzyme activities, the SOM nutrient availability decreased with elevation. The 13C-CUE did not change with altitude indicating that glucose was efficiently taken up and used by the microbes. On the other hand, 18O-CUE, which reflects the growth efficiency of microbes growing on native SOM, clearly declined with increasing altitude and was associated with SOM nutrient availability indicators. Based on our results, microbes at higher elevations invested more energy to scavenge for nutrients and energy from complex SOM whereas at lower elevations the soil nutrients may have been more readily available.
•We studied soil nutrient availability in Kenyan tropical mountain forests.•We estimated also microbial carbon-use efficiency (CUE) along the gradient.•We assume that different in situ soil temperatures are seen as legacy effect in CUE.•Bulk stoichiometric C:nutrient ratios did not indicate nutrient limitation.•Enzyme activities and CUE showed greater need to decompose SOM in higher elevations. |
---|---|
AbstractList | Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial CUE when estimated using different methods. Furthermore, the significance of many fundamental drivers of CUE remains largely unknown and inconclusive, especially for tropical ecosystems. For these reasons, we determined CUE and microbial indicators of soil nutrient availability in seven tropical forest soils along an altitudinal gradient (circa 900–2200 m a.s.l) occurring at Taita Hills, Kenya. We used this gradient to study the soil nutrient (N and P) availability and its relation to microbial CUE estimates. For assessing the soil nutrient availability, we determined both the soil bulk stoichiometric nutrient ratios (soil C:N, C:P and N:P), as well as SOM degradation related enzyme activities. We estimated soil microbial CUE using two methods: substrate independent ¹⁸O-water tracing and ¹³C-glucose tracing method. Based on these two approaches, we estimated the microbial uptake efficiency of added glucose versus native SOM, with the latter defined by ¹⁸O-water tracing method. Based on the bulk soil C:N stoichiometry, the studied soils did not reveal N limitation. However, soil bulk P limitation increased slightly with elevation. Additionally, based on extracellular enzyme activities, the SOM nutrient availability decreased with elevation. The ¹³C-CUE did not change with altitude indicating that glucose was efficiently taken up and used by the microbes. On the other hand, ¹⁸O-CUE, which reflects the growth efficiency of microbes growing on native SOM, clearly declined with increasing altitude and was associated with SOM nutrient availability indicators. Based on our results, microbes at higher elevations invested more energy to scavenge for nutrients and energy from complex SOM whereas at lower elevations the soil nutrients may have been more readily available. Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial CUE when estimated using different methods. Furthermore, the significance of many fundamental drivers of CUE remains largely unknown and inconclusive, especially for tropical ecosystems. For these reasons, we determined CUE and microbial indicators of soil nutrient availability in seven tropical forest soils along an altitudinal gradient (circa 900–2200 m a.s.l) occurring at Taita Hills, Kenya. We used this gradient to study the soil nutrient (N and P) availability and its relation to microbial CUE estimates. For assessing the soil nutrient availability, we determined both the soil bulk stoichiometric nutrient ratios (soil C:N, C:P and N:P), as well as SOM degradation related enzyme activities. We estimated soil microbial CUE using two methods: substrate independent 18O-water tracing and 13C-glucose tracing method. Based on these two approaches, we estimated the microbial uptake efficiency of added glucose versus native SOM, with the latter defined by 18O-water tracing method. Based on the bulk soil C:N stoichiometry, the studied soils did not reveal N limitation. However, soil bulk P limitation increased slightly with elevation. Additionally, based on extracellular enzyme activities, the SOM nutrient availability decreased with elevation. The 13C-CUE did not change with altitude indicating that glucose was efficiently taken up and used by the microbes. On the other hand, 18O-CUE, which reflects the growth efficiency of microbes growing on native SOM, clearly declined with increasing altitude and was associated with SOM nutrient availability indicators. Based on our results, microbes at higher elevations invested more energy to scavenge for nutrients and energy from complex SOM whereas at lower elevations the soil nutrients may have been more readily available. •We studied soil nutrient availability in Kenyan tropical mountain forests.•We estimated also microbial carbon-use efficiency (CUE) along the gradient.•We assume that different in situ soil temperatures are seen as legacy effect in CUE.•Bulk stoichiometric C:nutrient ratios did not indicate nutrient limitation.•Enzyme activities and CUE showed greater need to decompose SOM in higher elevations. |
ArticleNumber | 108799 |
Author | Kalu, Subin Biasi, Christina Pellikka, Petri K.E. Meyer, Nele Karhu, Kristiina Sietiö, Outi-Maaria Poeplau, Christopher Mganga, Kevin Z. Adamczyk, Sylwia Ambus, Per Räsänen, Matti Fritze, Hannu |
Author_xml | – sequence: 1 givenname: Kevin Z. orcidid: 0000-0002-7908-7561 surname: Mganga fullname: Mganga, Kevin Z. organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 2 givenname: Outi-Maaria orcidid: 0000-0003-0127-9368 surname: Sietiö fullname: Sietiö, Outi-Maaria email: outi-maaria.sietio@helsinki.fi organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 3 givenname: Nele orcidid: 0000-0002-1378-4786 surname: Meyer fullname: Meyer, Nele organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 4 givenname: Christopher orcidid: 0000-0003-3108-8810 surname: Poeplau fullname: Poeplau, Christopher organization: Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany – sequence: 5 givenname: Sylwia surname: Adamczyk fullname: Adamczyk, Sylwia organization: Natural Resources Finland (LUKE), Helsinki, Finland – sequence: 6 givenname: Christina surname: Biasi fullname: Biasi, Christina organization: University of Eastern Finland, Biogeochemistry Research Group, Kuopio, Finland – sequence: 7 givenname: Subin orcidid: 0000-0003-4221-3701 surname: Kalu fullname: Kalu, Subin organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 8 givenname: Matti orcidid: 0000-0003-0994-5353 surname: Räsänen fullname: Räsänen, Matti organization: University of Helsinki, Department of Geosciences and Geography, Helsinki, Finland – sequence: 9 givenname: Per surname: Ambus fullname: Ambus, Per organization: University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark – sequence: 10 givenname: Hannu orcidid: 0000-0003-4347-4444 surname: Fritze fullname: Fritze, Hannu organization: Natural Resources Finland (LUKE), Helsinki, Finland – sequence: 11 givenname: Petri K.E. surname: Pellikka fullname: Pellikka, Petri K.E. organization: University of Helsinki, Department of Geosciences and Geography, Helsinki, Finland – sequence: 12 givenname: Kristiina orcidid: 0000-0003-3101-4141 surname: Karhu fullname: Karhu, Kristiina organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland |
BookMark | eNqFkE1LAzEQhnOoYFv9CcIevbQmm91NFhGR4hdUvOg55GNSUrZJTbJC_72r25OXnmaYeZ-BeWZo4oMHhK4IXhJMmpvtMgXXKReWJS7LYcZZ207QFGPKF5gRdo5mKW0xxmVN6BTdvTkdg3KyK7SMKviiT1CAtU478PpQyC74TSH90GSXe-P8EN1EaYZ1vkBnVnYJLo91jj6fHj9WL4v1-_Pr6mG90JS3eWGpYiB5W9KKMAUtbmlTMWOalhtilLW1As1Va6zVdcmpgUrJqpa4MhQ0AzpH1-PdfQxfPaQsdi5p6DrpIfRJlIxw2pS0rofo7Rgd3kopghXaZZld8DlK1wmCxa8osRVHUeJXlBhFDXT9j95Ht5PxcJK7HzkYLHw7iCL9-QPjIugsTHAnLvwAMqCLGQ |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105681 crossref_primary_10_1016_j_apsoil_2025_105880 crossref_primary_10_1007_s00374_022_01694_1 crossref_primary_10_1016_j_jenvman_2024_123675 crossref_primary_10_1016_j_apsoil_2023_105228 crossref_primary_10_1016_j_soilbio_2024_109708 crossref_primary_10_1360_SSTe_2024_0003 crossref_primary_10_1016_j_jia_2024_07_038 crossref_primary_10_1111_gcb_70033 crossref_primary_10_3390_f13101657 crossref_primary_10_1155_2024_8498801 crossref_primary_10_1111_gcb_16861 crossref_primary_10_1111_gcb_70036 crossref_primary_10_3389_fmicb_2024_1458750 crossref_primary_10_1007_s42773_023_00294_y crossref_primary_10_1016_j_envint_2024_108467 crossref_primary_10_1016_j_scitotenv_2024_171334 crossref_primary_10_1016_j_jenvman_2024_121128 crossref_primary_10_1016_j_rse_2023_113876 crossref_primary_10_1016_j_scitotenv_2024_175435 crossref_primary_10_1016_j_jclepro_2024_143581 crossref_primary_10_1007_s11104_023_06127_y crossref_primary_10_1016_j_soilbio_2024_109656 crossref_primary_10_1007_s11104_024_07142_3 crossref_primary_10_1016_j_scitotenv_2023_163677 crossref_primary_10_1002_ldr_5544 crossref_primary_10_3389_ffgc_2024_1331623 crossref_primary_10_1016_j_soilbio_2025_109750 crossref_primary_10_1007_s00374_024_01807_y crossref_primary_10_1007_s11430_024_1359_9 |
Cites_doi | 10.1016/j.scitotenv.2007.11.013 10.1038/nclimate2361 10.1016/j.soilbio.2019.03.008 10.1016/j.soilbio.2011.05.018 10.1007/s10533-016-0191-y 10.1016/j.soilbio.2019.01.010 10.1038/ngeo846 10.1016/j.soilbio.2018.02.022 10.1016/j.soilbio.2022.108615 10.1111/gcb.14962 10.1007/BF00337747 10.1371/journal.pone.0093282 10.1016/0038-0717(85)90144-0 10.1111/j.1365-2486.2004.00852.x 10.1016/j.soilbio.2019.04.003 10.1016/j.soilbio.2010.01.003 10.1016/j.soilbio.2007.09.008 10.1016/j.geodrs.2017.04.002 10.1016/j.soilbio.2018.09.036 10.5194/bg-8-477-2011 10.1111/ele.12815 10.1038/nclimate1796 10.1007/s00374-017-1247-4 10.1016/0038-0717(87)90052-6 10.1017/S0376892911000191 10.1111/ele.12113 10.1016/j.geoderma.2017.11.026 10.1007/s00442-012-2522-6 10.1038/s41598-019-42145-6 10.3758/BRM.40.2.457 10.1080/00103628509367657 10.1038/s42003-019-0684-z 10.1016/j.soilbio.2021.108321 10.1038/nmicrobiol.2017.105 10.1038/s41598-019-54487-2 10.5194/bg-12-6071-2015 10.1016/j.soilbio.2008.07.011 10.1016/0038-0717(95)00102-6 10.1016/j.ecolind.2005.03.002 10.1038/nclimate2015 10.3389/fmicb.2013.00333 10.1111/j.1469-8137.2012.04225.x 10.1007/s10533-010-9562-y 10.3389/fmicb.2017.00661 10.14214/sf.935 10.1038/s41561-019-0384-9 10.1038/s41559-018-0662-8 10.1016/S0038-0717(97)00110-7 10.1016/j.mib.2017.06.008 10.1016/j.soilbio.2015.06.021 10.1111/gcb.14738 10.1038/ncomms13630 10.1038/s41467-019-11488-z 10.1016/j.soilbio.2016.01.016 10.1016/0038-0717(90)90160-2 10.1038/ncomms4694 10.1016/S0038-0717(01)00079-7 10.1890/15-2110.1 10.1111/j.1461-0248.2007.01124.x 10.1111/gcb.14517 10.1038/s41586-020-2566-4 10.1111/ele.13379 10.5194/bg-15-5929-2018 10.1016/j.soilbio.2018.12.019 10.1016/j.soilbio.2018.10.006 10.3791/50961 10.1016/j.soilbio.2006.04.047 10.1007/s10533-013-9849-x |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2022.108799 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
ExternalDocumentID | 10_1016_j_soilbio_2022_108799 S0038071722002565 |
GeographicLocations | Kenya |
GeographicLocations_xml | – name: Kenya |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CNWQP CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSH SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-f3b7ea8923417be9093647dd698d1dbff5bec8b9dffc5283de4ba45a04d3ec7e3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Thu Jul 10 17:18:33 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Tue Jul 01 00:54:06 EDT 2025 Sun Apr 06 06:54:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon use efficiency Microbial growth Enzyme activity Ecological stoichiometry Soil microbial carbon pump |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-f3b7ea8923417be9093647dd698d1dbff5bec8b9dffc5283de4ba45a04d3ec7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7908-7561 0000-0003-3101-4141 0000-0003-0127-9368 0000-0003-4221-3701 0000-0003-3108-8810 0000-0003-4347-4444 0000-0003-0994-5353 0000-0002-1378-4786 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0038071722002565 |
PQID | 2718362355 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718362355 crossref_citationtrail_10_1016_j_soilbio_2022_108799 crossref_primary_10_1016_j_soilbio_2022_108799 elsevier_sciencedirect_doi_10_1016_j_soilbio_2022_108799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schroeder, Kammann, Helfrich, Tebbe, Poeplau (bib62) 2021; 160 Walker, Kaiser, Strasser, Herbold, Leblans, Woebken, Janssens, Sigurdsson, Richter (bib73) 2018 Sinsabaugh, Turner, Talbot, Waring, Powers, Kuske, Moorhead, Shah (bib66) 2016; 86 Allison, Wallenstein, Bradford (bib1) 2010; 3 Kaspari, Garcia, Harms, Santana, Wright, Yavitt (bib31) 2008; 11 Poeplau, Helfrich, Dechow, Szoboszlay, Tebbe, Don, Greiner, Zopf, Thumm, Korevaar, Geerts (bib53) 2019; 130 Silva-Sánchez, Soares, Rousk (bib63) 2019; 134 Fisher, Malhi, Torres, Metcalfe, van de Weg, Meir, Silva-Espejo, Huasco (bib16) 2013; 172 Baldrian (bib5) 2017; 37 (bib56) 2019 Pold, Domeignoz-Horta, DeAngelis (bib54) 2020; 8 Biasi, Lind, Pekkarinen, Huttunen, Shurpali, Hyvönen, Repo, Martikainen (bib7) 2008; 40 Kindler, Miltner, Richnow, Kästner (bib33) 2006; 38 Waring, Weintraub, Sinsabaugh (bib74) 2014; 117 Kallenbach, Frey, Grandy (bib29) 2016; 7 Schimel (bib61) 2013; 3 Brookes, Landman, Pruden, Jenkinson (bib11) 1985; 17 Dijkstra, Salpas, Fairbanks, Miller, Hagerty, van Groenigen, Hungate, Marks, Koch, Schwartz (bib13) 2015; 89 Manzoni (bib37) 2017; 8 Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bib6) 2013 Qiao, Wang, Liang, Du, Zhou, Zhu, Huang, Zhou, Luo, Yan, Xia (bib55) 2019; 9 Soares, Rousk (bib67) 2019; 131 Karhu, Alaei, Li, Merilä, Ostonen, Bengtson (bib30) 2022; 167 Moscatelli, Lagomarsino, Marinari, De Angelis, Grego (bib44) 2005; 5 Angst, Mueller, Prater, Angst, Frouz, Jílková, Peterse, Nierop (bib2) 2019; 2 Bååth (bib3) 1994; 17 Njeru, Ekesi, Mohamed, Kinyamario, Kiboi, Maeda (bib46) 2017; 10 Frey, Lee, Melillo, Six (bib17) 2013; 3 Ye, Bradford, Dacal, Maestre, García‐Palacios (bib79) 2019; 25 Nottingham, Meir, Velasquez, Turner (bib48) 2020; 584 Sinsabaugh, Manzoni, Moorhead, Richter (bib65) 2013; 16 Harrell, Dupont (bib23) 2017 Platts, Burgess, Gereau, Lovett, Marshall, McClean, Pellikka, Swetnam, Marchant (bib52) 2011; 38 Spohn, Klaus, Wanek, Richter (bib69) 2016; 96 Sterner, Elser (bib70) 2003 Mehnaz, Corneo, Keitel, Dijkstra (bib42) 2019; 134 Räsänen, Aurela, Vakkari, Beukes, Tuovinen, Josipovic, Siebert, Laurila, Kulmala, Laakso, Rinne, Oren, Katul (bib57) 2020 Drake, Van Oost, Barthel, Bauters, Hoyt, Podgorski, Six, Boeckx, Trumbore, Cizungu Ntaboba, Spencer (bib15) 2019; 12 Sandaa, Enger, Torsvik (bib59) 1998; 30 Hill, Farrar, Jones (bib25) 2008; 40 Zheng, Hu, Zhang, Noll, Böckle, Richter, Wanek (bib80) 2019; 128 Saifuddin, Bhatnagar, Segrè, Finzi (bib58) 2019; 10 Kirschbaum (bib34) 2004; 10 Vance, Brookes, Jenkinson (bib72) 1987; 19 Helle (bib24) 2016 Takriti, Wild, Schnecker, Mooshammer, Knoltsch, Lashchinskiy, Eloy Alves, Gentsch, Gittel, Mikutta, Wanek, Richter (bib71) 2018; 121 Wei, Simko (bib75) 2017 Liang, Schimel, Jastrow (bib36) 2017; 2 Grandy, Neff (bib21) 2008; 404 Jörgensen (bib28) 1996; 28 Marx, Wood, Jarvis (bib41) 2001; 33 Oksanen, Simpson, Blanchet, Kindt, Legendre, Minchin, O'Hara, Solymos, Stevens, Szoecs, Wagner, Barbour, Bedward, Bolker, Borcard, Carvalho, Chirico, De Caceres, Durand, Evangelista, FitzJohn, Friendly, Furneaux, Hannigan, Hill, Lahti, McGlinn, Ouellette, Cunha, Smith, Stier, ter Braak, Weedon (bib82) 2022 Nimon, Lewis, Kane, Haynes (bib45) 2008; 40 Nottingham, Whitaker, Ostle, Bardgett, McNamara, Fierer, Salinas, Ccahuana, Turner, Meir (bib50) 2019; 22 Manzoni, Čapek, Porada, Thurner, Winterdahl, Beer, Brüchert, Frouz, Herrmann, Lyon, SantrÅčkova, Vico, Way (bib39) 2018; 15 Geyer, Kyker-Snowman, Grandy, Frey (bib20) 2016; 127 Soong, Fuchslueger, Marañon-Jimenez, Torn, Janssens, Penuelas, Richter (bib68) 2020; 26 Bååth (bib4) 1990; 22 Geyer, Dijkstra, Sinsabaugh, Frey (bib19) 2019; 128 Li, Wang, Mayes, Allison, Frey, Shi, Hu, Luo, Melillo (bib35) 2019; 25 Manzoni, Čapek, Mooshammer, Lindahl, Richter, Šantrůčková (bib38) 2017; 20 Blagodatskaya, Blagodatsky, Anderson, Kuzyakov (bib8) 2014; 9 Yao, Shi (bib78) 2010; 42 Hagerty, Van Groenigen, Allison, Hungate, Schwartz, Koch, Kolka, Dijkstra (bib22) 2014; 4 Dijkstra, Thomas, Heinrich, Koch, Schwartz, Hungate (bib14) 2011; 43 Nottingham, Turner, Whitaker, Ostle, McNamara, Bardgett, Salinas, Meir (bib49) 2015; 12 Bradford (bib10) 2013; 4 Čapek, Manzoni, Kaštovská, Wild, Diáková, Bárta, Schnecker, Biasi, Martikainen, Alves, Guggenberger, Gentsch, Hugelius, Palmtag, Mikutta, Shibistova, Urich, Schleper, Richter, Šantrůčková (bib12) 2018; 2 Furp (bib18) 1987 Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch, Schnecker, Takriti, Watzka, Wild, Keiblinger, Zechmeister-Boltenstern, Richter (bib43) 2014; 5 Wetterstedt, Ågren (bib77) 2011; 8 Huang, Schulte (bib27) 1985; 16 Manzoni, Taylor, Richter, Porporato, Ågren (bib40) 2012; 196 Zimmermann, Leifeld, Conen, Bird, Meir (bib81) 2012; 107 Bonner, Shoo, Brackin, Schmidt (bib9) 2018; 315 Hu, Huang, Zhou, Kuzyakov (bib26) 2022 Nottingham, Hicks, Ccahuana, Salinas, Bååth, Meir (bib47) 2018; 54 Omoro, Starr, Pellikka (bib51) 2013; 47 Sayer, Lopez-Sangil, Crawford, Bréchet, Birkett, Baxendale, Castro, Rodtassana, Garnett, Weiss, Schmidt (bib60) 2019; 9 Keiblinger, Hall, Wanek, Szukics, Hämmerle, Ellersdorfer, Böck, Strauss, Sterflinger, Richter, Zechmeister-Boltenstern (bib32) 2010; 73 Nottingham (10.1016/j.soilbio.2022.108799_bib48) 2020; 584 Sinsabaugh (10.1016/j.soilbio.2022.108799_bib66) 2016; 86 Walker (10.1016/j.soilbio.2022.108799_bib73) 2018 Baldrian (10.1016/j.soilbio.2022.108799_bib5) 2017; 37 Hu (10.1016/j.soilbio.2022.108799_bib26) 2022 Manzoni (10.1016/j.soilbio.2022.108799_bib37) 2017; 8 Liang (10.1016/j.soilbio.2022.108799_bib36) 2017; 2 Soares (10.1016/j.soilbio.2022.108799_bib67) 2019; 131 Manzoni (10.1016/j.soilbio.2022.108799_bib39) 2018; 15 Čapek (10.1016/j.soilbio.2022.108799_bib12) 2018; 2 Brookes (10.1016/j.soilbio.2022.108799_bib11) 1985; 17 Mooshammer (10.1016/j.soilbio.2022.108799_bib43) 2014; 5 Wetterstedt (10.1016/j.soilbio.2022.108799_bib77) 2011; 8 Sinsabaugh (10.1016/j.soilbio.2022.108799_bib65) 2013; 16 Geyer (10.1016/j.soilbio.2022.108799_bib20) 2016; 127 Pold (10.1016/j.soilbio.2022.108799_bib54) 2020; 8 Zimmermann (10.1016/j.soilbio.2022.108799_bib81) 2012; 107 Schimel (10.1016/j.soilbio.2022.108799_bib61) 2013; 3 Njeru (10.1016/j.soilbio.2022.108799_bib46) 2017; 10 Allison (10.1016/j.soilbio.2022.108799_bib1) 2010; 3 Takriti (10.1016/j.soilbio.2022.108799_bib71) 2018; 121 Saifuddin (10.1016/j.soilbio.2022.108799_bib58) 2019; 10 Huang (10.1016/j.soilbio.2022.108799_bib27) 1985; 16 Helle (10.1016/j.soilbio.2022.108799_bib24) 2016 Jörgensen (10.1016/j.soilbio.2022.108799_bib28) 1996; 28 Karhu (10.1016/j.soilbio.2022.108799_bib30) 2022; 167 Biasi (10.1016/j.soilbio.2022.108799_bib7) 2008; 40 Poeplau (10.1016/j.soilbio.2022.108799_bib53) 2019; 130 Bell (10.1016/j.soilbio.2022.108799_bib6) 2013 Qiao (10.1016/j.soilbio.2022.108799_bib55) 2019; 9 Bradford (10.1016/j.soilbio.2022.108799_bib10) 2013; 4 Bååth (10.1016/j.soilbio.2022.108799_bib4) 1990; 22 Blagodatskaya (10.1016/j.soilbio.2022.108799_bib8) 2014; 9 Hill (10.1016/j.soilbio.2022.108799_bib25) 2008; 40 Ye (10.1016/j.soilbio.2022.108799_bib79) 2019; 25 Keiblinger (10.1016/j.soilbio.2022.108799_bib32) 2010; 73 Mehnaz (10.1016/j.soilbio.2022.108799_bib42) 2019; 134 Nimon (10.1016/j.soilbio.2022.108799_bib45) 2008; 40 Fisher (10.1016/j.soilbio.2022.108799_bib16) 2013; 172 Marx (10.1016/j.soilbio.2022.108799_bib41) 2001; 33 Nottingham (10.1016/j.soilbio.2022.108799_bib50) 2019; 22 Kallenbach (10.1016/j.soilbio.2022.108799_bib29) 2016; 7 Kindler (10.1016/j.soilbio.2022.108799_bib33) 2006; 38 Grandy (10.1016/j.soilbio.2022.108799_bib21) 2008; 404 Omoro (10.1016/j.soilbio.2022.108799_bib51) 2013; 47 Spohn (10.1016/j.soilbio.2022.108799_bib69) 2016; 96 Bååth (10.1016/j.soilbio.2022.108799_bib3) 1994; 17 Geyer (10.1016/j.soilbio.2022.108799_bib19) 2019; 128 Soong (10.1016/j.soilbio.2022.108799_bib68) 2020; 26 Zheng (10.1016/j.soilbio.2022.108799_bib80) 2019; 128 Manzoni (10.1016/j.soilbio.2022.108799_bib38) 2017; 20 Furp (10.1016/j.soilbio.2022.108799_bib18) 1987 Nottingham (10.1016/j.soilbio.2022.108799_bib49) 2015; 12 Moscatelli (10.1016/j.soilbio.2022.108799_bib44) 2005; 5 Schroeder (10.1016/j.soilbio.2022.108799_bib62) 2021; 160 Frey (10.1016/j.soilbio.2022.108799_bib17) 2013; 3 Oksanen (10.1016/j.soilbio.2022.108799_bib82) 2022 Dijkstra (10.1016/j.soilbio.2022.108799_bib13) 2015; 89 Manzoni (10.1016/j.soilbio.2022.108799_bib40) 2012; 196 Silva-Sánchez (10.1016/j.soilbio.2022.108799_bib63) 2019; 134 Angst (10.1016/j.soilbio.2022.108799_bib2) 2019; 2 Sandaa (10.1016/j.soilbio.2022.108799_bib59) 1998; 30 Drake (10.1016/j.soilbio.2022.108799_bib15) 2019; 12 Hagerty (10.1016/j.soilbio.2022.108799_bib22) 2014; 4 Kaspari (10.1016/j.soilbio.2022.108799_bib31) 2008; 11 Vance (10.1016/j.soilbio.2022.108799_bib72) 1987; 19 Sterner (10.1016/j.soilbio.2022.108799_bib70) 2003 Nottingham (10.1016/j.soilbio.2022.108799_bib47) 2018; 54 Platts (10.1016/j.soilbio.2022.108799_bib52) 2011; 38 Räsänen (10.1016/j.soilbio.2022.108799_bib57) 2020 Waring (10.1016/j.soilbio.2022.108799_bib74) 2014; 117 Yao (10.1016/j.soilbio.2022.108799_bib78) 2010; 42 Bonner (10.1016/j.soilbio.2022.108799_bib9) 2018; 315 Li (10.1016/j.soilbio.2022.108799_bib35) 2019; 25 Wei (10.1016/j.soilbio.2022.108799_bib75) Kirschbaum (10.1016/j.soilbio.2022.108799_bib34) 2004; 10 (10.1016/j.soilbio.2022.108799_bib56) 2019 Dijkstra (10.1016/j.soilbio.2022.108799_bib14) 2011; 43 Harrell (10.1016/j.soilbio.2022.108799_bib23) Sayer (10.1016/j.soilbio.2022.108799_bib60) 2019; 9 |
References_xml | – volume: 2 start-page: 1 year: 2017 end-page: 6 ident: bib36 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 196 start-page: 79 year: 2012 end-page: 91 ident: bib40 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytologist – volume: 11 start-page: 35 year: 2008 end-page: 43 ident: bib31 article-title: Multiple nutrients limit litterfall and decomposition in a tropical forest publication-title: Ecology Letters – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: bib60 article-title: Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs publication-title: Scientific Reports – volume: 17 start-page: 837 year: 1985 end-page: 842 ident: bib11 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology and Biochemistry – volume: 40 start-page: 616 year: 2008 end-page: 624 ident: bib25 article-title: Decoupling of microbial glucose uptake and mineralization in soil publication-title: Soil Biology and Biochemistry – volume: 2 start-page: 1 year: 2019 end-page: 7 ident: bib2 article-title: Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass publication-title: Commun. Biol. – year: 2013 ident: bib6 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: Journal of Visualized Experiments : Journal of Visualized Experiments – volume: 38 start-page: 312 year: 2011 end-page: 324 ident: bib52 article-title: Delimiting tropical mountain ecoregions for conservation publication-title: Environmental Conservation – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bib58 article-title: Microbial carbon use efficiency predicted from genome-scale metabolic models publication-title: Nature Communications – volume: 4 start-page: 903 year: 2014 end-page: 906 ident: bib22 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil publication-title: Nature Climate Change – volume: 40 start-page: 2660 year: 2008 end-page: 2669 ident: bib7 article-title: Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil publication-title: Soil Biology and Biochemistry – volume: 7 year: 2016 ident: bib29 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications – volume: 131 start-page: 195 year: 2019 end-page: 205 ident: bib67 article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry publication-title: Soil Biology and Biochemistry – volume: 10 start-page: 1870 year: 2004 end-page: 1877 ident: bib34 article-title: Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? publication-title: Global Change Biology – volume: 15 start-page: 5929 year: 2018 end-page: 5949 ident: bib39 article-title: Reviews and syntheses: carbon use efficiency from organisms to ecosystems - definitions, theories, and empirical evidence publication-title: Biogeosciences – volume: 127 start-page: 173 year: 2016 end-page: 188 ident: bib20 article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter publication-title: Biogeochemistry – volume: 30 start-page: 265 year: 1998 end-page: 268 ident: bib59 article-title: Rapid method for fluorometric quantification of DNA in soil publication-title: Soil Biology and Biochemistry – year: 2003 ident: bib70 article-title: Ecological stoichiometry publication-title: Ecological Stoichiometry – volume: 134 start-page: 25 year: 2019 end-page: 35 ident: bib63 article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality publication-title: Soil Biology and Biochemistry – volume: 10 start-page: 29 year: 2017 end-page: 38 ident: bib46 article-title: Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem publication-title: Geoderma Regional – volume: 584 start-page: 234 year: 2020 end-page: 237 ident: bib48 article-title: Soil carbon loss by experimental warming in a tropical forest publication-title: Nature – volume: 26 start-page: 1953 year: 2020 end-page: 1961 ident: bib68 article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Global Change Biology – volume: 160 year: 2021 ident: bib62 article-title: Impact of common sample pre-treatments on key soil microbial properties publication-title: Soil Biology and Biochemistry – volume: 3 start-page: 867 year: 2013 end-page: 868 ident: bib61 article-title: Soil carbon: microbes and global carbon publication-title: Nature Climate Change – volume: 9 year: 2014 ident: bib8 article-title: Microbial growth and carbon use efficiency in the rhizosphere and root-free soil publication-title: PLoS One – volume: 16 start-page: 943 year: 1985 end-page: 958 ident: bib27 article-title: Digestion of plant tissue for analysis by ICP emission spectroscopy publication-title: Communications in Soil Science and Plant Analysis – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bib72 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry – volume: 54 start-page: 219 year: 2018 end-page: 228 ident: bib47 article-title: Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils publication-title: Biology and Fertility of Soils – volume: 47 start-page: 1 year: 2013 end-page: 18 ident: bib51 article-title: Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya publication-title: Silva Fennica – volume: 128 start-page: 45 year: 2019 end-page: 55 ident: bib80 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biology and Biochemistry – volume: 40 start-page: 457 year: 2008 end-page: 466 ident: bib45 article-title: An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example publication-title: Behavior Research Methods – volume: 128 start-page: 79 year: 2019 end-page: 88 ident: bib19 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biology and Biochemistry – volume: 96 start-page: 74 year: 2016 end-page: 81 ident: bib69 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling publication-title: Soil Biology and Biochemistry – volume: 12 start-page: 6071 year: 2015 end-page: 6083 ident: bib49 article-title: Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm publication-title: Biogeosciences – year: 2018 ident: bib73 article-title: Microbial temperature sensitivity and biomass change explain soil carbon loss with warming publication-title: Nature Climate Change – volume: 121 start-page: 212 year: 2018 end-page: 220 ident: bib71 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 20 year: 2020 ident: bib54 article-title: Heavy and wet: the consequences of violating assumptions of measuring soil microbial growth efficiency using the publication-title: Elementa – start-page: 1 year: 2022 end-page: 12 ident: bib26 article-title: Nitrogen addition to soil affects microbial carbon use efficiency: meta-analysis of similarities and differences in publication-title: Global Change Biology – year: 2016 ident: bib24 article-title: Lentolaserkeilaus Ja Hemisfäärikuvaus Metsikkösadannan Tutkimisessa Taitavuorilla Keniassa – year: 1987 ident: bib18 article-title: Fertilizer Use Recommendation Project (Phase I). Annex III: Detailed Description of the First Priority Sites in the Various Districts;Taita Taveta District. Ministry of Agriculture – volume: 8 start-page: 477 year: 2011 end-page: 487 ident: bib77 article-title: Quality or decomposer efficiency - which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology publication-title: Biogeosciences – volume: 22 start-page: 1889 year: 2019 end-page: 1899 ident: bib50 article-title: Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient publication-title: Ecology Letters – volume: 17 start-page: 147 year: 1994 end-page: 153 ident: bib3 article-title: Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique publication-title: Biology and Fertility of Soils – volume: 2 start-page: 1588 year: 2018 end-page: 1596 ident: bib12 article-title: A plant–microbe interaction framework explaining nutrient effects on primary production publication-title: Nat. Ecol. Evolution – volume: 130 start-page: 167 year: 2019 end-page: 176 ident: bib53 article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands publication-title: Soil Biology and Biochemistry – volume: 89 start-page: 35 year: 2015 end-page: 43 ident: bib13 article-title: High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 1 year: 2017 end-page: 15 ident: bib37 article-title: Flexible carbon-use efficiency across litter types and during decomposition partly compensates nutrient imbalances-results from analytical stoichiometric models publication-title: Frontiers in Microbiology – volume: 20 start-page: 1182 year: 2017 end-page: 1191 ident: bib38 article-title: Optimal metabolic regulation along resource stoichiometry gradients publication-title: Ecology Letters – year: 2017 ident: bib23 article-title: Hmisc: Harrell miscellaneous – volume: 38 start-page: 2860 year: 2006 end-page: 2870 ident: bib33 article-title: Fate of gram-negative bacterial biomass in soil - mineralization and contribution to SOM publication-title: Soil Biology and Biochemistry – volume: 16 start-page: 930 year: 2013 end-page: 939 ident: bib65 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecology Letters – year: 2017 ident: bib75 article-title: R package “corrplot”: visualization of a correlation matrix – volume: 404 start-page: 297 year: 2008 end-page: 307 ident: bib21 article-title: Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function publication-title: Science of the Total Environment – volume: 25 start-page: 3354 year: 2019 end-page: 3364 ident: bib79 article-title: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally publication-title: Global Change Biology – volume: 37 start-page: 128 year: 2017 end-page: 134 ident: bib5 article-title: Microbial activity and the dynamics of ecosystem processes in forest soils publication-title: Current Opinion in Microbiology – volume: 5 start-page: 171 year: 2005 end-page: 179 ident: bib44 article-title: Soil microbial indices as bioindicators of environmental changes in a poplar plantation publication-title: Ecological Indicators – volume: 134 start-page: 175 year: 2019 end-page: 186 ident: bib42 article-title: Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil publication-title: Soil Biology and Biochemistry – volume: 172 start-page: 889 year: 2013 end-page: 902 ident: bib16 article-title: Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes publication-title: Oecologia – volume: 25 start-page: 900 year: 2019 end-page: 910 ident: bib35 article-title: Reduced carbon use efficiency and increased microbial turnover with soil warming publication-title: Global Change Biology – volume: 9 start-page: 1 year: 2019 end-page: 8 ident: bib55 article-title: Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply publication-title: Scientific Reports – volume: 167 year: 2022 ident: bib30 article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios publication-title: Soil Biology and Biochemistry – start-page: 1 year: 2020 end-page: 31 ident: bib57 article-title: The effect of rainfall amount and timing on annual transpiration in grazed savanna grassland publication-title: Hydrology and Earth System Sciences Discussions – volume: 42 start-page: 642 year: 2010 end-page: 648 ident: bib78 article-title: Soil organic matter stabilization in turfgrass ecosystems: importance of microbial processing publication-title: Soil Biology and Biochemistry – volume: 33 start-page: 1633 year: 2001 end-page: 1640 ident: bib41 article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils publication-title: Soil Biology and Biochemistry – volume: 3 start-page: 336 year: 2010 end-page: 340 ident: bib1 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nature Geoscience – volume: 86 start-page: 172 year: 2016 end-page: 189 ident: bib66 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecological Monographs – volume: 5 start-page: 4694 year: 2014 ident: bib43 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nature Communications – volume: 22 start-page: 803 year: 1990 end-page: 810 ident: bib4 article-title: Thymidine incorporation into soil bacteria publication-title: Soil Biology and Biochemistry – volume: 43 start-page: 2023 year: 2011 end-page: 2031 ident: bib14 article-title: Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency publication-title: Soil Biology and Biochemistry – volume: 28 start-page: 25 year: 1996 end-page: 31 ident: bib28 article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value publication-title: Soil Biology and Biochemistry – year: 2019 ident: bib56 article-title: R: A Language and Environment for Statistical Computing – volume: 4 start-page: 333 year: 2013 ident: bib10 article-title: Thermal adaptation of decomposer communities in warming soils publication-title: Frontiers in Microbiology – volume: 12 start-page: 541 year: 2019 end-page: 546 ident: bib15 article-title: Mobilization of aged and biolabile soil carbon by tropical deforestation publication-title: Nature Geoscience – volume: 117 start-page: 101 year: 2014 end-page: 113 ident: bib74 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry – volume: 73 start-page: 430 year: 2010 end-page: 440 ident: bib32 article-title: The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency publication-title: FEMS Microbiology Ecology – year: 2022 ident: bib82 article-title: vegan: Community Ecology Package – volume: 107 start-page: 423 year: 2012 end-page: 436 ident: bib81 article-title: Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? publication-title: Biogeochemistry – volume: 315 start-page: 96 year: 2018 end-page: 103 ident: bib9 article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil publication-title: Geoderma – volume: 3 start-page: 395 year: 2013 end-page: 398 ident: bib17 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nature Climate Change – volume: 404 start-page: 297 year: 2008 ident: 10.1016/j.soilbio.2022.108799_bib21 article-title: Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2007.11.013 – volume: 4 start-page: 903 year: 2014 ident: 10.1016/j.soilbio.2022.108799_bib22 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil publication-title: Nature Climate Change doi: 10.1038/nclimate2361 – volume: 134 start-page: 25 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib63 article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.03.008 – volume: 43 start-page: 2023 year: 2011 ident: 10.1016/j.soilbio.2022.108799_bib14 article-title: Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2011.05.018 – volume: 127 start-page: 173 year: 2016 ident: 10.1016/j.soilbio.2022.108799_bib20 article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter publication-title: Biogeochemistry doi: 10.1007/s10533-016-0191-y – volume: 131 start-page: 195 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib67 article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.01.010 – ident: 10.1016/j.soilbio.2022.108799_bib75 – volume: 3 start-page: 336 year: 2010 ident: 10.1016/j.soilbio.2022.108799_bib1 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nature Geoscience doi: 10.1038/ngeo846 – volume: 121 start-page: 212 year: 2018 ident: 10.1016/j.soilbio.2022.108799_bib71 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.02.022 – volume: 167 year: 2022 ident: 10.1016/j.soilbio.2022.108799_bib30 article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2022.108615 – volume: 26 start-page: 1953 year: 2020 ident: 10.1016/j.soilbio.2022.108799_bib68 article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Global Change Biology doi: 10.1111/gcb.14962 – volume: 17 start-page: 147 year: 1994 ident: 10.1016/j.soilbio.2022.108799_bib3 article-title: Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique publication-title: Biology and Fertility of Soils doi: 10.1007/BF00337747 – volume: 9 year: 2014 ident: 10.1016/j.soilbio.2022.108799_bib8 article-title: Microbial growth and carbon use efficiency in the rhizosphere and root-free soil publication-title: PLoS One doi: 10.1371/journal.pone.0093282 – volume: 17 start-page: 837 year: 1985 ident: 10.1016/j.soilbio.2022.108799_bib11 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(85)90144-0 – volume: 10 start-page: 1870 year: 2004 ident: 10.1016/j.soilbio.2022.108799_bib34 article-title: Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2004.00852.x – volume: 134 start-page: 175 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib42 article-title: Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.04.003 – volume: 42 start-page: 642 year: 2010 ident: 10.1016/j.soilbio.2022.108799_bib78 article-title: Soil organic matter stabilization in turfgrass ecosystems: importance of microbial processing publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.01.003 – volume: 40 start-page: 616 year: 2008 ident: 10.1016/j.soilbio.2022.108799_bib25 article-title: Decoupling of microbial glucose uptake and mineralization in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2007.09.008 – volume: 10 start-page: 29 year: 2017 ident: 10.1016/j.soilbio.2022.108799_bib46 article-title: Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2017.04.002 – volume: 128 start-page: 79 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib19 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.09.036 – volume: 8 start-page: 477 year: 2011 ident: 10.1016/j.soilbio.2022.108799_bib77 article-title: Quality or decomposer efficiency - which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology publication-title: Biogeosciences doi: 10.5194/bg-8-477-2011 – start-page: 1 year: 2020 ident: 10.1016/j.soilbio.2022.108799_bib57 article-title: The effect of rainfall amount and timing on annual transpiration in grazed savanna grassland publication-title: Hydrology and Earth System Sciences Discussions – year: 2022 ident: 10.1016/j.soilbio.2022.108799_bib82 – volume: 20 start-page: 1182 year: 2017 ident: 10.1016/j.soilbio.2022.108799_bib38 article-title: Optimal metabolic regulation along resource stoichiometry gradients publication-title: Ecology Letters doi: 10.1111/ele.12815 – volume: 3 start-page: 395 year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib17 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nature Climate Change doi: 10.1038/nclimate1796 – volume: 54 start-page: 219 year: 2018 ident: 10.1016/j.soilbio.2022.108799_bib47 article-title: Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-017-1247-4 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.soilbio.2022.108799_bib72 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(87)90052-6 – volume: 8 start-page: 20 year: 2020 ident: 10.1016/j.soilbio.2022.108799_bib54 article-title: Heavy and wet: the consequences of violating assumptions of measuring soil microbial growth efficiency using the 18O water method publication-title: Elementa – volume: 38 start-page: 312 year: 2011 ident: 10.1016/j.soilbio.2022.108799_bib52 article-title: Delimiting tropical mountain ecoregions for conservation publication-title: Environmental Conservation doi: 10.1017/S0376892911000191 – volume: 16 start-page: 930 year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib65 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecology Letters doi: 10.1111/ele.12113 – volume: 315 start-page: 96 year: 2018 ident: 10.1016/j.soilbio.2022.108799_bib9 article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.026 – volume: 172 start-page: 889 year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib16 article-title: Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes publication-title: Oecologia doi: 10.1007/s00442-012-2522-6 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib55 article-title: Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply publication-title: Scientific Reports doi: 10.1038/s41598-019-42145-6 – volume: 40 start-page: 457 year: 2008 ident: 10.1016/j.soilbio.2022.108799_bib45 article-title: An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example publication-title: Behavior Research Methods doi: 10.3758/BRM.40.2.457 – volume: 16 start-page: 943 year: 1985 ident: 10.1016/j.soilbio.2022.108799_bib27 article-title: Digestion of plant tissue for analysis by ICP emission spectroscopy publication-title: Communications in Soil Science and Plant Analysis doi: 10.1080/00103628509367657 – volume: 2 start-page: 1 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib2 article-title: Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass publication-title: Commun. Biol. doi: 10.1038/s42003-019-0684-z – volume: 160 year: 2021 ident: 10.1016/j.soilbio.2022.108799_bib62 article-title: Impact of common sample pre-treatments on key soil microbial properties publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2021.108321 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.soilbio.2022.108799_bib36 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib60 article-title: Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs publication-title: Scientific Reports doi: 10.1038/s41598-019-54487-2 – volume: 12 start-page: 6071 year: 2015 ident: 10.1016/j.soilbio.2022.108799_bib49 article-title: Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm publication-title: Biogeosciences doi: 10.5194/bg-12-6071-2015 – volume: 40 start-page: 2660 year: 2008 ident: 10.1016/j.soilbio.2022.108799_bib7 article-title: Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2008.07.011 – volume: 28 start-page: 25 year: 1996 ident: 10.1016/j.soilbio.2022.108799_bib28 article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(95)00102-6 – volume: 73 start-page: 430 year: 2010 ident: 10.1016/j.soilbio.2022.108799_bib32 article-title: The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency publication-title: FEMS Microbiology Ecology – volume: 5 start-page: 171 year: 2005 ident: 10.1016/j.soilbio.2022.108799_bib44 article-title: Soil microbial indices as bioindicators of environmental changes in a poplar plantation publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2005.03.002 – volume: 3 start-page: 867 year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib61 article-title: Soil carbon: microbes and global carbon publication-title: Nature Climate Change doi: 10.1038/nclimate2015 – volume: 4 start-page: 333 year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib10 article-title: Thermal adaptation of decomposer communities in warming soils publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2013.00333 – volume: 196 start-page: 79 year: 2012 ident: 10.1016/j.soilbio.2022.108799_bib40 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytologist doi: 10.1111/j.1469-8137.2012.04225.x – year: 2003 ident: 10.1016/j.soilbio.2022.108799_bib70 article-title: Ecological stoichiometry publication-title: Ecological Stoichiometry – volume: 107 start-page: 423 year: 2012 ident: 10.1016/j.soilbio.2022.108799_bib81 article-title: Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? publication-title: Biogeochemistry doi: 10.1007/s10533-010-9562-y – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.soilbio.2022.108799_bib37 article-title: Flexible carbon-use efficiency across litter types and during decomposition partly compensates nutrient imbalances-results from analytical stoichiometric models publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2017.00661 – year: 2018 ident: 10.1016/j.soilbio.2022.108799_bib73 article-title: Microbial temperature sensitivity and biomass change explain soil carbon loss with warming publication-title: Nature Climate Change – ident: 10.1016/j.soilbio.2022.108799_bib23 – volume: 47 start-page: 1 year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib51 article-title: Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya publication-title: Silva Fennica doi: 10.14214/sf.935 – volume: 12 start-page: 541 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib15 article-title: Mobilization of aged and biolabile soil carbon by tropical deforestation publication-title: Nature Geoscience doi: 10.1038/s41561-019-0384-9 – volume: 2 start-page: 1588 year: 2018 ident: 10.1016/j.soilbio.2022.108799_bib12 article-title: A plant–microbe interaction framework explaining nutrient effects on primary production publication-title: Nat. Ecol. Evolution doi: 10.1038/s41559-018-0662-8 – volume: 30 start-page: 265 year: 1998 ident: 10.1016/j.soilbio.2022.108799_bib59 article-title: Rapid method for fluorometric quantification of DNA in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(97)00110-7 – volume: 37 start-page: 128 year: 2017 ident: 10.1016/j.soilbio.2022.108799_bib5 article-title: Microbial activity and the dynamics of ecosystem processes in forest soils publication-title: Current Opinion in Microbiology doi: 10.1016/j.mib.2017.06.008 – volume: 89 start-page: 35 year: 2015 ident: 10.1016/j.soilbio.2022.108799_bib13 article-title: High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.06.021 – year: 2016 ident: 10.1016/j.soilbio.2022.108799_bib24 – volume: 25 start-page: 3354 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib79 article-title: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally publication-title: Global Change Biology doi: 10.1111/gcb.14738 – volume: 7 year: 2016 ident: 10.1016/j.soilbio.2022.108799_bib29 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications doi: 10.1038/ncomms13630 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib58 article-title: Microbial carbon use efficiency predicted from genome-scale metabolic models publication-title: Nature Communications doi: 10.1038/s41467-019-11488-z – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.soilbio.2022.108799_bib69 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.01.016 – volume: 22 start-page: 803 year: 1990 ident: 10.1016/j.soilbio.2022.108799_bib4 article-title: Thymidine incorporation into soil bacteria publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(90)90160-2 – volume: 5 start-page: 4694 year: 2014 ident: 10.1016/j.soilbio.2022.108799_bib43 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nature Communications doi: 10.1038/ncomms4694 – volume: 33 start-page: 1633 year: 2001 ident: 10.1016/j.soilbio.2022.108799_bib41 article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(01)00079-7 – volume: 86 start-page: 172 year: 2016 ident: 10.1016/j.soilbio.2022.108799_bib66 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecological Monographs doi: 10.1890/15-2110.1 – volume: 11 start-page: 35 year: 2008 ident: 10.1016/j.soilbio.2022.108799_bib31 article-title: Multiple nutrients limit litterfall and decomposition in a tropical forest publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2007.01124.x – volume: 25 start-page: 900 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib35 article-title: Reduced carbon use efficiency and increased microbial turnover with soil warming publication-title: Global Change Biology doi: 10.1111/gcb.14517 – volume: 584 start-page: 234 year: 2020 ident: 10.1016/j.soilbio.2022.108799_bib48 article-title: Soil carbon loss by experimental warming in a tropical forest publication-title: Nature doi: 10.1038/s41586-020-2566-4 – year: 1987 ident: 10.1016/j.soilbio.2022.108799_bib18 – volume: 22 start-page: 1889 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib50 article-title: Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient publication-title: Ecology Letters doi: 10.1111/ele.13379 – start-page: 1 year: 2022 ident: 10.1016/j.soilbio.2022.108799_bib26 article-title: Nitrogen addition to soil affects microbial carbon use efficiency: meta-analysis of similarities and differences in 13C and 18O approaches publication-title: Global Change Biology – year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib56 – volume: 15 start-page: 5929 year: 2018 ident: 10.1016/j.soilbio.2022.108799_bib39 article-title: Reviews and syntheses: carbon use efficiency from organisms to ecosystems - definitions, theories, and empirical evidence publication-title: Biogeosciences doi: 10.5194/bg-15-5929-2018 – volume: 130 start-page: 167 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib53 article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.12.019 – volume: 128 start-page: 45 year: 2019 ident: 10.1016/j.soilbio.2022.108799_bib80 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.10.006 – year: 2013 ident: 10.1016/j.soilbio.2022.108799_bib6 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: Journal of Visualized Experiments : Journal of Visualized Experiments doi: 10.3791/50961 – volume: 38 start-page: 2860 year: 2006 ident: 10.1016/j.soilbio.2022.108799_bib33 article-title: Fate of gram-negative bacterial biomass in soil - mineralization and contribution to SOM publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2006.04.047 – volume: 117 start-page: 101 year: 2014 ident: 10.1016/j.soilbio.2022.108799_bib74 article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils publication-title: Biogeochemistry doi: 10.1007/s10533-013-9849-x |
SSID | ssj0002513 |
Score | 2.5434058 |
Snippet | Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108799 |
SubjectTerms | altitude Carbon use efficiency Ecological stoichiometry ecosystems energy Enzyme activity extracellular enzymes glucose Kenya microbial carbon Microbial growth nutrient availability Soil microbial carbon pump soil nutrients soil organic matter stoichiometry tropical forests |
Title | Microbial carbon use efficiency along an altitudinal gradient |
URI | https://dx.doi.org/10.1016/j.soilbio.2022.108799 https://www.proquest.com/docview/2718362355 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KHtSDaFWsHyWC19g22TS7Bw-lKFVpTwrelv2YlEpJSz-u_nZnko1FEQreksAs4e0yb0LmvWHsViJFiMQmoRAxD7mJZSjTLAol71jLgeMnAmmHh6Pu4I0_vyfvNdavtDDUVulzf5nTi2ztn7Q8mq35ZEIaXzJLRwKOCuImoTnnKZ3yu89NmwfytzfeFSTWSTcqntYH-eVOzYQ0gFFE3XZpYQH7Jz_9ytQF_TwesUNfNwa98tWOWQ3yOjvojRfeOwPqbK9fDW87YffDSeGwhCFWL8wsD9ZLCKDwiyCxZaCns3wc6BwvqFnA0XCsYLwoGsBWp-zt8eG1Pwj9pITQYsGxCrPYpKAFFmu8kxqQbUm28M51pXAdZ7Iswa0SRross-Tm4oAbzRPd5i4Gm0J8xnbyWQ7nLJC6nWpcCjpgOM9ACiGdwSoQv0OgbU2D8QofZb2NOE2zmKqqX-xDeVgVwapKWBvs7jtsXvpobAsQFfjqx4FQmOu3hd5Um6UQdvoDonOYrZcqQiZGxsYa6-L_y1-yfborO_qu2M5qsYZrrExWplkcvSbb7T29DEZfC7DjZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSD-MS3EbzGtsnG7B48SFHqo54UvC37mJRKSaW2V3-7M8lGUQTBW0jYJcxu5psl3_cNwKkiiJCZy2IpUxELm6pY5UUSK9FxTqCgIwJrh_sP570ncfucPc9Bt9HCMK0y5P46p1fZOtxphWi2XodD1viyWToBcFIBdzYPi4I-X25jcPb-xfMgAA_Ou5LVOvmXjKf1woa5IztkEWCSMN0urzxgfwWoH6m6wp_rNVgNhWN0Wb_bOsxhuQErl4NJMM_ADVjqNt3bNuGiP6wslmiIMxM7LqPZG0ZYGUaw2jIyo3E5iExJF8wW8NwdKxpMKgbYdAuerq8eu704tEqIHVUc07hIbY5GUrUmOrlF1VbsC-_9uZK-421RZLRW0ipfFI7tXDwKa0Rm2sKn6HJMt2GhHJe4A5Ey7dzQVNhBK0SBSkrlLZWBdBDBtrO7IJr4aBd8xLmdxUg3hLEXHcKqOay6DusunH0Oe62NNP4aIJvg6287QlOy_2voSbNYmsLOv0BMiePZm04Iigmyqcja-__0x7DUe-zf6_ubh7t9WOYnNb3vABamkxkeUpkytUfVNvwAUhXk9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+carbon+use+efficiency+along+an+altitudinal+gradient&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Mganga%2C+Kevin+Z.&rft.au=Sieti%C3%B6%2C+Outi-Maaria&rft.au=Meyer%2C+Nele&rft.au=Poeplau%2C+Christopher&rft.date=2022-10-01&rft.issn=0038-0717&rft.volume=173&rft.spage=108799&rft_id=info:doi/10.1016%2Fj.soilbio.2022.108799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2022_108799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |