Microbial carbon use efficiency along an altitudinal gradient

Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial C...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 173; p. 108799
Main Authors Mganga, Kevin Z., Sietiö, Outi-Maaria, Meyer, Nele, Poeplau, Christopher, Adamczyk, Sylwia, Biasi, Christina, Kalu, Subin, Räsänen, Matti, Ambus, Per, Fritze, Hannu, Pellikka, Petri K.E., Karhu, Kristiina
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial CUE when estimated using different methods. Furthermore, the significance of many fundamental drivers of CUE remains largely unknown and inconclusive, especially for tropical ecosystems. For these reasons, we determined CUE and microbial indicators of soil nutrient availability in seven tropical forest soils along an altitudinal gradient (circa 900–2200 m a.s.l) occurring at Taita Hills, Kenya. We used this gradient to study the soil nutrient (N and P) availability and its relation to microbial CUE estimates. For assessing the soil nutrient availability, we determined both the soil bulk stoichiometric nutrient ratios (soil C:N, C:P and N:P), as well as SOM degradation related enzyme activities. We estimated soil microbial CUE using two methods: substrate independent 18O-water tracing and 13C-glucose tracing method. Based on these two approaches, we estimated the microbial uptake efficiency of added glucose versus native SOM, with the latter defined by 18O-water tracing method. Based on the bulk soil C:N stoichiometry, the studied soils did not reveal N limitation. However, soil bulk P limitation increased slightly with elevation. Additionally, based on extracellular enzyme activities, the SOM nutrient availability decreased with elevation. The 13C-CUE did not change with altitude indicating that glucose was efficiently taken up and used by the microbes. On the other hand, 18O-CUE, which reflects the growth efficiency of microbes growing on native SOM, clearly declined with increasing altitude and was associated with SOM nutrient availability indicators. Based on our results, microbes at higher elevations invested more energy to scavenge for nutrients and energy from complex SOM whereas at lower elevations the soil nutrients may have been more readily available. •We studied soil nutrient availability in Kenyan tropical mountain forests.•We estimated also microbial carbon-use efficiency (CUE) along the gradient.•We assume that different in situ soil temperatures are seen as legacy effect in CUE.•Bulk stoichiometric C:nutrient ratios did not indicate nutrient limitation.•Enzyme activities and CUE showed greater need to decompose SOM in higher elevations.
AbstractList Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial CUE when estimated using different methods. Furthermore, the significance of many fundamental drivers of CUE remains largely unknown and inconclusive, especially for tropical ecosystems. For these reasons, we determined CUE and microbial indicators of soil nutrient availability in seven tropical forest soils along an altitudinal gradient (circa 900–2200 m a.s.l) occurring at Taita Hills, Kenya. We used this gradient to study the soil nutrient (N and P) availability and its relation to microbial CUE estimates. For assessing the soil nutrient availability, we determined both the soil bulk stoichiometric nutrient ratios (soil C:N, C:P and N:P), as well as SOM degradation related enzyme activities. We estimated soil microbial CUE using two methods: substrate independent ¹⁸O-water tracing and ¹³C-glucose tracing method. Based on these two approaches, we estimated the microbial uptake efficiency of added glucose versus native SOM, with the latter defined by ¹⁸O-water tracing method. Based on the bulk soil C:N stoichiometry, the studied soils did not reveal N limitation. However, soil bulk P limitation increased slightly with elevation. Additionally, based on extracellular enzyme activities, the SOM nutrient availability decreased with elevation. The ¹³C-CUE did not change with altitude indicating that glucose was efficiently taken up and used by the microbes. On the other hand, ¹⁸O-CUE, which reflects the growth efficiency of microbes growing on native SOM, clearly declined with increasing altitude and was associated with SOM nutrient availability indicators. Based on our results, microbes at higher elevations invested more energy to scavenge for nutrients and energy from complex SOM whereas at lower elevations the soil nutrients may have been more readily available.
Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key variable in all soil organic matter (SOM) models and critical to ecosystem C cycling. However, there is still a lack of consensus on microbial CUE when estimated using different methods. Furthermore, the significance of many fundamental drivers of CUE remains largely unknown and inconclusive, especially for tropical ecosystems. For these reasons, we determined CUE and microbial indicators of soil nutrient availability in seven tropical forest soils along an altitudinal gradient (circa 900–2200 m a.s.l) occurring at Taita Hills, Kenya. We used this gradient to study the soil nutrient (N and P) availability and its relation to microbial CUE estimates. For assessing the soil nutrient availability, we determined both the soil bulk stoichiometric nutrient ratios (soil C:N, C:P and N:P), as well as SOM degradation related enzyme activities. We estimated soil microbial CUE using two methods: substrate independent 18O-water tracing and 13C-glucose tracing method. Based on these two approaches, we estimated the microbial uptake efficiency of added glucose versus native SOM, with the latter defined by 18O-water tracing method. Based on the bulk soil C:N stoichiometry, the studied soils did not reveal N limitation. However, soil bulk P limitation increased slightly with elevation. Additionally, based on extracellular enzyme activities, the SOM nutrient availability decreased with elevation. The 13C-CUE did not change with altitude indicating that glucose was efficiently taken up and used by the microbes. On the other hand, 18O-CUE, which reflects the growth efficiency of microbes growing on native SOM, clearly declined with increasing altitude and was associated with SOM nutrient availability indicators. Based on our results, microbes at higher elevations invested more energy to scavenge for nutrients and energy from complex SOM whereas at lower elevations the soil nutrients may have been more readily available. •We studied soil nutrient availability in Kenyan tropical mountain forests.•We estimated also microbial carbon-use efficiency (CUE) along the gradient.•We assume that different in situ soil temperatures are seen as legacy effect in CUE.•Bulk stoichiometric C:nutrient ratios did not indicate nutrient limitation.•Enzyme activities and CUE showed greater need to decompose SOM in higher elevations.
ArticleNumber 108799
Author Kalu, Subin
Biasi, Christina
Pellikka, Petri K.E.
Meyer, Nele
Karhu, Kristiina
Sietiö, Outi-Maaria
Poeplau, Christopher
Mganga, Kevin Z.
Adamczyk, Sylwia
Ambus, Per
Räsänen, Matti
Fritze, Hannu
Author_xml – sequence: 1
  givenname: Kevin Z.
  orcidid: 0000-0002-7908-7561
  surname: Mganga
  fullname: Mganga, Kevin Z.
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 2
  givenname: Outi-Maaria
  orcidid: 0000-0003-0127-9368
  surname: Sietiö
  fullname: Sietiö, Outi-Maaria
  email: outi-maaria.sietio@helsinki.fi
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 3
  givenname: Nele
  orcidid: 0000-0002-1378-4786
  surname: Meyer
  fullname: Meyer, Nele
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 4
  givenname: Christopher
  orcidid: 0000-0003-3108-8810
  surname: Poeplau
  fullname: Poeplau, Christopher
  organization: Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
– sequence: 5
  givenname: Sylwia
  surname: Adamczyk
  fullname: Adamczyk, Sylwia
  organization: Natural Resources Finland (LUKE), Helsinki, Finland
– sequence: 6
  givenname: Christina
  surname: Biasi
  fullname: Biasi, Christina
  organization: University of Eastern Finland, Biogeochemistry Research Group, Kuopio, Finland
– sequence: 7
  givenname: Subin
  orcidid: 0000-0003-4221-3701
  surname: Kalu
  fullname: Kalu, Subin
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 8
  givenname: Matti
  orcidid: 0000-0003-0994-5353
  surname: Räsänen
  fullname: Räsänen, Matti
  organization: University of Helsinki, Department of Geosciences and Geography, Helsinki, Finland
– sequence: 9
  givenname: Per
  surname: Ambus
  fullname: Ambus, Per
  organization: University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark
– sequence: 10
  givenname: Hannu
  orcidid: 0000-0003-4347-4444
  surname: Fritze
  fullname: Fritze, Hannu
  organization: Natural Resources Finland (LUKE), Helsinki, Finland
– sequence: 11
  givenname: Petri K.E.
  surname: Pellikka
  fullname: Pellikka, Petri K.E.
  organization: University of Helsinki, Department of Geosciences and Geography, Helsinki, Finland
– sequence: 12
  givenname: Kristiina
  orcidid: 0000-0003-3101-4141
  surname: Karhu
  fullname: Karhu, Kristiina
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
BookMark eNqFkE1LAzEQhnOoYFv9CcIevbQmm91NFhGR4hdUvOg55GNSUrZJTbJC_72r25OXnmaYeZ-BeWZo4oMHhK4IXhJMmpvtMgXXKReWJS7LYcZZ207QFGPKF5gRdo5mKW0xxmVN6BTdvTkdg3KyK7SMKviiT1CAtU478PpQyC74TSH90GSXe-P8EN1EaYZ1vkBnVnYJLo91jj6fHj9WL4v1-_Pr6mG90JS3eWGpYiB5W9KKMAUtbmlTMWOalhtilLW1As1Va6zVdcmpgUrJqpa4MhQ0AzpH1-PdfQxfPaQsdi5p6DrpIfRJlIxw2pS0rofo7Rgd3kopghXaZZld8DlK1wmCxa8osRVHUeJXlBhFDXT9j95Ht5PxcJK7HzkYLHw7iCL9-QPjIugsTHAnLvwAMqCLGQ
CitedBy_id crossref_primary_10_1016_j_apsoil_2024_105681
crossref_primary_10_1016_j_apsoil_2025_105880
crossref_primary_10_1007_s00374_022_01694_1
crossref_primary_10_1016_j_jenvman_2024_123675
crossref_primary_10_1016_j_apsoil_2023_105228
crossref_primary_10_1016_j_soilbio_2024_109708
crossref_primary_10_1360_SSTe_2024_0003
crossref_primary_10_1016_j_jia_2024_07_038
crossref_primary_10_1111_gcb_70033
crossref_primary_10_3390_f13101657
crossref_primary_10_1155_2024_8498801
crossref_primary_10_1111_gcb_16861
crossref_primary_10_1111_gcb_70036
crossref_primary_10_3389_fmicb_2024_1458750
crossref_primary_10_1007_s42773_023_00294_y
crossref_primary_10_1016_j_envint_2024_108467
crossref_primary_10_1016_j_scitotenv_2024_171334
crossref_primary_10_1016_j_jenvman_2024_121128
crossref_primary_10_1016_j_rse_2023_113876
crossref_primary_10_1016_j_scitotenv_2024_175435
crossref_primary_10_1016_j_jclepro_2024_143581
crossref_primary_10_1007_s11104_023_06127_y
crossref_primary_10_1016_j_soilbio_2024_109656
crossref_primary_10_1007_s11104_024_07142_3
crossref_primary_10_1016_j_scitotenv_2023_163677
crossref_primary_10_1002_ldr_5544
crossref_primary_10_3389_ffgc_2024_1331623
crossref_primary_10_1016_j_soilbio_2025_109750
crossref_primary_10_1007_s00374_024_01807_y
crossref_primary_10_1007_s11430_024_1359_9
Cites_doi 10.1016/j.scitotenv.2007.11.013
10.1038/nclimate2361
10.1016/j.soilbio.2019.03.008
10.1016/j.soilbio.2011.05.018
10.1007/s10533-016-0191-y
10.1016/j.soilbio.2019.01.010
10.1038/ngeo846
10.1016/j.soilbio.2018.02.022
10.1016/j.soilbio.2022.108615
10.1111/gcb.14962
10.1007/BF00337747
10.1371/journal.pone.0093282
10.1016/0038-0717(85)90144-0
10.1111/j.1365-2486.2004.00852.x
10.1016/j.soilbio.2019.04.003
10.1016/j.soilbio.2010.01.003
10.1016/j.soilbio.2007.09.008
10.1016/j.geodrs.2017.04.002
10.1016/j.soilbio.2018.09.036
10.5194/bg-8-477-2011
10.1111/ele.12815
10.1038/nclimate1796
10.1007/s00374-017-1247-4
10.1016/0038-0717(87)90052-6
10.1017/S0376892911000191
10.1111/ele.12113
10.1016/j.geoderma.2017.11.026
10.1007/s00442-012-2522-6
10.1038/s41598-019-42145-6
10.3758/BRM.40.2.457
10.1080/00103628509367657
10.1038/s42003-019-0684-z
10.1016/j.soilbio.2021.108321
10.1038/nmicrobiol.2017.105
10.1038/s41598-019-54487-2
10.5194/bg-12-6071-2015
10.1016/j.soilbio.2008.07.011
10.1016/0038-0717(95)00102-6
10.1016/j.ecolind.2005.03.002
10.1038/nclimate2015
10.3389/fmicb.2013.00333
10.1111/j.1469-8137.2012.04225.x
10.1007/s10533-010-9562-y
10.3389/fmicb.2017.00661
10.14214/sf.935
10.1038/s41561-019-0384-9
10.1038/s41559-018-0662-8
10.1016/S0038-0717(97)00110-7
10.1016/j.mib.2017.06.008
10.1016/j.soilbio.2015.06.021
10.1111/gcb.14738
10.1038/ncomms13630
10.1038/s41467-019-11488-z
10.1016/j.soilbio.2016.01.016
10.1016/0038-0717(90)90160-2
10.1038/ncomms4694
10.1016/S0038-0717(01)00079-7
10.1890/15-2110.1
10.1111/j.1461-0248.2007.01124.x
10.1111/gcb.14517
10.1038/s41586-020-2566-4
10.1111/ele.13379
10.5194/bg-15-5929-2018
10.1016/j.soilbio.2018.12.019
10.1016/j.soilbio.2018.10.006
10.3791/50961
10.1016/j.soilbio.2006.04.047
10.1007/s10533-013-9849-x
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2022.108799
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
ExternalDocumentID 10_1016_j_soilbio_2022_108799
S0038071722002565
GeographicLocations Kenya
GeographicLocations_xml – name: Kenya
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CNWQP
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSH
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c389t-f3b7ea8923417be9093647dd698d1dbff5bec8b9dffc5283de4ba45a04d3ec7e3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Thu Jul 10 17:18:33 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Tue Jul 01 00:54:06 EDT 2025
Sun Apr 06 06:54:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Carbon use efficiency
Microbial growth
Enzyme activity
Ecological stoichiometry
Soil microbial carbon pump
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-f3b7ea8923417be9093647dd698d1dbff5bec8b9dffc5283de4ba45a04d3ec7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7908-7561
0000-0003-3101-4141
0000-0003-0127-9368
0000-0003-4221-3701
0000-0003-3108-8810
0000-0003-4347-4444
0000-0003-0994-5353
0000-0002-1378-4786
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0038071722002565
PQID 2718362355
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718362355
crossref_citationtrail_10_1016_j_soilbio_2022_108799
crossref_primary_10_1016_j_soilbio_2022_108799
elsevier_sciencedirect_doi_10_1016_j_soilbio_2022_108799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schroeder, Kammann, Helfrich, Tebbe, Poeplau (bib62) 2021; 160
Walker, Kaiser, Strasser, Herbold, Leblans, Woebken, Janssens, Sigurdsson, Richter (bib73) 2018
Sinsabaugh, Turner, Talbot, Waring, Powers, Kuske, Moorhead, Shah (bib66) 2016; 86
Allison, Wallenstein, Bradford (bib1) 2010; 3
Kaspari, Garcia, Harms, Santana, Wright, Yavitt (bib31) 2008; 11
Poeplau, Helfrich, Dechow, Szoboszlay, Tebbe, Don, Greiner, Zopf, Thumm, Korevaar, Geerts (bib53) 2019; 130
Silva-Sánchez, Soares, Rousk (bib63) 2019; 134
Fisher, Malhi, Torres, Metcalfe, van de Weg, Meir, Silva-Espejo, Huasco (bib16) 2013; 172
Baldrian (bib5) 2017; 37
(bib56) 2019
Pold, Domeignoz-Horta, DeAngelis (bib54) 2020; 8
Biasi, Lind, Pekkarinen, Huttunen, Shurpali, Hyvönen, Repo, Martikainen (bib7) 2008; 40
Kindler, Miltner, Richnow, Kästner (bib33) 2006; 38
Waring, Weintraub, Sinsabaugh (bib74) 2014; 117
Kallenbach, Frey, Grandy (bib29) 2016; 7
Schimel (bib61) 2013; 3
Brookes, Landman, Pruden, Jenkinson (bib11) 1985; 17
Dijkstra, Salpas, Fairbanks, Miller, Hagerty, van Groenigen, Hungate, Marks, Koch, Schwartz (bib13) 2015; 89
Manzoni (bib37) 2017; 8
Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bib6) 2013
Qiao, Wang, Liang, Du, Zhou, Zhu, Huang, Zhou, Luo, Yan, Xia (bib55) 2019; 9
Soares, Rousk (bib67) 2019; 131
Karhu, Alaei, Li, Merilä, Ostonen, Bengtson (bib30) 2022; 167
Moscatelli, Lagomarsino, Marinari, De Angelis, Grego (bib44) 2005; 5
Angst, Mueller, Prater, Angst, Frouz, Jílková, Peterse, Nierop (bib2) 2019; 2
Bååth (bib3) 1994; 17
Njeru, Ekesi, Mohamed, Kinyamario, Kiboi, Maeda (bib46) 2017; 10
Frey, Lee, Melillo, Six (bib17) 2013; 3
Ye, Bradford, Dacal, Maestre, García‐Palacios (bib79) 2019; 25
Nottingham, Meir, Velasquez, Turner (bib48) 2020; 584
Sinsabaugh, Manzoni, Moorhead, Richter (bib65) 2013; 16
Harrell, Dupont (bib23) 2017
Platts, Burgess, Gereau, Lovett, Marshall, McClean, Pellikka, Swetnam, Marchant (bib52) 2011; 38
Spohn, Klaus, Wanek, Richter (bib69) 2016; 96
Sterner, Elser (bib70) 2003
Mehnaz, Corneo, Keitel, Dijkstra (bib42) 2019; 134
Räsänen, Aurela, Vakkari, Beukes, Tuovinen, Josipovic, Siebert, Laurila, Kulmala, Laakso, Rinne, Oren, Katul (bib57) 2020
Drake, Van Oost, Barthel, Bauters, Hoyt, Podgorski, Six, Boeckx, Trumbore, Cizungu Ntaboba, Spencer (bib15) 2019; 12
Sandaa, Enger, Torsvik (bib59) 1998; 30
Hill, Farrar, Jones (bib25) 2008; 40
Zheng, Hu, Zhang, Noll, Böckle, Richter, Wanek (bib80) 2019; 128
Saifuddin, Bhatnagar, Segrè, Finzi (bib58) 2019; 10
Kirschbaum (bib34) 2004; 10
Vance, Brookes, Jenkinson (bib72) 1987; 19
Helle (bib24) 2016
Takriti, Wild, Schnecker, Mooshammer, Knoltsch, Lashchinskiy, Eloy Alves, Gentsch, Gittel, Mikutta, Wanek, Richter (bib71) 2018; 121
Wei, Simko (bib75) 2017
Liang, Schimel, Jastrow (bib36) 2017; 2
Grandy, Neff (bib21) 2008; 404
Jörgensen (bib28) 1996; 28
Marx, Wood, Jarvis (bib41) 2001; 33
Oksanen, Simpson, Blanchet, Kindt, Legendre, Minchin, O'Hara, Solymos, Stevens, Szoecs, Wagner, Barbour, Bedward, Bolker, Borcard, Carvalho, Chirico, De Caceres, Durand, Evangelista, FitzJohn, Friendly, Furneaux, Hannigan, Hill, Lahti, McGlinn, Ouellette, Cunha, Smith, Stier, ter Braak, Weedon (bib82) 2022
Nimon, Lewis, Kane, Haynes (bib45) 2008; 40
Nottingham, Whitaker, Ostle, Bardgett, McNamara, Fierer, Salinas, Ccahuana, Turner, Meir (bib50) 2019; 22
Manzoni, Čapek, Porada, Thurner, Winterdahl, Beer, Brüchert, Frouz, Herrmann, Lyon, SantrÅčkova, Vico, Way (bib39) 2018; 15
Geyer, Kyker-Snowman, Grandy, Frey (bib20) 2016; 127
Soong, Fuchslueger, Marañon-Jimenez, Torn, Janssens, Penuelas, Richter (bib68) 2020; 26
Bååth (bib4) 1990; 22
Geyer, Dijkstra, Sinsabaugh, Frey (bib19) 2019; 128
Li, Wang, Mayes, Allison, Frey, Shi, Hu, Luo, Melillo (bib35) 2019; 25
Manzoni, Čapek, Mooshammer, Lindahl, Richter, Šantrůčková (bib38) 2017; 20
Blagodatskaya, Blagodatsky, Anderson, Kuzyakov (bib8) 2014; 9
Yao, Shi (bib78) 2010; 42
Hagerty, Van Groenigen, Allison, Hungate, Schwartz, Koch, Kolka, Dijkstra (bib22) 2014; 4
Dijkstra, Thomas, Heinrich, Koch, Schwartz, Hungate (bib14) 2011; 43
Nottingham, Turner, Whitaker, Ostle, McNamara, Bardgett, Salinas, Meir (bib49) 2015; 12
Bradford (bib10) 2013; 4
Čapek, Manzoni, Kaštovská, Wild, Diáková, Bárta, Schnecker, Biasi, Martikainen, Alves, Guggenberger, Gentsch, Hugelius, Palmtag, Mikutta, Shibistova, Urich, Schleper, Richter, Šantrůčková (bib12) 2018; 2
Furp (bib18) 1987
Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch, Schnecker, Takriti, Watzka, Wild, Keiblinger, Zechmeister-Boltenstern, Richter (bib43) 2014; 5
Wetterstedt, Ågren (bib77) 2011; 8
Huang, Schulte (bib27) 1985; 16
Manzoni, Taylor, Richter, Porporato, Ågren (bib40) 2012; 196
Zimmermann, Leifeld, Conen, Bird, Meir (bib81) 2012; 107
Bonner, Shoo, Brackin, Schmidt (bib9) 2018; 315
Hu, Huang, Zhou, Kuzyakov (bib26) 2022
Nottingham, Hicks, Ccahuana, Salinas, Bååth, Meir (bib47) 2018; 54
Omoro, Starr, Pellikka (bib51) 2013; 47
Sayer, Lopez-Sangil, Crawford, Bréchet, Birkett, Baxendale, Castro, Rodtassana, Garnett, Weiss, Schmidt (bib60) 2019; 9
Keiblinger, Hall, Wanek, Szukics, Hämmerle, Ellersdorfer, Böck, Strauss, Sterflinger, Richter, Zechmeister-Boltenstern (bib32) 2010; 73
Nottingham (10.1016/j.soilbio.2022.108799_bib48) 2020; 584
Sinsabaugh (10.1016/j.soilbio.2022.108799_bib66) 2016; 86
Walker (10.1016/j.soilbio.2022.108799_bib73) 2018
Baldrian (10.1016/j.soilbio.2022.108799_bib5) 2017; 37
Hu (10.1016/j.soilbio.2022.108799_bib26) 2022
Manzoni (10.1016/j.soilbio.2022.108799_bib37) 2017; 8
Liang (10.1016/j.soilbio.2022.108799_bib36) 2017; 2
Soares (10.1016/j.soilbio.2022.108799_bib67) 2019; 131
Manzoni (10.1016/j.soilbio.2022.108799_bib39) 2018; 15
Čapek (10.1016/j.soilbio.2022.108799_bib12) 2018; 2
Brookes (10.1016/j.soilbio.2022.108799_bib11) 1985; 17
Mooshammer (10.1016/j.soilbio.2022.108799_bib43) 2014; 5
Wetterstedt (10.1016/j.soilbio.2022.108799_bib77) 2011; 8
Sinsabaugh (10.1016/j.soilbio.2022.108799_bib65) 2013; 16
Geyer (10.1016/j.soilbio.2022.108799_bib20) 2016; 127
Pold (10.1016/j.soilbio.2022.108799_bib54) 2020; 8
Zimmermann (10.1016/j.soilbio.2022.108799_bib81) 2012; 107
Schimel (10.1016/j.soilbio.2022.108799_bib61) 2013; 3
Njeru (10.1016/j.soilbio.2022.108799_bib46) 2017; 10
Allison (10.1016/j.soilbio.2022.108799_bib1) 2010; 3
Takriti (10.1016/j.soilbio.2022.108799_bib71) 2018; 121
Saifuddin (10.1016/j.soilbio.2022.108799_bib58) 2019; 10
Huang (10.1016/j.soilbio.2022.108799_bib27) 1985; 16
Helle (10.1016/j.soilbio.2022.108799_bib24) 2016
Jörgensen (10.1016/j.soilbio.2022.108799_bib28) 1996; 28
Karhu (10.1016/j.soilbio.2022.108799_bib30) 2022; 167
Biasi (10.1016/j.soilbio.2022.108799_bib7) 2008; 40
Poeplau (10.1016/j.soilbio.2022.108799_bib53) 2019; 130
Bell (10.1016/j.soilbio.2022.108799_bib6) 2013
Qiao (10.1016/j.soilbio.2022.108799_bib55) 2019; 9
Bradford (10.1016/j.soilbio.2022.108799_bib10) 2013; 4
Bååth (10.1016/j.soilbio.2022.108799_bib4) 1990; 22
Blagodatskaya (10.1016/j.soilbio.2022.108799_bib8) 2014; 9
Hill (10.1016/j.soilbio.2022.108799_bib25) 2008; 40
Ye (10.1016/j.soilbio.2022.108799_bib79) 2019; 25
Keiblinger (10.1016/j.soilbio.2022.108799_bib32) 2010; 73
Mehnaz (10.1016/j.soilbio.2022.108799_bib42) 2019; 134
Nimon (10.1016/j.soilbio.2022.108799_bib45) 2008; 40
Fisher (10.1016/j.soilbio.2022.108799_bib16) 2013; 172
Marx (10.1016/j.soilbio.2022.108799_bib41) 2001; 33
Nottingham (10.1016/j.soilbio.2022.108799_bib50) 2019; 22
Kallenbach (10.1016/j.soilbio.2022.108799_bib29) 2016; 7
Kindler (10.1016/j.soilbio.2022.108799_bib33) 2006; 38
Grandy (10.1016/j.soilbio.2022.108799_bib21) 2008; 404
Omoro (10.1016/j.soilbio.2022.108799_bib51) 2013; 47
Spohn (10.1016/j.soilbio.2022.108799_bib69) 2016; 96
Bååth (10.1016/j.soilbio.2022.108799_bib3) 1994; 17
Geyer (10.1016/j.soilbio.2022.108799_bib19) 2019; 128
Soong (10.1016/j.soilbio.2022.108799_bib68) 2020; 26
Zheng (10.1016/j.soilbio.2022.108799_bib80) 2019; 128
Manzoni (10.1016/j.soilbio.2022.108799_bib38) 2017; 20
Furp (10.1016/j.soilbio.2022.108799_bib18) 1987
Nottingham (10.1016/j.soilbio.2022.108799_bib49) 2015; 12
Moscatelli (10.1016/j.soilbio.2022.108799_bib44) 2005; 5
Schroeder (10.1016/j.soilbio.2022.108799_bib62) 2021; 160
Frey (10.1016/j.soilbio.2022.108799_bib17) 2013; 3
Oksanen (10.1016/j.soilbio.2022.108799_bib82) 2022
Dijkstra (10.1016/j.soilbio.2022.108799_bib13) 2015; 89
Manzoni (10.1016/j.soilbio.2022.108799_bib40) 2012; 196
Silva-Sánchez (10.1016/j.soilbio.2022.108799_bib63) 2019; 134
Angst (10.1016/j.soilbio.2022.108799_bib2) 2019; 2
Sandaa (10.1016/j.soilbio.2022.108799_bib59) 1998; 30
Drake (10.1016/j.soilbio.2022.108799_bib15) 2019; 12
Hagerty (10.1016/j.soilbio.2022.108799_bib22) 2014; 4
Kaspari (10.1016/j.soilbio.2022.108799_bib31) 2008; 11
Vance (10.1016/j.soilbio.2022.108799_bib72) 1987; 19
Sterner (10.1016/j.soilbio.2022.108799_bib70) 2003
Nottingham (10.1016/j.soilbio.2022.108799_bib47) 2018; 54
Platts (10.1016/j.soilbio.2022.108799_bib52) 2011; 38
Räsänen (10.1016/j.soilbio.2022.108799_bib57) 2020
Waring (10.1016/j.soilbio.2022.108799_bib74) 2014; 117
Yao (10.1016/j.soilbio.2022.108799_bib78) 2010; 42
Bonner (10.1016/j.soilbio.2022.108799_bib9) 2018; 315
Li (10.1016/j.soilbio.2022.108799_bib35) 2019; 25
Wei (10.1016/j.soilbio.2022.108799_bib75)
Kirschbaum (10.1016/j.soilbio.2022.108799_bib34) 2004; 10
(10.1016/j.soilbio.2022.108799_bib56) 2019
Dijkstra (10.1016/j.soilbio.2022.108799_bib14) 2011; 43
Harrell (10.1016/j.soilbio.2022.108799_bib23)
Sayer (10.1016/j.soilbio.2022.108799_bib60) 2019; 9
References_xml – volume: 2
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib36
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  ident: bib40
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytologist
– volume: 11
  start-page: 35
  year: 2008
  end-page: 43
  ident: bib31
  article-title: Multiple nutrients limit litterfall and decomposition in a tropical forest
  publication-title: Ecology Letters
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib60
  article-title: Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs
  publication-title: Scientific Reports
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  ident: bib11
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology and Biochemistry
– volume: 40
  start-page: 616
  year: 2008
  end-page: 624
  ident: bib25
  article-title: Decoupling of microbial glucose uptake and mineralization in soil
  publication-title: Soil Biology and Biochemistry
– volume: 2
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib2
  article-title: Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass
  publication-title: Commun. Biol.
– year: 2013
  ident: bib6
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: Journal of Visualized Experiments : Journal of Visualized Experiments
– volume: 38
  start-page: 312
  year: 2011
  end-page: 324
  ident: bib52
  article-title: Delimiting tropical mountain ecoregions for conservation
  publication-title: Environmental Conservation
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib58
  article-title: Microbial carbon use efficiency predicted from genome-scale metabolic models
  publication-title: Nature Communications
– volume: 4
  start-page: 903
  year: 2014
  end-page: 906
  ident: bib22
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil
  publication-title: Nature Climate Change
– volume: 40
  start-page: 2660
  year: 2008
  end-page: 2669
  ident: bib7
  article-title: Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil
  publication-title: Soil Biology and Biochemistry
– volume: 7
  year: 2016
  ident: bib29
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
– volume: 131
  start-page: 195
  year: 2019
  end-page: 205
  ident: bib67
  article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 1870
  year: 2004
  end-page: 1877
  ident: bib34
  article-title: Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?
  publication-title: Global Change Biology
– volume: 15
  start-page: 5929
  year: 2018
  end-page: 5949
  ident: bib39
  article-title: Reviews and syntheses: carbon use efficiency from organisms to ecosystems - definitions, theories, and empirical evidence
  publication-title: Biogeosciences
– volume: 127
  start-page: 173
  year: 2016
  end-page: 188
  ident: bib20
  article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter
  publication-title: Biogeochemistry
– volume: 30
  start-page: 265
  year: 1998
  end-page: 268
  ident: bib59
  article-title: Rapid method for fluorometric quantification of DNA in soil
  publication-title: Soil Biology and Biochemistry
– year: 2003
  ident: bib70
  article-title: Ecological stoichiometry
  publication-title: Ecological Stoichiometry
– volume: 134
  start-page: 25
  year: 2019
  end-page: 35
  ident: bib63
  article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 29
  year: 2017
  end-page: 38
  ident: bib46
  article-title: Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem
  publication-title: Geoderma Regional
– volume: 584
  start-page: 234
  year: 2020
  end-page: 237
  ident: bib48
  article-title: Soil carbon loss by experimental warming in a tropical forest
  publication-title: Nature
– volume: 26
  start-page: 1953
  year: 2020
  end-page: 1961
  ident: bib68
  article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Global Change Biology
– volume: 160
  year: 2021
  ident: bib62
  article-title: Impact of common sample pre-treatments on key soil microbial properties
  publication-title: Soil Biology and Biochemistry
– volume: 3
  start-page: 867
  year: 2013
  end-page: 868
  ident: bib61
  article-title: Soil carbon: microbes and global carbon
  publication-title: Nature Climate Change
– volume: 9
  year: 2014
  ident: bib8
  article-title: Microbial growth and carbon use efficiency in the rhizosphere and root-free soil
  publication-title: PLoS One
– volume: 16
  start-page: 943
  year: 1985
  end-page: 958
  ident: bib27
  article-title: Digestion of plant tissue for analysis by ICP emission spectroscopy
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bib72
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 54
  start-page: 219
  year: 2018
  end-page: 228
  ident: bib47
  article-title: Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils
  publication-title: Biology and Fertility of Soils
– volume: 47
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib51
  article-title: Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya
  publication-title: Silva Fennica
– volume: 128
  start-page: 45
  year: 2019
  end-page: 55
  ident: bib80
  article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology
  publication-title: Soil Biology and Biochemistry
– volume: 40
  start-page: 457
  year: 2008
  end-page: 466
  ident: bib45
  article-title: An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example
  publication-title: Behavior Research Methods
– volume: 128
  start-page: 79
  year: 2019
  end-page: 88
  ident: bib19
  article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison
  publication-title: Soil Biology and Biochemistry
– volume: 96
  start-page: 74
  year: 2016
  end-page: 81
  ident: bib69
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 6071
  year: 2015
  end-page: 6083
  ident: bib49
  article-title: Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm
  publication-title: Biogeosciences
– year: 2018
  ident: bib73
  article-title: Microbial temperature sensitivity and biomass change explain soil carbon loss with warming
  publication-title: Nature Climate Change
– volume: 121
  start-page: 212
  year: 2018
  end-page: 220
  ident: bib71
  article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 20
  year: 2020
  ident: bib54
  article-title: Heavy and wet: the consequences of violating assumptions of measuring soil microbial growth efficiency using the
  publication-title: Elementa
– start-page: 1
  year: 2022
  end-page: 12
  ident: bib26
  article-title: Nitrogen addition to soil affects microbial carbon use efficiency: meta-analysis of similarities and differences in
  publication-title: Global Change Biology
– year: 2016
  ident: bib24
  article-title: Lentolaserkeilaus Ja Hemisfäärikuvaus Metsikkösadannan Tutkimisessa Taitavuorilla Keniassa
– year: 1987
  ident: bib18
  article-title: Fertilizer Use Recommendation Project (Phase I). Annex III: Detailed Description of the First Priority Sites in the Various Districts;Taita Taveta District. Ministry of Agriculture
– volume: 8
  start-page: 477
  year: 2011
  end-page: 487
  ident: bib77
  article-title: Quality or decomposer efficiency - which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology
  publication-title: Biogeosciences
– volume: 22
  start-page: 1889
  year: 2019
  end-page: 1899
  ident: bib50
  article-title: Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient
  publication-title: Ecology Letters
– volume: 17
  start-page: 147
  year: 1994
  end-page: 153
  ident: bib3
  article-title: Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique
  publication-title: Biology and Fertility of Soils
– volume: 2
  start-page: 1588
  year: 2018
  end-page: 1596
  ident: bib12
  article-title: A plant–microbe interaction framework explaining nutrient effects on primary production
  publication-title: Nat. Ecol. Evolution
– volume: 130
  start-page: 167
  year: 2019
  end-page: 176
  ident: bib53
  article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 89
  start-page: 35
  year: 2015
  end-page: 43
  ident: bib13
  article-title: High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib37
  article-title: Flexible carbon-use efficiency across litter types and during decomposition partly compensates nutrient imbalances-results from analytical stoichiometric models
  publication-title: Frontiers in Microbiology
– volume: 20
  start-page: 1182
  year: 2017
  end-page: 1191
  ident: bib38
  article-title: Optimal metabolic regulation along resource stoichiometry gradients
  publication-title: Ecology Letters
– year: 2017
  ident: bib23
  article-title: Hmisc: Harrell miscellaneous
– volume: 38
  start-page: 2860
  year: 2006
  end-page: 2870
  ident: bib33
  article-title: Fate of gram-negative bacterial biomass in soil - mineralization and contribution to SOM
  publication-title: Soil Biology and Biochemistry
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  ident: bib65
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecology Letters
– year: 2017
  ident: bib75
  article-title: R package “corrplot”: visualization of a correlation matrix
– volume: 404
  start-page: 297
  year: 2008
  end-page: 307
  ident: bib21
  article-title: Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function
  publication-title: Science of the Total Environment
– volume: 25
  start-page: 3354
  year: 2019
  end-page: 3364
  ident: bib79
  article-title: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally
  publication-title: Global Change Biology
– volume: 37
  start-page: 128
  year: 2017
  end-page: 134
  ident: bib5
  article-title: Microbial activity and the dynamics of ecosystem processes in forest soils
  publication-title: Current Opinion in Microbiology
– volume: 5
  start-page: 171
  year: 2005
  end-page: 179
  ident: bib44
  article-title: Soil microbial indices as bioindicators of environmental changes in a poplar plantation
  publication-title: Ecological Indicators
– volume: 134
  start-page: 175
  year: 2019
  end-page: 186
  ident: bib42
  article-title: Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil
  publication-title: Soil Biology and Biochemistry
– volume: 172
  start-page: 889
  year: 2013
  end-page: 902
  ident: bib16
  article-title: Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes
  publication-title: Oecologia
– volume: 25
  start-page: 900
  year: 2019
  end-page: 910
  ident: bib35
  article-title: Reduced carbon use efficiency and increased microbial turnover with soil warming
  publication-title: Global Change Biology
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib55
  article-title: Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply
  publication-title: Scientific Reports
– volume: 167
  year: 2022
  ident: bib30
  article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios
  publication-title: Soil Biology and Biochemistry
– start-page: 1
  year: 2020
  end-page: 31
  ident: bib57
  article-title: The effect of rainfall amount and timing on annual transpiration in grazed savanna grassland
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 42
  start-page: 642
  year: 2010
  end-page: 648
  ident: bib78
  article-title: Soil organic matter stabilization in turfgrass ecosystems: importance of microbial processing
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 1633
  year: 2001
  end-page: 1640
  ident: bib41
  article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biology and Biochemistry
– volume: 3
  start-page: 336
  year: 2010
  end-page: 340
  ident: bib1
  article-title: Soil-carbon response to warming dependent on microbial physiology
  publication-title: Nature Geoscience
– volume: 86
  start-page: 172
  year: 2016
  end-page: 189
  ident: bib66
  article-title: Stoichiometry of microbial carbon use efficiency in soils
  publication-title: Ecological Monographs
– volume: 5
  start-page: 4694
  year: 2014
  ident: bib43
  article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling
  publication-title: Nature Communications
– volume: 22
  start-page: 803
  year: 1990
  end-page: 810
  ident: bib4
  article-title: Thymidine incorporation into soil bacteria
  publication-title: Soil Biology and Biochemistry
– volume: 43
  start-page: 2023
  year: 2011
  end-page: 2031
  ident: bib14
  article-title: Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency
  publication-title: Soil Biology and Biochemistry
– volume: 28
  start-page: 25
  year: 1996
  end-page: 31
  ident: bib28
  article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value
  publication-title: Soil Biology and Biochemistry
– year: 2019
  ident: bib56
  article-title: R: A Language and Environment for Statistical Computing
– volume: 4
  start-page: 333
  year: 2013
  ident: bib10
  article-title: Thermal adaptation of decomposer communities in warming soils
  publication-title: Frontiers in Microbiology
– volume: 12
  start-page: 541
  year: 2019
  end-page: 546
  ident: bib15
  article-title: Mobilization of aged and biolabile soil carbon by tropical deforestation
  publication-title: Nature Geoscience
– volume: 117
  start-page: 101
  year: 2014
  end-page: 113
  ident: bib74
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
– volume: 73
  start-page: 430
  year: 2010
  end-page: 440
  ident: bib32
  article-title: The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency
  publication-title: FEMS Microbiology Ecology
– year: 2022
  ident: bib82
  article-title: vegan: Community Ecology Package
– volume: 107
  start-page: 423
  year: 2012
  end-page: 436
  ident: bib81
  article-title: Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?
  publication-title: Biogeochemistry
– volume: 315
  start-page: 96
  year: 2018
  end-page: 103
  ident: bib9
  article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil
  publication-title: Geoderma
– volume: 3
  start-page: 395
  year: 2013
  end-page: 398
  ident: bib17
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nature Climate Change
– volume: 404
  start-page: 297
  year: 2008
  ident: 10.1016/j.soilbio.2022.108799_bib21
  article-title: Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2007.11.013
– volume: 4
  start-page: 903
  year: 2014
  ident: 10.1016/j.soilbio.2022.108799_bib22
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2361
– volume: 134
  start-page: 25
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib63
  article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.03.008
– volume: 43
  start-page: 2023
  year: 2011
  ident: 10.1016/j.soilbio.2022.108799_bib14
  article-title: Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2011.05.018
– volume: 127
  start-page: 173
  year: 2016
  ident: 10.1016/j.soilbio.2022.108799_bib20
  article-title: Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0191-y
– volume: 131
  start-page: 195
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib67
  article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.01.010
– ident: 10.1016/j.soilbio.2022.108799_bib75
– volume: 3
  start-page: 336
  year: 2010
  ident: 10.1016/j.soilbio.2022.108799_bib1
  article-title: Soil-carbon response to warming dependent on microbial physiology
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo846
– volume: 121
  start-page: 212
  year: 2018
  ident: 10.1016/j.soilbio.2022.108799_bib71
  article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.02.022
– volume: 167
  year: 2022
  ident: 10.1016/j.soilbio.2022.108799_bib30
  article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2022.108615
– volume: 26
  start-page: 1953
  year: 2020
  ident: 10.1016/j.soilbio.2022.108799_bib68
  article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14962
– volume: 17
  start-page: 147
  year: 1994
  ident: 10.1016/j.soilbio.2022.108799_bib3
  article-title: Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/BF00337747
– volume: 9
  year: 2014
  ident: 10.1016/j.soilbio.2022.108799_bib8
  article-title: Microbial growth and carbon use efficiency in the rhizosphere and root-free soil
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093282
– volume: 17
  start-page: 837
  year: 1985
  ident: 10.1016/j.soilbio.2022.108799_bib11
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(85)90144-0
– volume: 10
  start-page: 1870
  year: 2004
  ident: 10.1016/j.soilbio.2022.108799_bib34
  article-title: Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2004.00852.x
– volume: 134
  start-page: 175
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib42
  article-title: Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2019.04.003
– volume: 42
  start-page: 642
  year: 2010
  ident: 10.1016/j.soilbio.2022.108799_bib78
  article-title: Soil organic matter stabilization in turfgrass ecosystems: importance of microbial processing
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.01.003
– volume: 40
  start-page: 616
  year: 2008
  ident: 10.1016/j.soilbio.2022.108799_bib25
  article-title: Decoupling of microbial glucose uptake and mineralization in soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2007.09.008
– volume: 10
  start-page: 29
  year: 2017
  ident: 10.1016/j.soilbio.2022.108799_bib46
  article-title: Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2017.04.002
– volume: 128
  start-page: 79
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib19
  article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.09.036
– volume: 8
  start-page: 477
  year: 2011
  ident: 10.1016/j.soilbio.2022.108799_bib77
  article-title: Quality or decomposer efficiency - which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-477-2011
– start-page: 1
  year: 2020
  ident: 10.1016/j.soilbio.2022.108799_bib57
  article-title: The effect of rainfall amount and timing on annual transpiration in grazed savanna grassland
  publication-title: Hydrology and Earth System Sciences Discussions
– year: 2022
  ident: 10.1016/j.soilbio.2022.108799_bib82
– volume: 20
  start-page: 1182
  year: 2017
  ident: 10.1016/j.soilbio.2022.108799_bib38
  article-title: Optimal metabolic regulation along resource stoichiometry gradients
  publication-title: Ecology Letters
  doi: 10.1111/ele.12815
– volume: 3
  start-page: 395
  year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib17
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate1796
– volume: 54
  start-page: 219
  year: 2018
  ident: 10.1016/j.soilbio.2022.108799_bib47
  article-title: Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-017-1247-4
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.soilbio.2022.108799_bib72
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(87)90052-6
– volume: 8
  start-page: 20
  year: 2020
  ident: 10.1016/j.soilbio.2022.108799_bib54
  article-title: Heavy and wet: the consequences of violating assumptions of measuring soil microbial growth efficiency using the 18O water method
  publication-title: Elementa
– volume: 38
  start-page: 312
  year: 2011
  ident: 10.1016/j.soilbio.2022.108799_bib52
  article-title: Delimiting tropical mountain ecoregions for conservation
  publication-title: Environmental Conservation
  doi: 10.1017/S0376892911000191
– volume: 16
  start-page: 930
  year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib65
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecology Letters
  doi: 10.1111/ele.12113
– volume: 315
  start-page: 96
  year: 2018
  ident: 10.1016/j.soilbio.2022.108799_bib9
  article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.026
– volume: 172
  start-page: 889
  year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib16
  article-title: Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes
  publication-title: Oecologia
  doi: 10.1007/s00442-012-2522-6
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib55
  article-title: Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-42145-6
– volume: 40
  start-page: 457
  year: 2008
  ident: 10.1016/j.soilbio.2022.108799_bib45
  article-title: An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example
  publication-title: Behavior Research Methods
  doi: 10.3758/BRM.40.2.457
– volume: 16
  start-page: 943
  year: 1985
  ident: 10.1016/j.soilbio.2022.108799_bib27
  article-title: Digestion of plant tissue for analysis by ICP emission spectroscopy
  publication-title: Communications in Soil Science and Plant Analysis
  doi: 10.1080/00103628509367657
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib2
  article-title: Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0684-z
– volume: 160
  year: 2021
  ident: 10.1016/j.soilbio.2022.108799_bib62
  article-title: Impact of common sample pre-treatments on key soil microbial properties
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2021.108321
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.soilbio.2022.108799_bib36
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.105
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib60
  article-title: Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-54487-2
– volume: 12
  start-page: 6071
  year: 2015
  ident: 10.1016/j.soilbio.2022.108799_bib49
  article-title: Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-6071-2015
– volume: 40
  start-page: 2660
  year: 2008
  ident: 10.1016/j.soilbio.2022.108799_bib7
  article-title: Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2008.07.011
– volume: 28
  start-page: 25
  year: 1996
  ident: 10.1016/j.soilbio.2022.108799_bib28
  article-title: The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(95)00102-6
– volume: 73
  start-page: 430
  year: 2010
  ident: 10.1016/j.soilbio.2022.108799_bib32
  article-title: The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency
  publication-title: FEMS Microbiology Ecology
– volume: 5
  start-page: 171
  year: 2005
  ident: 10.1016/j.soilbio.2022.108799_bib44
  article-title: Soil microbial indices as bioindicators of environmental changes in a poplar plantation
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2005.03.002
– volume: 3
  start-page: 867
  year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib61
  article-title: Soil carbon: microbes and global carbon
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2015
– volume: 4
  start-page: 333
  year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib10
  article-title: Thermal adaptation of decomposer communities in warming soils
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2013.00333
– volume: 196
  start-page: 79
  year: 2012
  ident: 10.1016/j.soilbio.2022.108799_bib40
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04225.x
– year: 2003
  ident: 10.1016/j.soilbio.2022.108799_bib70
  article-title: Ecological stoichiometry
  publication-title: Ecological Stoichiometry
– volume: 107
  start-page: 423
  year: 2012
  ident: 10.1016/j.soilbio.2022.108799_bib81
  article-title: Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9562-y
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.soilbio.2022.108799_bib37
  article-title: Flexible carbon-use efficiency across litter types and during decomposition partly compensates nutrient imbalances-results from analytical stoichiometric models
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2017.00661
– year: 2018
  ident: 10.1016/j.soilbio.2022.108799_bib73
  article-title: Microbial temperature sensitivity and biomass change explain soil carbon loss with warming
  publication-title: Nature Climate Change
– ident: 10.1016/j.soilbio.2022.108799_bib23
– volume: 47
  start-page: 1
  year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib51
  article-title: Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya
  publication-title: Silva Fennica
  doi: 10.14214/sf.935
– volume: 12
  start-page: 541
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib15
  article-title: Mobilization of aged and biolabile soil carbon by tropical deforestation
  publication-title: Nature Geoscience
  doi: 10.1038/s41561-019-0384-9
– volume: 2
  start-page: 1588
  year: 2018
  ident: 10.1016/j.soilbio.2022.108799_bib12
  article-title: A plant–microbe interaction framework explaining nutrient effects on primary production
  publication-title: Nat. Ecol. Evolution
  doi: 10.1038/s41559-018-0662-8
– volume: 30
  start-page: 265
  year: 1998
  ident: 10.1016/j.soilbio.2022.108799_bib59
  article-title: Rapid method for fluorometric quantification of DNA in soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(97)00110-7
– volume: 37
  start-page: 128
  year: 2017
  ident: 10.1016/j.soilbio.2022.108799_bib5
  article-title: Microbial activity and the dynamics of ecosystem processes in forest soils
  publication-title: Current Opinion in Microbiology
  doi: 10.1016/j.mib.2017.06.008
– volume: 89
  start-page: 35
  year: 2015
  ident: 10.1016/j.soilbio.2022.108799_bib13
  article-title: High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.06.021
– year: 2016
  ident: 10.1016/j.soilbio.2022.108799_bib24
– volume: 25
  start-page: 3354
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib79
  article-title: Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14738
– volume: 7
  year: 2016
  ident: 10.1016/j.soilbio.2022.108799_bib29
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
  doi: 10.1038/ncomms13630
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib58
  article-title: Microbial carbon use efficiency predicted from genome-scale metabolic models
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11488-z
– volume: 96
  start-page: 74
  year: 2016
  ident: 10.1016/j.soilbio.2022.108799_bib69
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth - implications for carbon cycling
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.01.016
– volume: 22
  start-page: 803
  year: 1990
  ident: 10.1016/j.soilbio.2022.108799_bib4
  article-title: Thymidine incorporation into soil bacteria
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(90)90160-2
– volume: 5
  start-page: 4694
  year: 2014
  ident: 10.1016/j.soilbio.2022.108799_bib43
  article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling
  publication-title: Nature Communications
  doi: 10.1038/ncomms4694
– volume: 33
  start-page: 1633
  year: 2001
  ident: 10.1016/j.soilbio.2022.108799_bib41
  article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(01)00079-7
– volume: 86
  start-page: 172
  year: 2016
  ident: 10.1016/j.soilbio.2022.108799_bib66
  article-title: Stoichiometry of microbial carbon use efficiency in soils
  publication-title: Ecological Monographs
  doi: 10.1890/15-2110.1
– volume: 11
  start-page: 35
  year: 2008
  ident: 10.1016/j.soilbio.2022.108799_bib31
  article-title: Multiple nutrients limit litterfall and decomposition in a tropical forest
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2007.01124.x
– volume: 25
  start-page: 900
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib35
  article-title: Reduced carbon use efficiency and increased microbial turnover with soil warming
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14517
– volume: 584
  start-page: 234
  year: 2020
  ident: 10.1016/j.soilbio.2022.108799_bib48
  article-title: Soil carbon loss by experimental warming in a tropical forest
  publication-title: Nature
  doi: 10.1038/s41586-020-2566-4
– year: 1987
  ident: 10.1016/j.soilbio.2022.108799_bib18
– volume: 22
  start-page: 1889
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib50
  article-title: Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient
  publication-title: Ecology Letters
  doi: 10.1111/ele.13379
– start-page: 1
  year: 2022
  ident: 10.1016/j.soilbio.2022.108799_bib26
  article-title: Nitrogen addition to soil affects microbial carbon use efficiency: meta-analysis of similarities and differences in 13C and 18O approaches
  publication-title: Global Change Biology
– year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib56
– volume: 15
  start-page: 5929
  year: 2018
  ident: 10.1016/j.soilbio.2022.108799_bib39
  article-title: Reviews and syntheses: carbon use efficiency from organisms to ecosystems - definitions, theories, and empirical evidence
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-5929-2018
– volume: 130
  start-page: 167
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib53
  article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.12.019
– volume: 128
  start-page: 45
  year: 2019
  ident: 10.1016/j.soilbio.2022.108799_bib80
  article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.10.006
– year: 2013
  ident: 10.1016/j.soilbio.2022.108799_bib6
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: Journal of Visualized Experiments : Journal of Visualized Experiments
  doi: 10.3791/50961
– volume: 38
  start-page: 2860
  year: 2006
  ident: 10.1016/j.soilbio.2022.108799_bib33
  article-title: Fate of gram-negative bacterial biomass in soil - mineralization and contribution to SOM
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2006.04.047
– volume: 117
  start-page: 101
  year: 2014
  ident: 10.1016/j.soilbio.2022.108799_bib74
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9849-x
SSID ssj0002513
Score 2.5434058
Snippet Soil microbial carbon-use efficiency (CUE), described as the ratio of growth over total carbon (C) uptake, i.e. the sum of growth and respiration, is a key...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108799
SubjectTerms altitude
Carbon use efficiency
Ecological stoichiometry
ecosystems
energy
Enzyme activity
extracellular enzymes
glucose
Kenya
microbial carbon
Microbial growth
nutrient availability
Soil microbial carbon pump
soil nutrients
soil organic matter
stoichiometry
tropical forests
Title Microbial carbon use efficiency along an altitudinal gradient
URI https://dx.doi.org/10.1016/j.soilbio.2022.108799
https://www.proquest.com/docview/2718362355
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KHtSDaFWsHyWC19g22TS7Bw-lKFVpTwrelv2YlEpJSz-u_nZnko1FEQreksAs4e0yb0LmvWHsViJFiMQmoRAxD7mJZSjTLAol71jLgeMnAmmHh6Pu4I0_vyfvNdavtDDUVulzf5nTi2ztn7Q8mq35ZEIaXzJLRwKOCuImoTnnKZ3yu89NmwfytzfeFSTWSTcqntYH-eVOzYQ0gFFE3XZpYQH7Jz_9ytQF_TwesUNfNwa98tWOWQ3yOjvojRfeOwPqbK9fDW87YffDSeGwhCFWL8wsD9ZLCKDwiyCxZaCns3wc6BwvqFnA0XCsYLwoGsBWp-zt8eG1Pwj9pITQYsGxCrPYpKAFFmu8kxqQbUm28M51pXAdZ7Iswa0SRross-Tm4oAbzRPd5i4Gm0J8xnbyWQ7nLJC6nWpcCjpgOM9ACiGdwSoQv0OgbU2D8QofZb2NOE2zmKqqX-xDeVgVwapKWBvs7jtsXvpobAsQFfjqx4FQmOu3hd5Um6UQdvoDonOYrZcqQiZGxsYa6-L_y1-yfborO_qu2M5qsYZrrExWplkcvSbb7T29DEZfC7DjZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSD-MS3EbzGtsnG7B48SFHqo54UvC37mJRKSaW2V3-7M8lGUQTBW0jYJcxu5psl3_cNwKkiiJCZy2IpUxELm6pY5UUSK9FxTqCgIwJrh_sP570ncfucPc9Bt9HCMK0y5P46p1fZOtxphWi2XodD1viyWToBcFIBdzYPi4I-X25jcPb-xfMgAA_Ou5LVOvmXjKf1woa5IztkEWCSMN0urzxgfwWoH6m6wp_rNVgNhWN0Wb_bOsxhuQErl4NJMM_ADVjqNt3bNuGiP6wslmiIMxM7LqPZG0ZYGUaw2jIyo3E5iExJF8wW8NwdKxpMKgbYdAuerq8eu704tEqIHVUc07hIbY5GUrUmOrlF1VbsC-_9uZK-421RZLRW0ipfFI7tXDwKa0Rm2sKn6HJMt2GhHJe4A5Ey7dzQVNhBK0SBSkrlLZWBdBDBtrO7IJr4aBd8xLmdxUg3hLEXHcKqOay6DusunH0Oe62NNP4aIJvg6287QlOy_2voSbNYmsLOv0BMiePZm04Iigmyqcja-__0x7DUe-zf6_ubh7t9WOYnNb3vABamkxkeUpkytUfVNvwAUhXk9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+carbon+use+efficiency+along+an+altitudinal+gradient&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Mganga%2C+Kevin+Z.&rft.au=Sieti%C3%B6%2C+Outi-Maaria&rft.au=Meyer%2C+Nele&rft.au=Poeplau%2C+Christopher&rft.date=2022-10-01&rft.issn=0038-0717&rft.volume=173&rft.spage=108799&rft_id=info:doi/10.1016%2Fj.soilbio.2022.108799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2022_108799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon