DFT Analysis of Ba2NbRhO6: A Promising Double Perovskite for Sustainable Energy Applications
Our study employed the full-potential linearized augmented plane wave (FP-LAPW) approach within the density functional theory (DFT) framework to examine the fundamental characteristics of the Ba 2 NbRhO 6 double perovskite. Our computed results align well with experimental measurements. The phonon d...
Saved in:
Published in | Journal of inorganic and organometallic polymers and materials Vol. 35; no. 2; pp. 978 - 993 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1574-1443 1574-1451 |
DOI | 10.1007/s10904-024-03336-5 |
Cover
Abstract | Our study employed the full-potential linearized augmented plane wave (FP-LAPW) approach within the density functional theory (DFT) framework to examine the fundamental characteristics of the Ba
2
NbRhO
6
double perovskite. Our computed results align well with experimental measurements. The phonon dispersion relation confirmed the thermodynamic stability of Ba
2
NbRhO
6
, showing positive frequencies throughout. Structurally, the material is dominantly covalently bonded and mechanically predicted to be brittle. Electronic property analysis revealed an indirect band gap of 1.83 eV. The optical properties indicated a significant response in the ultraviolet and visible light spectra, with an absorption coefficient peaking at 200 × 10
4
cm
−1
at 12 eV, an optical conductivity reaching up to 7575
Ω
-
1
cm
-
1
at 5.35 eV, and a refractive index peaking at 3.3 at 3.4 eV. The material also exhibited a reflectivity of 0.74 at 13.5 eV. Thermoelectric properties, including power factor, electrical conductivity, and Seebeck coefficient, were also determined, with a notable Figure of Merit of 0.76 at room temperature and a power factor of 84.43 W K
−2
m
−1
s
−1
at 700 K. These results suggest that Ba
2
NbRhO
6
has considerable potential for application in thermoelectric devices. |
---|---|
AbstractList | Our study employed the full-potential linearized augmented plane wave (FP-LAPW) approach within the density functional theory (DFT) framework to examine the fundamental characteristics of the Ba
2
NbRhO
6
double perovskite. Our computed results align well with experimental measurements. The phonon dispersion relation confirmed the thermodynamic stability of Ba
2
NbRhO
6
, showing positive frequencies throughout. Structurally, the material is dominantly covalently bonded and mechanically predicted to be brittle. Electronic property analysis revealed an indirect band gap of 1.83 eV. The optical properties indicated a significant response in the ultraviolet and visible light spectra, with an absorption coefficient peaking at 200 × 10
4
cm
−1
at 12 eV, an optical conductivity reaching up to 7575
Ω
-
1
cm
-
1
at 5.35 eV, and a refractive index peaking at 3.3 at 3.4 eV. The material also exhibited a reflectivity of 0.74 at 13.5 eV. Thermoelectric properties, including power factor, electrical conductivity, and Seebeck coefficient, were also determined, with a notable Figure of Merit of 0.76 at room temperature and a power factor of 84.43 W K
−2
m
−1
s
−1
at 700 K. These results suggest that Ba
2
NbRhO
6
has considerable potential for application in thermoelectric devices. Our study employed the full-potential linearized augmented plane wave (FP-LAPW) approach within the density functional theory (DFT) framework to examine the fundamental characteristics of the Ba2NbRhO6 double perovskite. Our computed results align well with experimental measurements. The phonon dispersion relation confirmed the thermodynamic stability of Ba2NbRhO6, showing positive frequencies throughout. Structurally, the material is dominantly covalently bonded and mechanically predicted to be brittle. Electronic property analysis revealed an indirect band gap of 1.83 eV. The optical properties indicated a significant response in the ultraviolet and visible light spectra, with an absorption coefficient peaking at 200 × 104 cm−1 at 12 eV, an optical conductivity reaching up to 7575 Ω-1cm-1 at 5.35 eV, and a refractive index peaking at 3.3 at 3.4 eV. The material also exhibited a reflectivity of 0.74 at 13.5 eV. Thermoelectric properties, including power factor, electrical conductivity, and Seebeck coefficient, were also determined, with a notable Figure of Merit of 0.76 at room temperature and a power factor of 84.43 W K−2 m−1 s−1 at 700 K. These results suggest that Ba2NbRhO6 has considerable potential for application in thermoelectric devices. |
Author | Alrebdi, Tahani A. Erum, Nazia Al-Qaisi, Samah Boutramine, Abderrazak Ahmed, R. Verma, Ajay Singh Zaman, Abid Belhachi, Soufyane Samah, Saidi Rached, Habib |
Author_xml | – sequence: 1 givenname: Soufyane surname: Belhachi fullname: Belhachi, Soufyane email: belhachi.soufyane@cuniv-naama.dz organization: Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, University Center of Naama, Institute of Technology, University Centre of Naama – sequence: 2 givenname: Samah surname: Al-Qaisi fullname: Al-Qaisi, Samah email: samah.qaisi@gmail.com organization: Palestinian Ministry of Education and Higher Education – sequence: 3 givenname: Saidi surname: Samah fullname: Samah, Saidi organization: Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Physics Department, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials – sequence: 4 givenname: Habib surname: Rached fullname: Rached, Habib organization: Faculty of Exact Sciences and Informatics, Department of Physics, Hassiba Benbouali University of Chlef, Magnetic Materials Laboratory, Department of Materials, Faculty of Exact Sciences, Djillali Liabes University of Sidi Bel-Abbes – sequence: 5 givenname: Abid surname: Zaman fullname: Zaman, Abid organization: Department of Physics, Riphah International University – sequence: 6 givenname: Tahani A. surname: Alrebdi fullname: Alrebdi, Tahani A. organization: Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University – sequence: 7 givenname: Abderrazak surname: Boutramine fullname: Boutramine, Abderrazak organization: Ibn Zohr University – sequence: 8 givenname: Nazia surname: Erum fullname: Erum, Nazia organization: Institute of Physics, Bahauddin Zakariya University – sequence: 9 givenname: R. surname: Ahmed fullname: Ahmed, R. organization: Centre for High Energy Physics, University of the Punjab, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM – sequence: 10 givenname: Ajay Singh surname: Verma fullname: Verma, Ajay Singh organization: Division of Research & Innovation, School of Applied and Life Sciences, Uttaranchal University |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXleTpmlT7-o-VBhu6LwTQpqmM7NLZtIK-_d2qyh4sYvDOXDe53y8A9Az1igALjG6xgglNx6jFEUBCtsghMQBPQF9TJMowBHFvd86Imdg4P0aIcIQxX3wNp4uYWZEtfPaQ1vCOxE-5c_v8_gWZnDh7EZ7bVZwbJu8UnChnP3yH7pWsLQOvjS-FtqIfWtilFvtYLbdVlqKWlvjz8FpKSqvLn7yELxOJ8vRQzCb3z-OslkgCUvrQBVhKmWK01hGOC9FWmDKJFKqKOMiiROBcaiIKIpQhIqhPCWSEhSVrZhhFpZkCK66uVtnPxvla762jWuf8pzgJEIJZTFrVWGnks5671TJt05vhNtxjPjeRd65yFsX-cFFTluI_YOkrg_f1U7o6jhKOtS3e8xKub-rjlDfSUqICg |
CitedBy_id | crossref_primary_10_1038_s41598_025_90621_z crossref_primary_10_1088_1361_6463_ada6c6 crossref_primary_10_1016_j_chphi_2024_100749 crossref_primary_10_1016_j_inoche_2024_113424 |
Cites_doi | 10.1016/j.inoche.2024.112293 10.1103/PhysRevLett.77.3865 10.1073/pnas.30.9.244 10.1103/PhysRev.136.B864 10.1038/27167 10.1063/5.0031336 10.1103/PhysRevB.84.100404 10.1016/j.micrna.2022.207397 10.1007/s10948-018-4643-6 10.1016/j.ssc.2020.114052 10.1002/jcc.27209 10.1017/CBO9780511541292 10.1016/0079-6786(93)90004-B 10.1039/b927498g 10.1016/j.ceramint.2022.04.341 10.1016/j.mseb.2019.05.013 10.1002/qua.27371 10.1143/JPSJ.24.806 10.1016/0022-3697(65)90231-3 10.1016/j.jssc.2005.10.003 10.1016/j.cocom.2024.e00926 10.1016/j.matchemphys.2021.125237 10.1016/j.jpcs.2024.112171 10.1515/9783110445404 10.1103/PhysRev.140.A1133 10.1039/C9RA00313D 10.1016/j.cpc.2006.03.007 10.1007/s11664-023-10747-6 10.1016/j.mssp.2023.107381 10.1016/0022-3697(72)90076-5 10.1007/s13369-022-06985-1 10.1103/PhysRevLett.102.226401 10.1006/jssc.2000.8900 10.1063/1.2936304 10.1088/1402-4896/ad1021 10.1007/s00894-024-05980-7 10.31349/RevMexFis.69.051006 10.1016/j.jpcs.2021.110302 10.1088/0953-8984/14/11/301 10.1103/PhysRevB.50.7279 10.1038/s41598-021-84876-5 10.1103/PhysRevB.54.2480 10.1007/s11082-023-06113-9 10.1007/s11082-024-06344-4 10.1007/s10904-024-03250-w 10.1021/acs.energyfuels.3c04099 10.1007/s11082-023-05282-x 10.1103/PhysRevB.59.11159 10.1140/epjp/s13360-024-04921-w 10.1103/PhysRevB.13.5188 10.1007/s11082-024-06345-3 10.1007/s10948-021-06131-2 10.1201/9781482277258 10.1002/er.6307 10.1080/08927022.2023.2171075 10.1103/PhysRevB.68.125210 10.1007/s10948-017-4364-2 10.1088/1402-4896/aca56b 10.1088/1402-4896/ad5b93 10.1016/S0925-8388(99)00057-2 10.1103/PhysRevB.88.014413 10.1016/j.chroma.2005.08.083 10.1007/s11082-024-07199-5 10.1142/S2010324718500157 10.1103/PhysRevLett.112.117603 10.1080/14786440808520496 10.1016/S0009-2614(02)01401-X 10.1016/j.matchemphys.2020.123945 10.1038/s41535-018-0127-y 10.1142/S0217979218501199 10.1007/s00894-023-05786-z 10.1063/1.4896681 10.1016/j.mseb.2023.116851 10.1007/s11082-024-06891-w 10.1007/s00339-022-05276-8 10.1093/nsr/nwaa259 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10904-024-03336-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1574-1451 |
EndPage | 993 |
ExternalDocumentID | 10_1007_s10904_024_03336_5 |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P9N PF0 PT4 PT5 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 ZE2 ZMTXR ~A9 AAYXX ABBRH ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c389t-ed29cc9196c41bfa9d158c0eedf6d767a112e3add2a2e80b93c5304f41b8182f3 |
IEDL.DBID | U2A |
ISSN | 1574-1443 |
IngestDate | Sat Sep 13 14:50:34 EDT 2025 Tue Jul 01 05:28:09 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Wed Mar 05 01:42:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Solar cells Optoelectronics Double perovskites, Thermoelectric properties Absorption coefficients Figure of merit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-ed29cc9196c41bfa9d158c0eedf6d767a112e3add2a2e80b93c5304f41b8182f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3174075868 |
PQPubID | 2044289 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3174075868 crossref_primary_10_1007_s10904_024_03336_5 crossref_citationtrail_10_1007_s10904_024_03336_5 springer_journals_10_1007_s10904_024_03336_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of inorganic and organometallic polymers and materials |
PublicationTitleAbbrev | J Inorg Organomet Polym |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Y Rached (3336_CR85) 2022; 35 3336_CR19 S Haid (3336_CR16) 2018; 31 HH Raza (3336_CR71) 2020; 120 ME Ketfi (3336_CR56) 2023; 99 T Scheidemantel (3336_CR83) 2003; 68 T Nakagawa (3336_CR2) 1968; 24 3336_CR54 K-I Kobayashi (3336_CR10) 1998; 395 M Segall (3336_CR59) 2002; 14 F Tran (3336_CR47) 2009; 102 MZ Kazim (3336_CR75) 2023; 48 GM Mustafa (3336_CR38) 2022; 48 S Belhachi (3336_CR51) 2018; 32 FD Murnaghan (3336_CR55) 1944; 30 3336_CR50 S Haid (3336_CR14) 2024; 53 K Yamamura (3336_CR35) 2006; 179 3336_CR92 T Bellakhdar (3336_CR79) 2022; 128 S Al-Qaisi (3336_CR37) 2022; 275 W Kohn (3336_CR44) 1965; 140 HH Raza (3336_CR41) 2024; 300 S Haid (3336_CR15) 2019; 245 N Rahman (3336_CR21) 2024; 56 SA Dar (3336_CR69) 2019; 9 S Ivanov (3336_CR12) 2010; 39 Z Wu (3336_CR29) 2023; 930 3336_CR65 3336_CR20 A Boutramine (3336_CR80) 2024; 56 K Tezuka (3336_CR40) 2000; 154 3336_CR67 3336_CR61 G Blasse (3336_CR30) 1965; 26 S Saad Essaoud (3336_CR36) 2022; 25 P Hohenberg (3336_CR43) 1964; 136 M Alouani (3336_CR77) 1996; 54 S Belhachi (3336_CR49) 2018; 31 A Kumar (3336_CR31) 2021; 32 M Wakeshima (3336_CR39) 1999; 287 M Saeed (3336_CR57) 2022; 160 Y Pak (3336_CR82) 2020; 116 3336_CR7 3336_CR8 A Boutramine (3336_CR22) 2024; 56 3336_CR5 3336_CR6 S Al-Qaisi (3336_CR78) 2022; 170 3336_CR3 A Boutramine (3336_CR24) 2024; 7 JP Perdew (3336_CR46) 1996; 77 3336_CR4 B Montanari (3336_CR60) 2002; 364 A Azam (3336_CR62) 2024; 56 3336_CR33 3336_CR76 TW Kool (3336_CR9) 2010 HH Raza (3336_CR70) 2023; 49 Y Jain (3336_CR32) 2023; 158 HH Raza (3336_CR42) 2023; 1221 J Khatua (3336_CR13) 2021; 11 S Haid (3336_CR18) 2020; 322 S Dergal (3336_CR64) 2024; 124 Z Khan (3336_CR63) 2024; 56 S Al‐Qaisi (3336_CR89) 2023; 44 P Dufek (3336_CR73) 1994; 50 H Shadpour (3336_CR86) 2006; 1111 S Al-Qaisi (3336_CR68) 2023; 55 M Nabi (3336_CR66) 2021; 45 T Lantri (3336_CR17) 2024; 30 S Al-Qaisi (3336_CR74) 2021; 258 HJ Monkhorst (3336_CR52) 1976; 13 K-I Kobayashi (3336_CR11) 1999; 59 MS Reza (3336_CR26) 2024; 38 JK Bairwa (3336_CR90) 2023; 29 J Pei (3336_CR91) 2020; 7 D Behera (3336_CR72) 2024; 139 N Sfina (3336_CR23) 2024; 27 Z Abbas (3336_CR25) 2024; 163 3336_CR48 AM Mebed (3336_CR27) 2023; 98 A Takahashi (3336_CR58) 2020; 4 3336_CR45 HH Raza (3336_CR87) 2019; 299 AA Aczel (3336_CR34) 2014; 112 3336_CR84 A Sleight (3336_CR28) 1972; 33 MT Anderson (3336_CR1) 1993; 22 A Takahashi (3336_CR53) 2020; 4 3336_CR81 H Albalawi (3336_CR88) 2023; 298 |
References_xml | – volume: 163 year: 2024 ident: 3336_CR25 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2024.112293 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 3336_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 30 start-page: 244 issue: 9 year: 1944 ident: 3336_CR55 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.30.9.244 – volume: 136 start-page: B864 issue: 3B year: 1964 ident: 3336_CR43 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 395 start-page: 677 issue: 6703 year: 1998 ident: 3336_CR10 publication-title: Nature doi: 10.1038/27167 – ident: 3336_CR81 doi: 10.1063/5.0031336 – ident: 3336_CR6 doi: 10.1103/PhysRevB.84.100404 – volume: 170 year: 2022 ident: 3336_CR78 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207397 – volume: 31 start-page: 3965 year: 2018 ident: 3336_CR16 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-018-4643-6 – volume: 322 year: 2020 ident: 3336_CR18 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2020.114052 – volume: 44 start-page: 2442 year: 2023 ident: 3336_CR89 publication-title: J. Comput. Chem doi: 10.1002/jcc.27209 – ident: 3336_CR8 doi: 10.1017/CBO9780511541292 – volume: 32 start-page: 12951 year: 2021 ident: 3336_CR31 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 22 start-page: 197 issue: 3 year: 1993 ident: 3336_CR1 publication-title: Prog. Solid State Chem. doi: 10.1016/0079-6786(93)90004-B – volume: 39 start-page: 5490 issue: 23 year: 2010 ident: 3336_CR12 publication-title: Dalton Trans. doi: 10.1039/b927498g – volume: 48 start-page: 23460 issue: 16 year: 2022 ident: 3336_CR38 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.04.341 – volume: 245 start-page: 68 year: 2019 ident: 3336_CR15 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2019.05.013 – volume: 116 start-page: 11 year: 2020 ident: 3336_CR82 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 1 year: 2022 ident: 3336_CR36 publication-title: Indian J. Phys. – volume: 124 issue: 8 year: 2024 ident: 3336_CR64 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.27371 – volume: 24 start-page: 806 issue: 4 year: 1968 ident: 3336_CR2 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.24.806 – volume: 26 start-page: 1969 issue: 12 year: 1965 ident: 3336_CR30 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(65)90231-3 – volume: 179 start-page: 605 issue: 3 year: 2006 ident: 3336_CR35 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.10.003 – ident: 3336_CR65 doi: 10.1016/j.cocom.2024.e00926 – volume: 275 year: 2022 ident: 3336_CR37 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.125237 – ident: 3336_CR20 doi: 10.1016/j.jpcs.2024.112171 – ident: 3336_CR54 doi: 10.1515/9783110445404 – volume: 140 start-page: A1133 issue: 4A year: 1965 ident: 3336_CR44 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 9 start-page: 9522 issue: 17 year: 2019 ident: 3336_CR69 publication-title: RSC Adv. doi: 10.1039/C9RA00313D – ident: 3336_CR84 doi: 10.1016/j.cpc.2006.03.007 – volume: 53 start-page: 75 issue: 1 year: 2024 ident: 3336_CR14 publication-title: J. Electron. Mater. doi: 10.1007/s11664-023-10747-6 – volume: 158 year: 2023 ident: 3336_CR32 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2023.107381 – volume: 27 start-page: 1 year: 2024 ident: 3336_CR23 publication-title: J. Inorg. Organomet. Polym. – volume: 4 issue: 10 year: 2020 ident: 3336_CR53 publication-title: Phys. Rev. Mater. – volume: 33 start-page: 679 issue: 3 year: 1972 ident: 3336_CR28 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(72)90076-5 – volume: 48 start-page: 779 issue: 1 year: 2023 ident: 3336_CR75 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06985-1 – volume: 102 issue: 22 year: 2009 ident: 3336_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 154 start-page: 591 issue: 2 year: 2000 ident: 3336_CR40 publication-title: J. Solid State Chem. doi: 10.1006/jssc.2000.8900 – ident: 3336_CR4 doi: 10.1063/1.2936304 – volume: 300 year: 2024 ident: 3336_CR41 publication-title: Mater. Sci. Eng., B – volume: 99 issue: 1 year: 2023 ident: 3336_CR56 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad1021 – volume: 30 start-page: 195 issue: 6 year: 2024 ident: 3336_CR17 publication-title: J. Mol. Model. doi: 10.1007/s00894-024-05980-7 – ident: 3336_CR19 doi: 10.31349/RevMexFis.69.051006 – volume: 160 year: 2022 ident: 3336_CR57 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2021.110302 – volume: 14 start-page: 2717 issue: 11 year: 2002 ident: 3336_CR59 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/301 – ident: 3336_CR5 – volume: 50 start-page: 7279 issue: 11 year: 1994 ident: 3336_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.7279 – volume: 11 start-page: 6959 issue: 1 year: 2021 ident: 3336_CR13 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84876-5 – volume: 54 start-page: 2480 issue: 4 year: 1996 ident: 3336_CR77 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.2480 – volume: 930 year: 2023 ident: 3336_CR29 publication-title: J. Alloy. Compd. – volume: 56 start-page: 395 issue: 3 year: 2024 ident: 3336_CR80 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-023-06113-9 – volume: 56 start-page: 417 issue: 3 year: 2024 ident: 3336_CR22 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-024-06344-4 – ident: 3336_CR61 doi: 10.1007/s10904-024-03250-w – volume: 38 start-page: 2327 issue: 3 year: 2024 ident: 3336_CR26 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c04099 – volume: 1221 year: 2023 ident: 3336_CR42 publication-title: Comput. Theor. Chem. – ident: 3336_CR76 – volume: 55 start-page: 1015 issue: 11 year: 2023 ident: 3336_CR68 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-023-05282-x – volume: 59 start-page: 11159 issue: 17 year: 1999 ident: 3336_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.11159 – volume: 139 start-page: 127 issue: 2 year: 2024 ident: 3336_CR72 publication-title: Euro. Phys. J. Plus doi: 10.1140/epjp/s13360-024-04921-w – volume: 13 start-page: 5188 issue: 12 year: 1976 ident: 3336_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 56 start-page: 836 issue: 5 year: 2024 ident: 3336_CR63 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-024-06345-3 – volume: 35 start-page: 875 issue: 3 year: 2022 ident: 3336_CR85 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-021-06131-2 – ident: 3336_CR7 doi: 10.1201/9781482277258 – volume: 45 start-page: 7222 issue: 5 year: 2021 ident: 3336_CR66 publication-title: Int. J. Energy Res. doi: 10.1002/er.6307 – volume: 49 start-page: 497 issue: 5 year: 2023 ident: 3336_CR70 publication-title: Mol. Simul. doi: 10.1080/08927022.2023.2171075 – volume: 68 issue: 12 year: 2003 ident: 3336_CR83 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.125210 – volume: 31 start-page: 1545 year: 2018 ident: 3336_CR49 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-017-4364-2 – volume-title: Properties of perovskites and other oxides year: 2010 ident: 3336_CR9 – volume: 98 issue: 1 year: 2023 ident: 3336_CR27 publication-title: Phys. Scr. doi: 10.1088/1402-4896/aca56b – ident: 3336_CR50 doi: 10.1088/1402-4896/ad5b93 – volume: 120 issue: 24 year: 2020 ident: 3336_CR71 publication-title: Int. J. Quantum Chem. – volume: 287 start-page: 130 issue: 1–2 year: 1999 ident: 3336_CR39 publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(99)00057-2 – ident: 3336_CR33 doi: 10.1103/PhysRevB.88.014413 – volume: 1111 start-page: 238 issue: 2 year: 2006 ident: 3336_CR86 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2005.08.083 – volume: 56 start-page: 1298 issue: 8 year: 2024 ident: 3336_CR21 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-024-07199-5 – ident: 3336_CR48 doi: 10.1142/S2010324718500157 – volume: 4 issue: 10 year: 2020 ident: 3336_CR58 publication-title: Phys. Rev. Mater. – volume: 112 issue: 11 year: 2014 ident: 3336_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.117603 – ident: 3336_CR67 doi: 10.1080/14786440808520496 – volume: 299 year: 2019 ident: 3336_CR87 publication-title: Solid State Commun. – volume: 364 start-page: 528 issue: 5–6 year: 2002 ident: 3336_CR60 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01401-X – volume: 7 start-page: 1 year: 2024 ident: 3336_CR24 publication-title: J. Inorg. Organomet. Polym. – volume: 258 year: 2021 ident: 3336_CR74 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123945 – ident: 3336_CR92 doi: 10.1038/s41535-018-0127-y – ident: 3336_CR45 – volume: 32 start-page: 1850119 issue: 10 year: 2018 ident: 3336_CR51 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979218501199 – volume: 29 start-page: 379 issue: 12 year: 2023 ident: 3336_CR90 publication-title: J. Mol. Model. doi: 10.1007/s00894-023-05786-z – ident: 3336_CR3 doi: 10.1063/1.4896681 – volume: 298 year: 2023 ident: 3336_CR88 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2023.116851 – volume: 56 start-page: 1001 issue: 6 year: 2024 ident: 3336_CR62 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-024-06891-w – volume: 128 start-page: 155 issue: 2 year: 2022 ident: 3336_CR79 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-05276-8 – volume: 7 start-page: 1856 issue: 12 year: 2020 ident: 3336_CR91 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa259 |
SSID | ssj0038051 |
Score | 2.4674258 |
Snippet | Our study employed the full-potential linearized augmented plane wave (FP-LAPW) approach within the density functional theory (DFT) framework to examine the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 978 |
SubjectTerms | Absorptivity Chemistry Chemistry and Materials Science Density functional theory Electrical resistivity Figure of merit Inorganic Chemistry Optical properties Organic Chemistry Perovskites Plane waves Polymer Sciences Power factor Refractivity Room temperature Seebeck effect Thermoelectricity |
Title | DFT Analysis of Ba2NbRhO6: A Promising Double Perovskite for Sustainable Energy Applications |
URI | https://link.springer.com/article/10.1007/s10904-024-03336-5 https://www.proquest.com/docview/3174075868 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB7YIJJjx3mwpaUBgSgVtFKRkCLbscVQtagt_H7OaUIKAiSGKEMuHu58d9_Z90DolBs3yJQhjucJ43gCwp3IcOP4FHaLYhIgrD2HvOv510PvZsRHRVHYvMx2L68kc0u9UuwW2YwJCg9jzHf4OqpziN2tOg5pXNpfFhK-7JIaeA6EC6wolfl5ja_uqMKY365Fc2-TbKOtAibieCnXHbSmJ7too1NOZ9tDz5fJAJcdRfDU4LagPfnwcu9f4Bj3Z1MghJUxAGQ51rivZ9P3uT2pxYBS8WNVNoW7efUfjldusvfRMOkOOtdOMSnBUQA4Fo7OaKRUBNqkPFcaEWUuDxUB_2f8LPADAahKMzBlVFAdEhkxxRnxDBCDw6aGHaDaZDrRhwgTyXwpAuIqoiB48mSQBYzLSEYZODYhGsgtGZaqoo24nWYxTqsGyJbJKTA5zZmc8gY6-_znddlE40_qZimHtFCoeQowB0JPHvphA52Xsqk-_77a0f_Ij9EmtRN-87zsJqotZm_6BGDHQrZQPU7a7Z59Xz3ddlv5rvsA8IjOug |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjShPD2wQ5MR2HmyltJRXQdBKICFFthMLiapFbWHg13NJY1oQIDFkysVJ7PPdd74XwJ4wbpBoQx3OpXG4RHMnMsI4vofcoplCCJudQ141_Uabn9-L-yIpbGCj3a1LMpfUE8luURYx4eHFGPMdMQ0zHG1wWoKZyunDRc1KYBZSMaqTGnAHDQZWJMv8PMpXhTRGmd8co7m-qS9A237pKMzk-fB1qA71-7cijv_9lUWYLwAoqYw4Zgmm0u4yzFZt37cVeDypt4itVUJ6hhxLr6lun679I1IhN_0eEuLLCEJv1UnJTdrvvQ2yM2CC-JfcjROySC3PKySVCR_5KrTrtVa14RQ9GByNUGbopIkXaR3hPtXcVUZGiStCTVGzGj8J_EAiXksZCklPemlIVcS0YJQbJEYo4Bm2BqVur5uuA6GK-UoG1NVUo1nGVZAETKhIRQmqTCnL4NqFiHVRoDzrk9GJx6WVs3mLcd7ifN5iUYb9z2deRuU5_qTesusbF1t1ECOAQqNWhH5YhgO7XOPbv4-28T_yXZhttK4u48uz5sUmzHlZH-E8-nsLSsP-a7qN4Gaodgpe_gBOMuuN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSMCCeIpCAQ9sEDWx4zzYQtuovEoFrdQBKbKdWAxVUrWB38_lRQoCJIZMOXs4n33f2XffIXTOlGGHUumaaXKlmRzCHVcxpVkErEVSARA2u4d8GFj9sXk7YZOlKv482716kixqGjKWpjhtz0LVXip8c7PsCQIfpdTS2Cpag-PYyCx9TLzqLKaOzgrGVNvUIHSgZdnMz3N8dU013vz2RJp7Hn8bbZWQEXvFGu-glSjeRRudqlPbHnrp-iNcsYvgROFrTgbi6fXRusIeHs4TEISZMYBlMY3wMJon74vs1hYDYsXPdQkV7uWVgNhbetXeR2O_N-r0tbJrgiYBfKRaFBJXShd2ljQNobgbGsyROvhCZYW2ZXNAWBGFY41wEjm6cKlkVDcVCIPzJooeoEacxNEhwrqgluC2bkhdQiBlCju0KROucENwcpw3kVEpLJAlpXjW2WIa1GTImZIDUHKQKzlgTXTxOWZWEGr8Kd2q1iEoN9ciAMgDYShzLKeJLqu1qX__PtvR_8TP0Pqw6wf3N4O7Y7RJssa_ebp2CzXS-Vt0AmgkFae5wX0AKAfS2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+Analysis+of+Ba2NbRhO6%3A+A+Promising+Double+Perovskite+for+Sustainable+Energy+Applications&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=Belhachi%2C+Soufyane&rft.au=Al-Qaisi%2C+Samah&rft.au=Samah%2C+Saidi&rft.au=Rached%2C+Habib&rft.date=2025-02-01&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=35&rft.issue=2&rft.spage=978&rft.epage=993&rft_id=info:doi/10.1007%2Fs10904-024-03336-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10904_024_03336_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon |