Least-cost solutions to household energy supply decarbonisation in temperate and sub-tropical climates

Decarbonisation of building energy supply is key to achieving current targets of greenhouse gas emission reduction. However, the least-cost, net-zero supply of electrical and thermal loads in residential buildings is affected by building type, local climate and grid emissions intensity and is subjec...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 448; p. 141465
Main Authors Vecchi, Andrea, Davis, Dominic, Brear, Michael, Aye, Lu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decarbonisation of building energy supply is key to achieving current targets of greenhouse gas emission reduction. However, the least-cost, net-zero supply of electrical and thermal loads in residential buildings is affected by building type, local climate and grid emissions intensity and is subject to uncertain future energy prices. This work investigated a typical detached house and an apartment in two climates – temperate and sub-tropical – in Australia. Least-cost optimisation of the technology mixes required to serve building energy loads was undertaken, including a range of appliances powered by electricity, natural gas and hydrogen and the use of distributed energy resourced, notably rooftop solar and residential battery energy storage. Solutions were investigated with increasingly stringent greenhouse gas emission abatement constraints and a range of future prices for electricity and hydrogen, demonstrating: i) progressive electrification is the likely cheapest pathway to net-zero emissions for the two building types studied; ii) should grid decarbonisation lag the abatement constraint applied to the homes, a net-zero dwelling is likely unachievable and the deepest achievable abatement is very expensive; and iii) network-delivered hydrogen may be optimal in a subset of buildings with limited distributed energy resources potential and more peaky heating and hot water demands. In such cases, bio-methane or even synthetic methane may also be preferred. Through significant adoption of distributed energy resources, results suggest an affordable route to deep (i.e. > 50 %) abatement for homeowners that relies less on grid emissions and, beyond the Australian case study, can be extended to a significant proportion of dwellings in other countries. •Least-cost optimisation of energy supply and storage technology mix in dwellings.•Effect of building, climate, energy price, electricity tariff on technology selection.•Usage charge reduces peak by over 2 kWe in fully electrified net-zero dwellings.•H2 or bio-methane sold at up to 70 AUD/GJ can be prospective in a subset of cases.•Rooftop PV and battery cost-effectively reduce emissions by 30–90 % in new builds.
AbstractList Decarbonisation of building energy supply is key to achieving current targets of greenhouse gas emission reduction. However, the least-cost, net-zero supply of electrical and thermal loads in residential buildings is affected by building type, local climate and grid emissions intensity and is subject to uncertain future energy prices. This work investigated a typical detached house and an apartment in two climates – temperate and sub-tropical – in Australia. Least-cost optimisation of the technology mixes required to serve building energy loads was undertaken, including a range of appliances powered by electricity, natural gas and hydrogen and the use of distributed energy resourced, notably rooftop solar and residential battery energy storage. Solutions were investigated with increasingly stringent greenhouse gas emission abatement constraints and a range of future prices for electricity and hydrogen, demonstrating: i) progressive electrification is the likely cheapest pathway to net-zero emissions for the two building types studied; ii) should grid decarbonisation lag the abatement constraint applied to the homes, a net-zero dwelling is likely unachievable and the deepest achievable abatement is very expensive; and iii) network-delivered hydrogen may be optimal in a subset of buildings with limited distributed energy resources potential and more peaky heating and hot water demands. In such cases, bio-methane or even synthetic methane may also be preferred. Through significant adoption of distributed energy resources, results suggest an affordable route to deep (i.e. > 50 %) abatement for homeowners that relies less on grid emissions and, beyond the Australian case study, can be extended to a significant proportion of dwellings in other countries.
Decarbonisation of building energy supply is key to achieving current targets of greenhouse gas emission reduction. However, the least-cost, net-zero supply of electrical and thermal loads in residential buildings is affected by building type, local climate and grid emissions intensity and is subject to uncertain future energy prices. This work investigated a typical detached house and an apartment in two climates – temperate and sub-tropical – in Australia. Least-cost optimisation of the technology mixes required to serve building energy loads was undertaken, including a range of appliances powered by electricity, natural gas and hydrogen and the use of distributed energy resourced, notably rooftop solar and residential battery energy storage. Solutions were investigated with increasingly stringent greenhouse gas emission abatement constraints and a range of future prices for electricity and hydrogen, demonstrating: i) progressive electrification is the likely cheapest pathway to net-zero emissions for the two building types studied; ii) should grid decarbonisation lag the abatement constraint applied to the homes, a net-zero dwelling is likely unachievable and the deepest achievable abatement is very expensive; and iii) network-delivered hydrogen may be optimal in a subset of buildings with limited distributed energy resources potential and more peaky heating and hot water demands. In such cases, bio-methane or even synthetic methane may also be preferred. Through significant adoption of distributed energy resources, results suggest an affordable route to deep (i.e. > 50 %) abatement for homeowners that relies less on grid emissions and, beyond the Australian case study, can be extended to a significant proportion of dwellings in other countries. •Least-cost optimisation of energy supply and storage technology mix in dwellings.•Effect of building, climate, energy price, electricity tariff on technology selection.•Usage charge reduces peak by over 2 kWe in fully electrified net-zero dwellings.•H2 or bio-methane sold at up to 70 AUD/GJ can be prospective in a subset of cases.•Rooftop PV and battery cost-effectively reduce emissions by 30–90 % in new builds.
ArticleNumber 141465
Author Vecchi, Andrea
Aye, Lu
Davis, Dominic
Brear, Michael
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-4961-9643
  surname: Vecchi
  fullname: Vecchi, Andrea
  email: a.vecchi@unimelb.edu.au
  organization: Department of Mechanical Engineering, The University of Melbourne, Parkville, 3010, Victoria, Australia
– sequence: 2
  givenname: Dominic
  orcidid: 0000-0001-7037-5447
  surname: Davis
  fullname: Davis, Dominic
  organization: Department of Mechanical Engineering, The University of Melbourne, Parkville, 3010, Victoria, Australia
– sequence: 3
  givenname: Michael
  orcidid: 0000-0002-1646-2926
  surname: Brear
  fullname: Brear, Michael
  organization: Melbourne Energy Institute (MEI) and Department of Mechanical Engineering, The University of Melbourne, Parkville, 3010, Victoria, Australia
– sequence: 4
  givenname: Lu
  orcidid: 0000-0002-5495-1683
  surname: Aye
  fullname: Aye, Lu
  organization: Renewable Energy and Energy Efficiency Group, Department of Infrastructure Engineering, The University of Melbourne, Parkville, 3010, Victoria, Australia
BookMark eNqFkEtLQzEQhYNUsD5-gpClm1szN_eJC5HiCwpudB1yk7makibXJBX6702tKzeuZmDOOcz5TsnMeYeEXAJbAIPmer1YK4tT8IuSldUCKqia-ojMoWv7AtqumZE56-u-aOqyOSGnMa4Zg5a11ZyMK5QxFcrHRKO322S8izR5-uG3ET-81RQdhvcdjdtpsjuqUckweGei3GupcTThZsIgE1LpdNYNRQp-MkpaqqzZ5EM8J8ejtBEvfucZeXu4f10-FauXx-fl3apQvOtTgQMy3g8amhFaWZcVdGOfV15iJWudyzIFqh0H1XZ86ID1Xe4x6kpLCdCV_IxcHXIzjc8txiQ2Jiq0VjrMhQSHmjccGONZWh-kKvgYA45iCvnZsBPAxJ6rWItfrmLPVRy4Zt_NH58y6YdFCtLYf923BzdmCl8Gg4jKoFOoTUCVhPbmn4RvJRqbsQ
CitedBy_id crossref_primary_10_3390_su162310358
Cites_doi 10.1007/s12053-018-9710-0
10.1016/j.renene.2022.05.145
10.1016/j.energy.2021.121871
10.1016/j.renene.2018.06.028
10.1016/j.geothermics.2020.101868
10.1016/j.energy.2017.08.024
10.1016/j.energy.2022.124605
10.1016/j.eneco.2022.106500
10.1016/j.buildenv.2010.01.022
10.1016/j.enpol.2013.05.110
10.1016/j.enbuild.2022.112480
10.1016/j.energy.2017.02.082
10.1038/s41598-022-15628-2
10.1016/j.apenergy.2017.07.142
10.1016/j.enbuild.2011.09.013
10.1016/j.joule.2022.08.015
10.1016/j.apenergy.2016.10.049
10.3390/en15103582
10.1016/j.apenergy.2022.118901
10.1016/j.enbuild.2016.05.039
10.1016/j.energy.2013.06.053
10.1016/j.enbuild.2018.09.018
10.1016/j.enconman.2015.04.024
10.1016/j.energy.2017.01.038
10.3390/en14206550
10.1016/j.apenergy.2019.01.090
10.1016/j.apenergy.2015.08.052
10.1016/j.enconman.2022.115649
10.1016/j.enbuild.2018.12.019
10.1016/j.rser.2020.110703
10.1007/s10901-011-9212-2
10.1016/j.apenergy.2021.118051
10.1177/01436244211040449
10.1016/j.enconman.2021.113838
10.1016/j.enbuild.2014.02.032
10.1016/j.solener.2005.06.010
10.1016/j.apenergy.2020.116110
10.1038/s41558-022-01429-y
10.1080/00049182.2021.1964161
10.1016/j.enpol.2021.112674
10.3390/atmos10080435
10.1016/j.buildenv.2016.11.043
10.1016/j.enbuild.2015.09.020
10.1016/j.jclepro.2016.10.153
10.1016/j.rser.2018.03.003
10.1016/j.apenergy.2017.05.091
10.1016/j.energy.2016.02.159
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2024.141465
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2024_141465
S0959652624009132
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LY9
M41
R2-
SEN
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c389t-ebe039bd16f17a52418f9f1732e4a5d0160c1c7fbc783b81098170fd4daa11823
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Aug 22 20:23:33 EDT 2025
Tue Jul 01 04:42:56 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Sat Apr 13 16:37:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrification
Decarbonisation
Hydrogen
Optimisation
Net zero energy building
Distributed energy resource
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-ebe039bd16f17a52418f9f1732e4a5d0160c1c7fbc783b81098170fd4daa11823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4961-9643
0000-0002-1646-2926
0000-0002-5495-1683
0000-0001-7037-5447
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0959652624009132
PQID 3153631003
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153631003
crossref_primary_10_1016_j_jclepro_2024_141465
crossref_citationtrail_10_1016_j_jclepro_2024_141465
elsevier_sciencedirect_doi_10_1016_j_jclepro_2024_141465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-05
PublicationDateYYYYMMDD 2024-04-05
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-05
  day: 05
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Knosala, Langenberg, Pflugradt, Stenzel, Kotzur, Stolten (bib52) 2022; 276
Berrill, Wilson, Reyna, Fontanini, Hertwich (bib16) 2022; 12
Heslop, Roberts, Yildiz, Bruce, Egan, Macgill (bib44) 2019
Energiewende (bib33) 2021
Essential Services Commission: Minimum feed-in tariff
(bib37) 2020
Lu, Narsilio, Aditya, Johnston (bib58) 2017; 125
Olympios, Aunedi, Mersch, Krishnaswamy, Stollery, Pantaleo (bib66) 2022; 262
(bib73) 2011
Wang, Chen, Ren (bib89) 2010; 45
Clean Energy Regulator: Residential solar PV installation trends 2023
CSIRO: Floor and Window Area
Buonocore, Salimifard, Magavi, Allen (bib21) 2022; 12
(bib47) 2021
(bib87) 2021
Guan, Bennett, Bell (bib43) 2015; 108
(bib64) 2022
Sadler (bib75) 2016
Ameen, Pasupuleti, Khatib (bib7) 2015; 99
Culley, Zecchin, Maier (bib27) 2022
Gabrielli, Gazzani, Martelli, Mazzotti (bib40) 2018; 219
Richarz, Henn, Osterhage, Müller (bib71) 2022; 238
European Commission: Residential heating: heat pumps would knock down energy consumption and emissions
(bib11) 2021
Lan, Gou, Liu (bib53) 2021; 52
Dodd, Nelson (bib31) 2022; 160
(bib23) 2022
Fuller, Crawford (bib39) 2011; 26
Sovacool, Cabeza, Pisello, Fronzetti Colladon, Larijani, Dawoud (bib83) 2021; 139
Ambrose, James, Law, Osman, White (bib6) 2013
Lindberg, Doorman, Fischer, Korpås, Ånestad, Sartori (bib56) 2016; 127
Schütz, Schiffer, Harb, Fuchs, Müller (bib77) 2017; 185
Baldino, O'Malley, Searle, Christensen (bib14) 2021
(bib4) 2021
(bib38) 2022
Spiller, Esparza, Mohlin, Tapia-Ahumada, Ünel (bib84) 2023; 120
Greenwood (bib42) 2017
Marszal-Pomianowska, Heiselberg, Kalyanova Larsen (bib60) 2016; 103
Rosenow (bib74) 2022; 6
(bib1) 2013
Knobloch, Pollitt, Chewpreecha, Daioglou, Mercure (bib51) 2019; 12
Aditya, Narsilio (bib2) 2020; 87
(bib35) 2021
Stephan, Athanassiadis (bib86) 2017; 114
Bruce, Temminghoff, Hayward, Schmidt, Munnings, Palfreyman (bib19) 2018
(accessed October 9, 2023).
Jalil-Vega, Hawkes (bib49) 2018; 210
Bruno (bib20) 2011; 43
Huckebrink, Bertsch (bib45) 2022; 257
(bib12) 2021
Sheikh, Callaway (bib81) 2019; 10
Brinsmead, Hayward, Graham (bib18) 2014
Schütz, Schraven, Remy, Granacher, Kemetmüller, Fuchs (bib76) 2017; 139
(accessed August 15, 2022).
(bib5) 2022
Australian Bureau of Statistics: TableBuilder
Wilson, Rennie, Ding, Eames, Hall, Kelly (bib90) 2013; 61
Queensland Competition Authority: Solar feed-in tariffs in south-east Queensland 2021-22
Nicholls, Sharma, Saha (bib65) 2015; 159
Schütz, Schraven, Fuchs, Remmen, Müller (bib78) 2018; 129
Carpaneto, Chicco (bib22) 2006
Ihsan, Jeppesen, Brear (bib48) 2019; 238
Seo, Foliente (bib80) 2021; 14
Palomba, Frazzica (bib67) 2019; 185
Aunedi, Yliruka, Dehghan, Pantaleo, Shah, Strbac (bib9) 2022; 194
Ashouri, Fux, Benz, Guzzella (bib8) 2013; 59
IEA - International Energy Agency: Tracking buildings 2021
Mastrucci, Baume, Stazi, Leopold (bib61) 2014; 75
(bib88) 2018
(bib13) 2020
de Soto, Klein, Beckman (bib29) 2006; 80
Petkov, Mavromatidis, Knoeri, Allan, Hoffmann (bib69) 2022; 314
Aditya, Mikhaylova, Narsilio, Johnston (bib3) 2020; 42
Comodi, Carducci, Sze, Balamurugan, Romagnoli (bib25) 2017; 121
Bolin, Hewitt, Houghton, Jersey, Polymeneas (bib17) 2022
Gallo Cassarino, Barrett (bib41) 2022; 306
Staples (bib85) 2020
Slorach, Stamford (bib82) 2021; 230
(accessed September 26, 2022).
Merkel, McKenna, Fehrenbach, Fichtner (bib63) 2017; 142
Bennett, Watson, Wilson, Oreszczyn (bib15) 2022; 43
Sengupta, Xie, Lopez, Habte, Maclaurin, Shelby (bib79) 2018; 89
Levelized (bib54) 2021
Peterson (bib68) 2014
Kadurek, Kling, Ribeiro, Cobben (bib50) 2013; 2013
Rinaldi, Soini, Streicher, Patel, Parra (bib72) 2021; 282
(accessed October 10, 2023).
Davis, Pascale, Vecchi, Bharadwaj, Jones, Strawhorn (bib28) 2023
Li, Allinson, He (bib55) 2018; 179
Mahajan, Tan, Venkatesh, Kileti, Clayton (bib59) 2022; 15
(bib30) 2022
Duffie, Beckman (bib32) 2013
Longden, Jotzo, Prasad, Andrews (bib57) 2020
McConville, Davies, Dillon, Jamieson, Griffiths, Bethune (bib62) 2020
McConville (10.1016/j.jclepro.2024.141465_bib62) 2020
Guan (10.1016/j.jclepro.2024.141465_bib43) 2015; 108
Kadurek (10.1016/j.jclepro.2024.141465_bib50) 2013; 2013
(10.1016/j.jclepro.2024.141465_bib87) 2021
Mastrucci (10.1016/j.jclepro.2024.141465_bib61) 2014; 75
Sovacool (10.1016/j.jclepro.2024.141465_bib83) 2021; 139
10.1016/j.jclepro.2024.141465_bib46
(10.1016/j.jclepro.2024.141465_bib64) 2022
Berrill (10.1016/j.jclepro.2024.141465_bib16) 2022; 12
(10.1016/j.jclepro.2024.141465_bib47) 2021
Levelized (10.1016/j.jclepro.2024.141465_bib54) 2021
(10.1016/j.jclepro.2024.141465_bib73) 2011
(10.1016/j.jclepro.2024.141465_bib4) 2021
Sengupta (10.1016/j.jclepro.2024.141465_bib79) 2018; 89
Energiewende (10.1016/j.jclepro.2024.141465_bib33) 2021
Lan (10.1016/j.jclepro.2024.141465_bib53) 2021; 52
Greenwood (10.1016/j.jclepro.2024.141465_bib42) 2017
Ambrose (10.1016/j.jclepro.2024.141465_bib6) 2013
Li (10.1016/j.jclepro.2024.141465_bib55) 2018; 179
Ameen (10.1016/j.jclepro.2024.141465_bib7) 2015; 99
Marszal-Pomianowska (10.1016/j.jclepro.2024.141465_bib60) 2016; 103
Palomba (10.1016/j.jclepro.2024.141465_bib67) 2019; 185
Rinaldi (10.1016/j.jclepro.2024.141465_bib72) 2021; 282
Sheikh (10.1016/j.jclepro.2024.141465_bib81) 2019; 10
(10.1016/j.jclepro.2024.141465_bib11) 2021
Ihsan (10.1016/j.jclepro.2024.141465_bib48) 2019; 238
10.1016/j.jclepro.2024.141465_bib10
Bennett (10.1016/j.jclepro.2024.141465_bib15) 2022; 43
Carpaneto (10.1016/j.jclepro.2024.141465_bib22) 2006
Bruno (10.1016/j.jclepro.2024.141465_bib20) 2011; 43
Jalil-Vega (10.1016/j.jclepro.2024.141465_bib49) 2018; 210
(10.1016/j.jclepro.2024.141465_bib13) 2020
Schütz (10.1016/j.jclepro.2024.141465_bib77) 2017; 185
Aditya (10.1016/j.jclepro.2024.141465_bib3) 2020; 42
Comodi (10.1016/j.jclepro.2024.141465_bib25) 2017; 121
Merkel (10.1016/j.jclepro.2024.141465_bib63) 2017; 142
Staples (10.1016/j.jclepro.2024.141465_bib85) 2020
Mahajan (10.1016/j.jclepro.2024.141465_bib59) 2022; 15
Rosenow (10.1016/j.jclepro.2024.141465_bib74) 2022; 6
Seo (10.1016/j.jclepro.2024.141465_bib80) 2021; 14
(10.1016/j.jclepro.2024.141465_bib37) 2020
(10.1016/j.jclepro.2024.141465_bib30) 2022
Bolin (10.1016/j.jclepro.2024.141465_bib17) 2022
Dodd (10.1016/j.jclepro.2024.141465_bib31) 2022; 160
de Soto (10.1016/j.jclepro.2024.141465_bib29) 2006; 80
Buonocore (10.1016/j.jclepro.2024.141465_bib21) 2022; 12
(10.1016/j.jclepro.2024.141465_bib5) 2022
Brinsmead (10.1016/j.jclepro.2024.141465_bib18) 2014
Knobloch (10.1016/j.jclepro.2024.141465_bib51) 2019; 12
Nicholls (10.1016/j.jclepro.2024.141465_bib65) 2015; 159
Wilson (10.1016/j.jclepro.2024.141465_bib90) 2013; 61
Aunedi (10.1016/j.jclepro.2024.141465_bib9) 2022; 194
Duffie (10.1016/j.jclepro.2024.141465_bib32) 2013
Culley (10.1016/j.jclepro.2024.141465_bib27) 2022
Peterson (10.1016/j.jclepro.2024.141465_bib68) 2014
Davis (10.1016/j.jclepro.2024.141465_bib28) 2023
10.1016/j.jclepro.2024.141465_bib24
Petkov (10.1016/j.jclepro.2024.141465_bib69) 2022; 314
Knosala (10.1016/j.jclepro.2024.141465_bib52) 2022; 276
Stephan (10.1016/j.jclepro.2024.141465_bib86) 2017; 114
Aditya (10.1016/j.jclepro.2024.141465_bib2) 2020; 87
Heslop (10.1016/j.jclepro.2024.141465_bib44) 2019
Gabrielli (10.1016/j.jclepro.2024.141465_bib40) 2018; 219
Richarz (10.1016/j.jclepro.2024.141465_bib71) 2022; 238
Lu (10.1016/j.jclepro.2024.141465_bib58) 2017; 125
Huckebrink (10.1016/j.jclepro.2024.141465_bib45) 2022; 257
(10.1016/j.jclepro.2024.141465_bib88) 2018
Schütz (10.1016/j.jclepro.2024.141465_bib78) 2018; 129
Slorach (10.1016/j.jclepro.2024.141465_bib82) 2021; 230
Gallo Cassarino (10.1016/j.jclepro.2024.141465_bib41) 2022; 306
Wang (10.1016/j.jclepro.2024.141465_bib89) 2010; 45
10.1016/j.jclepro.2024.141465_bib34
(10.1016/j.jclepro.2024.141465_bib1) 2013
10.1016/j.jclepro.2024.141465_bib36
Lindberg (10.1016/j.jclepro.2024.141465_bib56) 2016; 127
Ashouri (10.1016/j.jclepro.2024.141465_bib8) 2013; 59
Sadler (10.1016/j.jclepro.2024.141465_bib75) 2016
(10.1016/j.jclepro.2024.141465_bib38) 2022
10.1016/j.jclepro.2024.141465_bib70
(10.1016/j.jclepro.2024.141465_bib23) 2022
Baldino (10.1016/j.jclepro.2024.141465_bib14) 2021
(10.1016/j.jclepro.2024.141465_bib12) 2021
Olympios (10.1016/j.jclepro.2024.141465_bib66) 2022; 262
Schütz (10.1016/j.jclepro.2024.141465_bib76) 2017; 139
(10.1016/j.jclepro.2024.141465_bib35) 2021
10.1016/j.jclepro.2024.141465_bib26
Spiller (10.1016/j.jclepro.2024.141465_bib84) 2023; 120
Longden (10.1016/j.jclepro.2024.141465_bib57) 2020
Fuller (10.1016/j.jclepro.2024.141465_bib39) 2011; 26
Bruce (10.1016/j.jclepro.2024.141465_bib19) 2018
References_xml – volume: 159
  start-page: 252
  year: 2015
  end-page: 264
  ident: bib65
  article-title: Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia
  publication-title: Appl. Energy
– volume: 160
  year: 2022
  ident: bib31
  article-title: Australian household adoption of solar photovoltaics: a comparative study of hardship and non-hardship customers
  publication-title: Energy Pol.
– reference: IEA - International Energy Agency: Tracking buildings 2021,
– volume: 99
  start-page: 313
  year: 2015
  end-page: 325
  ident: bib7
  article-title: Simplified performance models of photovoltaic/diesel generator/battery system considering typical control strategies
  publication-title: Energy Convers. Manag.
– year: 2022
  ident: bib27
  article-title: Where Are the Most Viable Locations for Bioenergy Hubs across Australia?
– year: 2021
  ident: bib4
  article-title: Hydrogen Market Study - Sector Analysis Summary
– year: 2014
  ident: bib68
  article-title: Climate Zone Mapping for Air Conditioners and Heat Pump Devices
– volume: 87
  year: 2020
  ident: bib2
  article-title: Environmental assessment of hybrid ground source heat pump systems
  publication-title: Geothermics
– year: 2013
  ident: bib32
  article-title: Solar Engineering of Thermal Processes
– volume: 238
  year: 2022
  ident: bib71
  article-title: Optimal scheduling of modernization measures for typical non-residential buildings
  publication-title: Energy
– volume: 238
  start-page: 972
  year: 2019
  end-page: 984
  ident: bib48
  article-title: Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant
  publication-title: Appl. Energy
– reference: . (accessed October 9, 2023).
– volume: 179
  start-page: 292
  year: 2018
  end-page: 300
  ident: bib55
  article-title: Seasonal variation in household electricity demand: a comparison of monitored and synthetic daily load profiles
  publication-title: Energy Build.
– volume: 121
  start-page: 676
  year: 2017
  end-page: 694
  ident: bib25
  article-title: Storing energy for cooling demand management in tropical climates: a techno-economic comparison between different energy storage technologies
  publication-title: Energy
– year: 2022
  ident: bib38
  article-title: Cost of Switching from Gas to Electric Appliances in the Home
– year: 2021
  ident: bib11
  article-title: Residential Electricity Price Trends 2021
– volume: 257
  year: 2022
  ident: bib45
  article-title: Decarbonising the residential heating sector: a techno-economic assessment of selected technologies
  publication-title: Energy
– year: 2022
  ident: bib17
  article-title: Building Decarbonization: How Electric Heat Pumps Could Help Reduce Emissions Today and Going Forward
– volume: 52
  start-page: 315
  year: 2021
  end-page: 332
  ident: bib53
  article-title: Residential solar panel adoption in Australia: spatial distribution and socioeconomic factors
  publication-title: Aust. Geogr.
– volume: 127
  start-page: 194
  year: 2016
  end-page: 205
  ident: bib56
  article-title: Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming
  publication-title: Energy Build.
– volume: 80
  start-page: 78
  year: 2006
  end-page: 88
  ident: bib29
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol. Energy
– volume: 120
  year: 2023
  ident: bib84
  article-title: The role of electricity tariff design in distributed energy resource deployment
  publication-title: Energy Econ.
– volume: 12
  year: 2022
  ident: bib21
  article-title: Inefficient building electrification will require massive buildout of renewable energy and seasonal energy storage
  publication-title: Sci. Rep.
– year: 2020
  ident: bib13
  article-title: Australian Energy Statistics 2020 - Energy Update Report
– volume: 139
  year: 2021
  ident: bib83
  article-title: Decarbonizing household heating: reviewing demographics, geography and low-carbon practices and preferences in five European countries
  publication-title: Renew. Sustain. Energy Rev.
– year: 2014
  ident: bib18
  article-title: Australian Electricity Market Analysis Report to 2020 and 2030
– year: 2021
  ident: bib87
  publication-title: Trina Solar. Vertex S - Monocrystalline Module Datasheet
– year: 2022
  ident: bib23
  article-title: Clean Energy Australia Report 2022
– volume: 306
  year: 2022
  ident: bib41
  article-title: Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors
  publication-title: Appl. Energy
– volume: 125
  start-page: 107
  year: 2017
  end-page: 117
  ident: bib58
  article-title: Economic analysis of vertical ground source heat pump systems in Melbourne
  publication-title: Energy
– volume: 43
  start-page: 143
  year: 2022
  end-page: 159
  ident: bib15
  article-title: Domestic heating with compact combination hybrids (gas boiler and heat pump): a simple English stock model of different heating system scenarios
  publication-title: Build. Serv. Eng. Res. Tecnol.
– year: 2022
  ident: bib30
  publication-title: Department of Climate Change Energy the Environment and Water, Australian Government. Australian Energy Statistics 2022 - Energy Update Report
– year: 2017
  ident: bib42
  article-title: Gas Price Trends Review 2017
– reference: (accessed September 26, 2022).
– volume: 194
  start-page: 1261
  year: 2022
  end-page: 1276
  ident: bib9
  article-title: Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen
  publication-title: Renew. Energy
– year: 2016
  ident: bib75
  article-title: Leeds City Gate - H21 Project Report
– year: 2022
  ident: bib64
  article-title: Net Zero Australia - Methods, Assumptions
– year: 2019
  ident: bib44
  article-title: Temporal Patterns of Residential Air Conditioning Consumption in Australia's Eastern Capital Cities
– year: 2021
  ident: bib33
  article-title: Agora Industry. 12 Insights on Hydrogen
– year: 2013
  ident: bib1
  article-title: Electricity Sector Emissions - Modelling of the Australian Electricity Generation Sector
– volume: 282
  year: 2021
  ident: bib72
  article-title: Decarbonising heat with optimal PV and storage investments: a detailed sector coupling modelling framework with flexible heat pump operation
  publication-title: Appl. Energy
– reference: Queensland Competition Authority: Solar feed-in tariffs in south-east Queensland 2021-22,
– year: 2018
  ident: bib88
  article-title: Updated Buildings Sector Appliance and Equipment Costs and Efficiencies
– volume: 230
  year: 2021
  ident: bib82
  article-title: Net zero in the heating sector: technological options and environmental sustainability from now to 2050
  publication-title: Energy Convers. Manag.
– volume: 14
  year: 2021
  ident: bib80
  article-title: Carbon footprint reduction through residential building stock retrofit: a metro Melbourne suburb case study
  publication-title: Energies
– reference: European Commission: Residential heating: heat pumps would knock down energy consumption and emissions,
– volume: 262
  year: 2022
  ident: bib66
  article-title: Delivering net-zero carbon heat: technoeconomic and whole-system comparisons of domestic electricity- and hydrogen-driven technologies in the UK
  publication-title: Energy Convers. Manag.
– volume: 314
  year: 2022
  ident: bib69
  article-title: MANGOret: an optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits
  publication-title: Appl. Energy
– volume: 43
  start-page: 3475
  year: 2011
  end-page: 3483
  ident: bib20
  article-title: On-site experimental testing of a novel dew point evaporative cooler
  publication-title: Energy Build.
– volume: 15
  year: 2022
  ident: bib59
  article-title: Hydrogen blending in gas pipeline networks—a review
  publication-title: Energies
– volume: 103
  start-page: 487
  year: 2016
  end-page: 501
  ident: bib60
  article-title: Household electricity demand profiles - a high-resolution load model to facilitate modelling of energy flexible buildings
  publication-title: Energy
– volume: 89
  start-page: 51
  year: 2018
  end-page: 60
  ident: bib79
  article-title: The national solar radiation data base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
– volume: 42
  year: 2020
  ident: bib3
  article-title: Comparative costs of ground source heat pump systems against other forms of heating and cooling for different climatic conditions
  publication-title: Sustain. Energy Technol. Assessments
– volume: 26
  start-page: 165
  year: 2011
  end-page: 183
  ident: bib39
  article-title: Impact of past and future residential housing development patterns on energy demand and related emissions
  publication-title: J. Hous. Built Environ.
– year: 2006
  ident: bib22
  article-title: Probability distributions of the aggregated residential load
  publication-title: 2006 9th International Conference on Probabilistic Methods Applied to Power Systems
– volume: 45
  start-page: 1663
  year: 2010
  end-page: 1682
  ident: bib89
  article-title: Assessment of climate change impact on residential building heating and cooling energy requirement in Australia
  publication-title: Build. Environ.
– year: 2020
  ident: bib85
  article-title: Focus on Blue Hydrogen (August 2020)
– year: 2020
  ident: bib62
  article-title: Gas Vision 2050 - Delivering a Clean Energy Future
– volume: 59
  start-page: 365
  year: 2013
  end-page: 376
  ident: bib8
  article-title: Optimal design and operation of building services using mixed-integer linear programming techniques
  publication-title: Energy
– year: 2021
  ident: bib47
  article-title: Net Zero by 2050 A Roadmap for the Global Energy Sector 2021:222
– volume: 12
  start-page: 521
  year: 2019
  end-page: 550
  ident: bib51
  article-title: Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5 °C
  publication-title: Energy Efficiency
– volume: 142
  start-page: 3151
  year: 2017
  end-page: 3173
  ident: bib63
  article-title: A model-based assessment of climate and energy targets for the German residential heat system
  publication-title: J. Clean. Prod.
– volume: 75
  start-page: 358
  year: 2014
  end-page: 367
  ident: bib61
  article-title: Estimating energy savings for the residential building stock of an entire city: a GIS-based statistical downscaling approach applied to Rotterdam
  publication-title: Energy Build.
– reference: (accessed October 10, 2023).
– volume: 219
  start-page: 408
  year: 2018
  end-page: 424
  ident: bib40
  article-title: Optimal design of multi-energy systems with seasonal storage
  publication-title: Appl. Energy
– volume: 276
  year: 2022
  ident: bib52
  article-title: The role of hydrogen in German residential buildings
  publication-title: Energy Build.
– volume: 185
  start-page: 88
  year: 2019
  end-page: 102
  ident: bib67
  article-title: Comparative analysis of thermal energy storage technologies through the definition of suitable key performance indicators
  publication-title: Energy Build.
– volume: 185
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib77
  article-title: Optimal design of energy conversion units and envelopes for residential building retrofits using a comprehensive MILP model
  publication-title: Appl. Energy
– year: 2021
  ident: bib12
  article-title: State of the Energy Market 2021
– volume: 12
  start-page: 712
  year: 2022
  end-page: 718
  ident: bib16
  article-title: Decarbonization pathways for the residential sector in the United States
  publication-title: Nat. Clim. Change
– reference: (accessed August 15, 2022).
– year: 2018
  ident: bib19
  article-title: National Hydrogen Roadmap
– volume: 6
  start-page: 2219
  year: 2022
  end-page: 2239
  ident: bib74
  article-title: Is heating homes with hydrogen all but a pipe dream? An evidence review
  publication-title: Joule
– volume: 129
  start-page: 570
  year: 2018
  end-page: 582
  ident: bib78
  article-title: Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis
  publication-title: Renew. Energy
– reference: CSIRO: Floor and Window Area,
– volume: 114
  start-page: 187
  year: 2017
  end-page: 202
  ident: bib86
  article-title: Quantifying and mapping embodied environmental requirements of urban building stocks
  publication-title: Build. Environ.
– year: 2022
  ident: bib5
  article-title: 2022 Integrated System Plan for the National Electricity Market
– reference: Clean Energy Regulator: Residential solar PV installation trends 2023,
– year: 2020
  ident: bib37
  article-title: Residential Energy Consumption Benchmarks
– volume: 139
  start-page: 895
  year: 2017
  end-page: 915
  ident: bib76
  article-title: Optimal design of energy conversion units for residential buildings considering German market conditions
  publication-title: Energy
– year: 2023
  ident: bib28
  article-title: Modelling Summary Report
– volume: 108
  start-page: 185
  year: 2015
  end-page: 194
  ident: bib43
  article-title: Evaluating the potential use of direct evaporative cooling in Australia
  publication-title: Energy Build.
– volume: 2013
  year: 2013
  ident: bib50
  article-title: Electricity demand characterization for analyzing residential LV distribution networks. 2013 IEEE Grenoble Conference PowerTech
  publication-title: Power
– year: 2021
  ident: bib54
  article-title: Cost of Hydrogen Analysis
– year: 2011
  ident: bib73
  article-title: Projections of Electricity Generation in Australia to 2050
– year: 2013
  ident: bib6
  article-title: The Evaluation of the 5-Star Energy Efficiency Standard for Residential Buildings
– reference: Australian Bureau of Statistics: TableBuilder,
– volume: 61
  start-page: 301
  year: 2013
  end-page: 305
  ident: bib90
  article-title: Historical daily gas and electrical energy flows through Great Britain's transmission networks and the decarbonisation of domestic heat
  publication-title: Energy Pol.
– reference: (accessed October 10, 2023).
– volume: 10
  year: 2019
  ident: bib81
  article-title: Decarbonizing space and water heating in temperate climates: the case for electrification
  publication-title: Atmosphere
– volume: 210
  start-page: 1051
  year: 2018
  end-page: 1072
  ident: bib49
  article-title: Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs
  publication-title: Appl. Energy
– year: 2021
  ident: bib14
  article-title: Hydrogen for Heating? Decarbonization Options for Households in the European Union in 2050
– reference: Essential Services Commission: Minimum feed-in tariff,
– year: 2020
  ident: bib57
  article-title: Green Hydrogen Production Costs in Australia: Implications of Renewable Energy and Electrolyser Costs - CCEP Working Paper 20-07
– year: 2021
  ident: bib35
  article-title: The Upfront Cost of Decarbonising Your Home
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib35
– year: 2013
  ident: 10.1016/j.jclepro.2024.141465_bib1
– ident: 10.1016/j.jclepro.2024.141465_bib46
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib27
– volume: 12
  start-page: 521
  year: 2019
  ident: 10.1016/j.jclepro.2024.141465_bib51
  article-title: Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5 °C
  publication-title: Energy Efficiency
  doi: 10.1007/s12053-018-9710-0
– ident: 10.1016/j.jclepro.2024.141465_bib36
– volume: 194
  start-page: 1261
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib9
  article-title: Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.05.145
– volume: 238
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib71
  article-title: Optimal scheduling of modernization measures for typical non-residential buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121871
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib4
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib64
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib11
– volume: 129
  start-page: 570
  year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib78
  article-title: Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.028
– volume: 87
  year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib2
  article-title: Environmental assessment of hybrid ground source heat pump systems
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2020.101868
– volume: 139
  start-page: 895
  year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib76
  article-title: Optimal design of energy conversion units for residential buildings considering German market conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.024
– volume: 257
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib45
  article-title: Decarbonising the residential heating sector: a techno-economic assessment of selected technologies
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124605
– ident: 10.1016/j.jclepro.2024.141465_bib24
– year: 2013
  ident: 10.1016/j.jclepro.2024.141465_bib32
– volume: 120
  year: 2023
  ident: 10.1016/j.jclepro.2024.141465_bib84
  article-title: The role of electricity tariff design in distributed energy resource deployment
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2022.106500
– year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib19
– volume: 45
  start-page: 1663
  year: 2010
  ident: 10.1016/j.jclepro.2024.141465_bib89
  article-title: Assessment of climate change impact on residential building heating and cooling energy requirement in Australia
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.01.022
– volume: 61
  start-page: 301
  year: 2013
  ident: 10.1016/j.jclepro.2024.141465_bib90
  article-title: Historical daily gas and electrical energy flows through Great Britain's transmission networks and the decarbonisation of domestic heat
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2013.05.110
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib47
– volume: 276
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib52
  article-title: The role of hydrogen in German residential buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112480
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib54
– volume: 125
  start-page: 107
  year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib58
  article-title: Economic analysis of vertical ground source heat pump systems in Melbourne
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.082
– year: 2019
  ident: 10.1016/j.jclepro.2024.141465_bib44
– volume: 12
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib21
  article-title: Inefficient building electrification will require massive buildout of renewable energy and seasonal energy storage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15628-2
– ident: 10.1016/j.jclepro.2024.141465_bib10
– volume: 219
  start-page: 408
  year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib40
  article-title: Optimal design of multi-energy systems with seasonal storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.142
– volume: 43
  start-page: 3475
  year: 2011
  ident: 10.1016/j.jclepro.2024.141465_bib20
  article-title: On-site experimental testing of a novel dew point evaporative cooler
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.09.013
– year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib42
– volume: 6
  start-page: 2219
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib74
  article-title: Is heating homes with hydrogen all but a pipe dream? An evidence review
  publication-title: Joule
  doi: 10.1016/j.joule.2022.08.015
– volume: 185
  start-page: 1
  year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib77
  article-title: Optimal design of energy conversion units and envelopes for residential building retrofits using a comprehensive MILP model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.049
– volume: 15
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib59
  article-title: Hydrogen blending in gas pipeline networks—a review
  publication-title: Energies
  doi: 10.3390/en15103582
– year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib88
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib5
– volume: 314
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib69
  article-title: MANGOret: an optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118901
– volume: 127
  start-page: 194
  year: 2016
  ident: 10.1016/j.jclepro.2024.141465_bib56
  article-title: Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.05.039
– volume: 59
  start-page: 365
  year: 2013
  ident: 10.1016/j.jclepro.2024.141465_bib8
  article-title: Optimal design and operation of building services using mixed-integer linear programming techniques
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.053
– year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib37
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib38
– year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib62
– volume: 179
  start-page: 292
  year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib55
  article-title: Seasonal variation in household electricity demand: a comparison of monitored and synthetic daily load profiles
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.09.018
– volume: 99
  start-page: 313
  year: 2015
  ident: 10.1016/j.jclepro.2024.141465_bib7
  article-title: Simplified performance models of photovoltaic/diesel generator/battery system considering typical control strategies
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.04.024
– volume: 121
  start-page: 676
  year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib25
  article-title: Storing energy for cooling demand management in tropical climates: a techno-economic comparison between different energy storage technologies
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.038
– volume: 14
  year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib80
  article-title: Carbon footprint reduction through residential building stock retrofit: a metro Melbourne suburb case study
  publication-title: Energies
  doi: 10.3390/en14206550
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib87
– year: 2011
  ident: 10.1016/j.jclepro.2024.141465_bib73
– volume: 238
  start-page: 972
  year: 2019
  ident: 10.1016/j.jclepro.2024.141465_bib48
  article-title: Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.090
– volume: 159
  start-page: 252
  year: 2015
  ident: 10.1016/j.jclepro.2024.141465_bib65
  article-title: Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.052
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib14
– year: 2016
  ident: 10.1016/j.jclepro.2024.141465_bib75
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib33
– volume: 262
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib66
  article-title: Delivering net-zero carbon heat: technoeconomic and whole-system comparisons of domestic electricity- and hydrogen-driven technologies in the UK
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115649
– volume: 185
  start-page: 88
  year: 2019
  ident: 10.1016/j.jclepro.2024.141465_bib67
  article-title: Comparative analysis of thermal energy storage technologies through the definition of suitable key performance indicators
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.12.019
– year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib13
– ident: 10.1016/j.jclepro.2024.141465_bib70
– year: 2014
  ident: 10.1016/j.jclepro.2024.141465_bib18
– ident: 10.1016/j.jclepro.2024.141465_bib34
– volume: 139
  year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib83
  article-title: Decarbonizing household heating: reviewing demographics, geography and low-carbon practices and preferences in five European countries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110703
– volume: 26
  start-page: 165
  year: 2011
  ident: 10.1016/j.jclepro.2024.141465_bib39
  article-title: Impact of past and future residential housing development patterns on energy demand and related emissions
  publication-title: J. Hous. Built Environ.
  doi: 10.1007/s10901-011-9212-2
– year: 2006
  ident: 10.1016/j.jclepro.2024.141465_bib22
  article-title: Probability distributions of the aggregated residential load
– volume: 306
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib41
  article-title: Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118051
– volume: 43
  start-page: 143
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib15
  article-title: Domestic heating with compact combination hybrids (gas boiler and heat pump): a simple English stock model of different heating system scenarios
  publication-title: Build. Serv. Eng. Res. Tecnol.
  doi: 10.1177/01436244211040449
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib30
– volume: 2013
  year: 2013
  ident: 10.1016/j.jclepro.2024.141465_bib50
  article-title: Electricity demand characterization for analyzing residential LV distribution networks. 2013 IEEE Grenoble Conference PowerTech
  publication-title: Power
– year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib57
– volume: 230
  year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib82
  article-title: Net zero in the heating sector: technological options and environmental sustainability from now to 2050
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.113838
– year: 2014
  ident: 10.1016/j.jclepro.2024.141465_bib68
– ident: 10.1016/j.jclepro.2024.141465_bib26
– volume: 75
  start-page: 358
  year: 2014
  ident: 10.1016/j.jclepro.2024.141465_bib61
  article-title: Estimating energy savings for the residential building stock of an entire city: a GIS-based statistical downscaling approach applied to Rotterdam
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.032
– volume: 80
  start-page: 78
  year: 2006
  ident: 10.1016/j.jclepro.2024.141465_bib29
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.06.010
– volume: 282
  year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib72
  article-title: Decarbonising heat with optimal PV and storage investments: a detailed sector coupling modelling framework with flexible heat pump operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116110
– year: 2023
  ident: 10.1016/j.jclepro.2024.141465_bib28
– year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib12
– year: 2013
  ident: 10.1016/j.jclepro.2024.141465_bib6
– volume: 12
  start-page: 712
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib16
  article-title: Decarbonization pathways for the residential sector in the United States
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-022-01429-y
– volume: 52
  start-page: 315
  year: 2021
  ident: 10.1016/j.jclepro.2024.141465_bib53
  article-title: Residential solar panel adoption in Australia: spatial distribution and socioeconomic factors
  publication-title: Aust. Geogr.
  doi: 10.1080/00049182.2021.1964161
– volume: 160
  year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib31
  article-title: Australian household adoption of solar photovoltaics: a comparative study of hardship and non-hardship customers
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2021.112674
– volume: 42
  year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib3
  article-title: Comparative costs of ground source heat pump systems against other forms of heating and cooling for different climatic conditions
  publication-title: Sustain. Energy Technol. Assessments
– volume: 10
  year: 2019
  ident: 10.1016/j.jclepro.2024.141465_bib81
  article-title: Decarbonizing space and water heating in temperate climates: the case for electrification
  publication-title: Atmosphere
  doi: 10.3390/atmos10080435
– year: 2020
  ident: 10.1016/j.jclepro.2024.141465_bib85
– volume: 114
  start-page: 187
  year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib86
  article-title: Quantifying and mapping embodied environmental requirements of urban building stocks
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.11.043
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib23
– volume: 108
  start-page: 185
  year: 2015
  ident: 10.1016/j.jclepro.2024.141465_bib43
  article-title: Evaluating the potential use of direct evaporative cooling in Australia
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.09.020
– volume: 142
  start-page: 3151
  year: 2017
  ident: 10.1016/j.jclepro.2024.141465_bib63
  article-title: A model-based assessment of climate and energy targets for the German residential heat system
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.10.153
– volume: 89
  start-page: 51
  year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib79
  article-title: The national solar radiation data base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.003
– year: 2022
  ident: 10.1016/j.jclepro.2024.141465_bib17
– volume: 210
  start-page: 1051
  year: 2018
  ident: 10.1016/j.jclepro.2024.141465_bib49
  article-title: Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.091
– volume: 103
  start-page: 487
  year: 2016
  ident: 10.1016/j.jclepro.2024.141465_bib60
  article-title: Household electricity demand profiles - a high-resolution load model to facilitate modelling of energy flexible buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.159
SSID ssj0017074
Score 2.4335546
Snippet Decarbonisation of building energy supply is key to achieving current targets of greenhouse gas emission reduction. However, the least-cost, net-zero supply of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141465
SubjectTerms Australia
batteries
biogas
case studies
climate
Decarbonisation
Distributed energy resource
electricity
Electrification
energy
greenhouse gas emissions
heat
Hydrogen
methane
natural gas
Net zero energy building
Optimisation
Title Least-cost solutions to household energy supply decarbonisation in temperate and sub-tropical climates
URI https://dx.doi.org/10.1016/j.jclepro.2024.141465
https://www.proquest.com/docview/3153631003
Volume 448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZVvCaNskmm-QoxVJfvWjB27JPbNGk1Hjw4m93Jo_6ABG8hbC7hJnJNzu7M98Qcha4LHLMGo8ZbGGmY9_LwI4gVHExlzKULsAC59sxH02iq4f4oUMGbS0MplU22F9jeoXWzZt-I83-fDrt3-EJFo9DjlmQGQRVWMEeJWjlvfdlmkeQ-DUTMx534ejPKp7-rDeDxQCoIEwMI8AMQI34N__0A6kr9zPcJBvNvpGe15-2RTo23ybrX9gEd4i7wT48ni5eSrq0KFoW9BGie4vXTNRWlX70BVt5vlFjtVyoIm8yeug0p8hUhTTLlsrcwDjllYtijoqk-mn6jBvTXTIZXtwPRl7TRsHTsBspPVCTzzJlAu6CRMbgslOXwSMLbSRjgxRzOtCJUzpJmUoDP0PSPmciIyWGH2yPrORFbvcJ5b4Ch55ZnigNkZVJTQKLSg0gYYJUsQMStcITuuEYx1YXT6JNJpuJRuYCZS5qmR-Q3nLavCbZ-GtC2mpGfLMWAY7gr6mnrSYF_El4PSJzC3oQDMCf430HO_z_8kdkLcSslyq355islItXewLbllJ1K7vsktXzy-vR-AMRhu6T
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsABsYodI3FNszjrESGqAoULReJmeRWtSlK14cCFb2cmS1kkhMQtSmwrmhm_mbFnIeTct1lomdEO09jCTEWek4Ecgatio1iIQFgfE5zv7uPeY3jzFD0tkMs2FwbDKhvsrzG9QuvmjdtQ050Mh-4DnmDFURBjFGQGTtUiWQ5h-2Ibg877PM7DT7y6FDOed-HwzzQed9QZwWqAVOAnBiGABsBG9JuC-gHVlf7pbpD1xnCkF_W_bZIFk2-RtS_lBLeJ7WMjHkcVs5LORYqWBX0G997gPRM1VaofnWEvzzeqjRJTWeRNSA8d5hRLVWGdZUNFrmGcdMppMUFOUjUevqBlukMeu1eDy57T9FFwFJgjpQN88lgmtR9bPxER6OzUZvDIAhOKSGONOeWrxEqVpEymvpdh1T6rQy0E-h9slyzlRW72CI09CRo9M3EiFbhWOtUJLCoUoIT2U8n2SdgSj6umyDj2uhjzNppsxBuac6Q5r2m-TzrzaZO6ysZfE9KWM_ybuHDQBH9NPWs5yWEr4f2IyA3wgTNA_xgvPNjB_5c_JSu9wV2f96_vbw_JKn6pAn2iI7JUTl_NMdgwpTypZPQDi67wKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Least-cost+solutions+to+household+energy+supply+decarbonisation+in+temperate+and+sub-tropical+climates&rft.jtitle=Journal+of+cleaner+production&rft.au=Vecchi%2C+Andrea&rft.au=Davis%2C+Dominic&rft.au=Brear%2C+Michael&rft.au=Aye%2C+Lu&rft.date=2024-04-05&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=448&rft_id=info:doi/10.1016%2Fj.jclepro.2024.141465&rft.externalDocID=S0959652624009132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon