Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance
Enhanced electromagnetic wave absorption through the unique hollow double shell structure and the synergistic effect of dielectric loss magnetic and loss. [Display omitted] •CoS2 coated with metal-doped carbon was prepared by a soft template method and wet impregnation method.•The double-layer hollo...
Saved in:
Published in | Journal of colloid and interface science Vol. 634; pp. 268 - 278 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enhanced electromagnetic wave absorption through the unique hollow double shell structure and the synergistic effect of dielectric loss magnetic and loss.
[Display omitted]
•CoS2 coated with metal-doped carbon was prepared by a soft template method and wet impregnation method.•The double-layer hollow shell structure is retained after the modification of metal nanoparticles.•Metal doping optimizes the electromagnetic wave loss mechanism of the material.•The RLmin is −48.90 dB at 2.23 mm, and the maximum Effective Absorption Bandwidth is 5.04 GHz at 1.98 mm.
Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS2 magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS2 microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of −48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties. |
---|---|
AbstractList | Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS₂ magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS₂ microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of −48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties. Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS2 magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS2 microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of -48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties.Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS2 magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS2 microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of -48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties. Enhanced electromagnetic wave absorption through the unique hollow double shell structure and the synergistic effect of dielectric loss magnetic and loss. [Display omitted] •CoS2 coated with metal-doped carbon was prepared by a soft template method and wet impregnation method.•The double-layer hollow shell structure is retained after the modification of metal nanoparticles.•Metal doping optimizes the electromagnetic wave loss mechanism of the material.•The RLmin is −48.90 dB at 2.23 mm, and the maximum Effective Absorption Bandwidth is 5.04 GHz at 1.98 mm. Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS2 magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS2 microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of −48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties. Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave absorption (EMW). However, it remains a technical challenge for achieving a balanced relationship between well-matched impedance characteristics and dielectric losses. Therefore, the co-modification strategies of polydopamine coating and wet impregnation are chosen to construct CoS magnetic double-shell microspheres with phase component modulation to achieve the optimized performance. Dopamine hydrochloride forms a coating on the surface of CoS microspheres by self-polymerization and forms a double-shell structure during the pyrolysis process. Then the different metal is doped to generate heterogeneous components in the process of heat treatment. The results show that the cobalt doped double-shell microspheres have an ultra-high electromagnetic wave absorption absorption capacity with an effective absorption bandwidth of 5.04 GHz (1.98 mm) and a minimum reflection loss value of -48.90 dB. The double-shell layer structure and metal ion hybridization can improve the interfacial polarization and magnetic loss behavior, which provides an explicit inspiration for the development of transition metal dichalcogenide and even transition metal compounds with tunable absorption properties. |
Author | Jia, Zirui Liu, Xuehua Liu, Jinkun Cao, Xiaolong Wu, Guanglei Zhu, Jiahui |
Author_xml | – sequence: 1 givenname: Xiaolong surname: Cao fullname: Cao, Xiaolong organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China – sequence: 2 givenname: Xuehua surname: Liu fullname: Liu, Xuehua organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China – sequence: 3 givenname: Jiahui surname: Zhu fullname: Zhu, Jiahui organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China – sequence: 4 givenname: Zirui surname: Jia fullname: Jia, Zirui email: jiazirui@qdu.edu.cn organization: College of Chemistry and Chemical Engineering, Qingdao University, Shandong, Qingdao 266071, PR China – sequence: 5 givenname: Jinkun surname: Liu fullname: Liu, Jinkun organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China – sequence: 6 givenname: Guanglei surname: Wu fullname: Wu, Guanglei email: wuguanglei@qdu.edu.cn, wuguanglei@mail.xjtu.edu.cn organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36535164$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQhS1URG8LL8ACeckmwXYS_0hsUMWfVKkbWFuOPaG-cuJgO63gLXhjfHtvNyzKahbznTOjcy7Q2RIXQOg1JS0llL_bt3vrc8sIYy1lLenlM7SjRA2NoKQ7QztCGG2UUOIcXeS8J4TSYVAv0HnHh26gvN-hPzdr8bMJeDWpeBsAO59L8uNWfFywX9xmwdVZIE3G-gMZg0n-tzkB-DaGEO-xi9sYoMm3EAK2cV5j9gUynmLCEMCWFGfzY4F6Bd-bu7oxY45pfbBZq3tMs1ksvETPJxMyvDrNS_T908dvV1-a65vPX68-XDe2k6o0IBklEtSolJgI56qfCMhRWDZNXV0QKSpHFXADozGu75nlnAoQRnA3jN0lenv0XVP8uUEuevbZ1ufNAnHLmsmuZzVTqf6PioFTxgY6VPTNCd3GGZxeU003_dKPiVdAHgGbYs4JJm19eciyJOODpkQfytV7fShXH8rVlOn6SJWyf6SP7k-K3h9FULO885B0th5qzs6nWop20T8l_wsaNMG6 |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_132207 crossref_primary_10_1007_s10854_023_11098_y crossref_primary_10_1016_j_jmst_2023_08_057 crossref_primary_10_1016_j_apt_2023_104247 crossref_primary_10_1016_j_carbon_2023_118035 crossref_primary_10_1016_j_jcis_2023_08_019 crossref_primary_10_1016_j_carbon_2023_118278 crossref_primary_10_1016_j_jmst_2024_08_018 crossref_primary_10_1021_acsanm_4c02498 crossref_primary_10_1016_j_mtphys_2023_101178 crossref_primary_10_1021_acs_iecr_4c04325 crossref_primary_10_1021_acsanm_3c04301 crossref_primary_10_1016_j_mtphys_2023_101215 crossref_primary_10_1016_j_jcis_2023_06_041 crossref_primary_10_1016_j_jallcom_2024_174813 crossref_primary_10_1016_j_ceramint_2023_09_031 crossref_primary_10_1021_acsanm_4c04190 crossref_primary_10_1039_D3TC01754K crossref_primary_10_1016_j_jmst_2024_04_007 crossref_primary_10_1016_j_jmst_2024_09_020 crossref_primary_10_3390_nano13152187 crossref_primary_10_1007_s40820_023_01179_2 crossref_primary_10_1016_j_jallcom_2023_168719 crossref_primary_10_1002_adsu_202300272 crossref_primary_10_1016_j_jmmm_2024_172259 crossref_primary_10_1016_j_materresbull_2024_112808 crossref_primary_10_1016_j_carbon_2024_119215 crossref_primary_10_1007_s42114_023_00792_4 crossref_primary_10_1016_j_materresbull_2024_112762 crossref_primary_10_1016_j_materresbull_2023_112621 crossref_primary_10_1016_j_xcrp_2024_102206 crossref_primary_10_1007_s40820_023_01212_4 crossref_primary_10_1016_j_jmrt_2023_06_082 crossref_primary_10_1007_s12274_023_6216_7 crossref_primary_10_1016_j_mtphys_2023_101184 crossref_primary_10_1016_j_jcis_2023_03_183 crossref_primary_10_1007_s12274_023_6084_1 crossref_primary_10_1002_smll_202304932 crossref_primary_10_1016_j_mseb_2024_117509 crossref_primary_10_1016_j_jallcom_2023_171594 crossref_primary_10_1007_s10854_023_11263_3 crossref_primary_10_20517_ss_2024_66 crossref_primary_10_1016_j_carbon_2023_03_021 crossref_primary_10_1016_j_jmst_2023_06_024 crossref_primary_10_1016_j_materresbull_2023_112630 crossref_primary_10_1016_j_coco_2024_101993 crossref_primary_10_1007_s12274_023_5687_x crossref_primary_10_1016_j_jmst_2023_06_066 crossref_primary_10_1016_j_jmst_2023_10_007 crossref_primary_10_1039_D3QM00584D crossref_primary_10_1016_j_carbon_2024_119594 crossref_primary_10_1016_j_ceramint_2024_09_016 crossref_primary_10_1016_j_jcis_2023_09_121 crossref_primary_10_1039_D3RA04890J crossref_primary_10_1016_j_colsurfa_2023_132218 crossref_primary_10_1016_j_jmst_2024_08_004 crossref_primary_10_1016_j_jcis_2023_05_197 crossref_primary_10_1016_j_jallcom_2024_177092 crossref_primary_10_1016_j_colsurfa_2023_131564 crossref_primary_10_1016_j_jmst_2023_08_060 crossref_primary_10_1016_j_mtphys_2023_101126 crossref_primary_10_1016_j_jmst_2023_08_020 crossref_primary_10_1002_smll_202305849 crossref_primary_10_26599_NR_2025_94907034 crossref_primary_10_1007_s40820_024_01527_w crossref_primary_10_1007_s12274_023_6160_6 crossref_primary_10_1007_s12274_023_6120_1 crossref_primary_10_1016_j_materresbull_2024_112672 crossref_primary_10_1016_j_ceramint_2023_07_075 crossref_primary_10_1016_j_jmst_2023_01_053 crossref_primary_10_1016_j_jmst_2023_11_023 crossref_primary_10_1007_s10854_023_11645_7 crossref_primary_10_1039_D4TC03287J |
Cites_doi | 10.1016/j.coco.2020.04.010 10.1002/adfm.201800761 10.1002/slct.202100792 10.1016/j.coco.2021.100653 10.1039/D1TA02785A 10.1016/j.carbon.2020.03.005 10.1016/j.compositesb.2020.108406 10.1016/j.compositesb.2020.107992 10.1016/j.compositesa.2022.106911 10.1002/adma.201503149 10.1002/adfm.201303273 10.1016/j.compositesb.2019.03.055 10.1002/adma.200306460 10.1016/j.mtphys.2018.06.005 10.1016/j.seppur.2020.117353 10.1016/j.cej.2019.122860 10.1016/j.compositesb.2019.107246 10.1016/j.compositesb.2020.107980 10.1016/j.compositesa.2019.105687 10.1021/acscatal.1c01223 10.1002/anie.202200705 10.1039/C7TC05869A 10.1007/s12274-022-4428-x 10.1007/s40820-021-00704-5 10.1016/j.jmst.2022.05.061 10.1021/acsami.7b06982 10.1007/s40820-021-00727-y 10.1016/j.cej.2019.122159 10.1002/aenm.201800935 10.1016/j.compscitech.2020.108246 10.1002/adma.202002112 10.1016/j.compositesb.2019.107417 10.3390/catal7090272 10.1002/cssc.201402161 10.1007/s42114-021-00415-w 10.1007/s40820-022-00920-7 10.1016/j.ceramint.2019.06.302 10.1039/D0TC01970D 10.1002/smll.202003502 10.1007/s40820-021-00767-4 10.1021/acssuschemeng.9b02100 10.1007/s42114-017-0008-z 10.1016/j.jmst.2021.06.021 10.1016/j.matchemphys.2020.122835 10.1021/acs.macromol.2c00491 10.1002/smll.202203609 10.1103/PhysRevB.62.357 10.1016/j.compscitech.2019.02.018 10.1016/j.cej.2020.124743 10.1007/s12274-022-4675-x 10.1016/j.jmst.2022.03.016 10.1016/j.electacta.2016.07.012 10.1016/j.jcis.2020.03.089 10.1016/j.jmst.2019.05.021 10.1039/D0TC00763C 10.1021/am500862g |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2022.12.048 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 278 |
ExternalDocumentID | 36535164 10_1016_j_jcis_2022_12_048 S0021979722021968 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-e82108e9b997f06694f0e8b7c2ff308e08738919e6aebaad442c6617e7a76d5b3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 06:36:12 EDT 2025 Fri Jul 11 02:06:55 EDT 2025 Mon Jul 21 05:48:28 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 04:18:58 EDT 2025 Fri Feb 23 02:38:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electromagnetic wave absorption Shell-shell structure Metal hybridization CoS2 hollow microspheres Wet impregnation CoS hollow microspheres |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-e82108e9b997f06694f0e8b7c2ff308e08738919e6aebaad442c6617e7a76d5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36535164 |
PQID | 2756122515 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2834204889 proquest_miscellaneous_2756122515 pubmed_primary_36535164 crossref_citationtrail_10_1016_j_jcis_2022_12_048 crossref_primary_10_1016_j_jcis_2022_12_048 elsevier_sciencedirect_doi_10_1016_j_jcis_2022_12_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-15 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhao, Li, Zeng, Wang, Ding, Zhang, Che (b0065) 2020; 16 Green, Liu, Smedley, Nawaz, Li, Huang, Chen (b0135) 2018; 5 Zhao, Wang, Cai, Sun, Hou, Wu, Bai, Wang (b0055) 2022; 9 Wang, Feng, Guan, Guo, Liu, Yan, Zhang, Gu (b0095) 2022; 157 Dai, Du, Yang, Wang, Gu, Li, Wang, Xu, Kong (b0200) 2019; 174 Zhao, Zhao, Lv (b0230) 2022 Zhang, Wang, Xiang, Su, Mu, Wen, Liu (b0175) 2017; 9 Chen, Wang, Shi, Wu, Lu (b0295) 2020; 163 Zhou, Jia, Feng, Kou, Cao, Liu, Wu (b0280) 2020; 192 Cao, Jia, Hu, Wu (b0080) 2022; 5 Ren, Wang, Zhang, He, Wu (b0145) 2022 Peng, Li, Tan, Cai, Shi, Li, Mhaisalkar, Srinivasan, Ramakrishna (b0215) 2014; 24 Wu, Liu, Liang, Zang (b0240) 2020; 393 Wang, Sun, Yang, Zhao, Zhang, Wang, Huang (b0070) 2021; 13 Liu, Gao, Liu, Huang, He, Li (b0185) 2020; 192 Wang, Jia, Liu, Dou, Xu, Wang, Wu (b0275) 2021; 13 Zhang, Wang, Cao, Wei, Liang, Guo, Cao (b0040) 2014; 6 Liao, Zhang, Guo, Zhao, Hill, Jiang, Zhao (b0155) 2017; 7 Feng, Yin, Zhang, Sun, Wang, Zhao, Lu, Gao, Zhang (b0195) 2022 Wu, Jia, Zhou, Nie, Lv (b0305) 2020; 128 Zhu, Zhang, Zheng, Xia, Nie, Zhang, Yan, Qi (b0260) 2020; 32 Jia, Gao, Feng, Zhang, Zhang, Nie, Wang, Wu (b0290) 2019; 176 Che, Peng, Duan, Chen, Liang (b0050) 2004; 16 Wang, Yao, Zheng, Cao (b0100) 2022; 15 Zeng, Li, Liu, Lin (b0180) 2021; 6 Liu, Gao, Wang, Zhou, Huang, Luo (b0235) 2020; 202 Yang, Fang, Xu, Cao, Zhang, Zhao, Huang, Wang, Lv, Che (b0205) 2022; 14 Wu, Darboe, Qi, Xie, Qin, Deng, Wu, Zhong (b0300) 2020; 8 Wang, Wang, Zhang, Gao (b0115) 2022; 103 Liu, Cao, Bi, Liang, Yuan, She, Yang, Che (b0120) 2016; 3 Yan, Zhang, Zhao, Sun, Zhang, Cao, Qin (b0010) 2020; 382 Chen, Shi, Wu, Lu (b0315) 2020; 572 Kwon, Youn, Min (b0160) 2000; 62 Kim, Lauterbach, Sasmaz (b0225) 2021; 11 Song, Liu, Qiu, Shi, Cao, Gu (b0030) 2021; 24 Ji, Mu, Wang, Su, Xiang, Nie, Cheng, Liu, Wen (b0170) 2020; 246 Zhao, Du, Yan, Rao, Chen, Yuan, Yang, Zhang, Che (b0005) 2022 Han, Wu, Deng, Liu, Lu, Zhong, Hu (b0245) 2018; 8 Dong, Tang, Hu, Zhao, Zhang, Han, Hu (b0265) 2019; 7 Zhang, Zhang, Cheng, Raza, Liu, Liu, Ba, Zheng, Chen, Cao (b0035) 2020; 8 Wang, Sun, Xin, Yang, Hu, Wang (b0045) 2023; 134 Du, Men, Li, Cheng, Zhao, Che (b0020) 2022 Guo, Qiu, Ruan, Zhang, Gu (b0105) 2022; 14 Zhu, Shen, Wang, Song, Wang (b0190) 2019; 378 Peng, Li, Mhaisalkar, Srinivasan, Ramakrishna, Yan (b0220) 2014; 7 Zhao, Wei, Zhang, Zhang (b0085) 2022; 126 Cao, Han, Wang, Zhang, Zhang, Shu, Yang, Fang, Yuan (b0075) 2018; 6 Su, Xiang, Wen, Song, Mu, Xu, Hao, Liu (b0165) 2016; 212 Wu, Qiao, Liu, Du, Xu, Liu (b0140) 2018; 1 Gao, Xu, Ma, Feng, Zhang, Liu, Jia, Wu (b0310) 2019; 179 Zhang, Zhu, Yin, Guo, Huang, Guo, Wang (b0150) 2018; 28 Zhang, Wang, Feng, Zhang, Jia, Huang, Liu, Wu (b0270) 2019; 167 Zhao, Jia, Zhang, Wu (b0090) 2022 Zhang, Li, Jin, Wu (b0125) 2022 Wang, Zhang, Wang, Duan, He, Wang, Li (b0130) 2019; 35 Lv, Zhou, Wu, Kara, Wang (b0015) 2021; 9 Wang, Cao, Cao, Yuan (b0025) 2020; 32 Zhao, Lu, Ye, Wang, Liu, Lv, Chen, Gu (b0250) 2019; 45 Chen, Fang, Gao, Gao, Sun, Li (b0210) 2020; 251 Ruan, Gu (b0110) 2022; 55 Shi, Yu, Li, Li, Dong, Zhu, Fu, Meng (b0255) 2020; 197 Jia, Gao, Kou, Feng, Zhang, Xu, Wu (b0285) 2020; 20 Ma, Xiang, Shao, Zhang, Gu (b0060) 2022; 61 Wang (10.1016/j.jcis.2022.12.048_b0070) 2021; 13 Zhao (10.1016/j.jcis.2022.12.048_b0230) 2022 Zhang (10.1016/j.jcis.2022.12.048_b0040) 2014; 6 Wu (10.1016/j.jcis.2022.12.048_b0240) 2020; 393 Zeng (10.1016/j.jcis.2022.12.048_b0180) 2021; 6 Dai (10.1016/j.jcis.2022.12.048_b0200) 2019; 174 Feng (10.1016/j.jcis.2022.12.048_b0195) 2022 Song (10.1016/j.jcis.2022.12.048_b0030) 2021; 24 Green (10.1016/j.jcis.2022.12.048_b0135) 2018; 5 Zhang (10.1016/j.jcis.2022.12.048_b0125) 2022 Kwon (10.1016/j.jcis.2022.12.048_b0160) 2000; 62 Gao (10.1016/j.jcis.2022.12.048_b0310) 2019; 179 Zhang (10.1016/j.jcis.2022.12.048_b0175) 2017; 9 Zhao (10.1016/j.jcis.2022.12.048_b0055) 2022; 9 Han (10.1016/j.jcis.2022.12.048_b0245) 2018; 8 Wang (10.1016/j.jcis.2022.12.048_b0115) 2022; 103 Kim (10.1016/j.jcis.2022.12.048_b0225) 2021; 11 Liu (10.1016/j.jcis.2022.12.048_b0120) 2016; 3 Dong (10.1016/j.jcis.2022.12.048_b0265) 2019; 7 Zhao (10.1016/j.jcis.2022.12.048_b0085) 2022; 126 Ji (10.1016/j.jcis.2022.12.048_b0170) 2020; 246 Yang (10.1016/j.jcis.2022.12.048_b0205) 2022; 14 Zhu (10.1016/j.jcis.2022.12.048_b0260) 2020; 32 Jia (10.1016/j.jcis.2022.12.048_b0285) 2020; 20 Peng (10.1016/j.jcis.2022.12.048_b0220) 2014; 7 Zhang (10.1016/j.jcis.2022.12.048_b0270) 2019; 167 Zhang (10.1016/j.jcis.2022.12.048_b0150) 2018; 28 Wu (10.1016/j.jcis.2022.12.048_b0300) 2020; 8 Wang (10.1016/j.jcis.2022.12.048_b0130) 2019; 35 Zhu (10.1016/j.jcis.2022.12.048_b0190) 2019; 378 Zhou (10.1016/j.jcis.2022.12.048_b0280) 2020; 192 Wang (10.1016/j.jcis.2022.12.048_b0100) 2022; 15 Zhao (10.1016/j.jcis.2022.12.048_b0065) 2020; 16 Peng (10.1016/j.jcis.2022.12.048_b0215) 2014; 24 Shi (10.1016/j.jcis.2022.12.048_b0255) 2020; 197 Zhang (10.1016/j.jcis.2022.12.048_b0035) 2020; 8 Wang (10.1016/j.jcis.2022.12.048_b0025) 2020; 32 Cao (10.1016/j.jcis.2022.12.048_b0080) 2022; 5 Ma (10.1016/j.jcis.2022.12.048_b0060) 2022; 61 Liao (10.1016/j.jcis.2022.12.048_b0155) 2017; 7 Wang (10.1016/j.jcis.2022.12.048_b0095) 2022; 157 Chen (10.1016/j.jcis.2022.12.048_b0295) 2020; 163 Wang (10.1016/j.jcis.2022.12.048_b0275) 2021; 13 Che (10.1016/j.jcis.2022.12.048_b0050) 2004; 16 Wu (10.1016/j.jcis.2022.12.048_b0140) 2018; 1 Chen (10.1016/j.jcis.2022.12.048_b0315) 2020; 572 Ruan (10.1016/j.jcis.2022.12.048_b0110) 2022; 55 Jia (10.1016/j.jcis.2022.12.048_b0290) 2019; 176 Wang (10.1016/j.jcis.2022.12.048_b0045) 2023; 134 Du (10.1016/j.jcis.2022.12.048_b0020) 2022 Chen (10.1016/j.jcis.2022.12.048_b0210) 2020; 251 Zhao (10.1016/j.jcis.2022.12.048_b0250) 2019; 45 Yan (10.1016/j.jcis.2022.12.048_b0010) 2020; 382 Wu (10.1016/j.jcis.2022.12.048_b0305) 2020; 128 Liu (10.1016/j.jcis.2022.12.048_b0185) 2020; 192 Su (10.1016/j.jcis.2022.12.048_b0165) 2016; 212 Liu (10.1016/j.jcis.2022.12.048_b0235) 2020; 202 Ren (10.1016/j.jcis.2022.12.048_b0145) 2022 Lv (10.1016/j.jcis.2022.12.048_b0015) 2021; 9 Cao (10.1016/j.jcis.2022.12.048_b0075) 2018; 6 Zhao (10.1016/j.jcis.2022.12.048_b0005) 2022 Guo (10.1016/j.jcis.2022.12.048_b0105) 2022; 14 Zhao (10.1016/j.jcis.2022.12.048_b0090) 2022 |
References_xml | – volume: 163 start-page: 202 year: 2020 end-page: 212 ident: b0295 article-title: One pot green synthesis and EM wave absorption performance of MoS publication-title: Carbon – volume: 5 start-page: 78 year: 2018 end-page: 86 ident: b0135 article-title: Graphitic carbon nitride nanosheets for microwave absorption publication-title: Mater. Today. Phys. – volume: 24 start-page: 2155 year: 2014 end-page: 2162 ident: b0215 article-title: MS publication-title: Adv. Funct. Mater. – year: 2022 ident: b0195 article-title: Innovative preparation of Co@CuFe publication-title: Int. J. Miner. Metall. Mater. – volume: 6 start-page: 4586 year: 2018 end-page: 4602 ident: b0075 article-title: Graphene nanohybrid: Excellent electromagnetic properties for electromagnetic wave absorbing and shielding publication-title: J. Mater. Chem. C – volume: 393 year: 2020 ident: b0240 article-title: Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption publication-title: Chem. Eng. J. – volume: 7 start-page: 272 year: 2017 ident: b0155 article-title: The Catalytic Hydrogenation of Maleic Anhydride on CeO publication-title: Catalysts – volume: 167 start-page: 690 year: 2019 end-page: 699 ident: b0270 article-title: Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers publication-title: Compos. Part B-Eng. – volume: 7 start-page: 11795 year: 2019 end-page: 11805 ident: b0265 article-title: Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 4344 year: 2021 end-page: 4353 ident: b0180 article-title: Hollow CoS publication-title: ChemistrySelect – volume: 174 start-page: 27 year: 2019 end-page: 32 ident: b0200 article-title: Recoverable and Self-healing Electromagnetic Wave Absorbing Nanocomposites publication-title: Compos. Sci. Technol. – volume: 45 start-page: 20282 year: 2019 end-page: 20289 ident: b0250 article-title: Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO publication-title: Ceram. Int. – volume: 55 start-page: 4134 year: 2022 end-page: 4145 ident: b0110 article-title: Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films publication-title: Macromolecules – volume: 35 start-page: 1931 year: 2019 end-page: 1939 ident: b0130 article-title: Synthesis and characterization of MoS publication-title: J. Mater. Sci. Technol. – volume: 202 year: 2020 ident: b0235 article-title: Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption publication-title: Compos. Part B-Eng. – volume: 8 start-page: 5923 year: 2020 end-page: 5933 ident: b0035 article-title: Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands publication-title: J. Mater. Chem. C – volume: 8 start-page: 11936 year: 2020 end-page: 11949 ident: b0300 article-title: Optimization, selective and efficient production of CNTs/CoxFe3-xO4 core/shell nanocomposites as outstanding microwave absorbers publication-title: J. Mater. Chem. C. – volume: 179 year: 2019 ident: b0310 article-title: Electrostatic self-assembly synthesis of ZnFe publication-title: Compos. Part B-Eng. – volume: 16 start-page: 2003502 year: 2020 ident: b0065 article-title: Galvanic Replacement Reaction Involving Core-Shell Magnetic Chains and Orientation-Tunable Microwave Absorption Properties publication-title: Small – volume: 378 year: 2019 ident: b0190 article-title: Paramagnetic CoS publication-title: Chem. Eng. J. – volume: 24 year: 2021 ident: b0030 article-title: MXenes for polymer matrix electromagnetic interference shielding composites: A review publication-title: Compos. Commun. – volume: 16 start-page: 401 year: 2004 end-page: 405 ident: b0050 article-title: Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes publication-title: Adv. Mater. – volume: 9 start-page: 7788 year: 2022 end-page: 7796 ident: b0055 article-title: Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO publication-title: Nano Res. – year: 2022 ident: b0090 article-title: Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption publication-title: Small – volume: 126 start-page: 141 year: 2022 end-page: 151 ident: b0085 article-title: 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption publication-title: J. Mater. Sci. Technol. – volume: 1 start-page: 149 year: 2018 end-page: 159 ident: b0140 article-title: Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads publication-title: Adv. Compos. Hybrid. Mater. – volume: 14 start-page: 26 year: 2022 ident: b0105 article-title: Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity publication-title: Nano-Micro Lett. – volume: 8 start-page: 1800935 year: 2018 ident: b0245 article-title: Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS publication-title: Adv. Energy Mater. – volume: 5 start-page: 1030 year: 2022 end-page: 1043 ident: b0080 article-title: Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption publication-title: Adv. Compos. Hybrid. Mater. – year: 2022 ident: b0230 article-title: Low-dimensional cobalt doped carbon composite toward wideband electromagnetic dissipation publication-title: Nano. Res. – year: 2022 ident: b0020 article-title: Electrostatic Adsorption Enables Layer Stacking Thickness-Dependent Hollow Ti publication-title: Small – volume: 9 start-page: 28868 year: 2017 end-page: 28875 ident: b0175 article-title: Microwave Absorption Properties of CoS publication-title: ACS Appl. Mater. Interfaces – volume: 128 year: 2020 ident: b0305 article-title: Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance publication-title: Compos. Part A-Appl S. – volume: 192 year: 2020 ident: b0185 article-title: Rational construction of hierarchical hollow CuS@CoS publication-title: Compos. Part B-Eng. – year: 2022 ident: b0125 article-title: Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review publication-title: Int. J. Miner. Metall. Mater. – volume: 572 start-page: 227 year: 2020 end-page: 235 ident: b0315 article-title: Design of molybdenum disulfide@ polypyrrole compsite decorated with Fe publication-title: J. Colloid. Interface. Sci. – volume: 212 start-page: 941 year: 2016 end-page: 949 ident: b0165 article-title: Microwave Synthesized Three-dimensional Hierarchical Nanostructure CoS publication-title: Electrochim. Acta – volume: 11 start-page: 8247 year: 2021 end-page: 8260 ident: b0225 article-title: Yolk-Shell Pt-NiCe@SiO publication-title: ACS Catal. – volume: 6 start-page: 7471 year: 2014 end-page: 7478 ident: b0040 article-title: Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 19710 year: 2021 end-page: 19718 ident: b0015 article-title: Engineering defects in 2D g-C publication-title: J. Mater. Chem. A – volume: 251 year: 2020 ident: b0210 article-title: Catalytic reduction of aqueous bromate by a non-noble metal catalyst of CoS publication-title: Sep. Purif. Technol. – volume: 192 year: 2020 ident: b0280 article-title: Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber publication-title: Compos. Part B-Eng. – volume: 3 start-page: 486 year: 2016 end-page: 490 ident: b0120 article-title: CoNi@SiO publication-title: Adv. Mater. – volume: 62 start-page: 357 year: 2000 end-page: 360 ident: b0160 article-title: Itinerant Ferromagnetism in Half-metallic CoS publication-title: Phys. Rev. B – year: 2022 ident: b0145 article-title: Efficient microwave absorption achieved through in situ construction of core-shell CoFe publication-title: Int. J. Miner. Metall. Mater. – volume: 246 year: 2020 ident: b0170 article-title: Facile preparation of CoS publication-title: Mater. Chem. Phys. – volume: 28 start-page: 1800761 year: 2018 ident: b0150 article-title: Tunable High-Performance Microwave Absorption of Co publication-title: Adv. Funct. Mater. – volume: 13 start-page: 206 year: 2021 ident: b0070 article-title: 3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption publication-title: Nano-Micro Lett. – volume: 14 start-page: 170 year: 2022 ident: b0205 article-title: One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption publication-title: Nano-Micro Lett. – volume: 176 year: 2019 ident: b0290 article-title: Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon publication-title: Compos. Part B-Eng. – volume: 103 start-page: 34 year: 2022 end-page: 41 ident: b0115 article-title: Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading publication-title: J. Mater. Sci. Technol. – year: 2022 ident: b0005 article-title: Structural Defects in Phase-Regulated High-Entropy Oxides toward Superior Microwave Absorption Propertie publication-title: Adv. Funct. Mater. – volume: 15 start-page: 6751 year: 2022 end-page: 6760 ident: b0100 article-title: Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding publication-title: Nano Res. – volume: 13 start-page: 175 year: 2021 ident: b0275 article-title: Construction of 1D Heterostructure NiCo@C/ZnO Nanorod with Enhanced Microwave Absorption publication-title: Nano-Micro Lett. – volume: 197 year: 2020 ident: b0255 article-title: Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption publication-title: Compos. Sci. Technol. – volume: 157 year: 2022 ident: b0095 article-title: Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like hetero-structured fillers publication-title: Compos. Part A-Appl S. – volume: 20 year: 2020 ident: b0285 article-title: Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3-y/RGO for high efficiency microwave absorption publication-title: Compos. Commun. – volume: 32 start-page: 2002112 year: 2020 ident: b0025 article-title: Assembling Nano-Microarchitecture for Electromagnetic Absorbers and Smart Devices publication-title: Adv. Mater. – volume: 7 start-page: 2212 year: 2014 end-page: 2220 ident: b0220 article-title: Hollow Nanospheres Constructed by CoS publication-title: ChemSusChem – volume: 382 year: 2020 ident: b0010 article-title: Wire-in-tube ZnO@carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption publication-title: Chem. Eng. J. – volume: 61 start-page: e202200705 year: 2022 ident: b0060 article-title: Multifunctional Wearable Silver Nanowire Decorated Leather Nanocomposites for Joule Heating, Electromagnetic Interference Shielding and Piezoresistive Sensing publication-title: Angew. Chem. Int. Edit. – volume: 32 start-page: 25782 year: 2020 end-page: 25794 ident: b0260 article-title: CoxSy/C@MoS2 nanofibers: synthesis, characterization and microwave absorption investigation publication-title: J Mater Sci: Mater Electron – volume: 134 start-page: 132 year: 2023 end-page: 141 ident: b0045 article-title: Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber publication-title: J. Mater. Sci. Technol. – volume: 20 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0285 article-title: Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3-y/RGO for high efficiency microwave absorption publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.04.010 – volume: 28 start-page: 1800761 year: 2018 ident: 10.1016/j.jcis.2022.12.048_b0150 article-title: Tunable High-Performance Microwave Absorption of Co1-xS Hollow Spheres Constructed by Nanosheets within Ultralow Filler Loading publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800761 – volume: 6 start-page: 4344 year: 2021 ident: 10.1016/j.jcis.2022.12.048_b0180 article-title: Hollow CoS2 Nanobubble Prisms Derived from ZIF-67 through Facile Two-Step Self-Engaged Method for Electromagnetic Wave Absorption publication-title: ChemistrySelect doi: 10.1002/slct.202100792 – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0005 article-title: Structural Defects in Phase-Regulated High-Entropy Oxides toward Superior Microwave Absorption Propertie publication-title: Adv. Funct. Mater. – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0090 article-title: Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption publication-title: Small – volume: 24 year: 2021 ident: 10.1016/j.jcis.2022.12.048_b0030 article-title: MXenes for polymer matrix electromagnetic interference shielding composites: A review publication-title: Compos. Commun. doi: 10.1016/j.coco.2021.100653 – volume: 9 start-page: 19710 year: 2021 ident: 10.1016/j.jcis.2022.12.048_b0015 article-title: Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02785A – volume: 163 start-page: 202 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0295 article-title: One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles publication-title: Carbon doi: 10.1016/j.carbon.2020.03.005 – volume: 202 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0235 article-title: Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2020.108406 – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0125 article-title: Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review publication-title: Int. J. Miner. Metall. Mater. – volume: 192 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0185 article-title: Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2020.107992 – volume: 157 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0095 article-title: Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like hetero-structured fillers publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2022.106911 – volume: 3 start-page: 486 year: 2016 ident: 10.1016/j.jcis.2022.12.048_b0120 article-title: CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 24 start-page: 2155 year: 2014 ident: 10.1016/j.jcis.2022.12.048_b0215 article-title: MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303273 – volume: 167 start-page: 690 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0270 article-title: Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.03.055 – volume: 16 start-page: 401 year: 2004 ident: 10.1016/j.jcis.2022.12.048_b0050 article-title: Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 5 start-page: 78 year: 2018 ident: 10.1016/j.jcis.2022.12.048_b0135 article-title: Graphitic carbon nitride nanosheets for microwave absorption publication-title: Mater. Today. Phys. doi: 10.1016/j.mtphys.2018.06.005 – volume: 251 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0210 article-title: Catalytic reduction of aqueous bromate by a non-noble metal catalyst of CoS2 hollow spheres in drinking water at room temperature publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117353 – volume: 382 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0010 article-title: Wire-in-tube ZnO@carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122860 – volume: 176 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0290 article-title: Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.107246 – volume: 192 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0280 article-title: Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2020.107980 – volume: 128 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0305 article-title: Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2019.105687 – volume: 11 start-page: 8247 year: 2021 ident: 10.1016/j.jcis.2022.12.048_b0225 article-title: Yolk-Shell Pt-NiCe@SiO2 Single-Atom-Alloy Catalysts for Low-Temperature Dry Reforming of Methane publication-title: ACS Catal. doi: 10.1021/acscatal.1c01223 – volume: 32 start-page: 25782 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0260 article-title: CoxSy/C@MoS2 nanofibers: synthesis, characterization and microwave absorption investigation publication-title: J Mater Sci: Mater Electron – volume: 61 start-page: e202200705 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0060 article-title: Multifunctional Wearable Silver Nanowire Decorated Leather Nanocomposites for Joule Heating, Electromagnetic Interference Shielding and Piezoresistive Sensing publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.202200705 – volume: 6 start-page: 4586 year: 2018 ident: 10.1016/j.jcis.2022.12.048_b0075 article-title: Graphene nanohybrid: Excellent electromagnetic properties for electromagnetic wave absorbing and shielding publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05869A – volume: 15 start-page: 6751 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0100 article-title: Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding publication-title: Nano Res. doi: 10.1007/s12274-022-4428-x – volume: 13 start-page: 175 year: 2021 ident: 10.1016/j.jcis.2022.12.048_b0275 article-title: Construction of 1D Heterostructure NiCo@C/ZnO Nanorod with Enhanced Microwave Absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00704-5 – volume: 134 start-page: 132 year: 2023 ident: 10.1016/j.jcis.2022.12.048_b0045 article-title: Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.05.061 – volume: 9 start-page: 28868 year: 2017 ident: 10.1016/j.jcis.2022.12.048_b0175 article-title: Microwave Absorption Properties of CoS2 Nanocrystals Embedded into Reduced Graphene Oxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06982 – volume: 13 start-page: 206 year: 2021 ident: 10.1016/j.jcis.2022.12.048_b0070 article-title: 3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00727-y – volume: 378 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0190 article-title: Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122159 – volume: 8 start-page: 1800935 year: 2018 ident: 10.1016/j.jcis.2022.12.048_b0245 article-title: Ultrafine Pt Nanoparticle-Decorated Pyrite-Type CoS2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800935 – volume: 197 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0255 article-title: Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108246 – volume: 32 start-page: 2002112 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0025 article-title: Assembling Nano-Microarchitecture for Electromagnetic Absorbers and Smart Devices publication-title: Adv. Mater. doi: 10.1002/adma.202002112 – volume: 179 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0310 article-title: Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.107417 – volume: 7 start-page: 272 year: 2017 ident: 10.1016/j.jcis.2022.12.048_b0155 article-title: The Catalytic Hydrogenation of Maleic Anhydride on CeO2-delta-Supported Transition Metal Catalysts publication-title: Catalysts doi: 10.3390/catal7090272 – volume: 7 start-page: 2212 year: 2014 ident: 10.1016/j.jcis.2022.12.048_b0220 article-title: Hollow Nanospheres Constructed by CoS2 Nanosheets with a Nitrogen-Doped-Carbon Coating for Energy-Storage and Photocatalysis publication-title: ChemSusChem doi: 10.1002/cssc.201402161 – volume: 5 start-page: 1030 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0080 article-title: Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-021-00415-w – volume: 14 start-page: 170 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0205 article-title: One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00920-7 – volume: 45 start-page: 20282 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0250 article-title: Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.302 – volume: 8 start-page: 11936 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0300 article-title: Optimization, selective and efficient production of CNTs/CoxFe3-xO4 core/shell nanocomposites as outstanding microwave absorbers publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC01970D – volume: 16 start-page: 2003502 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0065 article-title: Galvanic Replacement Reaction Involving Core-Shell Magnetic Chains and Orientation-Tunable Microwave Absorption Properties publication-title: Small doi: 10.1002/smll.202003502 – volume: 14 start-page: 26 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0105 article-title: Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00767-4 – volume: 7 start-page: 11795 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0265 article-title: Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b02100 – volume: 1 start-page: 149 year: 2018 ident: 10.1016/j.jcis.2022.12.048_b0140 article-title: Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-017-0008-z – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0195 article-title: Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorption publication-title: Int. J. Miner. Metall. Mater. – volume: 103 start-page: 34 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0115 article-title: Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.06.021 – volume: 246 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0170 article-title: Facile preparation of CoS2 nanoparticles embedded into polyaniline with tunable electromagnetic wave absorption performance publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.122835 – volume: 55 start-page: 4134 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0110 article-title: Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films publication-title: Macromolecules doi: 10.1021/acs.macromol.2c00491 – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0145 article-title: Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres publication-title: Int. J. Miner. Metall. Mater. – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0020 article-title: Electrostatic Adsorption Enables Layer Stacking Thickness-Dependent Hollow Ti3C2Tx MXene Bowls for Superior Electromagnetic Wave Absorption publication-title: Small doi: 10.1002/smll.202203609 – volume: 62 start-page: 357 year: 2000 ident: 10.1016/j.jcis.2022.12.048_b0160 article-title: Itinerant Ferromagnetism in Half-metallic CoS2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.357 – volume: 174 start-page: 27 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0200 article-title: Recoverable and Self-healing Electromagnetic Wave Absorbing Nanocomposites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.02.018 – volume: 393 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0240 article-title: Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124743 – year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0230 article-title: Low-dimensional cobalt doped carbon composite toward wideband electromagnetic dissipation publication-title: Nano. Res. – volume: 9 start-page: 7788 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0055 article-title: Electrospinning fabrication and ultra-wideband electromagnetic wave absorption properties of CeO2/N-doped carbon nanofibers publication-title: Nano Res. doi: 10.1007/s12274-022-4675-x – volume: 126 start-page: 141 year: 2022 ident: 10.1016/j.jcis.2022.12.048_b0085 article-title: 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.03.016 – volume: 212 start-page: 941 year: 2016 ident: 10.1016/j.jcis.2022.12.048_b0165 article-title: Microwave Synthesized Three-dimensional Hierarchical Nanostructure CoS2/MoS2 Growth on Carbon Fiber Cloth: A Bifunctional Electrode for Hydrogen Evolution Reaction and Supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.07.012 – volume: 572 start-page: 227 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0315 article-title: Design of molybdenum disulfide@ polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance publication-title: J. Colloid. Interface. Sci. doi: 10.1016/j.jcis.2020.03.089 – volume: 35 start-page: 1931 year: 2019 ident: 10.1016/j.jcis.2022.12.048_b0130 article-title: Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.05.021 – volume: 8 start-page: 5923 year: 2020 ident: 10.1016/j.jcis.2022.12.048_b0035 article-title: Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00763C – volume: 6 start-page: 7471 year: 2014 ident: 10.1016/j.jcis.2022.12.048_b0040 article-title: Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe2O4 Nanocomposites and Polyvinylidene Fluoride publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500862g |
SSID | ssj0011559 |
Score | 2.6263614 |
Snippet | Enhanced electromagnetic wave absorption through the unique hollow double shell structure and the synergistic effect of dielectric loss magnetic and loss.... Tunable designs of polymorphic structured transition metal dichalcogenide (TMDC) demonstrate promising applications in the field of electromagnetic wave... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 268 |
SubjectTerms | absorption cobalt CoS2 hollow microspheres dopamine electromagnetic radiation Electromagnetic wave absorption heat treatment hybridization magnetism Metal hybridization microparticles pyrolysis Shell-shell structure Wet impregnation |
Title | Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance |
URI | https://dx.doi.org/10.1016/j.jcis.2022.12.048 https://www.ncbi.nlm.nih.gov/pubmed/36535164 https://www.proquest.com/docview/2756122515 https://www.proquest.com/docview/2834204889 |
Volume | 634 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcELQ8WmhlJG6V6cZ2bOdYraiWVi0XKvVm2bGDttom0T7ojf_Qf8xM4ixUgj1wS-KxZHucedjfzBDy0ZXCjJwpWABtzaTynhnPM5Z70GegvkTkGO98eaUm1_L8Jr_ZIuMhFgZhlUn29zK9k9bpy0lazZN2OsUYX_jbdKE5xweFAb9Satzln36uYR4ZXrv1MI-MIXUKnOkxXrflFFN2c94dCWINoL8rp38Zn50SOntBnifrkZ72A3xJtmK9S3bGQ9G2XfLsj_yCe-ThKwiEO-jQpinRgHSpxBUFdxwYGyimjJhXDg_PaYuuborNhAYKwnHW3NPQrPwssgXCRinC0BHrFRcUTF6aKuncue81RkTSe_cDWpxfNPNOHtH2d3DCK3J99vnbeMJSDQYGTCyWLBrwCU0sfFHoCsyTQlajaLwueVUJaBgZjTedRVQueueClLwEla-jdlqF3IvXZLtu6viWUOieldw4b4yXKgQXKi-UdNqUChOF7ZNsWHxbpgTlWCdjZgck2q1FhllkmM24BYbtk-N1n7ZPz7GROh94ah9tMgv6Y2O_D8MGsMBPvFJxdWxWQKSxuijYiPkGGiMkpkc2MMM3_e5Zj1WoXOTgsR7858jekafwJhAUl-XvyfZyvoqHYCUt_VH3GxyRJ6dfLiZXvwBYCxTW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOFRQo5WkkOKHQje3YzoEDKlRb-uDSSr0ZO3bQVtsk2kdXXPgP_Bb-IDOJs4AEe0DqLYrHkeOx52F_M0PIS1twPbA6Tzxo60RI5xLtWJpkDvQZqC8eGMY7H5_I4Zn4eJ6dr5EffSwMwiqj7O9keiut45vdOJu7zWiEMb6w21SuGMMHqSOy8jB8XYDfNn178B6Y_Iqx_Q-ne8MklhZIYGz5LAkaXB0dcpfnqgStm4tyELRTBStLDg0DrfACLw_SBmetF4IVoMlUUFZJnzkO371BbgoQF1g24c23Ja4kxXu-DleSJji8GKnTgcouihHmCGesPYPEokN_14b_snZbrbd_h2xGc5W-62bkLlkL1RbZ2OurxG2R278lNLxHvn8CCXQJHZo4h9QjXaypRcH_h5XkKeaomJQWT-tpg751DAaFBgrSeFwvqK_nbhySKeJUKeLeEVwWphRsbBpL91zaLxWGYNKFvYIW66b1pBWAtPkVDXGfnF0LZx6Q9aquwkNCoXtaMG2d1k5I760vHZfCKl1IzEy2Q9J-8k0RM6JjYY6x6aFvFwYZZpBhJmUGGLZDXi_7NF0-kJXUWc9T88eqNqCwVvZ70S8AA_zEOxxbhXoORArLmYJRmq2g0VxgPmYNf7jdrZ7lWLnMeAYu8qP_HNlzsjE8PT4yRwcnh4_JLWjhiMhLsydkfTaZh6dgos3cs3ZLUPL5uvfgT3jkUDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+particle+distribution+induced+interfacial+polarization+in+hollow+double-shell+composites+for+electromagnetic+waves+absorption+performance&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Cao%2C+Xiaolong&rft.au=Liu%2C+Xuehua&rft.au=Zhu%2C+Jiahui&rft.au=Jia%2C+Zirui&rft.date=2023-03-15&rft.issn=0021-9797&rft.volume=634+p.268-278&rft.spage=268&rft.epage=278&rft_id=info:doi/10.1016%2Fj.jcis.2022.12.048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |