Molecular networks in skeletal muscle plasticity
The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumptio...
Saved in:
Published in | Journal of experimental biology Vol. 219; no. 2; pp. 205 - 213 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0949 1477-9145 |
DOI | 10.1242/jeb.128207 |
Cover
Loading…
Abstract | The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events. |
---|---|
AbstractList | The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events. The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events. |
Author | Hoppeler, Hans |
Author_xml | – sequence: 1 givenname: Hans surname: Hoppeler fullname: Hoppeler, Hans organization: Emeritus Department of Anatomy, University of Bern, Baltzerstrasse 2, Bern 9 CH-3000, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26792332$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtLxDAUhYOMOA_d-AOkSxGqSZo07VKG8QEjbnQdkvQWMpO2Y5Ii8--NzMxGvJtzF985cM4cTfqhB4SuCb4nlNGHDej0VBSLMzQjTIi8JoxP0AxjSnNcs3qK5iFscLqSsws0paWoaVHQGcJvgwMzOuWzHuL34Lchs30WtuAgKpd1YzAOsp1TIVpj4_4SnbfKBbg66gJ9Pq0-li_5-v35dfm4zk1R1TFvWl6xRguodKUUCAKaCwGk5qUWpKRcgNK6VQ0WJau0UJiVQCljFJuENMUC3R5yd374GiFE2dlgwDnVwzAGSUSJayJoxRN6c0RH3UEjd952yu_lqWUC8AEwfgjBQytTExXt0EevrJMEy98hZRpSHoZMlrs_llPqP_APPWBy1Q |
CitedBy_id | crossref_primary_10_1152_physiolgenomics_00018_2023 crossref_primary_10_1016_j_pharmthera_2018_10_004 crossref_primary_10_1242_jeb_163840 crossref_primary_10_1242_jcs_258349 crossref_primary_10_3389_fevo_2021_685764 crossref_primary_10_3390_sports13030074 crossref_primary_10_1016_j_orthtr_2020_07_008 crossref_primary_10_1016_j_bbadis_2017_09_018 crossref_primary_10_3390_biomedicines10020507 crossref_primary_10_1080_10495398_2022_2046599 crossref_primary_10_3389_fphys_2022_838004 crossref_primary_10_1016_j_arr_2020_101200 crossref_primary_10_1111_apha_12898 crossref_primary_10_1007_s12662_017_0473_0 crossref_primary_10_3390_nu11040892 crossref_primary_10_1016_j_xcrm_2020_100122 crossref_primary_10_3389_fnut_2020_580918 crossref_primary_10_3389_fphys_2021_706128 crossref_primary_10_1016_j_yfrne_2023_101101 crossref_primary_10_1519_JSC_0000000000002629 crossref_primary_10_3389_fnins_2018_00171 crossref_primary_10_3389_fphys_2021_619710 crossref_primary_10_1113_JP278478 crossref_primary_10_20463_pan_2020_0010 crossref_primary_10_5334_1750_2187_12_3 crossref_primary_10_1139_apnm_2019_0829 crossref_primary_10_52711_0974_360X_2024_00786 crossref_primary_10_1515_hsz_2022_0165 crossref_primary_10_3389_fphys_2023_1281702 crossref_primary_10_1016_j_nut_2022_111629 crossref_primary_10_29254_2077_4214_2018_4_2_147_15_22 crossref_primary_10_3390_proteomes4030027 crossref_primary_10_1080_14789450_2016_1209416 crossref_primary_10_1111_apha_13630 crossref_primary_10_1016_j_mam_2024_101319 crossref_primary_10_3389_fphys_2022_892749 crossref_primary_10_3390_metabo11080517 crossref_primary_10_3390_ijms24054730 crossref_primary_10_3389_fphys_2019_00843 crossref_primary_10_1177_0363546520959327 crossref_primary_10_1186_s40798_022_00513_z crossref_primary_10_5604_01_3001_0014_7767 crossref_primary_10_1007_s00424_020_02353_w crossref_primary_10_1016_j_exger_2017_03_014 crossref_primary_10_1016_j_jnutbio_2019_108297 crossref_primary_10_1016_j_molmet_2022_101555 crossref_primary_10_1016_j_numecd_2021_01_006 crossref_primary_10_1139_apnm_2024_0012 crossref_primary_10_14302_issn_2578_8590_ipj_18_2441 crossref_primary_10_1016_j_pharmthera_2017_02_029 crossref_primary_10_1016_j_freeradbiomed_2024_07_026 crossref_primary_10_20463_pan_2024_0013 crossref_primary_10_1007_s40141_016_0130_9 crossref_primary_10_1111_apha_12830 crossref_primary_10_3389_fphys_2016_00483 crossref_primary_10_1016_j_yexcr_2019_111672 crossref_primary_10_3390_nu11051072 crossref_primary_10_1016_j_smhs_2024_10_002 crossref_primary_10_1093_gerona_gly051 crossref_primary_10_1139_cjpp_2019_0609 crossref_primary_10_1093_hmg_ddy254 crossref_primary_10_1242_jeb_164327 crossref_primary_10_1038_s41467_022_29472_5 crossref_primary_10_3390_cells8040289 crossref_primary_10_1113_JP272559 crossref_primary_10_1186_s13293_022_00471_x crossref_primary_10_1021_acs_jafc_3c02023 crossref_primary_10_1371_journal_pcbi_1008079 crossref_primary_10_1002_jcp_29535 crossref_primary_10_1002_jcp_31290 crossref_primary_10_1186_s12986_018_0302_y crossref_primary_10_1186_s40798_023_00654_9 crossref_primary_10_1016_j_aqrep_2022_101322 crossref_primary_10_1590_s1980_657420220017721 crossref_primary_10_1016_j_freeradbiomed_2024_08_013 crossref_primary_10_7717_peerj_12720 crossref_primary_10_1080_17461391_2018_1526974 crossref_primary_10_1123_jpah_2019_0134 crossref_primary_10_3390_app14135445 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1152_japplphysiol_00321_2020 crossref_primary_10_1080_02640414_2018_1480052 crossref_primary_10_1111_eci_13515 crossref_primary_10_1080_10495398_2020_1763375 crossref_primary_10_1016_j_aquaculture_2019_734835 crossref_primary_10_3389_fphys_2021_668123 crossref_primary_10_1016_j_yexcr_2021_112865 crossref_primary_10_1371_journal_pone_0177679 crossref_primary_10_1007_s12010_022_03923_7 crossref_primary_10_1186_s13063_016_1735_0 crossref_primary_10_3390_ijms22052741 crossref_primary_10_1016_j_jacbts_2019_03_012 crossref_primary_10_3389_fphys_2017_00337 crossref_primary_10_1016_j_aquaculture_2024_740956 crossref_primary_10_1038_s42255_020_0241_6 crossref_primary_10_1016_j_molmet_2022_101504 crossref_primary_10_3233_JND_210713 crossref_primary_10_1113_EP086964 crossref_primary_10_1016_j_psj_2024_104384 crossref_primary_10_1111_apha_13557 crossref_primary_10_1152_japplphysiol_00898_2018 crossref_primary_10_1016_j_bbadis_2018_06_002 crossref_primary_10_3389_fvets_2023_1284551 crossref_primary_10_3390_ijerph18094837 crossref_primary_10_1016_j_freeradbiomed_2020_10_001 crossref_primary_10_1002_wrna_1700 crossref_primary_10_1007_s40279_024_02067_4 crossref_primary_10_1242_jeb_125104 crossref_primary_10_1007_s00213_018_5041_2 crossref_primary_10_1007_s40279_019_01070_4 crossref_primary_10_1093_hmg_ddy071 crossref_primary_10_7554_eLife_44876 crossref_primary_10_1007_s00421_022_04896_5 crossref_primary_10_1139_apnm_2022_0005 crossref_primary_10_1186_s12944_022_01692_0 crossref_primary_10_1007_s00424_018_2210_4 crossref_primary_10_1038_s41598_024_74913_4 crossref_primary_10_1016_j_apunts_2018_09_003 crossref_primary_10_3390_ijms26062395 crossref_primary_10_3390_biomedicines12091975 crossref_primary_10_1152_japplphysiol_00995_2020 crossref_primary_10_1152_physrev_00017_2022 crossref_primary_10_3390_cells12162088 crossref_primary_10_1007_s13105_021_00802_3 crossref_primary_10_1093_icb_icaa056 crossref_primary_10_1093_ptj_pzac169 crossref_primary_10_1371_journal_pone_0239428 crossref_primary_10_3390_nu11051154 crossref_primary_10_31680_gaunjss_960079 crossref_primary_10_1101_cshperspect_a029835 crossref_primary_10_3390_muscles2010008 crossref_primary_10_1007_s00125_017_4451_8 crossref_primary_10_1371_journal_pone_0198969 crossref_primary_10_1371_journal_pone_0255178 crossref_primary_10_1007_s00421_018_4039_0 crossref_primary_10_1242_jeb_246897 |
Cites_doi | 10.1007/BF00214693 10.1111/j.1753-4887.2009.00185.x 10.1152/physrev.00043.2011 10.1371/journal.pone.0063970 10.2741/4298 10.1152/ajplegacy.1967.213.3.783 10.1371/journal.pone.0003614 10.1002/cphy.c100054 10.1113/jphysiol.2004.065904 10.1249/01.MSS.0000069336.30649.BD 10.1016/b978-0-12-394624-9.00004-x 10.1042/BST20140197 10.1055/s-2008-1025758 10.1242/jeb.027888 10.1152/ajpendo.00541.2012 10.1113/jphysiol.2002.034850 10.1055/s-2008-1025748 10.1016/j.phrs.2015.05.010 10.1016/j.cmet.2015.05.010 10.1152/ajpregu.00335.2007 10.1016/j.cell.2012.01.021 10.1016/j.metabol.2014.01.006 10.1083/jcb.201310035 10.1016/j.ejcb.2014.07.002 10.1093/icb/icu098 10.1210/jc.2006-0357 10.1152/japplphysiol.00575.2007 10.1242/jeb.02660 10.1152/japplphysiol.00765.2003 10.1007/s00421-013-2783-8 10.2165/11317920-000000000-00000 10.1371/journal.pone.0041817 10.1152/ajpendo.00525.2011 10.1113/eph8602158doi:10.1111/joa.12101 10.1152/jappl.1985.59.2.320 10.1152/jappl.1994.77.6.2519 10.1007/978-1-60327-469-2_1 10.1111/j.1600-0838.2008.00831.x 10.1152/physrev.1956.36.3.307 10.3748/wjg.v20.i40.14660 10.1007/s00125-015-3671-z 10.1161/CIRCRESAHA.115.303829 10.1152/ajpregu.00036.2013 10.1016/j.cell.2012.10.050 10.1016/j.biocel.2013.06.011 10.1097/MCO.0b013e3283455d7a 10.3945/ajcn.2010.29819 10.1038/nrd4467 10.1016/j.tem.2015.02.009 10.1007/s10254-002-0004-7 10.1152/jappl.1998.85.6.2025 10.1016/j.plipres.2013.12.001 10.1007/s00421-003-0872-9 10.1016/j.bbagrm.2015.01.002 10.1007/s40279-014-0177-7 10.1007/BF00581484 10.1152/ajpendo.00006.2015 10.1096/fj.12-224618 10.1007/s00421-009-1032-7 10.1038/ng.2772 10.1113/jphysiol.2004.080564 10.1042/bse0420013 10.1074/jbc.M207217200 10.1007/s004210100471 10.1139/H09-042 10.1111/febs.13175 10.1113/jphysiol.2011.212860 10.1016/j.biocel.2013.05.036 10.1242/jeb.072868 10.1007/s00018-014-1689-x 10.1242/jeb.202.20.2831 10.1073/pnas.0711074105 10.1152/jappl.1990.68.6.2369 10.1007/s00424-007-0423-z 10.1002/cphy.c100042 10.1159/000350259 10.1249/MSS.0b013e31824e0d5d 10.1016/S0021-9258(18)96046-1 10.3389/fphys.2013.00284 10.1152/ajpcell.1995.269.3.C619 10.1055/s-2007-972722 10.1111/joa.12101 |
ContentType | Journal Article |
Copyright | 2016. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2016. Published by The Company of Biologists Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1242/jeb.128207 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9145 |
EndPage | 213 |
ExternalDocumentID | 26792332 10_1242_jeb_128207 |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -~X 0R~ 186 18M 2WC 34G 39C 4.4 5GY 5RE 5VS AAFWJ AAYXX ABDNZ ABPPZ ABRJW ACGFS ACIWK ACNCT ACPRK ADBBV ADVGF AEILP AENEX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ H~9 INIJC KQ8 N9A O9- OK1 P2P PQQKQ RCB RHI RXW S10 SJN TAE TN5 TR2 TWZ UKR UPT W8F WH7 WOQ XJT XSW YQT YR2 YVO YZZ ZCA ~02 .55 .GJ 3O- 53G 6TJ AAUTI AAYJJ ABJNI ABTAH ACPVT ACYGS AETEA AFFNX AGCDD AI. C1A CGR CUY CVF ECM EIF MVM NPM OHT UBC VH1 X7M XOL ZGI ZXP ZY4 7X8 |
ID | FETCH-LOGICAL-c389t-df584db7e8b8aae71eb577e1956b716257eabbfad07648b7a046e224420c56bd3 |
ISSN | 0022-0949 |
IngestDate | Fri Sep 05 04:36:46 EDT 2025 Thu Apr 03 07:09:39 EDT 2025 Tue Jul 01 02:59:58 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Mitochondria Pathways Capillary Endurance Molecular Myofibrils Skeletal muscle Strength |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2016. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-df584db7e8b8aae71eb577e1956b716257eabbfad07648b7a046e224420c56bd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://jeb.biologists.org/content/jexbio/219/2/205.full.pdf |
PMID | 26792332 |
PQID | 1760917285 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1760917285 pubmed_primary_26792332 crossref_citationtrail_10_1242_jeb_128207 crossref_primary_10_1242_jeb_128207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 2016-Jan 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of experimental biology |
PublicationTitleAlternate | J Exp Biol |
PublicationYear | 2016 |
References | Mounier (2021042522392486600_JEB128207C55) 2015; 26 Tipton (2021042522392486600_JEB128207C80) 2013; 76 Phillips (2021042522392486600_JEB128207C60) 2009; 34 Steiner (2021042522392486600_JEB128207C75) 2015; 308 St-Pierre (2021042522392486600_JEB128207C76) 2002; 277 Nakamura (2021042522392486600_JEB128207C57) 2014; 53 Baldwin (2021042522392486600_JEB128207C3) 2013; 4 Astrand (2021042522392486600_JEB128207C1) 1956; 36 Atherton (2021042522392486600_JEB128207C2) 2010; 92 Zbinden-Foncea (2021042522392486600_JEB128207C85) 2012; 44 Cohen (2021042522392486600_JEB128207C11) 2015; 14 Scott (2021042522392486600_JEB128207C72) 2014; 44 Hoppeler (2021042522392486600_JEB128207C31) 1988; 3 Klossner (2021042522392486600_JEB128207C42) 2009; 106 Yin (2021042522392486600_JEB128207C84) 2013; 93 Kadi (2021042522392486600_JEB128207C39) 2004; 558 Dutt (2021042522392486600_JEB128207C18) 2015; 99 Martínez-Redondo (2021042522392486600_JEB128207C48) 2015; 58 Howald (2021042522392486600_JEB128207C35) 2003; 90 Holloszy (2021042522392486600_JEB128207C29) 1967; 242 Reichmann (2021042522392486600_JEB128207C65) 1985; 404 Kannisto (2021042522392486600_JEB128207C40) 2006; 17 Desplanches (2021042522392486600_JEB128207C14) 1997; 18 van den Berg (2021042522392486600_JEB128207C81) 2011; 14 Hoppeler (2021042522392486600_JEB128207C33) 2008; 18 Tavi (2021042522392486600_JEB128207C78) 2011; 589 Pierce (2021042522392486600_JEB128207C61) 2014; 54 Bellinger (2021042522392486600_JEB128207C6) 2008; 105 Lüthi (2021042522392486600_JEB128207C46) 1986; 7 Sinha-Hikim (2021042522392486600_JEB128207C74) 2006; 91 Lindholm (2021042522392486600_JEB128207C45) 2014; 307 Norrbom (2021042522392486600_JEB128207C58) 2004; 96 Semenza (2021042522392486600_JEB128207C73) 2012; 148 Hoppeler (2021042522392486600_JEB128207C30) 1986; 7 Desplanches (2021042522392486600_JEB128207C15) 2014; 114 Rodriguez (2021042522392486600_JEB128207C66) 2014; 71 Bodine (2021042522392486600_JEB128207C8) 2013; 45 Dodd (2021042522392486600_JEB128207C17) 2012; 302 Janoštiak (2021042522392486600_JEB128207C37) 2014; 93 Masuda (2021042522392486600_JEB128207C50) 2001; 85 Goldmann (2021042522392486600_JEB128207C23) 2014; 126 Vogt (2021042522392486600_JEB128207C83) 2003; 35 Egginton (2021042522392486600_JEB128207C20) 1998; 85 Rowe (2021042522392486600_JEB128207C68) 2014; 115 Hoppeler (2021042522392486600_JEB128207C34) 2011; 1 Mortensen (2021042522392486600_JEB128207C54) 2007; 103 Pattengale (2021042522392486600_JEB128207C59) 1967; 213 Hoppeler (2021042522392486600_JEB128207C32) 1985; 59 Joseph (2021042522392486600_JEB128207C38) 2006; 42 González-Reimers (2021042522392486600_JEB128207C25) 2014; 20 Terrados (2021042522392486600_JEB128207C79) 1990; 68 Balon (2021042522392486600_JEB128207C4) 1994; 77 Egerman (2021042522392486600_JEB128207C19) 2015; 22 Lee (2021042522392486600_JEB128207C43) 2001; 86 Favier (2021042522392486600_JEB128207C21) 2008; 456 Flück (2021042522392486600_JEB128207C22) 2003; 146 Puntschart (2021042522392486600_JEB128207C64) 1995; 269 Li (2021042522392486600_JEB128207C44) 2013; 223 Gomez-Cabrera (2021042522392486600_JEB128207C24) 2005; 567 Schakman (2021042522392486600_JEB128207C71) 2013; 45 Ruas (2021042522392486600_JEB128207C69) 2012; 151 Hoier (2021042522392486600_JEB128207C28) 2013; 27 Sartori (2021042522392486600_JEB128207C70) 2013; 45 Tan (2021042522392486600_JEB128207C77) 2013; 8 Mason (2021042522392486600_JEB128207C49) 2007; 293 Buser (2021042522392486600_JEB128207C9) 1982; 225 Nagahuedi (2021042522392486600_JEB128207C56) 2009; 212 Crossland (2021042522392486600_JEB128207C13) 2013; 305 Dietz (2021042522392486600_JEB128207C16) 1999; 202 Kirby (2021042522392486600_JEB128207C41) 2015; 20 Irrcher (2021042522392486600_JEB128207C36) 2008; 3 Hellsten (2021042522392486600_JEB128207C27) 2014; 42 Maillet (2021042522392486600_JEB128207C47) 2007; 210 Moresi (2021042522392486600_JEB128207C53) 2015; 1849 Millet (2021042522392486600_JEB128207C52) 2010; 40 Hawley (2021042522392486600_JEB128207C26) 2009; 67 Villena (2021042522392486600_JEB128207C82) 2015; 282 Powers (2021042522392486600_JEB128207C63) 2011; 1 Chan (2021042522392486600_JEB128207C10) 2014; 63 McGuire (2021042522392486600_JEB128207C51) 2013; 216 Beiter (2021042522392486600_JEB128207C5) 2015; 21 Croce (2021042522392486600_JEB128207C12) 2009; 469 Pilegaard (2021042522392486600_JEB128207C62) 2003; 546 Bentzinger (2021042522392486600_JEB128207C7) 2014; 205 Rowe (2021042522392486600_JEB128207C67) 2012; 7 |
References_xml | – volume: 225 start-page: 427 year: 1982 ident: 2021042522392486600_JEB128207C9 article-title: Effect of cold environment on skeletal muscle mitochondria in growing rats publication-title: Cell Tissue Res. doi: 10.1007/BF00214693 – volume: 67 start-page: 172 year: 2009 ident: 2021042522392486600_JEB128207C26 article-title: Exercise: it's the real thing! publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.2009.00185.x – volume: 93 start-page: 23 year: 2013 ident: 2021042522392486600_JEB128207C84 article-title: Satellite cells and the muscle stem cell niche publication-title: Physiol. Rev. doi: 10.1152/physrev.00043.2011 – volume: 8 start-page: e63970 year: 2013 ident: 2021042522392486600_JEB128207C77 article-title: mTORC1 dependent regulation of REDD1 protein stability publication-title: PLoS ONE doi: 10.1371/journal.pone.0063970 – volume: 20 start-page: 37 year: 2015 ident: 2021042522392486600_JEB128207C41 article-title: The role of microRNAs in skeletal muscle health and disease publication-title: Front. Biosci. doi: 10.2741/4298 – volume: 213 start-page: 783 year: 1967 ident: 2021042522392486600_JEB128207C59 article-title: Augmentation of skeletal muscle myoglobin by a program of treadmill running publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1967.213.3.783 – volume: 3 start-page: e3614 year: 2008 ident: 2021042522392486600_JEB128207C36 article-title: AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0003614 – volume: 1 start-page: 941 year: 2011 ident: 2021042522392486600_JEB128207C63 article-title: Reactive oxygen species: impact on skeletal muscle publication-title: Compr. Physiol. doi: 10.1002/cphy.c100054 – volume: 3 start-page: 113 year: 1988 ident: 2021042522392486600_JEB128207C31 article-title: Capillarity and oxidative capacity of muscles publication-title: News Physiol. Sci. – volume: 21 start-page: 42 year: 2015 ident: 2021042522392486600_JEB128207C5 article-title: Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks publication-title: Exerc. Immunol. Rev. – volume: 558 start-page: 1005 year: 2004 ident: 2021042522392486600_JEB128207C39 article-title: The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.065904 – volume: 35 start-page: 952 year: 2003 ident: 2021042522392486600_JEB128207C83 article-title: Effects of dietary fat on muscle substrates, metabolism, and performance in athletes publication-title: Med. Sci. Sports Exerc. doi: 10.1249/01.MSS.0000069336.30649.BD – volume: 126 start-page: 75 year: 2014 ident: 2021042522392486600_JEB128207C23 article-title: Mechanosensation: a basic cellular process publication-title: Mechanotransduction doi: 10.1016/b978-0-12-394624-9.00004-x – volume: 42 start-page: 1616 year: 2014 ident: 2021042522392486600_JEB128207C27 article-title: Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20140197 – volume: 7 start-page: 187 year: 1986 ident: 2021042522392486600_JEB128207C30 article-title: Exercise-induced ultrastructural changes in skeletal muscle publication-title: Int. J. Sports Med. doi: 10.1055/s-2008-1025758 – volume: 212 start-page: 1106 year: 2009 ident: 2021042522392486600_JEB128207C56 article-title: Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression publication-title: J. Exp. Biol. doi: 10.1242/jeb.027888 – volume: 305 start-page: E183 year: 2013 ident: 2021042522392486600_JEB128207C13 article-title: Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00541.2012 – volume: 546 start-page: 851 year: 2003 ident: 2021042522392486600_JEB128207C62 article-title: Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.034850 – volume: 7 start-page: 123 year: 1986 ident: 2021042522392486600_JEB128207C46 article-title: Structural changes in skeletal muscle tissue with heavy-resistance exercise publication-title: Int. J. Sports Med. doi: 10.1055/s-2008-1025748 – volume: 99 start-page: 86 year: 2015 ident: 2021042522392486600_JEB128207C18 article-title: Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.05.010 – volume: 22 start-page: 164 year: 2015 ident: 2021042522392486600_JEB128207C19 article-title: GDF11 increases with age and inhibits skeletal muscle regeneration publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.05.010 – volume: 293 start-page: R2059 year: 2007 ident: 2021042522392486600_JEB128207C49 article-title: HIF-1 alpha in endurance training: suppression of oxidative metabolism publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00335.2007 – volume: 148 start-page: 399 year: 2012 ident: 2021042522392486600_JEB128207C73 article-title: Hypoxia-inducible factors in physiology and medicine publication-title: Cell doi: 10.1016/j.cell.2012.01.021 – volume: 63 start-page: 441 year: 2014 ident: 2021042522392486600_JEB128207C10 article-title: The many roles of PGC-1 alpha in muscle — recent developments publication-title: Metabolism doi: 10.1016/j.metabol.2014.01.006 – volume: 205 start-page: 97 year: 2014 ident: 2021042522392486600_JEB128207C7 article-title: Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength publication-title: J. Cell Biol. doi: 10.1083/jcb.201310035 – volume: 93 start-page: 445 year: 2014 ident: 2021042522392486600_JEB128207C37 article-title: Mechanosensors in integrin signaling: the emerging role of p130Cas publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2014.07.002 – volume: 54 start-page: 903 year: 2014 ident: 2021042522392486600_JEB128207C61 article-title: The fat of the matter: how dietary fatty acids can affect exercise performance publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icu098 – volume: 91 start-page: 3024 year: 2006 ident: 2021042522392486600_JEB128207C74 article-title: Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2006-0357 – volume: 103 start-page: 1536 year: 2007 ident: 2021042522392486600_JEB128207C54 article-title: PGC-1beta is downregulated by training in human skeletal muscle: no effect of training twice every second day vs. once daily on expression of the PGC-1 family publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00575.2007 – volume: 210 start-page: 413 year: 2007 ident: 2021042522392486600_JEB128207C47 article-title: Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: evidence for natural doping publication-title: J. Exp. Biol. doi: 10.1242/jeb.02660 – volume: 96 start-page: 189 year: 2004 ident: 2021042522392486600_JEB128207C58 article-title: PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00765.2003 – volume: 114 start-page: 405 year: 2014 ident: 2021042522392486600_JEB128207C15 article-title: Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-013-2783-8 – volume: 40 start-page: 1 year: 2010 ident: 2021042522392486600_JEB128207C52 article-title: Combining hypoxic methods for peak performance publication-title: Sports Med. doi: 10.2165/11317920-000000000-00000 – volume: 7 start-page: e41817 year: 2012 ident: 2021042522392486600_JEB128207C67 article-title: PGC-1alpha is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle publication-title: PLoS ONE doi: 10.1371/journal.pone.0041817 – volume: 302 start-page: E1329 year: 2012 ident: 2021042522392486600_JEB128207C17 article-title: Leucine and mTORC1: a complex relationship publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00525.2011 – volume: 86 start-page: 499 year: 2001 ident: 2021042522392486600_JEB128207C43 article-title: Interaction of diet and training on endurance performance in rats publication-title: Exp. Physiol. doi: 10.1113/eph8602158doi:10.1111/joa.12101 – volume: 59 start-page: 320 year: 1985 ident: 2021042522392486600_JEB128207C32 article-title: Endurance training in humans: aerobic capacity and structure of skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1985.59.2.320 – volume: 77 start-page: 2519 year: 1994 ident: 2021042522392486600_JEB128207C4 article-title: Nitric oxide release is present from incubated skeletal muscle preparations publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1994.77.6.2519 – volume: 469 start-page: 3 year: 2009 ident: 2021042522392486600_JEB128207C12 article-title: Evolution of the Wnt pathways publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-469-2_1 – volume: 18 start-page: 38 issue: Suppl. 1 year: 2008 ident: 2021042522392486600_JEB128207C33 article-title: Training in hypoxia and its effects on skeletal muscle tissue publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/j.1600-0838.2008.00831.x – volume: 36 start-page: 307 year: 1956 ident: 2021042522392486600_JEB128207C1 article-title: Human physical fitness with special reference to sex and age publication-title: Physiol. Rev. doi: 10.1152/physrev.1956.36.3.307 – volume: 20 start-page: 14660 year: 2014 ident: 2021042522392486600_JEB128207C25 article-title: Alcoholism: a systemic proinflammatory condition publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v20.i40.14660 – volume: 58 start-page: 1969 year: 2015 ident: 2021042522392486600_JEB128207C48 article-title: The hitchhiker's guide to PGC-1alpha isoform structure and biological functions publication-title: Diabetologia doi: 10.1007/s00125-015-3671-z – volume: 115 start-page: 504 year: 2014 ident: 2021042522392486600_JEB128207C68 article-title: PGC-1alpha induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.303829 – volume: 307 start-page: R248 year: 2014 ident: 2021042522392486600_JEB128207C45 article-title: Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00036.2013 – volume: 151 start-page: 1319 year: 2012 ident: 2021042522392486600_JEB128207C69 article-title: A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy publication-title: Cell doi: 10.1016/j.cell.2012.10.050 – volume: 45 start-page: 2200 year: 2013 ident: 2021042522392486600_JEB128207C8 article-title: Disuse-induced muscle wasting publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.06.011 – volume: 14 start-page: 243 year: 2011 ident: 2021042522392486600_JEB128207C81 article-title: Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0b013e3283455d7a – volume: 92 start-page: 1080 year: 2010 ident: 2021042522392486600_JEB128207C2 article-title: Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2010.29819 – volume: 14 start-page: 58 year: 2015 ident: 2021042522392486600_JEB128207C11 article-title: Muscle wasting in disease: molecular mechanisms and promising therapies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4467 – volume: 26 start-page: 275 year: 2015 ident: 2021042522392486600_JEB128207C55 article-title: Expanding roles for AMPK in skeletal muscle plasticity publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2015.02.009 – volume: 146 start-page: 159 year: 2003 ident: 2021042522392486600_JEB128207C22 article-title: Molecular basis of skeletal muscle plasticity-from gene to form and function publication-title: Rev. Physiol. Biochem. Pharmacol. doi: 10.1007/s10254-002-0004-7 – volume: 85 start-page: 2025 year: 1998 ident: 2021042522392486600_JEB128207C20 article-title: Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1998.85.6.2025 – volume: 17 start-page: 45 year: 2006 ident: 2021042522392486600_JEB128207C40 article-title: Differential expression of peroxisomal proliferator activated receptors alpha and delta in skeletal muscle in response to changes in diet and exercise publication-title: Int. J. Mol. Med. – volume: 53 start-page: 124 year: 2014 ident: 2021042522392486600_JEB128207C57 article-title: Regulation of energy metabolism by long-chain fatty acids publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2013.12.001 – volume: 90 start-page: 360 year: 2003 ident: 2021042522392486600_JEB128207C35 article-title: Performing at extreme altitude: muscle cellular and subcellular adaptations publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-003-0872-9 – volume: 1849 start-page: 309 year: 2015 ident: 2021042522392486600_JEB128207C53 article-title: Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2015.01.002 – volume: 44 start-page: 1037 year: 2014 ident: 2021042522392486600_JEB128207C72 article-title: Hypoxia and resistance exercise: a comparison of localized and systemic methods publication-title: Sports Med. doi: 10.1007/s40279-014-0177-7 – volume: 404 start-page: 1 year: 1985 ident: 2021042522392486600_JEB128207C65 article-title: Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits publication-title: Pflugers Arch. doi: 10.1007/BF00581484 – volume: 308 start-page: E699 year: 2015 ident: 2021042522392486600_JEB128207C75 article-title: Dysregulation of skeletal muscle protein metabolism by alcohol publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00006.2015 – volume: 27 start-page: 3496 year: 2013 ident: 2021042522392486600_JEB128207C28 article-title: Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle publication-title: FASEB J. doi: 10.1096/fj.12-224618 – volume: 106 start-page: 389 year: 2009 ident: 2021042522392486600_JEB128207C42 article-title: Mechano-transduction to muscle protein synthesis is modulated by FAK publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-009-1032-7 – volume: 45 start-page: 1309 year: 2013 ident: 2021042522392486600_JEB128207C70 article-title: BMP signaling controls muscle mass publication-title: Nat. Genet. doi: 10.1038/ng.2772 – volume: 567 start-page: 113 year: 2005 ident: 2021042522392486600_JEB128207C24 article-title: Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.080564 – volume: 42 start-page: 13 year: 2006 ident: 2021042522392486600_JEB128207C38 article-title: Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise publication-title: Essays Biochem. doi: 10.1042/bse0420013 – volume: 277 start-page: 44784 year: 2002 ident: 2021042522392486600_JEB128207C76 article-title: Topology of superoxide production from different sites in the mitochondrial electron transport chain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207217200 – volume: 85 start-page: 486 year: 2001 ident: 2021042522392486600_JEB128207C50 article-title: Endurance training under 2500-m hypoxia does not increase myoglobin content in human skeletal muscle publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s004210100471 – volume: 34 start-page: 403 year: 2009 ident: 2021042522392486600_JEB128207C60 article-title: Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects) publication-title: Appl. Physiol. Nutr. Metab. doi: 10.1139/H09-042 – volume: 282 start-page: 647 year: 2015 ident: 2021042522392486600_JEB128207C82 article-title: New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond publication-title: FEBS J. doi: 10.1111/febs.13175 – volume: 589 start-page: 5021 year: 2011 ident: 2021042522392486600_JEB128207C78 article-title: The role of in vivo Ca2+ signals acting on Ca2+-calmodulin-dependent proteins for skeletal muscle plasticity publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.212860 – volume: 45 start-page: 2163 year: 2013 ident: 2021042522392486600_JEB128207C71 article-title: Glucocorticoid-induced skeletal muscle atrophy publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.05.036 – volume: 216 start-page: 800 year: 2013 ident: 2021042522392486600_JEB128207C51 article-title: Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles publication-title: J. Exp. Biol. doi: 10.1242/jeb.072868 – volume: 71 start-page: 4361 year: 2014 ident: 2021042522392486600_JEB128207C66 article-title: Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-014-1689-x – volume: 202 start-page: 2831 year: 1999 ident: 2021042522392486600_JEB128207C16 article-title: Body-building without power training: endogenously regulated pectoral muscle hypertrophy in confined shorebirds publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.20.2831 – volume: 105 start-page: 2198 year: 2008 ident: 2021042522392486600_JEB128207C6 article-title: Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711074105 – volume: 68 start-page: 2369 year: 1990 ident: 2021042522392486600_JEB128207C79 article-title: Is hypoxia a stimulus for synthesis of oxidative-enzymes and myoglobin publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1990.68.6.2369 – volume: 456 start-page: 587 year: 2008 ident: 2021042522392486600_JEB128207C21 article-title: Cellular and molecular events controlling skeletal muscle mass in response to altered use publication-title: Pflugers Arch. doi: 10.1007/s00424-007-0423-z – volume: 1 start-page: 1383 year: 2011 ident: 2021042522392486600_JEB128207C34 article-title: Molecular mechanisms of muscle plasticity with exercise publication-title: Compr. Physiol. doi: 10.1002/cphy.c100042 – volume: 76 start-page: 73 year: 2013 ident: 2021042522392486600_JEB128207C80 article-title: Dietary protein for muscle hypertrophy publication-title: Limits Hum. Endurance doi: 10.1159/000350259 – volume: 44 start-page: 1463 year: 2012 ident: 2021042522392486600_JEB128207C85 article-title: TLR2 and TLR4 activate p38 MAPK and JNK during endurance exercise in skeletal muscle publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e31824e0d5d – volume: 242 start-page: 2278 year: 1967 ident: 2021042522392486600_JEB128207C29 article-title: Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96046-1 – volume: 4 start-page: 284 year: 2013 ident: 2021042522392486600_JEB128207C3 article-title: Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00284 – volume: 269 start-page: C619 year: 1995 ident: 2021042522392486600_JEB128207C64 article-title: mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1995.269.3.C619 – volume: 18 start-page: S259 issue: Suppl. 4 year: 1997 ident: 2021042522392486600_JEB128207C14 article-title: Structural and functional adaptations of skeletal muscle to weightlessness publication-title: Int. J. Sports Med. doi: 10.1055/s-2007-972722 – volume: 223 start-page: 525 year: 2013 ident: 2021042522392486600_JEB128207C44 article-title: Costamere remodeling with muscle loading and unloading in healthy young men publication-title: J. Anat. doi: 10.1111/joa.12101 |
SSID | ssj0000654 |
Score | 2.536928 |
SecondaryResourceType | review_article |
Snippet | The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 205 |
SubjectTerms | Animals Exercise - physiology Gene Regulatory Networks Humans Muscle, Skeletal - physiology Physical Endurance - physiology Signal Transduction - genetics Stress, Physiological - genetics |
Title | Molecular networks in skeletal muscle plasticity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26792332 https://www.proquest.com/docview/1760917285 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46EXwR784bFX0RqbZZ0rSPIspQFIQN9laSNoWhdsN1D_rrPWmaXtyE6UspJWnp-co5X5pzvoPQeRwkXkQptoOEeDZhQtgiCIRN3SiQsS9wkW3x7HX75GFAB1Vvvry6JBNX0dfcupL_oArXAFdVJfsHZMubwgU4B3zhCAjDcSGMn0xv28tUZ3Pnya2TVwglqsbxfTqBCapRtBJjHmaNHdwaE22o_BeqTCXco_FYFtWCXZ42_hK49b8EVdY-LOW0e5La2RG1fetqOUfjDY0HG9ZWpYVvc2gtTGJdQjrjgSHkKw8sBZwCu2BVnDF76z_CT5kUqJYjMDuEuaGeu4xWMLB_1ZHj8cWvBVhKjAi8eqVCdRbmXlfPbfKMXxYPOYnobaD1wubWjYZyEy3JdAut6n6gn9vIKQG1DKDWMLUMoJYG1KoA3UH9-7vebdcuWlrYETDDzI4TIHxK0doXPueSuVJQxqQq2hRKy4syyYVIeOwwj_iCcYd4ElgWwU4EQ-LOLmqlo1TuIwu7MY-iwAlgMOlIJ4iB28a-K31HAG3nbXRhDBBGhd67ajvyFs4auo3OyrFjrXIyd9SpsWMITkjtLPFUjqaT0GUe8E6GfdpGe9rA5X2wpyQqO_hgoWccorXq8z1CrexjKo-B9mXiJP8IvgFS51dm |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+networks+in+skeletal+muscle+plasticity&rft.jtitle=Journal+of+experimental+biology&rft.au=Hoppeler%2C+Hans&rft.date=2016-01-01&rft.issn=0022-0949&rft.eissn=1477-9145&rft.volume=219&rft.issue=2&rft.spage=205&rft.epage=213&rft_id=info:doi/10.1242%2Fjeb.128207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_jeb_128207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0949&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0949&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0949&client=summon |