Molecular networks in skeletal muscle plasticity

The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumptio...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 219; no. 2; pp. 205 - 213
Main Author Hoppeler, Hans
Format Journal Article
LanguageEnglish
Published England 01.01.2016
Subjects
Online AccessGet full text
ISSN0022-0949
1477-9145
DOI10.1242/jeb.128207

Cover

Loading…
Abstract The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
AbstractList The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
Author Hoppeler, Hans
Author_xml – sequence: 1
  givenname: Hans
  surname: Hoppeler
  fullname: Hoppeler, Hans
  organization: Emeritus Department of Anatomy, University of Bern, Baltzerstrasse 2, Bern 9 CH-3000, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26792332$$D View this record in MEDLINE/PubMed
BookMark eNptkEtLxDAUhYOMOA_d-AOkSxGqSZo07VKG8QEjbnQdkvQWMpO2Y5Ii8--NzMxGvJtzF985cM4cTfqhB4SuCb4nlNGHDej0VBSLMzQjTIi8JoxP0AxjSnNcs3qK5iFscLqSsws0paWoaVHQGcJvgwMzOuWzHuL34Lchs30WtuAgKpd1YzAOsp1TIVpj4_4SnbfKBbg66gJ9Pq0-li_5-v35dfm4zk1R1TFvWl6xRguodKUUCAKaCwGk5qUWpKRcgNK6VQ0WJau0UJiVQCljFJuENMUC3R5yd374GiFE2dlgwDnVwzAGSUSJayJoxRN6c0RH3UEjd952yu_lqWUC8AEwfgjBQytTExXt0EevrJMEy98hZRpSHoZMlrs_llPqP_APPWBy1Q
CitedBy_id crossref_primary_10_1152_physiolgenomics_00018_2023
crossref_primary_10_1016_j_pharmthera_2018_10_004
crossref_primary_10_1242_jeb_163840
crossref_primary_10_1242_jcs_258349
crossref_primary_10_3389_fevo_2021_685764
crossref_primary_10_3390_sports13030074
crossref_primary_10_1016_j_orthtr_2020_07_008
crossref_primary_10_1016_j_bbadis_2017_09_018
crossref_primary_10_3390_biomedicines10020507
crossref_primary_10_1080_10495398_2022_2046599
crossref_primary_10_3389_fphys_2022_838004
crossref_primary_10_1016_j_arr_2020_101200
crossref_primary_10_1111_apha_12898
crossref_primary_10_1007_s12662_017_0473_0
crossref_primary_10_3390_nu11040892
crossref_primary_10_1016_j_xcrm_2020_100122
crossref_primary_10_3389_fnut_2020_580918
crossref_primary_10_3389_fphys_2021_706128
crossref_primary_10_1016_j_yfrne_2023_101101
crossref_primary_10_1519_JSC_0000000000002629
crossref_primary_10_3389_fnins_2018_00171
crossref_primary_10_3389_fphys_2021_619710
crossref_primary_10_1113_JP278478
crossref_primary_10_20463_pan_2020_0010
crossref_primary_10_5334_1750_2187_12_3
crossref_primary_10_1139_apnm_2019_0829
crossref_primary_10_52711_0974_360X_2024_00786
crossref_primary_10_1515_hsz_2022_0165
crossref_primary_10_3389_fphys_2023_1281702
crossref_primary_10_1016_j_nut_2022_111629
crossref_primary_10_29254_2077_4214_2018_4_2_147_15_22
crossref_primary_10_3390_proteomes4030027
crossref_primary_10_1080_14789450_2016_1209416
crossref_primary_10_1111_apha_13630
crossref_primary_10_1016_j_mam_2024_101319
crossref_primary_10_3389_fphys_2022_892749
crossref_primary_10_3390_metabo11080517
crossref_primary_10_3390_ijms24054730
crossref_primary_10_3389_fphys_2019_00843
crossref_primary_10_1177_0363546520959327
crossref_primary_10_1186_s40798_022_00513_z
crossref_primary_10_5604_01_3001_0014_7767
crossref_primary_10_1007_s00424_020_02353_w
crossref_primary_10_1016_j_exger_2017_03_014
crossref_primary_10_1016_j_jnutbio_2019_108297
crossref_primary_10_1016_j_molmet_2022_101555
crossref_primary_10_1016_j_numecd_2021_01_006
crossref_primary_10_1139_apnm_2024_0012
crossref_primary_10_14302_issn_2578_8590_ipj_18_2441
crossref_primary_10_1016_j_pharmthera_2017_02_029
crossref_primary_10_1016_j_freeradbiomed_2024_07_026
crossref_primary_10_20463_pan_2024_0013
crossref_primary_10_1007_s40141_016_0130_9
crossref_primary_10_1111_apha_12830
crossref_primary_10_3389_fphys_2016_00483
crossref_primary_10_1016_j_yexcr_2019_111672
crossref_primary_10_3390_nu11051072
crossref_primary_10_1016_j_smhs_2024_10_002
crossref_primary_10_1093_gerona_gly051
crossref_primary_10_1139_cjpp_2019_0609
crossref_primary_10_1093_hmg_ddy254
crossref_primary_10_1242_jeb_164327
crossref_primary_10_1038_s41467_022_29472_5
crossref_primary_10_3390_cells8040289
crossref_primary_10_1113_JP272559
crossref_primary_10_1186_s13293_022_00471_x
crossref_primary_10_1021_acs_jafc_3c02023
crossref_primary_10_1371_journal_pcbi_1008079
crossref_primary_10_1002_jcp_29535
crossref_primary_10_1002_jcp_31290
crossref_primary_10_1186_s12986_018_0302_y
crossref_primary_10_1186_s40798_023_00654_9
crossref_primary_10_1016_j_aqrep_2022_101322
crossref_primary_10_1590_s1980_657420220017721
crossref_primary_10_1016_j_freeradbiomed_2024_08_013
crossref_primary_10_7717_peerj_12720
crossref_primary_10_1080_17461391_2018_1526974
crossref_primary_10_1123_jpah_2019_0134
crossref_primary_10_3390_app14135445
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_1152_japplphysiol_00321_2020
crossref_primary_10_1080_02640414_2018_1480052
crossref_primary_10_1111_eci_13515
crossref_primary_10_1080_10495398_2020_1763375
crossref_primary_10_1016_j_aquaculture_2019_734835
crossref_primary_10_3389_fphys_2021_668123
crossref_primary_10_1016_j_yexcr_2021_112865
crossref_primary_10_1371_journal_pone_0177679
crossref_primary_10_1007_s12010_022_03923_7
crossref_primary_10_1186_s13063_016_1735_0
crossref_primary_10_3390_ijms22052741
crossref_primary_10_1016_j_jacbts_2019_03_012
crossref_primary_10_3389_fphys_2017_00337
crossref_primary_10_1016_j_aquaculture_2024_740956
crossref_primary_10_1038_s42255_020_0241_6
crossref_primary_10_1016_j_molmet_2022_101504
crossref_primary_10_3233_JND_210713
crossref_primary_10_1113_EP086964
crossref_primary_10_1016_j_psj_2024_104384
crossref_primary_10_1111_apha_13557
crossref_primary_10_1152_japplphysiol_00898_2018
crossref_primary_10_1016_j_bbadis_2018_06_002
crossref_primary_10_3389_fvets_2023_1284551
crossref_primary_10_3390_ijerph18094837
crossref_primary_10_1016_j_freeradbiomed_2020_10_001
crossref_primary_10_1002_wrna_1700
crossref_primary_10_1007_s40279_024_02067_4
crossref_primary_10_1242_jeb_125104
crossref_primary_10_1007_s00213_018_5041_2
crossref_primary_10_1007_s40279_019_01070_4
crossref_primary_10_1093_hmg_ddy071
crossref_primary_10_7554_eLife_44876
crossref_primary_10_1007_s00421_022_04896_5
crossref_primary_10_1139_apnm_2022_0005
crossref_primary_10_1186_s12944_022_01692_0
crossref_primary_10_1007_s00424_018_2210_4
crossref_primary_10_1038_s41598_024_74913_4
crossref_primary_10_1016_j_apunts_2018_09_003
crossref_primary_10_3390_ijms26062395
crossref_primary_10_3390_biomedicines12091975
crossref_primary_10_1152_japplphysiol_00995_2020
crossref_primary_10_1152_physrev_00017_2022
crossref_primary_10_3390_cells12162088
crossref_primary_10_1007_s13105_021_00802_3
crossref_primary_10_1093_icb_icaa056
crossref_primary_10_1093_ptj_pzac169
crossref_primary_10_1371_journal_pone_0239428
crossref_primary_10_3390_nu11051154
crossref_primary_10_31680_gaunjss_960079
crossref_primary_10_1101_cshperspect_a029835
crossref_primary_10_3390_muscles2010008
crossref_primary_10_1007_s00125_017_4451_8
crossref_primary_10_1371_journal_pone_0198969
crossref_primary_10_1371_journal_pone_0255178
crossref_primary_10_1007_s00421_018_4039_0
crossref_primary_10_1242_jeb_246897
Cites_doi 10.1007/BF00214693
10.1111/j.1753-4887.2009.00185.x
10.1152/physrev.00043.2011
10.1371/journal.pone.0063970
10.2741/4298
10.1152/ajplegacy.1967.213.3.783
10.1371/journal.pone.0003614
10.1002/cphy.c100054
10.1113/jphysiol.2004.065904
10.1249/01.MSS.0000069336.30649.BD
10.1016/b978-0-12-394624-9.00004-x
10.1042/BST20140197
10.1055/s-2008-1025758
10.1242/jeb.027888
10.1152/ajpendo.00541.2012
10.1113/jphysiol.2002.034850
10.1055/s-2008-1025748
10.1016/j.phrs.2015.05.010
10.1016/j.cmet.2015.05.010
10.1152/ajpregu.00335.2007
10.1016/j.cell.2012.01.021
10.1016/j.metabol.2014.01.006
10.1083/jcb.201310035
10.1016/j.ejcb.2014.07.002
10.1093/icb/icu098
10.1210/jc.2006-0357
10.1152/japplphysiol.00575.2007
10.1242/jeb.02660
10.1152/japplphysiol.00765.2003
10.1007/s00421-013-2783-8
10.2165/11317920-000000000-00000
10.1371/journal.pone.0041817
10.1152/ajpendo.00525.2011
10.1113/eph8602158doi:10.1111/joa.12101
10.1152/jappl.1985.59.2.320
10.1152/jappl.1994.77.6.2519
10.1007/978-1-60327-469-2_1
10.1111/j.1600-0838.2008.00831.x
10.1152/physrev.1956.36.3.307
10.3748/wjg.v20.i40.14660
10.1007/s00125-015-3671-z
10.1161/CIRCRESAHA.115.303829
10.1152/ajpregu.00036.2013
10.1016/j.cell.2012.10.050
10.1016/j.biocel.2013.06.011
10.1097/MCO.0b013e3283455d7a
10.3945/ajcn.2010.29819
10.1038/nrd4467
10.1016/j.tem.2015.02.009
10.1007/s10254-002-0004-7
10.1152/jappl.1998.85.6.2025
10.1016/j.plipres.2013.12.001
10.1007/s00421-003-0872-9
10.1016/j.bbagrm.2015.01.002
10.1007/s40279-014-0177-7
10.1007/BF00581484
10.1152/ajpendo.00006.2015
10.1096/fj.12-224618
10.1007/s00421-009-1032-7
10.1038/ng.2772
10.1113/jphysiol.2004.080564
10.1042/bse0420013
10.1074/jbc.M207217200
10.1007/s004210100471
10.1139/H09-042
10.1111/febs.13175
10.1113/jphysiol.2011.212860
10.1016/j.biocel.2013.05.036
10.1242/jeb.072868
10.1007/s00018-014-1689-x
10.1242/jeb.202.20.2831
10.1073/pnas.0711074105
10.1152/jappl.1990.68.6.2369
10.1007/s00424-007-0423-z
10.1002/cphy.c100042
10.1159/000350259
10.1249/MSS.0b013e31824e0d5d
10.1016/S0021-9258(18)96046-1
10.3389/fphys.2013.00284
10.1152/ajpcell.1995.269.3.C619
10.1055/s-2007-972722
10.1111/joa.12101
ContentType Journal Article
Copyright 2016. Published by The Company of Biologists Ltd.
Copyright_xml – notice: 2016. Published by The Company of Biologists Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/jeb.128207
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9145
EndPage 213
ExternalDocumentID 26792332
10_1242_jeb_128207
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
186
18M
2WC
34G
39C
4.4
5GY
5RE
5VS
AAFWJ
AAYXX
ABDNZ
ABPPZ
ABRJW
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADVGF
AEILP
AENEX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
H~9
INIJC
KQ8
N9A
O9-
OK1
P2P
PQQKQ
RCB
RHI
RXW
S10
SJN
TAE
TN5
TR2
TWZ
UKR
UPT
W8F
WH7
WOQ
XJT
XSW
YQT
YR2
YVO
YZZ
ZCA
~02
.55
.GJ
3O-
53G
6TJ
AAUTI
AAYJJ
ABJNI
ABTAH
ACPVT
ACYGS
AETEA
AFFNX
AGCDD
AI.
C1A
CGR
CUY
CVF
ECM
EIF
MVM
NPM
OHT
UBC
VH1
X7M
XOL
ZGI
ZXP
ZY4
7X8
ID FETCH-LOGICAL-c389t-df584db7e8b8aae71eb577e1956b716257eabbfad07648b7a046e224420c56bd3
ISSN 0022-0949
IngestDate Fri Sep 05 04:36:46 EDT 2025
Thu Apr 03 07:09:39 EDT 2025
Tue Jul 01 02:59:58 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mitochondria
Pathways
Capillary
Endurance
Molecular
Myofibrils
Skeletal muscle
Strength
Language English
License http://www.biologists.com/user-licence-1-1
2016. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-df584db7e8b8aae71eb577e1956b716257eabbfad07648b7a046e224420c56bd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://jeb.biologists.org/content/jexbio/219/2/205.full.pdf
PMID 26792332
PQID 1760917285
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1760917285
pubmed_primary_26792332
crossref_citationtrail_10_1242_jeb_128207
crossref_primary_10_1242_jeb_128207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of experimental biology
PublicationTitleAlternate J Exp Biol
PublicationYear 2016
References Mounier (2021042522392486600_JEB128207C55) 2015; 26
Tipton (2021042522392486600_JEB128207C80) 2013; 76
Phillips (2021042522392486600_JEB128207C60) 2009; 34
Steiner (2021042522392486600_JEB128207C75) 2015; 308
St-Pierre (2021042522392486600_JEB128207C76) 2002; 277
Nakamura (2021042522392486600_JEB128207C57) 2014; 53
Baldwin (2021042522392486600_JEB128207C3) 2013; 4
Astrand (2021042522392486600_JEB128207C1) 1956; 36
Atherton (2021042522392486600_JEB128207C2) 2010; 92
Zbinden-Foncea (2021042522392486600_JEB128207C85) 2012; 44
Cohen (2021042522392486600_JEB128207C11) 2015; 14
Scott (2021042522392486600_JEB128207C72) 2014; 44
Hoppeler (2021042522392486600_JEB128207C31) 1988; 3
Klossner (2021042522392486600_JEB128207C42) 2009; 106
Yin (2021042522392486600_JEB128207C84) 2013; 93
Kadi (2021042522392486600_JEB128207C39) 2004; 558
Dutt (2021042522392486600_JEB128207C18) 2015; 99
Martínez-Redondo (2021042522392486600_JEB128207C48) 2015; 58
Howald (2021042522392486600_JEB128207C35) 2003; 90
Holloszy (2021042522392486600_JEB128207C29) 1967; 242
Reichmann (2021042522392486600_JEB128207C65) 1985; 404
Kannisto (2021042522392486600_JEB128207C40) 2006; 17
Desplanches (2021042522392486600_JEB128207C14) 1997; 18
van den Berg (2021042522392486600_JEB128207C81) 2011; 14
Hoppeler (2021042522392486600_JEB128207C33) 2008; 18
Tavi (2021042522392486600_JEB128207C78) 2011; 589
Pierce (2021042522392486600_JEB128207C61) 2014; 54
Bellinger (2021042522392486600_JEB128207C6) 2008; 105
Lüthi (2021042522392486600_JEB128207C46) 1986; 7
Sinha-Hikim (2021042522392486600_JEB128207C74) 2006; 91
Lindholm (2021042522392486600_JEB128207C45) 2014; 307
Norrbom (2021042522392486600_JEB128207C58) 2004; 96
Semenza (2021042522392486600_JEB128207C73) 2012; 148
Hoppeler (2021042522392486600_JEB128207C30) 1986; 7
Desplanches (2021042522392486600_JEB128207C15) 2014; 114
Rodriguez (2021042522392486600_JEB128207C66) 2014; 71
Bodine (2021042522392486600_JEB128207C8) 2013; 45
Dodd (2021042522392486600_JEB128207C17) 2012; 302
Janoštiak (2021042522392486600_JEB128207C37) 2014; 93
Masuda (2021042522392486600_JEB128207C50) 2001; 85
Goldmann (2021042522392486600_JEB128207C23) 2014; 126
Vogt (2021042522392486600_JEB128207C83) 2003; 35
Egginton (2021042522392486600_JEB128207C20) 1998; 85
Rowe (2021042522392486600_JEB128207C68) 2014; 115
Hoppeler (2021042522392486600_JEB128207C34) 2011; 1
Mortensen (2021042522392486600_JEB128207C54) 2007; 103
Pattengale (2021042522392486600_JEB128207C59) 1967; 213
Hoppeler (2021042522392486600_JEB128207C32) 1985; 59
Joseph (2021042522392486600_JEB128207C38) 2006; 42
González-Reimers (2021042522392486600_JEB128207C25) 2014; 20
Terrados (2021042522392486600_JEB128207C79) 1990; 68
Balon (2021042522392486600_JEB128207C4) 1994; 77
Egerman (2021042522392486600_JEB128207C19) 2015; 22
Lee (2021042522392486600_JEB128207C43) 2001; 86
Favier (2021042522392486600_JEB128207C21) 2008; 456
Flück (2021042522392486600_JEB128207C22) 2003; 146
Puntschart (2021042522392486600_JEB128207C64) 1995; 269
Li (2021042522392486600_JEB128207C44) 2013; 223
Gomez-Cabrera (2021042522392486600_JEB128207C24) 2005; 567
Schakman (2021042522392486600_JEB128207C71) 2013; 45
Ruas (2021042522392486600_JEB128207C69) 2012; 151
Hoier (2021042522392486600_JEB128207C28) 2013; 27
Sartori (2021042522392486600_JEB128207C70) 2013; 45
Tan (2021042522392486600_JEB128207C77) 2013; 8
Mason (2021042522392486600_JEB128207C49) 2007; 293
Buser (2021042522392486600_JEB128207C9) 1982; 225
Nagahuedi (2021042522392486600_JEB128207C56) 2009; 212
Crossland (2021042522392486600_JEB128207C13) 2013; 305
Dietz (2021042522392486600_JEB128207C16) 1999; 202
Kirby (2021042522392486600_JEB128207C41) 2015; 20
Irrcher (2021042522392486600_JEB128207C36) 2008; 3
Hellsten (2021042522392486600_JEB128207C27) 2014; 42
Maillet (2021042522392486600_JEB128207C47) 2007; 210
Moresi (2021042522392486600_JEB128207C53) 2015; 1849
Millet (2021042522392486600_JEB128207C52) 2010; 40
Hawley (2021042522392486600_JEB128207C26) 2009; 67
Villena (2021042522392486600_JEB128207C82) 2015; 282
Powers (2021042522392486600_JEB128207C63) 2011; 1
Chan (2021042522392486600_JEB128207C10) 2014; 63
McGuire (2021042522392486600_JEB128207C51) 2013; 216
Beiter (2021042522392486600_JEB128207C5) 2015; 21
Croce (2021042522392486600_JEB128207C12) 2009; 469
Pilegaard (2021042522392486600_JEB128207C62) 2003; 546
Bentzinger (2021042522392486600_JEB128207C7) 2014; 205
Rowe (2021042522392486600_JEB128207C67) 2012; 7
References_xml – volume: 225
  start-page: 427
  year: 1982
  ident: 2021042522392486600_JEB128207C9
  article-title: Effect of cold environment on skeletal muscle mitochondria in growing rats
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00214693
– volume: 67
  start-page: 172
  year: 2009
  ident: 2021042522392486600_JEB128207C26
  article-title: Exercise: it's the real thing!
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.2009.00185.x
– volume: 93
  start-page: 23
  year: 2013
  ident: 2021042522392486600_JEB128207C84
  article-title: Satellite cells and the muscle stem cell niche
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00043.2011
– volume: 8
  start-page: e63970
  year: 2013
  ident: 2021042522392486600_JEB128207C77
  article-title: mTORC1 dependent regulation of REDD1 protein stability
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0063970
– volume: 20
  start-page: 37
  year: 2015
  ident: 2021042522392486600_JEB128207C41
  article-title: The role of microRNAs in skeletal muscle health and disease
  publication-title: Front. Biosci.
  doi: 10.2741/4298
– volume: 213
  start-page: 783
  year: 1967
  ident: 2021042522392486600_JEB128207C59
  article-title: Augmentation of skeletal muscle myoglobin by a program of treadmill running
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1967.213.3.783
– volume: 3
  start-page: e3614
  year: 2008
  ident: 2021042522392486600_JEB128207C36
  article-title: AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003614
– volume: 1
  start-page: 941
  year: 2011
  ident: 2021042522392486600_JEB128207C63
  article-title: Reactive oxygen species: impact on skeletal muscle
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c100054
– volume: 3
  start-page: 113
  year: 1988
  ident: 2021042522392486600_JEB128207C31
  article-title: Capillarity and oxidative capacity of muscles
  publication-title: News Physiol. Sci.
– volume: 21
  start-page: 42
  year: 2015
  ident: 2021042522392486600_JEB128207C5
  article-title: Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks
  publication-title: Exerc. Immunol. Rev.
– volume: 558
  start-page: 1005
  year: 2004
  ident: 2021042522392486600_JEB128207C39
  article-title: The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.065904
– volume: 35
  start-page: 952
  year: 2003
  ident: 2021042522392486600_JEB128207C83
  article-title: Effects of dietary fat on muscle substrates, metabolism, and performance in athletes
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.MSS.0000069336.30649.BD
– volume: 126
  start-page: 75
  year: 2014
  ident: 2021042522392486600_JEB128207C23
  article-title: Mechanosensation: a basic cellular process
  publication-title: Mechanotransduction
  doi: 10.1016/b978-0-12-394624-9.00004-x
– volume: 42
  start-page: 1616
  year: 2014
  ident: 2021042522392486600_JEB128207C27
  article-title: Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20140197
– volume: 7
  start-page: 187
  year: 1986
  ident: 2021042522392486600_JEB128207C30
  article-title: Exercise-induced ultrastructural changes in skeletal muscle
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2008-1025758
– volume: 212
  start-page: 1106
  year: 2009
  ident: 2021042522392486600_JEB128207C56
  article-title: Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.027888
– volume: 305
  start-page: E183
  year: 2013
  ident: 2021042522392486600_JEB128207C13
  article-title: Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00541.2012
– volume: 546
  start-page: 851
  year: 2003
  ident: 2021042522392486600_JEB128207C62
  article-title: Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.034850
– volume: 7
  start-page: 123
  year: 1986
  ident: 2021042522392486600_JEB128207C46
  article-title: Structural changes in skeletal muscle tissue with heavy-resistance exercise
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2008-1025748
– volume: 99
  start-page: 86
  year: 2015
  ident: 2021042522392486600_JEB128207C18
  article-title: Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.05.010
– volume: 22
  start-page: 164
  year: 2015
  ident: 2021042522392486600_JEB128207C19
  article-title: GDF11 increases with age and inhibits skeletal muscle regeneration
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.010
– volume: 293
  start-page: R2059
  year: 2007
  ident: 2021042522392486600_JEB128207C49
  article-title: HIF-1 alpha in endurance training: suppression of oxidative metabolism
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00335.2007
– volume: 148
  start-page: 399
  year: 2012
  ident: 2021042522392486600_JEB128207C73
  article-title: Hypoxia-inducible factors in physiology and medicine
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.021
– volume: 63
  start-page: 441
  year: 2014
  ident: 2021042522392486600_JEB128207C10
  article-title: The many roles of PGC-1 alpha in muscle — recent developments
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2014.01.006
– volume: 205
  start-page: 97
  year: 2014
  ident: 2021042522392486600_JEB128207C7
  article-title: Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201310035
– volume: 93
  start-page: 445
  year: 2014
  ident: 2021042522392486600_JEB128207C37
  article-title: Mechanosensors in integrin signaling: the emerging role of p130Cas
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2014.07.002
– volume: 54
  start-page: 903
  year: 2014
  ident: 2021042522392486600_JEB128207C61
  article-title: The fat of the matter: how dietary fatty acids can affect exercise performance
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icu098
– volume: 91
  start-page: 3024
  year: 2006
  ident: 2021042522392486600_JEB128207C74
  article-title: Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2006-0357
– volume: 103
  start-page: 1536
  year: 2007
  ident: 2021042522392486600_JEB128207C54
  article-title: PGC-1beta is downregulated by training in human skeletal muscle: no effect of training twice every second day vs. once daily on expression of the PGC-1 family
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00575.2007
– volume: 210
  start-page: 413
  year: 2007
  ident: 2021042522392486600_JEB128207C47
  article-title: Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: evidence for natural doping
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.02660
– volume: 96
  start-page: 189
  year: 2004
  ident: 2021042522392486600_JEB128207C58
  article-title: PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00765.2003
– volume: 114
  start-page: 405
  year: 2014
  ident: 2021042522392486600_JEB128207C15
  article-title: Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-013-2783-8
– volume: 40
  start-page: 1
  year: 2010
  ident: 2021042522392486600_JEB128207C52
  article-title: Combining hypoxic methods for peak performance
  publication-title: Sports Med.
  doi: 10.2165/11317920-000000000-00000
– volume: 7
  start-page: e41817
  year: 2012
  ident: 2021042522392486600_JEB128207C67
  article-title: PGC-1alpha is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0041817
– volume: 302
  start-page: E1329
  year: 2012
  ident: 2021042522392486600_JEB128207C17
  article-title: Leucine and mTORC1: a complex relationship
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00525.2011
– volume: 86
  start-page: 499
  year: 2001
  ident: 2021042522392486600_JEB128207C43
  article-title: Interaction of diet and training on endurance performance in rats
  publication-title: Exp. Physiol.
  doi: 10.1113/eph8602158doi:10.1111/joa.12101
– volume: 59
  start-page: 320
  year: 1985
  ident: 2021042522392486600_JEB128207C32
  article-title: Endurance training in humans: aerobic capacity and structure of skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1985.59.2.320
– volume: 77
  start-page: 2519
  year: 1994
  ident: 2021042522392486600_JEB128207C4
  article-title: Nitric oxide release is present from incubated skeletal muscle preparations
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1994.77.6.2519
– volume: 469
  start-page: 3
  year: 2009
  ident: 2021042522392486600_JEB128207C12
  article-title: Evolution of the Wnt pathways
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-469-2_1
– volume: 18
  start-page: 38
  issue: Suppl. 1
  year: 2008
  ident: 2021042522392486600_JEB128207C33
  article-title: Training in hypoxia and its effects on skeletal muscle tissue
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/j.1600-0838.2008.00831.x
– volume: 36
  start-page: 307
  year: 1956
  ident: 2021042522392486600_JEB128207C1
  article-title: Human physical fitness with special reference to sex and age
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1956.36.3.307
– volume: 20
  start-page: 14660
  year: 2014
  ident: 2021042522392486600_JEB128207C25
  article-title: Alcoholism: a systemic proinflammatory condition
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i40.14660
– volume: 58
  start-page: 1969
  year: 2015
  ident: 2021042522392486600_JEB128207C48
  article-title: The hitchhiker's guide to PGC-1alpha isoform structure and biological functions
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3671-z
– volume: 115
  start-page: 504
  year: 2014
  ident: 2021042522392486600_JEB128207C68
  article-title: PGC-1alpha induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.303829
– volume: 307
  start-page: R248
  year: 2014
  ident: 2021042522392486600_JEB128207C45
  article-title: Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00036.2013
– volume: 151
  start-page: 1319
  year: 2012
  ident: 2021042522392486600_JEB128207C69
  article-title: A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.050
– volume: 45
  start-page: 2200
  year: 2013
  ident: 2021042522392486600_JEB128207C8
  article-title: Disuse-induced muscle wasting
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2013.06.011
– volume: 14
  start-page: 243
  year: 2011
  ident: 2021042522392486600_JEB128207C81
  article-title: Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0b013e3283455d7a
– volume: 92
  start-page: 1080
  year: 2010
  ident: 2021042522392486600_JEB128207C2
  article-title: Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.2010.29819
– volume: 14
  start-page: 58
  year: 2015
  ident: 2021042522392486600_JEB128207C11
  article-title: Muscle wasting in disease: molecular mechanisms and promising therapies
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4467
– volume: 26
  start-page: 275
  year: 2015
  ident: 2021042522392486600_JEB128207C55
  article-title: Expanding roles for AMPK in skeletal muscle plasticity
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2015.02.009
– volume: 146
  start-page: 159
  year: 2003
  ident: 2021042522392486600_JEB128207C22
  article-title: Molecular basis of skeletal muscle plasticity-from gene to form and function
  publication-title: Rev. Physiol. Biochem. Pharmacol.
  doi: 10.1007/s10254-002-0004-7
– volume: 85
  start-page: 2025
  year: 1998
  ident: 2021042522392486600_JEB128207C20
  article-title: Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1998.85.6.2025
– volume: 17
  start-page: 45
  year: 2006
  ident: 2021042522392486600_JEB128207C40
  article-title: Differential expression of peroxisomal proliferator activated receptors alpha and delta in skeletal muscle in response to changes in diet and exercise
  publication-title: Int. J. Mol. Med.
– volume: 53
  start-page: 124
  year: 2014
  ident: 2021042522392486600_JEB128207C57
  article-title: Regulation of energy metabolism by long-chain fatty acids
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2013.12.001
– volume: 90
  start-page: 360
  year: 2003
  ident: 2021042522392486600_JEB128207C35
  article-title: Performing at extreme altitude: muscle cellular and subcellular adaptations
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-003-0872-9
– volume: 1849
  start-page: 309
  year: 2015
  ident: 2021042522392486600_JEB128207C53
  article-title: Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2015.01.002
– volume: 44
  start-page: 1037
  year: 2014
  ident: 2021042522392486600_JEB128207C72
  article-title: Hypoxia and resistance exercise: a comparison of localized and systemic methods
  publication-title: Sports Med.
  doi: 10.1007/s40279-014-0177-7
– volume: 404
  start-page: 1
  year: 1985
  ident: 2021042522392486600_JEB128207C65
  article-title: Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits
  publication-title: Pflugers Arch.
  doi: 10.1007/BF00581484
– volume: 308
  start-page: E699
  year: 2015
  ident: 2021042522392486600_JEB128207C75
  article-title: Dysregulation of skeletal muscle protein metabolism by alcohol
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00006.2015
– volume: 27
  start-page: 3496
  year: 2013
  ident: 2021042522392486600_JEB128207C28
  article-title: Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle
  publication-title: FASEB J.
  doi: 10.1096/fj.12-224618
– volume: 106
  start-page: 389
  year: 2009
  ident: 2021042522392486600_JEB128207C42
  article-title: Mechano-transduction to muscle protein synthesis is modulated by FAK
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-009-1032-7
– volume: 45
  start-page: 1309
  year: 2013
  ident: 2021042522392486600_JEB128207C70
  article-title: BMP signaling controls muscle mass
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2772
– volume: 567
  start-page: 113
  year: 2005
  ident: 2021042522392486600_JEB128207C24
  article-title: Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.080564
– volume: 42
  start-page: 13
  year: 2006
  ident: 2021042522392486600_JEB128207C38
  article-title: Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise
  publication-title: Essays Biochem.
  doi: 10.1042/bse0420013
– volume: 277
  start-page: 44784
  year: 2002
  ident: 2021042522392486600_JEB128207C76
  article-title: Topology of superoxide production from different sites in the mitochondrial electron transport chain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207217200
– volume: 85
  start-page: 486
  year: 2001
  ident: 2021042522392486600_JEB128207C50
  article-title: Endurance training under 2500-m hypoxia does not increase myoglobin content in human skeletal muscle
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s004210100471
– volume: 34
  start-page: 403
  year: 2009
  ident: 2021042522392486600_JEB128207C60
  article-title: Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects)
  publication-title: Appl. Physiol. Nutr. Metab.
  doi: 10.1139/H09-042
– volume: 282
  start-page: 647
  year: 2015
  ident: 2021042522392486600_JEB128207C82
  article-title: New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond
  publication-title: FEBS J.
  doi: 10.1111/febs.13175
– volume: 589
  start-page: 5021
  year: 2011
  ident: 2021042522392486600_JEB128207C78
  article-title: The role of in vivo Ca2+ signals acting on Ca2+-calmodulin-dependent proteins for skeletal muscle plasticity
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.212860
– volume: 45
  start-page: 2163
  year: 2013
  ident: 2021042522392486600_JEB128207C71
  article-title: Glucocorticoid-induced skeletal muscle atrophy
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2013.05.036
– volume: 216
  start-page: 800
  year: 2013
  ident: 2021042522392486600_JEB128207C51
  article-title: Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.072868
– volume: 71
  start-page: 4361
  year: 2014
  ident: 2021042522392486600_JEB128207C66
  article-title: Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-014-1689-x
– volume: 202
  start-page: 2831
  year: 1999
  ident: 2021042522392486600_JEB128207C16
  article-title: Body-building without power training: endogenously regulated pectoral muscle hypertrophy in confined shorebirds
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.20.2831
– volume: 105
  start-page: 2198
  year: 2008
  ident: 2021042522392486600_JEB128207C6
  article-title: Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0711074105
– volume: 68
  start-page: 2369
  year: 1990
  ident: 2021042522392486600_JEB128207C79
  article-title: Is hypoxia a stimulus for synthesis of oxidative-enzymes and myoglobin
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1990.68.6.2369
– volume: 456
  start-page: 587
  year: 2008
  ident: 2021042522392486600_JEB128207C21
  article-title: Cellular and molecular events controlling skeletal muscle mass in response to altered use
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-007-0423-z
– volume: 1
  start-page: 1383
  year: 2011
  ident: 2021042522392486600_JEB128207C34
  article-title: Molecular mechanisms of muscle plasticity with exercise
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c100042
– volume: 76
  start-page: 73
  year: 2013
  ident: 2021042522392486600_JEB128207C80
  article-title: Dietary protein for muscle hypertrophy
  publication-title: Limits Hum. Endurance
  doi: 10.1159/000350259
– volume: 44
  start-page: 1463
  year: 2012
  ident: 2021042522392486600_JEB128207C85
  article-title: TLR2 and TLR4 activate p38 MAPK and JNK during endurance exercise in skeletal muscle
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e31824e0d5d
– volume: 242
  start-page: 2278
  year: 1967
  ident: 2021042522392486600_JEB128207C29
  article-title: Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96046-1
– volume: 4
  start-page: 284
  year: 2013
  ident: 2021042522392486600_JEB128207C3
  article-title: Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00284
– volume: 269
  start-page: C619
  year: 1995
  ident: 2021042522392486600_JEB128207C64
  article-title: mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1995.269.3.C619
– volume: 18
  start-page: S259
  issue: Suppl. 4
  year: 1997
  ident: 2021042522392486600_JEB128207C14
  article-title: Structural and functional adaptations of skeletal muscle to weightlessness
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2007-972722
– volume: 223
  start-page: 525
  year: 2013
  ident: 2021042522392486600_JEB128207C44
  article-title: Costamere remodeling with muscle loading and unloading in healthy young men
  publication-title: J. Anat.
  doi: 10.1111/joa.12101
SSID ssj0000654
Score 2.536928
SecondaryResourceType review_article
Snippet The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 205
SubjectTerms Animals
Exercise - physiology
Gene Regulatory Networks
Humans
Muscle, Skeletal - physiology
Physical Endurance - physiology
Signal Transduction - genetics
Stress, Physiological - genetics
Title Molecular networks in skeletal muscle plasticity
URI https://www.ncbi.nlm.nih.gov/pubmed/26792332
https://www.proquest.com/docview/1760917285
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46EXwR784bFX0RqbZZ0rSPIspQFIQN9laSNoWhdsN1D_rrPWmaXtyE6UspJWnp-co5X5pzvoPQeRwkXkQptoOEeDZhQtgiCIRN3SiQsS9wkW3x7HX75GFAB1Vvvry6JBNX0dfcupL_oArXAFdVJfsHZMubwgU4B3zhCAjDcSGMn0xv28tUZ3Pnya2TVwglqsbxfTqBCapRtBJjHmaNHdwaE22o_BeqTCXco_FYFtWCXZ42_hK49b8EVdY-LOW0e5La2RG1fetqOUfjDY0HG9ZWpYVvc2gtTGJdQjrjgSHkKw8sBZwCu2BVnDF76z_CT5kUqJYjMDuEuaGeu4xWMLB_1ZHj8cWvBVhKjAi8eqVCdRbmXlfPbfKMXxYPOYnobaD1wubWjYZyEy3JdAut6n6gn9vIKQG1DKDWMLUMoJYG1KoA3UH9-7vebdcuWlrYETDDzI4TIHxK0doXPueSuVJQxqQq2hRKy4syyYVIeOwwj_iCcYd4ElgWwU4EQ-LOLmqlo1TuIwu7MY-iwAlgMOlIJ4iB28a-K31HAG3nbXRhDBBGhd67ajvyFs4auo3OyrFjrXIyd9SpsWMITkjtLPFUjqaT0GUe8E6GfdpGe9rA5X2wpyQqO_hgoWccorXq8z1CrexjKo-B9mXiJP8IvgFS51dm
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+networks+in+skeletal+muscle+plasticity&rft.jtitle=Journal+of+experimental+biology&rft.au=Hoppeler%2C+Hans&rft.date=2016-01-01&rft.issn=0022-0949&rft.eissn=1477-9145&rft.volume=219&rft.issue=2&rft.spage=205&rft.epage=213&rft_id=info:doi/10.1242%2Fjeb.128207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_jeb_128207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0949&client=summon