A Lasso multi-marker mixed model for association mapping with population structure correction

Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be s...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 29; no. 2; pp. 206 - 214
Main Authors Rakitsch, Barbara, Lippert, Christoph, Stegle, Oliver, Borgwardt, Karsten
Format Journal Article
LanguageEnglish
Published England 15.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings. Results: We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker–based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine. Availability: Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html. Contact:  rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.uk Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.Results: We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.Availability: Code available under http://webdav.tuebingen.mpg.de/u/karsten/Forschung/research.html.C o ntact: rakitsch[at]tuebingen.mpg.de, ippert[at]microsoft.com or stegle[at]ebi.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.
Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.MOTIVATIONExploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.RESULTSWe propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html.AVAILABILITYCode available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html.rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.ukCONTACTrakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.ukSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings. Results: We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker–based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine. Availability: Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html. Contact:  rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.uk Supplementary information:  Supplementary data are available at Bioinformatics online.
Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings. We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine. Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html. rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.uk Supplementary data are available at Bioinformatics online.
Author Rakitsch, Barbara
Borgwardt, Karsten
Lippert, Christoph
Stegle, Oliver
Author_xml – sequence: 1
  givenname: Barbara
  surname: Rakitsch
  fullname: Rakitsch, Barbara
– sequence: 2
  givenname: Christoph
  surname: Lippert
  fullname: Lippert, Christoph
– sequence: 3
  givenname: Oliver
  surname: Stegle
  fullname: Stegle, Oliver
– sequence: 4
  givenname: Karsten
  surname: Borgwardt
  fullname: Borgwardt, Karsten
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23175758$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFP3DAQha1qURdofwKVj1zC2vE6scVphShUWqkXOFaWM5kUt0kcbEfAv2_C7lZqD3Aaa_S9edZ7J2TR-x4JOePsgjMtVpXzrm986GxyEFdVikWhP5BjLooyWyvOF3_fTCzJSYy_GGOSyeIjWeaCl7KU6pj82NCtjdHTbmyTyzobfmOgnXvGmna-xpZOHnQmwE1OvqedHQbX_6RPLj3QwQ9ju9vHFEZIY0AKPgSEefmJHDW2jfh5P0_J_dfru6vbbPv95tvVZpuBUDplNWBjVc1rDTq3CrmVayZkzZUUJUNQDNX0X4B1oZocGKgKCl1pJZHVQnBxSs53d4fgH0eMyXQuArat7dGP0XCRi3yt5yjeRfNSFIJxPaNf9uhYdVibIbgpnxdzSG8CLncABB9jwMaAS69ppGBdazgzc1fm367MrqtJLf9THwze1v0BhZmhyA
CitedBy_id crossref_primary_10_1186_s12859_019_3300_9
crossref_primary_10_1016_j_ajhg_2014_09_007
crossref_primary_10_1145_2817827
crossref_primary_10_1186_1753_6561_8_S1_S94
crossref_primary_10_1089_cmb_2019_0325
crossref_primary_10_1186_s12711_017_0338_x
crossref_primary_10_1016_j_cj_2016_06_003
crossref_primary_10_1038_hdy_2014_98
crossref_primary_10_1038_ng_3190
crossref_primary_10_1093_nar_gkw986
crossref_primary_10_1186_s12920_020_0667_4
crossref_primary_10_3390_plants11233277
crossref_primary_10_1111_1755_0998_13728
crossref_primary_10_1371_journal_pgen_1008766
crossref_primary_10_1017_S1751731119003409
crossref_primary_10_1002_tpg2_20505
crossref_primary_10_1093_bioinformatics_btt238
crossref_primary_10_1111_tpj_14189
crossref_primary_10_1016_j_tig_2019_02_005
crossref_primary_10_1109_ACCESS_2024_3384309
crossref_primary_10_1038_s41598_018_31573_5
crossref_primary_10_1038_srep06874
crossref_primary_10_1214_21_AOAS1580
crossref_primary_10_1002_em_21797
crossref_primary_10_1371_journal_pgen_1004754
crossref_primary_10_3390_ijms20123041
crossref_primary_10_1371_journal_pone_0107469
crossref_primary_10_3389_fgene_2015_00324
crossref_primary_10_1007_s00335_014_9523_1
crossref_primary_10_1038_srep36671
crossref_primary_10_1109_TCBB_2019_2935437
crossref_primary_10_1371_journal_pone_0093766
crossref_primary_10_3390_ani11020469
crossref_primary_10_1038_srep38600
crossref_primary_10_1371_journal_pgen_1009405
crossref_primary_10_1016_j_hbpd_2020_12_020
crossref_primary_10_1093_bioinformatics_btz759
crossref_primary_10_1093_jhered_esac006
crossref_primary_10_1371_journal_pone_0308818
crossref_primary_10_1002_bies_202100109
crossref_primary_10_1093_bioinformatics_btw128
crossref_primary_10_1038_ncomms8432
crossref_primary_10_1038_s41437_022_00525_1
crossref_primary_10_1515_ijb_2020_0108
crossref_primary_10_1111_mec_14005
crossref_primary_10_1089_cmb_2015_0202
crossref_primary_10_1007_s00122_017_2962_9
crossref_primary_10_1021_pr401143e
crossref_primary_10_1007_s10994_017_5652_6
crossref_primary_10_1371_journal_pgen_1007978
crossref_primary_10_1534_genetics_116_193383
crossref_primary_10_1038_ncomms13299
crossref_primary_10_3389_fgene_2019_00271
crossref_primary_10_1007_s00122_018_3174_7
crossref_primary_10_1093_bioinformatics_btv586
crossref_primary_10_7554_eLife_79238
crossref_primary_10_1186_1753_6561_8_S1_S67
crossref_primary_10_1002_gepi_21975
crossref_primary_10_1007_s10709_021_00129_3
crossref_primary_10_1086_688018
crossref_primary_10_1186_1756_0381_6_5
crossref_primary_10_1038_ncomms5890
crossref_primary_10_1007_s10142_024_01477_x
crossref_primary_10_1016_j_stress_2025_100760
crossref_primary_10_3835_plantgenome2017_01_0001
crossref_primary_10_1016_j_idm_2023_09_002
crossref_primary_10_1002_tpg2_20436
crossref_primary_10_1093_bioinformatics_btad063
crossref_primary_10_1016_j_ymeth_2018_04_021
crossref_primary_10_1016_j_ymeth_2018_04_020
crossref_primary_10_1002_gepi_22341
crossref_primary_10_1007_s00180_019_00939_2
crossref_primary_10_1002_gepi_22384
crossref_primary_10_1094_PHYTO_05_24_0157_R
Cites_doi 10.1101/gr.086660.108
10.1111/j.2517-6161.1996.tb02080.x
10.1038/nrg2344
10.1371/journal.pgen.0030004
10.1073/pnas.1002425107
10.1038/ng.546
10.1371/journal.pgen.1002685
10.1198/jasa.2009.tm08647
10.1093/bioinformatics/btq688
10.1093/bioinformatics/btq191
10.1038/ng.608
10.1038/ng.2213
10.1038/nature08979
10.1111/j.1467-9868.2010.00740.x
10.1038/nmeth.1681
10.1038/ng.1042
10.1038/ng.2314
10.1093/bioinformatics/bts227
10.1111/j.1467-9469.2011.00740.x
10.1038/ng.2310
10.1038/nrg2612
10.1534/genetics.110.121665
10.1371/journal.pcbi.1002330
10.1371/journal.pgen.1000130
10.1371/journal.pgen.1000587
10.1198/108571107X200396
10.1093/bioinformatics/btp041
10.1038/ng.548
10.1086/323659
10.1371/journal.pgen.1000843
10.1017/S0016672308009981
10.1038/nrg2813
10.1038/ng1847
10.1214/09-STS306
10.2307/2348250
10.1038/nature08800
10.1534/genetics.107.080101
10.1038/ng1840
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1093/bioinformatics/bts669
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 214
ExternalDocumentID 23175758
10_1093_bioinformatics_bts669
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
482
7QO
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
ID FETCH-LOGICAL-c389t-dcefa8d1d9c92a8e1a54035d185370ec80e8757cc468f2c0c8bc69b985e0d3313
ISSN 1367-4803
1367-4811
IngestDate Thu Jul 10 19:28:16 EDT 2025
Fri Jul 11 01:16:02 EDT 2025
Thu Apr 03 07:07:14 EDT 2025
Tue Jul 01 03:27:07 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-dcefa8d1d9c92a8e1a54035d185370ec80e8757cc468f2c0c8bc69b985e0d3313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/29/2/206/17124336/bts669.pdf
PMID 23175758
PQID 1273630190
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1323249480
proquest_miscellaneous_1273630190
pubmed_primary_23175758
crossref_citationtrail_10_1093_bioinformatics_bts669
crossref_primary_10_1093_bioinformatics_bts669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-15
2013-Jan-15
20130115
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2013
References Li (2023012810164103100_bts669-B19) 2011; 27
Schelldorfer (2023012810164103100_bts669-B34) 2011; 38
Tibshirani (2023012810164103100_bts669-B36) 1996; 58
Zhang (2023012810164103100_bts669-B43) 2010; 42
Platt (2023012810164103100_bts669-B26) 2010; 186
Sakia (2023012810164103100_bts669-B33) 1992; 41
Yu (2023012810164103100_bts669-B42) 2006; 38
Puniyani (2023012810164103100_bts669-B30) 2010; 26
Yang (2023012810164103100_bts669-B40) 2010; 42
Segura (2023012810164103100_bts669-B35) 2012; 44
Yang (2023012810164103100_bts669-B41) 2012; 44
Bradley (2023012810164103100_bts669-B2) 2011
Craddock (2023012810164103100_bts669-B4) 2010; 464
Kim (2023012810164103100_bts669-B15) 2009; 5
Meinshausen (2023012810164103100_bts669-B23) 2009; 104
McCarthy (2023012810164103100_bts669-B21) 2008; 9
Wu (2023012810164103100_bts669-B38) 2009; 25
Listgarten (2023012810164103100_bts669-B18) 2010; 107
Lippert (2023012810164103100_bts669-B17) 2011; 8
Xiang (2023012810164103100_bts669-B39) 2011
Hayes (2023012810164103100_bts669-B10) 2009; 91
Zhou (2023012810164103100_bts669-B45) 2012; 44
Lee (2023012810164103100_bts669-B16) 2012; 28
Foster (2023012810164103100_bts669-B6) 2007; 12
Price (2023012810164103100_bts669-B29) 2006; 38
Fusi (2023012810164103100_bts669-B7) 2012; 8
Robinson (2023012810164103100_bts669-B32) 1991; 6
Flint (2023012810164103100_bts669-B5) 2009; 19
Ober (2023012810164103100_bts669-B25) 2012; 8
Goddard (2023012810164103100_bts669-B8) 2009; 24
Hastie (2023012810164103100_bts669-B9) 2003
Kang (2023012810164103100_bts669-B13) 2010; 42
Valdar (2023012810164103100_bts669-B37) 2006; 38
Horton (2023012810164103100_bts669-B12) 2012; 44
Newman (2023012810164103100_bts669-B24) 2001; 69
Hoggart (2023012810164103100_bts669-B11) 2008; 4
Bühlmann (2023012810164103100_bts669-B3) 2012
Price (2023012810164103100_bts669-B28) 2010; 11
Kang (2023012810164103100_bts669-B14) 2008; 178
Atwell (2023012810164103100_bts669-B1) 2010; 465
Mackay (2023012810164103100_bts669-B20) 2009; 10
Rasmussen (2023012810164103100_bts669-B31) 2006
Zhao (2023012810164103100_bts669-B44) 2007; 3
Platt (2023012810164103100_bts669-B27) 2010; 6
Meinshausen (2023012810164103100_bts669-B22) 2010; 72
References_xml – volume: 19
  start-page: 723
  year: 2009
  ident: 2023012810164103100_bts669-B5
  article-title: Genetic architecture of quantitative traits in mice, flies, and humans
  publication-title: Genome Res.
  doi: 10.1101/gr.086660.108
– volume: 58
  start-page: 267
  year: 1996
  ident: 2023012810164103100_bts669-B36
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 9
  start-page: 356
  year: 2008
  ident: 2023012810164103100_bts669-B21
  article-title: Genome-wide association studies for complex traits: consensus, uncertainty and challenges
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2344
– volume-title: The Elements of Statistical Learning
  year: 2003
  ident: 2023012810164103100_bts669-B9
– volume: 3
  start-page: e4
  year: 2007
  ident: 2023012810164103100_bts669-B44
  article-title: An Arabidopsis example of association mapping in structured samples
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030004
– volume: 107
  start-page: 16465
  year: 2010
  ident: 2023012810164103100_bts669-B18
  article-title: Correction for hidden confounders in the genetic analysis of gene expression
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1002425107
– volume: 42
  start-page: 355
  year: 2010
  ident: 2023012810164103100_bts669-B43
  article-title: Mixed linear model approach adapted for genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.546
– volume: 6
  start-page: 15
  year: 1991
  ident: 2023012810164103100_bts669-B32
  article-title: That blup is a good thing: the estimation of random effects
  publication-title: Stat. Sci.
– volume: 8
  start-page: e1002685
  year: 2012
  ident: 2023012810164103100_bts669-B25
  article-title: Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002685
– year: 2012
  ident: 2023012810164103100_bts669-B3
  article-title: Statistical significance in high-dimensional linear models
– volume: 104
  start-page: 1671
  year: 2009
  ident: 2023012810164103100_bts669-B23
  article-title: P-values for high-dimensional regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm08647
– volume: 27
  start-page: 516
  year: 2011
  ident: 2023012810164103100_bts669-B19
  article-title: The bayesian lasso for genome-wide association studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq688
– volume: 26
  start-page: i208
  year: 2010
  ident: 2023012810164103100_bts669-B30
  article-title: Multi-population GWA mapping via multi-task regularized regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq191
– volume: 42
  start-page: 565
  year: 2010
  ident: 2023012810164103100_bts669-B40
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.608
– volume: 44
  start-page: 369
  year: 2012
  ident: 2023012810164103100_bts669-B41
  article-title: Conditional and joint multiple-snp analysis of gwas summary statistics identifies additional variants influencing complex traits
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2213
– volume: 464
  start-page: 713
  year: 2010
  ident: 2023012810164103100_bts669-B4
  article-title: Genome-wide association study of cnvs in 16,000 cases of eight common diseases and 3,000 shared controls
  publication-title: Nature
  doi: 10.1038/nature08979
– volume: 72
  start-page: 417
  year: 2010
  ident: 2023012810164103100_bts669-B22
  article-title: Stability selection
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 8
  start-page: 833
  year: 2011
  ident: 2023012810164103100_bts669-B17
  article-title: FaST linear mixed models for genome-wide association studies
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1681
– volume: 44
  start-page: 212
  year: 2012
  ident: 2023012810164103100_bts669-B12
  article-title: Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1042
– volume: 44
  start-page: 825
  year: 2012
  ident: 2023012810164103100_bts669-B35
  article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2314
– volume: 28
  start-page: i137
  year: 2012
  ident: 2023012810164103100_bts669-B16
  article-title: Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts227
– volume: 38
  start-page: 197
  year: 2011
  ident: 2023012810164103100_bts669-B34
  article-title: Estimation for high-dimensional linear mixed-effects models using l1-penalization
  publication-title: Scand. Stat. Theory Appl.
  doi: 10.1111/j.1467-9469.2011.00740.x
– volume: 44
  start-page: 821
  year: 2012
  ident: 2023012810164103100_bts669-B45
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2310
– volume: 10
  start-page: 565
  year: 2009
  ident: 2023012810164103100_bts669-B20
  article-title: The genetics of quantitative traits: challenges and prospects
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2612
– start-page: 321
  year: 2011
  ident: 2023012810164103100_bts669-B2
  article-title: Parallel coordinate descent for l1-regularized loss minimization
  publication-title: ICML
– volume: 186
  start-page: 1054
  year: 2010
  ident: 2023012810164103100_bts669-B26
  article-title: Conditions under which genome-wide association studies will be positively misleading
  publication-title: Genetics
  doi: 10.1534/genetics.110.121665
– volume: 8
  start-page: e1002330
  year: 2012
  ident: 2023012810164103100_bts669-B7
  article-title: Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002330
– volume: 4
  start-page: e1000130
  year: 2008
  ident: 2023012810164103100_bts669-B11
  article-title: Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000130
– start-page: 900
  volume-title: Advances in Neural Information Processing System
  year: 2011
  ident: 2023012810164103100_bts669-B39
  article-title: Learning sparse representations of high dimensional data on large scale dictionaries
– volume: 5
  start-page: e1000587
  year: 2009
  ident: 2023012810164103100_bts669-B15
  article-title: Statistical estimation of correlated genome associations to a quantitative trait network
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000587
– volume: 12
  start-page: 300
  year: 2007
  ident: 2023012810164103100_bts669-B6
  article-title: Incorporating lasso effects into a mixed model for quantitative trait loci detection
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/108571107X200396
– volume: 25
  start-page: 714
  year: 2009
  ident: 2023012810164103100_bts669-B38
  article-title: Genome-wide association analysis by lasso penalized logistic regression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp041
– volume: 42
  start-page: 348
  year: 2010
  ident: 2023012810164103100_bts669-B13
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.548
– volume: 69
  start-page: 1146
  year: 2001
  ident: 2023012810164103100_bts669-B24
  article-title: The importance of genealogy in determining genetic associations with complex traits
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/323659
– volume: 38
  start-page: 203
  year: 2006
  ident: 2023012810164103100_bts669-B42
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
  publication-title: Nat. Methods
– volume: 6
  start-page: e1000843
  year: 2010
  ident: 2023012810164103100_bts669-B27
  article-title: The scale of population structure in Arabidopsis thaliana
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000843
– volume: 91
  start-page: 47
  year: 2009
  ident: 2023012810164103100_bts669-B10
  article-title: Increased accuracy of artificial selection by using the realized relationship matrix
  publication-title: Genet. Res. (Camb.)
  doi: 10.1017/S0016672308009981
– volume: 11
  start-page: 459
  year: 2010
  ident: 2023012810164103100_bts669-B28
  article-title: New approaches to population stratification in genome-wide association studies
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2813
– volume: 38
  start-page: 904
  year: 2006
  ident: 2023012810164103100_bts669-B29
  article-title: Principal components analysis corrects for stratification in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng1847
– volume: 24
  start-page: 517
  year: 2009
  ident: 2023012810164103100_bts669-B8
  article-title: Estimating effects and making predictions from genome-wide marker data
  publication-title: Stat. Sci.
  doi: 10.1214/09-STS306
– volume: 41
  start-page: 169
  year: 1992
  ident: 2023012810164103100_bts669-B33
  article-title: The box-cox transformation technique: a review
  publication-title: Statistician
  doi: 10.2307/2348250
– volume: 465
  start-page: 627
  year: 2010
  ident: 2023012810164103100_bts669-B1
  article-title: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines
  publication-title: Nature
  doi: 10.1038/nature08800
– volume: 178
  start-page: 1709
  year: 2008
  ident: 2023012810164103100_bts669-B14
  article-title: Efficient control of population structure in model organism association mapping
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– volume: 38
  start-page: 879
  year: 2006
  ident: 2023012810164103100_bts669-B37
  article-title: Genome-wide genetic association of complex traits in heterogeneous stock mice
  publication-title: Nat. Genet.
  doi: 10.1038/ng1840
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 2023012810164103100_bts669-B31
SSID ssj0005056
ssj0051444
Score 2.4128568
Snippet Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian...
Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 206
SubjectTerms Animals
Arabidopsis thaliana
Chromosome Mapping
Genetic Loci
Genome
Genome-Wide Association Study
Genotype
Humans
Karsten
Linear Models
Mice
Phenotype
Polymorphism, Single Nucleotide
Population Groups - genetics
Title A Lasso multi-marker mixed model for association mapping with population structure correction
URI https://www.ncbi.nlm.nih.gov/pubmed/23175758
https://www.proquest.com/docview/1273630190
https://www.proquest.com/docview/1323249480
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvY_dmNzTYW3BrW7ZjP4bRUkbWvDiQl2FkSSmBxjaNB9t-_c7xUWSb3bq9mETEEdb3Sf50dC6Mvc-kSDalyjxZGulFsYY5l6XCK-FdphOYXFqivePTZXKxij6u43V_XNBFl7Tlifr-y7iS_0EV2gBXjJL9B2Tdn0IDfAZ84QoIw_VWGM-nC9C-NXkFejv0tLmZ7rZfQUR2FW7IRbIHYLqTTeOsr42r3TWlLLJ4lqCwWodyaB2Oe7e1zbDaDr3jQX22e6olZc8tnH_PtmlsNJBLX-CMOa25Iifm5TV6hTiLQH1zhT68rQ1SA_5VQ6MEFogIPArLtOuowHTqqU9rl6G2KPEBPpsA3C6-1tyxHeyB7UrqJ4OXckiRpj-t95QLqxwNAja0-4QqwIwzbF8ui_PVYlHkZ-v8LrsXwtYCq17ky3XvFuRjciH6AmIyoqrI9mkOIWCZOB33eUo9jsXNb3YsnXLJH7GHdsvB58Sfx-yOqZ6w-1SE9NtT9nnOOxbxIYt4xyLesYhD_3zAIm5ZxJFFvGcRdyziPYuesdX5Wf7hwrNFNzwF2rX1tDIbmepAZyoLZWoCCZpexBp13cw3KvUN1kBQKkrSTah8lZYqycosjY2vhQjEc3ZU1ZU5ZhyUnwqhWcUiiyTaQuRGz6JQGqEjYWYTFh1Gq1A2Iz0WRrkuyDNCFONBLmiQJ-zE3dZQSpa_3fDuAEUBiyeeiMnK1F_2RQDiPRGYTuEPvxG46cgA_gl7QTi6bkNU37DjfnmLu1-xB_1Mec2OABLzBgRtW77tGPgDk5Wsdg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lasso+multi-marker+mixed+model+for+association+mapping+with+population+structure+correction&rft.jtitle=Bioinformatics&rft.au=Rakitsch%2C+Barbara&rft.au=Lippert%2C+Christoph&rft.au=Stegle%2C+Oliver&rft.au=Borgwardt%2C+Karsten&rft.date=2013-01-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=29&rft.issue=2&rft.spage=206&rft.epage=214&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbts669&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon