A Lasso multi-marker mixed model for association mapping with population structure correction
Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be s...
Saved in:
Published in | Bioinformatics Vol. 29; no. 2; pp. 206 - 214 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
15.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.
Results: We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker–based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.
Availability: Code available under http://webdav.tuebingen.
mpg.de/u/karsten/Forschung/research.html.
Contact: rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.Results: We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.Availability: Code available under http://webdav.tuebingen.mpg.de/u/karsten/Forschung/research.html.C o ntact: rakitsch[at]tuebingen.mpg.de, ippert[at]microsoft.com or stegle[at]ebi.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.MOTIVATIONExploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings.We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.RESULTSWe propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine.Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html.AVAILABILITYCode available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html.rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.ukCONTACTrakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.ukSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings. Results: We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker–based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine. Availability: Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html. Contact: rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures, single polymorphic loci explain a significant fraction of the phenotypic variability. However, many traits of interest seem to be subject to multifactorial control by groups of genetic loci. Accurate detection of such multivariate associations is non-trivial and often compromised by limited statistical power. At the same time, confounding influences, such as population structure, cause spurious association signals that result in false-positive findings. We propose linear mixed models LMM-Lasso, a mixed model that allows for both multi-locus mapping and correction for confounding effects. Our approach is simple and free of tuning parameters; it effectively controls for population structure and scales to genome-wide datasets. LMM-Lasso simultaneously discovers likely causal variants and allows for multi-marker-based phenotype prediction from genotype. We demonstrate the practical use of LMM-Lasso in genome-wide association studies in Arabidopsis thaliana and linkage mapping in mouse, where our method achieves significantly more accurate phenotype prediction for 91% of the considered phenotypes. At the same time, our model dissects the phenotypic variability into components that result from individual single nucleotide polymorphism effects and population structure. Enrichment of known candidate genes suggests that the individual associations retrieved by LMM-Lasso are likely to be genuine. Code available under http://webdav.tuebingen. mpg.de/u/karsten/Forschung/research.html. rakitsch@tuebingen.mpg.de, ippert@microsoft.com or stegle@ebi.ac.uk Supplementary data are available at Bioinformatics online. |
Author | Rakitsch, Barbara Borgwardt, Karsten Lippert, Christoph Stegle, Oliver |
Author_xml | – sequence: 1 givenname: Barbara surname: Rakitsch fullname: Rakitsch, Barbara – sequence: 2 givenname: Christoph surname: Lippert fullname: Lippert, Christoph – sequence: 3 givenname: Oliver surname: Stegle fullname: Stegle, Oliver – sequence: 4 givenname: Karsten surname: Borgwardt fullname: Borgwardt, Karsten |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23175758$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFP3DAQha1qURdofwKVj1zC2vE6scVphShUWqkXOFaWM5kUt0kcbEfAv2_C7lZqD3Aaa_S9edZ7J2TR-x4JOePsgjMtVpXzrm986GxyEFdVikWhP5BjLooyWyvOF3_fTCzJSYy_GGOSyeIjWeaCl7KU6pj82NCtjdHTbmyTyzobfmOgnXvGmna-xpZOHnQmwE1OvqedHQbX_6RPLj3QwQ9ju9vHFEZIY0AKPgSEefmJHDW2jfh5P0_J_dfru6vbbPv95tvVZpuBUDplNWBjVc1rDTq3CrmVayZkzZUUJUNQDNX0X4B1oZocGKgKCl1pJZHVQnBxSs53d4fgH0eMyXQuArat7dGP0XCRi3yt5yjeRfNSFIJxPaNf9uhYdVibIbgpnxdzSG8CLncABB9jwMaAS69ppGBdazgzc1fm367MrqtJLf9THwze1v0BhZmhyA |
CitedBy_id | crossref_primary_10_1186_s12859_019_3300_9 crossref_primary_10_1016_j_ajhg_2014_09_007 crossref_primary_10_1145_2817827 crossref_primary_10_1186_1753_6561_8_S1_S94 crossref_primary_10_1089_cmb_2019_0325 crossref_primary_10_1186_s12711_017_0338_x crossref_primary_10_1016_j_cj_2016_06_003 crossref_primary_10_1038_hdy_2014_98 crossref_primary_10_1038_ng_3190 crossref_primary_10_1093_nar_gkw986 crossref_primary_10_1186_s12920_020_0667_4 crossref_primary_10_3390_plants11233277 crossref_primary_10_1111_1755_0998_13728 crossref_primary_10_1371_journal_pgen_1008766 crossref_primary_10_1017_S1751731119003409 crossref_primary_10_1002_tpg2_20505 crossref_primary_10_1093_bioinformatics_btt238 crossref_primary_10_1111_tpj_14189 crossref_primary_10_1016_j_tig_2019_02_005 crossref_primary_10_1109_ACCESS_2024_3384309 crossref_primary_10_1038_s41598_018_31573_5 crossref_primary_10_1038_srep06874 crossref_primary_10_1214_21_AOAS1580 crossref_primary_10_1002_em_21797 crossref_primary_10_1371_journal_pgen_1004754 crossref_primary_10_3390_ijms20123041 crossref_primary_10_1371_journal_pone_0107469 crossref_primary_10_3389_fgene_2015_00324 crossref_primary_10_1007_s00335_014_9523_1 crossref_primary_10_1038_srep36671 crossref_primary_10_1109_TCBB_2019_2935437 crossref_primary_10_1371_journal_pone_0093766 crossref_primary_10_3390_ani11020469 crossref_primary_10_1038_srep38600 crossref_primary_10_1371_journal_pgen_1009405 crossref_primary_10_1016_j_hbpd_2020_12_020 crossref_primary_10_1093_bioinformatics_btz759 crossref_primary_10_1093_jhered_esac006 crossref_primary_10_1371_journal_pone_0308818 crossref_primary_10_1002_bies_202100109 crossref_primary_10_1093_bioinformatics_btw128 crossref_primary_10_1038_ncomms8432 crossref_primary_10_1038_s41437_022_00525_1 crossref_primary_10_1515_ijb_2020_0108 crossref_primary_10_1111_mec_14005 crossref_primary_10_1089_cmb_2015_0202 crossref_primary_10_1007_s00122_017_2962_9 crossref_primary_10_1021_pr401143e crossref_primary_10_1007_s10994_017_5652_6 crossref_primary_10_1371_journal_pgen_1007978 crossref_primary_10_1534_genetics_116_193383 crossref_primary_10_1038_ncomms13299 crossref_primary_10_3389_fgene_2019_00271 crossref_primary_10_1007_s00122_018_3174_7 crossref_primary_10_1093_bioinformatics_btv586 crossref_primary_10_7554_eLife_79238 crossref_primary_10_1186_1753_6561_8_S1_S67 crossref_primary_10_1002_gepi_21975 crossref_primary_10_1007_s10709_021_00129_3 crossref_primary_10_1086_688018 crossref_primary_10_1186_1756_0381_6_5 crossref_primary_10_1038_ncomms5890 crossref_primary_10_1007_s10142_024_01477_x crossref_primary_10_1016_j_stress_2025_100760 crossref_primary_10_3835_plantgenome2017_01_0001 crossref_primary_10_1016_j_idm_2023_09_002 crossref_primary_10_1002_tpg2_20436 crossref_primary_10_1093_bioinformatics_btad063 crossref_primary_10_1016_j_ymeth_2018_04_021 crossref_primary_10_1016_j_ymeth_2018_04_020 crossref_primary_10_1002_gepi_22341 crossref_primary_10_1007_s00180_019_00939_2 crossref_primary_10_1002_gepi_22384 crossref_primary_10_1094_PHYTO_05_24_0157_R |
Cites_doi | 10.1101/gr.086660.108 10.1111/j.2517-6161.1996.tb02080.x 10.1038/nrg2344 10.1371/journal.pgen.0030004 10.1073/pnas.1002425107 10.1038/ng.546 10.1371/journal.pgen.1002685 10.1198/jasa.2009.tm08647 10.1093/bioinformatics/btq688 10.1093/bioinformatics/btq191 10.1038/ng.608 10.1038/ng.2213 10.1038/nature08979 10.1111/j.1467-9868.2010.00740.x 10.1038/nmeth.1681 10.1038/ng.1042 10.1038/ng.2314 10.1093/bioinformatics/bts227 10.1111/j.1467-9469.2011.00740.x 10.1038/ng.2310 10.1038/nrg2612 10.1534/genetics.110.121665 10.1371/journal.pcbi.1002330 10.1371/journal.pgen.1000130 10.1371/journal.pgen.1000587 10.1198/108571107X200396 10.1093/bioinformatics/btp041 10.1038/ng.548 10.1086/323659 10.1371/journal.pgen.1000843 10.1017/S0016672308009981 10.1038/nrg2813 10.1038/ng1847 10.1214/09-STS306 10.2307/2348250 10.1038/nature08800 10.1534/genetics.107.080101 10.1038/ng1840 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1093/bioinformatics/bts669 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 1460-2059 |
EndPage | 214 |
ExternalDocumentID | 23175758 10_1093_bioinformatics_bts669 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 482 7QO 8FD ABJNI FR3 P64 ROZ TN5 WH7 |
ID | FETCH-LOGICAL-c389t-dcefa8d1d9c92a8e1a54035d185370ec80e8757cc468f2c0c8bc69b985e0d3313 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Jul 10 19:28:16 EDT 2025 Fri Jul 11 01:16:02 EDT 2025 Thu Apr 03 07:07:14 EDT 2025 Tue Jul 01 03:27:07 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-dcefa8d1d9c92a8e1a54035d185370ec80e8757cc468f2c0c8bc69b985e0d3313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/29/2/206/17124336/bts669.pdf |
PMID | 23175758 |
PQID | 1273630190 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1323249480 proquest_miscellaneous_1273630190 pubmed_primary_23175758 crossref_citationtrail_10_1093_bioinformatics_bts669 crossref_primary_10_1093_bioinformatics_bts669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-15 2013-Jan-15 20130115 |
PublicationDateYYYYMMDD | 2013-01-15 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2013 |
References | Li (2023012810164103100_bts669-B19) 2011; 27 Schelldorfer (2023012810164103100_bts669-B34) 2011; 38 Tibshirani (2023012810164103100_bts669-B36) 1996; 58 Zhang (2023012810164103100_bts669-B43) 2010; 42 Platt (2023012810164103100_bts669-B26) 2010; 186 Sakia (2023012810164103100_bts669-B33) 1992; 41 Yu (2023012810164103100_bts669-B42) 2006; 38 Puniyani (2023012810164103100_bts669-B30) 2010; 26 Yang (2023012810164103100_bts669-B40) 2010; 42 Segura (2023012810164103100_bts669-B35) 2012; 44 Yang (2023012810164103100_bts669-B41) 2012; 44 Bradley (2023012810164103100_bts669-B2) 2011 Craddock (2023012810164103100_bts669-B4) 2010; 464 Kim (2023012810164103100_bts669-B15) 2009; 5 Meinshausen (2023012810164103100_bts669-B23) 2009; 104 McCarthy (2023012810164103100_bts669-B21) 2008; 9 Wu (2023012810164103100_bts669-B38) 2009; 25 Listgarten (2023012810164103100_bts669-B18) 2010; 107 Lippert (2023012810164103100_bts669-B17) 2011; 8 Xiang (2023012810164103100_bts669-B39) 2011 Hayes (2023012810164103100_bts669-B10) 2009; 91 Zhou (2023012810164103100_bts669-B45) 2012; 44 Lee (2023012810164103100_bts669-B16) 2012; 28 Foster (2023012810164103100_bts669-B6) 2007; 12 Price (2023012810164103100_bts669-B29) 2006; 38 Fusi (2023012810164103100_bts669-B7) 2012; 8 Robinson (2023012810164103100_bts669-B32) 1991; 6 Flint (2023012810164103100_bts669-B5) 2009; 19 Ober (2023012810164103100_bts669-B25) 2012; 8 Goddard (2023012810164103100_bts669-B8) 2009; 24 Hastie (2023012810164103100_bts669-B9) 2003 Kang (2023012810164103100_bts669-B13) 2010; 42 Valdar (2023012810164103100_bts669-B37) 2006; 38 Horton (2023012810164103100_bts669-B12) 2012; 44 Newman (2023012810164103100_bts669-B24) 2001; 69 Hoggart (2023012810164103100_bts669-B11) 2008; 4 Bühlmann (2023012810164103100_bts669-B3) 2012 Price (2023012810164103100_bts669-B28) 2010; 11 Kang (2023012810164103100_bts669-B14) 2008; 178 Atwell (2023012810164103100_bts669-B1) 2010; 465 Mackay (2023012810164103100_bts669-B20) 2009; 10 Rasmussen (2023012810164103100_bts669-B31) 2006 Zhao (2023012810164103100_bts669-B44) 2007; 3 Platt (2023012810164103100_bts669-B27) 2010; 6 Meinshausen (2023012810164103100_bts669-B22) 2010; 72 |
References_xml | – volume: 19 start-page: 723 year: 2009 ident: 2023012810164103100_bts669-B5 article-title: Genetic architecture of quantitative traits in mice, flies, and humans publication-title: Genome Res. doi: 10.1101/gr.086660.108 – volume: 58 start-page: 267 year: 1996 ident: 2023012810164103100_bts669-B36 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 9 start-page: 356 year: 2008 ident: 2023012810164103100_bts669-B21 article-title: Genome-wide association studies for complex traits: consensus, uncertainty and challenges publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2344 – volume-title: The Elements of Statistical Learning year: 2003 ident: 2023012810164103100_bts669-B9 – volume: 3 start-page: e4 year: 2007 ident: 2023012810164103100_bts669-B44 article-title: An Arabidopsis example of association mapping in structured samples publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030004 – volume: 107 start-page: 16465 year: 2010 ident: 2023012810164103100_bts669-B18 article-title: Correction for hidden confounders in the genetic analysis of gene expression publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1002425107 – volume: 42 start-page: 355 year: 2010 ident: 2023012810164103100_bts669-B43 article-title: Mixed linear model approach adapted for genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.546 – volume: 6 start-page: 15 year: 1991 ident: 2023012810164103100_bts669-B32 article-title: That blup is a good thing: the estimation of random effects publication-title: Stat. Sci. – volume: 8 start-page: e1002685 year: 2012 ident: 2023012810164103100_bts669-B25 article-title: Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002685 – year: 2012 ident: 2023012810164103100_bts669-B3 article-title: Statistical significance in high-dimensional linear models – volume: 104 start-page: 1671 year: 2009 ident: 2023012810164103100_bts669-B23 article-title: P-values for high-dimensional regression publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.tm08647 – volume: 27 start-page: 516 year: 2011 ident: 2023012810164103100_bts669-B19 article-title: The bayesian lasso for genome-wide association studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq688 – volume: 26 start-page: i208 year: 2010 ident: 2023012810164103100_bts669-B30 article-title: Multi-population GWA mapping via multi-task regularized regression publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq191 – volume: 42 start-page: 565 year: 2010 ident: 2023012810164103100_bts669-B40 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. doi: 10.1038/ng.608 – volume: 44 start-page: 369 year: 2012 ident: 2023012810164103100_bts669-B41 article-title: Conditional and joint multiple-snp analysis of gwas summary statistics identifies additional variants influencing complex traits publication-title: Nat. Genet. doi: 10.1038/ng.2213 – volume: 464 start-page: 713 year: 2010 ident: 2023012810164103100_bts669-B4 article-title: Genome-wide association study of cnvs in 16,000 cases of eight common diseases and 3,000 shared controls publication-title: Nature doi: 10.1038/nature08979 – volume: 72 start-page: 417 year: 2010 ident: 2023012810164103100_bts669-B22 article-title: Stability selection publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.1467-9868.2010.00740.x – volume: 8 start-page: 833 year: 2011 ident: 2023012810164103100_bts669-B17 article-title: FaST linear mixed models for genome-wide association studies publication-title: Nat. Methods doi: 10.1038/nmeth.1681 – volume: 44 start-page: 212 year: 2012 ident: 2023012810164103100_bts669-B12 article-title: Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel publication-title: Nat. Genet. doi: 10.1038/ng.1042 – volume: 44 start-page: 825 year: 2012 ident: 2023012810164103100_bts669-B35 article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations publication-title: Nat. Genet. doi: 10.1038/ng.2314 – volume: 28 start-page: i137 year: 2012 ident: 2023012810164103100_bts669-B16 article-title: Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts227 – volume: 38 start-page: 197 year: 2011 ident: 2023012810164103100_bts669-B34 article-title: Estimation for high-dimensional linear mixed-effects models using l1-penalization publication-title: Scand. Stat. Theory Appl. doi: 10.1111/j.1467-9469.2011.00740.x – volume: 44 start-page: 821 year: 2012 ident: 2023012810164103100_bts669-B45 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nat. Genet. doi: 10.1038/ng.2310 – volume: 10 start-page: 565 year: 2009 ident: 2023012810164103100_bts669-B20 article-title: The genetics of quantitative traits: challenges and prospects publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2612 – start-page: 321 year: 2011 ident: 2023012810164103100_bts669-B2 article-title: Parallel coordinate descent for l1-regularized loss minimization publication-title: ICML – volume: 186 start-page: 1054 year: 2010 ident: 2023012810164103100_bts669-B26 article-title: Conditions under which genome-wide association studies will be positively misleading publication-title: Genetics doi: 10.1534/genetics.110.121665 – volume: 8 start-page: e1002330 year: 2012 ident: 2023012810164103100_bts669-B7 article-title: Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002330 – volume: 4 start-page: e1000130 year: 2008 ident: 2023012810164103100_bts669-B11 article-title: Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000130 – start-page: 900 volume-title: Advances in Neural Information Processing System year: 2011 ident: 2023012810164103100_bts669-B39 article-title: Learning sparse representations of high dimensional data on large scale dictionaries – volume: 5 start-page: e1000587 year: 2009 ident: 2023012810164103100_bts669-B15 article-title: Statistical estimation of correlated genome associations to a quantitative trait network publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000587 – volume: 12 start-page: 300 year: 2007 ident: 2023012810164103100_bts669-B6 article-title: Incorporating lasso effects into a mixed model for quantitative trait loci detection publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/108571107X200396 – volume: 25 start-page: 714 year: 2009 ident: 2023012810164103100_bts669-B38 article-title: Genome-wide association analysis by lasso penalized logistic regression publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp041 – volume: 42 start-page: 348 year: 2010 ident: 2023012810164103100_bts669-B13 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.548 – volume: 69 start-page: 1146 year: 2001 ident: 2023012810164103100_bts669-B24 article-title: The importance of genealogy in determining genetic associations with complex traits publication-title: Am. J. Hum. Genet. doi: 10.1086/323659 – volume: 38 start-page: 203 year: 2006 ident: 2023012810164103100_bts669-B42 article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness publication-title: Nat. Methods – volume: 6 start-page: e1000843 year: 2010 ident: 2023012810164103100_bts669-B27 article-title: The scale of population structure in Arabidopsis thaliana publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000843 – volume: 91 start-page: 47 year: 2009 ident: 2023012810164103100_bts669-B10 article-title: Increased accuracy of artificial selection by using the realized relationship matrix publication-title: Genet. Res. (Camb.) doi: 10.1017/S0016672308009981 – volume: 11 start-page: 459 year: 2010 ident: 2023012810164103100_bts669-B28 article-title: New approaches to population stratification in genome-wide association studies publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2813 – volume: 38 start-page: 904 year: 2006 ident: 2023012810164103100_bts669-B29 article-title: Principal components analysis corrects for stratification in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng1847 – volume: 24 start-page: 517 year: 2009 ident: 2023012810164103100_bts669-B8 article-title: Estimating effects and making predictions from genome-wide marker data publication-title: Stat. Sci. doi: 10.1214/09-STS306 – volume: 41 start-page: 169 year: 1992 ident: 2023012810164103100_bts669-B33 article-title: The box-cox transformation technique: a review publication-title: Statistician doi: 10.2307/2348250 – volume: 465 start-page: 627 year: 2010 ident: 2023012810164103100_bts669-B1 article-title: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines publication-title: Nature doi: 10.1038/nature08800 – volume: 178 start-page: 1709 year: 2008 ident: 2023012810164103100_bts669-B14 article-title: Efficient control of population structure in model organism association mapping publication-title: Genetics doi: 10.1534/genetics.107.080101 – volume: 38 start-page: 879 year: 2006 ident: 2023012810164103100_bts669-B37 article-title: Genome-wide genetic association of complex traits in heterogeneous stock mice publication-title: Nat. Genet. doi: 10.1038/ng1840 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 2023012810164103100_bts669-B31 |
SSID | ssj0005056 ssj0051444 |
Score | 2.4128568 |
Snippet | Motivation: Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian... Exploring the genetic basis of heritable traits remains one of the central challenges in biomedical research. In traits with simple Mendelian architectures,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 206 |
SubjectTerms | Animals Arabidopsis thaliana Chromosome Mapping Genetic Loci Genome Genome-Wide Association Study Genotype Humans Karsten Linear Models Mice Phenotype Polymorphism, Single Nucleotide Population Groups - genetics |
Title | A Lasso multi-marker mixed model for association mapping with population structure correction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23175758 https://www.proquest.com/docview/1273630190 https://www.proquest.com/docview/1323249480 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvY_dmNzTYW3BrW7ZjP4bRUkbWvDiQl2FkSSmBxjaNB9t-_c7xUWSb3bq9mETEEdb3Sf50dC6Mvc-kSDalyjxZGulFsYY5l6XCK-FdphOYXFqivePTZXKxij6u43V_XNBFl7Tlifr-y7iS_0EV2gBXjJL9B2Tdn0IDfAZ84QoIw_VWGM-nC9C-NXkFejv0tLmZ7rZfQUR2FW7IRbIHYLqTTeOsr42r3TWlLLJ4lqCwWodyaB2Oe7e1zbDaDr3jQX22e6olZc8tnH_PtmlsNJBLX-CMOa25Iifm5TV6hTiLQH1zhT68rQ1SA_5VQ6MEFogIPArLtOuowHTqqU9rl6G2KPEBPpsA3C6-1tyxHeyB7UrqJ4OXckiRpj-t95QLqxwNAja0-4QqwIwzbF8ui_PVYlHkZ-v8LrsXwtYCq17ky3XvFuRjciH6AmIyoqrI9mkOIWCZOB33eUo9jsXNb3YsnXLJH7GHdsvB58Sfx-yOqZ6w-1SE9NtT9nnOOxbxIYt4xyLesYhD_3zAIm5ZxJFFvGcRdyziPYuesdX5Wf7hwrNFNzwF2rX1tDIbmepAZyoLZWoCCZpexBp13cw3KvUN1kBQKkrSTah8lZYqycosjY2vhQjEc3ZU1ZU5ZhyUnwqhWcUiiyTaQuRGz6JQGqEjYWYTFh1Gq1A2Iz0WRrkuyDNCFONBLmiQJ-zE3dZQSpa_3fDuAEUBiyeeiMnK1F_2RQDiPRGYTuEPvxG46cgA_gl7QTi6bkNU37DjfnmLu1-xB_1Mec2OABLzBgRtW77tGPgDk5Wsdg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lasso+multi-marker+mixed+model+for+association+mapping+with+population+structure+correction&rft.jtitle=Bioinformatics&rft.au=Rakitsch%2C+Barbara&rft.au=Lippert%2C+Christoph&rft.au=Stegle%2C+Oliver&rft.au=Borgwardt%2C+Karsten&rft.date=2013-01-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=29&rft.issue=2&rft.spage=206&rft.epage=214&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbts669&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |