Pseudocapacitance multiporous vanadyl phosphate/graphene thin film electrode for high performance electrochemical capacitors
[Display omitted] •MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal resistance.•The dual strategy design enable accelerate ion diffusion and electron transfer.•The surface pseudocapacitive process is predominant i...
Saved in:
Published in | Journal of colloid and interface science Vol. 590; pp. 341 - 351 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal resistance.•The dual strategy design enable accelerate ion diffusion and electron transfer.•The surface pseudocapacitive process is predominant in the total capacitance.
Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g−1 at 1 A g−1 as well as a remarkable rate capability of 552 F g−1 at 5 A g−1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg−1 at power density of 249.9 W kg−1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems. |
---|---|
AbstractList | Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g-1 at 1 A g-1 as well as a remarkable rate capability of 552 F g-1 at 5 A g-1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg-1 at power density of 249.9 W kg-1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g-1 at 1 A g-1 as well as a remarkable rate capability of 552 F g-1 at 5 A g-1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg-1 at power density of 249.9 W kg-1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems. [Display omitted] •MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal resistance.•The dual strategy design enable accelerate ion diffusion and electron transfer.•The surface pseudocapacitive process is predominant in the total capacitance. Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g−1 at 1 A g−1 as well as a remarkable rate capability of 552 F g−1 at 5 A g−1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg−1 at power density of 249.9 W kg−1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems. Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO₄@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO₄@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g⁻¹ at 1 A g⁻¹ as well as a remarkable rate capability of 552 F g⁻¹ at 5 A g⁻¹, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO₄@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg⁻¹ at power density of 249.9 W kg⁻¹. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems. Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO @rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO @rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g at 1 A g as well as a remarkable rate capability of 552 F g at 5 A g , and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO @rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg at power density of 249.9 W kg . This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems. |
Author | Xu, Chuanlan Chen, Changguo Hu, Bingbing Yu, Danmei |
Author_xml | – sequence: 1 givenname: Bingbing orcidid: 0000-0003-0185-3905 surname: Hu fullname: Hu, Bingbing email: hubingbing@cqjtu.edu.cn organization: College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China – sequence: 2 givenname: Chuanlan surname: Xu fullname: Xu, Chuanlan organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China – sequence: 3 givenname: Danmei surname: Yu fullname: Yu, Danmei email: yudanmei-1@163.com organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China – sequence: 4 givenname: Changguo surname: Chen fullname: Chen, Changguo email: cgchen@cqu.edu.cn organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33549893$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G31D7iQLN3MbT4nCbiRoq1Q0IWuQyZzppPLzGRMZgqF_ngz3qsLFxUCCZznPUnOc4HOpjgBQm8p2VNC66vD_uBD3jPC6J6UJdgLtKPEyEpRws_QjpRKZZRR5-gi5wMhlEppXqFzzqUw2vAdevqWYW2jd7PzYXGTBzyuwxLmmOKa8YObXPs44LmPee7dAlf3yc09TICXPky4C8OIYQC_pNgC7mLCfbjv8QypnMff_U5l38MYvBvw6a6Y8mv0snNDhjen_RL9-Pzp-_Vtdff15sv1x7vKc22WqvVGMN80uhVd7RxIzbmG2ijXcSGZVtKbRtSSsIbKRive1E5DwZzoRNMxfoneH_vOKf5cIS92DNnDMLgJyi8tk0www4Ui_0eFVoJpo1RB353QtRmhtXMKo0uP9s9wC8COgE8x5wTdX4QSuxm0B7sZtJtBS8oS21v1P6HNyxLitCQXhuejH45RKLN8CJBs9gGKgjakosC2MTwX_wXJg7mk |
CitedBy_id | crossref_primary_10_1002_celc_202100833 crossref_primary_10_1007_s12598_023_02439_1 crossref_primary_10_1039_D4CP02433H crossref_primary_10_1002_celc_202100169 crossref_primary_10_1016_j_ceramint_2023_12_177 crossref_primary_10_3390_nano11061420 crossref_primary_10_1016_j_mser_2025_100932 crossref_primary_10_1021_acsaenm_2c00198 crossref_primary_10_1016_j_rechem_2021_100205 crossref_primary_10_1016_j_cej_2024_157533 crossref_primary_10_1016_j_ceramint_2022_05_304 crossref_primary_10_3390_ma14081955 crossref_primary_10_1016_j_jcis_2022_03_092 crossref_primary_10_1016_j_sna_2022_113715 crossref_primary_10_1021_acsami_2c14159 crossref_primary_10_1016_j_apsusc_2022_155328 crossref_primary_10_1021_acsaem_2c02324 |
Cites_doi | 10.1038/s41586-019-1682-5 10.1016/j.matlet.2018.10.009 10.1016/j.nanoen.2018.07.052 10.1039/C4TA05769D 10.1038/s41578-019-0142-z 10.1002/celc.201901680 10.1149/2.0341816jes 10.1007/s11581-014-1317-7 10.1016/j.cej.2019.123534 10.1039/C7TA03445H 10.1016/j.cej.2018.02.032 10.1002/adfm.201903588 10.1016/j.jallcom.2019.152135 10.1039/D0GC00905A 10.1021/acs.chemmater.5b04605 10.1039/C9NR09319B 10.1039/C4CC03781B 10.1021/acs.chemrev.9b00466 10.1002/adma.201501622 10.1039/C9TA12192G 10.1002/anie.201915666 10.1038/s41560-018-0108-1 10.1016/j.nanoen.2019.104010 10.1021/acsnano.9b05727 10.1039/D0CE00344A 10.1021/acssuschemeng.9b03026 10.1002/chem.201905706 10.1039/C7NR08909K 10.1039/C8CC02386G 10.1007/s40820-019-0316-7 10.1016/j.jpowsour.2017.01.119 10.1016/j.jcis.2017.01.018 10.1016/j.ensm.2020.03.003 10.1038/ncomms3431 10.1016/j.ensm.2019.09.038 10.1021/acsami.0c05458 10.1126/science.aao3403 10.1016/j.electacta.2015.08.007 10.1039/C8TA10422K 10.1021/acs.nanolett.5b04610 10.1021/acssuschemeng.9b03568 10.1007/s40820-020-00451-z 10.1016/j.jcis.2020.09.045 10.1016/j.ensm.2020.01.017 10.1007/s40820-019-0280-2 10.1016/j.jcis.2020.08.128 10.1149/1.1837571 10.1038/srep13696 10.1039/C9CC06791D 10.1016/j.jallcom.2017.10.221 10.1016/j.jcis.2020.04.072 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.01.042 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 351 |
ExternalDocumentID | 33549893 10_1016_j_jcis_2021_01_042 S0021979721000461 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-dc942cbb8d4f6aae58338e697af3452875c9b46502b15b873b6a8ee58a4f4bf23 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Thu Jul 10 22:53:08 EDT 2025 Fri Jul 11 07:31:04 EDT 2025 Wed Feb 19 02:29:08 EST 2025 Thu Apr 24 23:02:32 EDT 2025 Tue Jul 01 01:19:01 EDT 2025 Fri Feb 23 02:45:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor Vanadyl phosphate Thin film Porous |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-dc942cbb8d4f6aae58338e697af3452875c9b46502b15b873b6a8ee58a4f4bf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0185-3905 |
PMID | 33549893 |
PQID | 2487428977 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2524293470 proquest_miscellaneous_2487428977 pubmed_primary_33549893 crossref_primary_10_1016_j_jcis_2021_01_042 crossref_citationtrail_10_1016_j_jcis_2021_01_042 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_01_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Siu, Seymour, Britto, Zhang, Rana, Feng, Omenya, Zhou, Chernova, Zhou, Grey, Piper, Whittingham (b0150) 2018; 54 Jing, Song, Li, Zhang, Liu, Dong, Dong, Zhao, Yao, Zhang (b0135) 2020; 8 Xu, Chen, Hu, Xiang, Cen, Hu, Liu, Liu, Yu, Chen (b0145) 2020; 22 Choi, Ashby, Butts, DeBlock, Wei, Lau, Dunn (b0045) 2019; 5 Choi, Baek, Lee, Lee (b0215) 2020; 12 Zhu, Peng, Chen, Yu (b0170) 2016; 16 Mei, Kaneti, Pramanik, Takei, Dag, Sugahara, Yamauchi (b0075) 2018; 52 Wang, Zhang, Zheng, Jiang, Dong, Liu, Meng (b0235) 2020; 574 Li, Feng, Jing, Chen, Liu, Zhang, Zhou (b0240) 2019; 55 Hu, Xu, Aslam, Cen, Hu, Li, Liu, Guo, Yu, Chen (b0050) 2020; 389 Chen, Zhou, Zhu, Kang, Ji, Zhang, Wang, Peng, Guo, Lu, Chen, Feng, Hou (b0105) 2018; 10 Mishra, Krishnaih, Kim, Kushwaha, Jin (b0255) 2019; 236 Luo, Liu, Hu, Li, Liu (b0110) 2014; 21 Li, Cen, Xiang, Aslam, Hu, Li, Tang, Yu, Liu, Chen (b0195) 2019; 7 Li, Xu, Aslam, Chen, Mao (b0230) 2020; 27 Lyu, Seong, Kim, Zhang, Jin, Kim, Jeon, Kang, Piao (b0130) 2019; 11 Haris, Atiq, Abbas, Mahmood, Ramay, Naseem (b0200) 2018; 732 Hu, Xiang, Cen, Li, Liu, Yu, Chen (b0185) 2018; 165 Poochai, Sriprachuabwong, Sodtipinta, Lohitkarn, Pasakon, Primpray, Maeboonruan, Lomas, Wisitsoraat, Tuantranont (b0040) 2021; 583 Wang, Zhang, Zhang, Shi, Zeng, Zhang, Liu, Li, Liu, Duan (b0165) 2017; 5 Wei, Li, Peng, Zhou, Ou, Yang, Zhang, Xiao (b0225) 2018; 341 Cano, Banham, Ye, Hintennach, Lu, Fowler, Chen (b0010) 2018; 3 Song, Zhang, Varyambath, Kim (b0115) 2019; 13 Song, Zhang, Varyambath, Kim, Kim (b0220) 2020; 22 Xue, Gao, Hu, Cao, Zhou, Wang, Lu (b0140) 2019; 11 Wu, Lu, Peng, Xu, Peng, Huang, Yu, Xie (b0070) 2013; 4 Vijayakumar, Bharathi Sankar, Sri Rohita, Rao, Karthik (b0035) 2019; 7 Harper, Sommerville, Kendrick, Driscoll, Slater, Stolkin, Walton, Christensen, Heidrich, Lambert, Abbott, Ryder, Gaines, Anderson (b0025) 2019; 575 Chen, Qiu, Cheng (b0030) 2020; 120 Lv, Pan, Song, Liu, Liu (b0015) 2020; 12 Chen, Zhou, Kang, Ji, Zhu, Zhang, Chen, Chen, Feng, Hou (b0085) 2017; 344 Zhang, Han, Zheng, Zhang, Shen, Ming, Yuan, Li (b0175) 2014; 50 Wang, Chen, Wang, Ji, Feng, Wang, Liu, Hu, Fei, Gan, Huang (b0090) 2020; 25 Liu, Liu, Wang, Liu, Li (b0005) 2020; 28 Shi, Jia, Wu, Zhang, Liu, Sun (b0080) 2020; 26 Lu, Cong, Liu, Liu, Mauger, Julien, Sun, Xie (b0190) 2020; 812 Samir, Ahmed, Ramadan, Allam (b0210) 2019; 7 Liu, Xin, Yang, Shi (b0020) 2021; 583 Ma, Chang, Zhang, Chen (b0125) 2015; 27 Padhi, Nanjundaswamy, Goodenough (b0055) 1997; 144 Chang, Mei, Zhao, Huang, Zhou, Cheng (b0250) 2019; 29 Song, Deng, Qin, Feng, Guo, Sun, Liu (b0060) 2019; 65 He, Kan, Manthiram (b0160) 2016; 28 Hu, Cen, Xu, Xiang, Aslam, Liu, Li, Liu, Yu, Chen (b0095) 2020; 12 Ruiyi, Zaijun, Junkang (b0120) 2017; 493 Lan, Yao, He, Song, Tang (b0065) 2020; 59 He, Yang, Bai, Zhang, Kang, Lei, Liu (b0100) 2015; 178 Hu, Guo, Xu, Cen, Hu, Li, Yang, Liu, Yu, Chen (b0155) 2019; 6 Qian, Xu, Zhou, Yang, Liu, Shen, Liang, Yan (b0245) 2015; 3 Shen, Zhang, Chen, Liu, Zhang, Han, Chen, Long, Luque, Li (b0180) 2018; 359 Lee, Lee, Lee, Ha, Lee, Son (b0205) 2015; 5 Samir (10.1016/j.jcis.2021.01.042_b0210) 2019; 7 Mei (10.1016/j.jcis.2021.01.042_b0075) 2018; 52 Shi (10.1016/j.jcis.2021.01.042_b0080) 2020; 26 Lee (10.1016/j.jcis.2021.01.042_b0205) 2015; 5 Liu (10.1016/j.jcis.2021.01.042_b0020) 2021; 583 Lv (10.1016/j.jcis.2021.01.042_b0015) 2020; 12 Hu (10.1016/j.jcis.2021.01.042_b0050) 2020; 389 Choi (10.1016/j.jcis.2021.01.042_b0045) 2019; 5 Song (10.1016/j.jcis.2021.01.042_b0115) 2019; 13 Li (10.1016/j.jcis.2021.01.042_b0240) 2019; 55 Chen (10.1016/j.jcis.2021.01.042_b0105) 2018; 10 He (10.1016/j.jcis.2021.01.042_b0160) 2016; 28 Wang (10.1016/j.jcis.2021.01.042_b0235) 2020; 574 Harper (10.1016/j.jcis.2021.01.042_b0025) 2019; 575 Chang (10.1016/j.jcis.2021.01.042_b0250) 2019; 29 Ma (10.1016/j.jcis.2021.01.042_b0125) 2015; 27 Song (10.1016/j.jcis.2021.01.042_b0220) 2020; 22 Wang (10.1016/j.jcis.2021.01.042_b0090) 2020; 25 Hu (10.1016/j.jcis.2021.01.042_b0095) 2020; 12 Cano (10.1016/j.jcis.2021.01.042_b0010) 2018; 3 Haris (10.1016/j.jcis.2021.01.042_b0200) 2018; 732 Liu (10.1016/j.jcis.2021.01.042_b0005) 2020; 28 Luo (10.1016/j.jcis.2021.01.042_b0110) 2014; 21 Song (10.1016/j.jcis.2021.01.042_b0060) 2019; 65 Vijayakumar (10.1016/j.jcis.2021.01.042_b0035) 2019; 7 Hu (10.1016/j.jcis.2021.01.042_b0185) 2018; 165 Lyu (10.1016/j.jcis.2021.01.042_b0130) 2019; 11 Padhi (10.1016/j.jcis.2021.01.042_b0055) 1997; 144 Jing (10.1016/j.jcis.2021.01.042_b0135) 2020; 8 Qian (10.1016/j.jcis.2021.01.042_b0245) 2015; 3 Chen (10.1016/j.jcis.2021.01.042_b0085) 2017; 344 Shen (10.1016/j.jcis.2021.01.042_b0180) 2018; 359 Li (10.1016/j.jcis.2021.01.042_b0195) 2019; 7 Lan (10.1016/j.jcis.2021.01.042_b0065) 2020; 59 Xu (10.1016/j.jcis.2021.01.042_b0145) 2020; 22 Xue (10.1016/j.jcis.2021.01.042_b0140) 2019; 11 Hu (10.1016/j.jcis.2021.01.042_b0155) 2019; 6 Zhang (10.1016/j.jcis.2021.01.042_b0175) 2014; 50 Mishra (10.1016/j.jcis.2021.01.042_b0255) 2019; 236 Choi (10.1016/j.jcis.2021.01.042_b0215) 2020; 12 Siu (10.1016/j.jcis.2021.01.042_b0150) 2018; 54 Zhu (10.1016/j.jcis.2021.01.042_b0170) 2016; 16 Chen (10.1016/j.jcis.2021.01.042_b0030) 2020; 120 Wu (10.1016/j.jcis.2021.01.042_b0070) 2013; 4 Lu (10.1016/j.jcis.2021.01.042_b0190) 2020; 812 Wei (10.1016/j.jcis.2021.01.042_b0225) 2018; 341 He (10.1016/j.jcis.2021.01.042_b0100) 2015; 178 Li (10.1016/j.jcis.2021.01.042_b0230) 2020; 27 Ruiyi (10.1016/j.jcis.2021.01.042_b0120) 2017; 493 Wang (10.1016/j.jcis.2021.01.042_b0165) 2017; 5 Poochai (10.1016/j.jcis.2021.01.042_b0040) 2021; 583 |
References_xml | – volume: 25 start-page: 426 year: 2020 end-page: 435 ident: b0090 article-title: A high-performance flexible aqueous Al ion rechargeable battery with long cycle life publication-title: Energy Storage Mater. – volume: 65 year: 2019 ident: b0060 article-title: A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor publication-title: Nano Energy – volume: 26 start-page: 8190 year: 2020 end-page: 8204 ident: b0080 article-title: The development of vanadyl phosphate cathode materials for energy storage systems: a review publication-title: Chemistry – volume: 359 start-page: 206 year: 2018 end-page: 210 ident: b0180 article-title: Ordered macro-microporous metal-organic framework single crystals publication-title: Science – volume: 6 start-page: 5845 year: 2019 end-page: 5855 ident: b0155 article-title: Rational construction of V publication-title: ChemElectroChem – volume: 732 start-page: 518 year: 2018 end-page: 523 ident: b0200 article-title: Acetylene black coated V publication-title: J. Alloys Compd. – volume: 4 start-page: 2431 year: 2013 ident: b0070 article-title: Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors publication-title: Nat. Commun. – volume: 178 start-page: 312 year: 2015 end-page: 320 ident: b0100 article-title: Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance publication-title: Electrochim. Acta – volume: 583 start-page: 288 year: 2021 end-page: 298 ident: b0020 article-title: 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 122 year: 2020 end-page: 145 ident: b0005 article-title: Transition metal based battery-type electrodes in hybrid supercapacitors: a review publication-title: Energy Storage Mater. – volume: 12 start-page: 2 year: 2020 end-page: 22 ident: b0015 article-title: A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors publication-title: Nano-Micro Letters – volume: 493 start-page: 24 year: 2017 end-page: 31 ident: b0120 article-title: Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres publication-title: J. Colloid Interface Sci. – volume: 22 start-page: 3572 year: 2020 end-page: 3583 ident: b0220 article-title: Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency publication-title: Green Chem. – volume: 12 start-page: 3763 year: 2020 end-page: 3776 ident: b0095 article-title: Hierarchical NiMoO publication-title: Nanoscale – volume: 29 start-page: 1903588 year: 2019 ident: b0250 article-title: 3D Structural strengthening urchin-like Cu(OH) publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1658 year: 2019 end-page: 1668 ident: b0195 article-title: Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries publication-title: J. Mater. Chem. A – volume: 812 year: 2020 ident: b0190 article-title: Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO publication-title: J. Alloys Compd. – volume: 165 start-page: A3738 year: 2018 end-page: A3747 ident: b0185 article-title: In situ constructing flexible V publication-title: J. Electrochem. Soc. – volume: 389 year: 2020 ident: b0050 article-title: La-doped V publication-title: Chem. Eng. J. – volume: 16 start-page: 742 year: 2016 end-page: 747 ident: b0170 article-title: Intercalation pseudocapacitance in ultrathin VOPO publication-title: Nano Lett. – volume: 8 start-page: 1697 year: 2020 end-page: 1708 ident: b0135 article-title: Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects publication-title: J. Mater. Chem. A – volume: 59 start-page: 9255 year: 2020 end-page: 9262 ident: b0065 article-title: Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage publication-title: Angew. Chem. Int. Ed. Engl. – volume: 54 start-page: 7802 year: 2018 end-page: 7805 ident: b0150 article-title: Enabling multi-electron reaction of epsilon-VOPO publication-title: Chem. Commun. (Camb) – volume: 12 start-page: 24817 year: 2020 end-page: 24826 ident: b0215 article-title: Hierarchically designed cathodes composed of vanadium hexacyanoferrate@copper hexacyanoferrate with enhanced cycling stability publication-title: ACS Appl. Mater. Interfaces – volume: 583 start-page: 734 year: 2021 end-page: 745 ident: b0040 article-title: Alpha-MnO publication-title: J. Colloid Interface Sci. – volume: 22 start-page: 4228 year: 2020 end-page: 4237 ident: b0145 article-title: Porous nickel electrodes with controlled texture for hydrogen evolution reaction and sodium borohydride electrooxidation publication-title: CrystEngComm – volume: 10 start-page: 3709 year: 2018 end-page: 3719 ident: b0105 article-title: A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires publication-title: Nanoscale – volume: 3 start-page: 279 year: 2018 end-page: 289 ident: b0010 article-title: Batteries and fuel cells for emerging electric vehicle markets publication-title: Nat. Energy – volume: 120 start-page: 2811 year: 2020 end-page: 2878 ident: b0030 article-title: Carbon-based fibers for advanced electrochemical energy storage devices publication-title: Chem. Rev. – volume: 5 start-page: 13696 year: 2015 ident: b0205 article-title: Ice-templated self-assembly of VOPO publication-title: Sci. Rep. – volume: 341 start-page: 618 year: 2018 end-page: 627 ident: b0225 article-title: Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage publication-title: Chem. Eng. J. – volume: 7 start-page: 13471 year: 2019 end-page: 13480 ident: b0210 article-title: Electrospun mesoporous Mn–V–O@C nanofibers for high-performance asymmetric supercapacitor devices with high stability publication-title: ACS Sustainable Chem. Eng. – volume: 27 start-page: 5296 year: 2015 end-page: 5308 ident: b0125 article-title: Graphene-based materials for lithium-ion hybrid supercapacitors publication-title: Adv. Mater. – volume: 236 start-page: 167 year: 2019 end-page: 170 ident: b0255 article-title: Binder-free, scalable hierarchical MoS publication-title: Mater. Lett. – volume: 144 start-page: 1188 year: 1997 end-page: 1194 ident: b0055 article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries publication-title: J. Electrochem. Soc. – volume: 13 start-page: 11753 year: 2019 end-page: 11769 ident: b0115 article-title: Guided assembly of well-defined hierarchical nanoporous polymers by lewis acid-base interactions publication-title: ACS Nano – volume: 27 start-page: 51 year: 2020 end-page: 60 ident: b0230 article-title: Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo publication-title: Energy Storage Mater. – volume: 28 start-page: 682 year: 2016 end-page: 688 ident: b0160 article-title: A 3.4 V layered VOPO4 cathode for Na-Ion batteries publication-title: Chem. Mater. – volume: 344 start-page: 185 year: 2017 end-page: 194 ident: b0085 article-title: Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode publication-title: J. Power Sources – volume: 11 start-page: 165 year: 2019 end-page: 177 ident: b0140 article-title: Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor publication-title: Nano-Micro Lett. – volume: 52 start-page: 336 year: 2018 end-page: 344 ident: b0075 article-title: Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application publication-title: Nano Energy – volume: 55 start-page: 13773 year: 2019 end-page: 13776 ident: b0240 article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors publication-title: Chem. Commun. (Camb) – volume: 11 start-page: 1 year: 2019 end-page: 12 ident: b0130 article-title: CNT/high mass loading MnO publication-title: Nano-Micro Lett. – volume: 5 start-page: 14801 year: 2017 end-page: 14810 ident: b0165 article-title: Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors publication-title: J. Mater. Chem. A – volume: 50 start-page: 11132 year: 2014 end-page: 11134 ident: b0175 article-title: VOPO publication-title: Chem. Commun. (Camb) – volume: 7 start-page: 17175 year: 2019 end-page: 17185 ident: b0035 article-title: Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 488 year: 2015 end-page: 493 ident: b0245 article-title: Interconnected three-dimensional V publication-title: J. Mater. Chem. A – volume: 575 start-page: 75 year: 2019 end-page: 86 ident: b0025 article-title: Recycling lithium-ion batteries from electric vehicles publication-title: Nature – volume: 574 start-page: 312 year: 2020 end-page: 323 ident: b0235 article-title: Fabrication of vanadium sulfide (VS publication-title: J Colloid Interface Sci. – volume: 21 start-page: 289 year: 2014 end-page: 294 ident: b0110 article-title: Effect of synthetic methods on electrochemical performances of VOPO publication-title: Ionics – volume: 5 start-page: 5 year: 2019 end-page: 19 ident: b0045 article-title: Achieving high energy density and high power density with pseudocapacitive materials publication-title: Nat. Rev. Mater. – volume: 575 start-page: 75 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0025 article-title: Recycling lithium-ion batteries from electric vehicles publication-title: Nature doi: 10.1038/s41586-019-1682-5 – volume: 236 start-page: 167 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0255 article-title: Binder-free, scalable hierarchical MoS2 as electrode materials in symmetric supercapacitors for energy harvesting applications publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.10.009 – volume: 52 start-page: 336 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0075 article-title: Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.052 – volume: 3 start-page: 488 year: 2015 ident: 10.1016/j.jcis.2021.01.042_b0245 article-title: Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05769D – volume: 5 start-page: 5 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0045 article-title: Achieving high energy density and high power density with pseudocapacitive materials publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0142-z – volume: 6 start-page: 5845 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0155 article-title: Rational construction of V2O5@rGO with enhanced pseudocapacitive storage for high-performance flexible energy storage device publication-title: ChemElectroChem doi: 10.1002/celc.201901680 – volume: 165 start-page: A3738 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0185 article-title: In situ constructing flexible V2O5@GO composite thin film electrode for superior electrochemical energy storage publication-title: J. Electrochem. Soc. doi: 10.1149/2.0341816jes – volume: 21 start-page: 289 year: 2014 ident: 10.1016/j.jcis.2021.01.042_b0110 article-title: Effect of synthetic methods on electrochemical performances of VOPO4·2H2O supercapacitor publication-title: Ionics doi: 10.1007/s11581-014-1317-7 – volume: 389 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0050 article-title: La-doped V2O5·nH2O@OAB and flexible Fe2O3@rGO as binder-free thin film electrodes for asymmetric supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123534 – volume: 5 start-page: 14801 year: 2017 ident: 10.1016/j.jcis.2021.01.042_b0165 article-title: Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03445H – volume: 341 start-page: 618 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0225 article-title: Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.032 – volume: 29 start-page: 1903588 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0250 article-title: 3D Structural strengthening urchin-like Cu(OH)2-based symmetric supercapacitors with adjustable capacitance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903588 – volume: 812 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0190 article-title: Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO4/rGO electrode publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152135 – volume: 22 start-page: 3572 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0220 article-title: Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency publication-title: Green Chem. doi: 10.1039/D0GC00905A – volume: 28 start-page: 682 year: 2016 ident: 10.1016/j.jcis.2021.01.042_b0160 article-title: A 3.4 V layered VOPO4 cathode for Na-Ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04605 – volume: 12 start-page: 3763 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0095 article-title: Hierarchical NiMoO4@Co3V2O8 hybrid nanorod/nanosphere clusters as advanced electrodes for high-performance electrochemical energy storage publication-title: Nanoscale doi: 10.1039/C9NR09319B – volume: 50 start-page: 11132 year: 2014 ident: 10.1016/j.jcis.2021.01.042_b0175 article-title: VOPO4 nanosheets as anode materials for lithium-ion batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/C4CC03781B – volume: 120 start-page: 2811 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0030 article-title: Carbon-based fibers for advanced electrochemical energy storage devices publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00466 – volume: 27 start-page: 5296 year: 2015 ident: 10.1016/j.jcis.2021.01.042_b0125 article-title: Graphene-based materials for lithium-ion hybrid supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201501622 – volume: 8 start-page: 1697 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0135 article-title: Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12192G – volume: 59 start-page: 9255 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0065 article-title: Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201915666 – volume: 3 start-page: 279 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0010 article-title: Batteries and fuel cells for emerging electric vehicle markets publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 65 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0060 article-title: A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104010 – volume: 13 start-page: 11753 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0115 article-title: Guided assembly of well-defined hierarchical nanoporous polymers by lewis acid-base interactions publication-title: ACS Nano doi: 10.1021/acsnano.9b05727 – volume: 22 start-page: 4228 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0145 article-title: Porous nickel electrodes with controlled texture for hydrogen evolution reaction and sodium borohydride electrooxidation publication-title: CrystEngComm doi: 10.1039/D0CE00344A – volume: 7 start-page: 13471 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0210 article-title: Electrospun mesoporous Mn–V–O@C nanofibers for high-performance asymmetric supercapacitor devices with high stability publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03026 – volume: 26 start-page: 8190 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0080 article-title: The development of vanadyl phosphate cathode materials for energy storage systems: a review publication-title: Chemistry doi: 10.1002/chem.201905706 – volume: 10 start-page: 3709 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0105 article-title: A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires publication-title: Nanoscale doi: 10.1039/C7NR08909K – volume: 54 start-page: 7802 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0150 article-title: Enabling multi-electron reaction of epsilon-VOPO4 to reach theoretical capacity for lithium-ion batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/C8CC02386G – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0130 article-title: CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0316-7 – volume: 344 start-page: 185 year: 2017 ident: 10.1016/j.jcis.2021.01.042_b0085 article-title: Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.119 – volume: 493 start-page: 24 year: 2017 ident: 10.1016/j.jcis.2021.01.042_b0120 article-title: Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.01.018 – volume: 28 start-page: 122 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0005 article-title: Transition metal based battery-type electrodes in hybrid supercapacitors: a review publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.003 – volume: 4 start-page: 2431 year: 2013 ident: 10.1016/j.jcis.2021.01.042_b0070 article-title: Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors publication-title: Nat. Commun. doi: 10.1038/ncomms3431 – volume: 25 start-page: 426 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0090 article-title: A high-performance flexible aqueous Al ion rechargeable battery with long cycle life publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.09.038 – volume: 12 start-page: 24817 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0215 article-title: Hierarchically designed cathodes composed of vanadium hexacyanoferrate@copper hexacyanoferrate with enhanced cycling stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05458 – volume: 359 start-page: 206 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0180 article-title: Ordered macro-microporous metal-organic framework single crystals publication-title: Science doi: 10.1126/science.aao3403 – volume: 178 start-page: 312 year: 2015 ident: 10.1016/j.jcis.2021.01.042_b0100 article-title: Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.08.007 – volume: 7 start-page: 1658 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0195 article-title: Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10422K – volume: 16 start-page: 742 year: 2016 ident: 10.1016/j.jcis.2021.01.042_b0170 article-title: Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04610 – volume: 7 start-page: 17175 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0035 article-title: Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03568 – volume: 12 start-page: 2 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0015 article-title: A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors publication-title: Nano-Micro Letters doi: 10.1007/s40820-020-00451-z – volume: 583 start-page: 734 year: 2021 ident: 10.1016/j.jcis.2021.01.042_b0040 article-title: Alpha-MnO2 nanofibers/nitrogen and sulfur-co-doped reduced graphene oxide for 4.5V quasi-solid state supercapacitors using ionic liquid-based polymer electrolyte publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.09.045 – volume: 27 start-page: 51 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0230 article-title: Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.017 – volume: 11 start-page: 165 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0140 article-title: Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0280-2 – volume: 583 start-page: 288 year: 2021 ident: 10.1016/j.jcis.2021.01.042_b0020 article-title: 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.128 – volume: 144 start-page: 1188 year: 1997 ident: 10.1016/j.jcis.2021.01.042_b0055 article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837571 – volume: 5 start-page: 13696 year: 2015 ident: 10.1016/j.jcis.2021.01.042_b0205 article-title: Ice-templated self-assembly of VOPO4-graphene nanocomposites for vertically porous 3D supercapacitor electrodes publication-title: Sci. Rep. doi: 10.1038/srep13696 – volume: 55 start-page: 13773 year: 2019 ident: 10.1016/j.jcis.2021.01.042_b0240 article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors publication-title: Chem. Commun. (Camb) doi: 10.1039/C9CC06791D – volume: 732 start-page: 518 year: 2018 ident: 10.1016/j.jcis.2021.01.042_b0200 article-title: Acetylene black coated V2O5 nanocomposite with stable cyclability for lithium-ion batteries cathode publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.221 – volume: 574 start-page: 312 year: 2020 ident: 10.1016/j.jcis.2021.01.042_b0235 article-title: Fabrication of vanadium sulfide (VS4) wrapped with carbonaceous materials as an enhanced electrode for symmetric supercapacitors publication-title: J Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.072 |
SSID | ssj0011559 |
Score | 2.3698423 |
Snippet | [Display omitted]
•MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal... Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 341 |
SubjectTerms | anions capacitance electricity electrochemical capacitors electrochemistry electrodes energy conversion energy density films (materials) graphene nanocomposites phosphates phosphorus phytic acid polystyrenes Porous renewable energy sources Supercapacitor Thin film vanadyl ions Vanadyl phosphate |
Title | Pseudocapacitance multiporous vanadyl phosphate/graphene thin film electrode for high performance electrochemical capacitors |
URI | https://dx.doi.org/10.1016/j.jcis.2021.01.042 https://www.ncbi.nlm.nih.gov/pubmed/33549893 https://www.proquest.com/docview/2487428977 https://www.proquest.com/docview/2524293470 |
Volume | 590 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFH6U7rDuMLqsW7NuQYXdhhdblmX7WMJKtrHSQwu9CcmWiEvqmMQ9DEp_-96z5XQ7NIeBL7ZlLPQ9S9-z3vsewGfjEGUb5oEuUxMI58JAOykCndlYCKoh1_2H_HUh59fix01yswezIReGwir93N_P6d1s7a9M_WhOm6qiHF_82lJSn-lSILsMdpGSlX993IZ5RLTt1od5RAG19okzfYzXbVGRZDePOulOwZ9bnJ4jn90idH4Irz17ZGd9B9_Anq1H8HI2FG0bwau_9AXfwsPlxt6XuFqhY1y1hC_rAwhXa3T4GdVTLn8vWbNYbZoFks5pJ1-Nsx9rF1XNXLW8Y75OTmkZ0ltG6saseUo2GG4XXneA-Xet1psjuD7_djWbB77cQlAga2mDssgFL4zJSuGk1pbysTIr81S7WCToWSVFbgQyOm6ixGRpbCQiis20cMI4Hr-D_XpV22NgidPacc1tKkNhZKozJD5aahLAy2KpxxAN46wKr0VOJTGWagg6u1WEjSJsVIiH4GP4sn2m6ZU4drZOBvjUP_akcKnY-dzpgLVC6Gj3RNcWMVEcXTv01ZAv72iTIOPJY5GGY3jfG8q2r3GMrjiyww__2bMTOKAzilyIko-w367v7SckRK2ZdBY_gRdn33_OL_4APjIMng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hONAeUEu_tqXUlXqr0k0cx0mOaAVaWkA9gMTNshNbG7TNRrvhgFTx25lJnG05sAeknGJbsfz88SaeeQPwzThE2YZ5oMvUBMK5MNBOikBnNhaCcsh1_yHPL-T0Svy8Tq63YDLEwpBbpd_7-z292639m7EfzXFTVRTji6stJfWZLgQSTaAdgcuX0hj8uF_7eUR079b7eUQBVfeRM72T101RkWY3jzrtTsGfOp2eYp_dKXTyCvY8fWRHfQ9fw5at92F3MmRt24eX_wkMvoG_v1f2tsTjCi3jqiWAWe9BuFiixc8ooXJ5N2fNbLFqZsg6x51-NW5_rJ1VNXPV_A_ziXJKy5DfMpI3Zs2_aIOhuPDCA8x_a7FcvYWrk-PLyTTw-RaCAmlLG5RFLnhhTFYKJ7W2FJCVWZmn2sUiQdMqKXIjkNJxEyUmS2MjEVKspoUTxvH4HWzXi9p-AJY4rR3X3KYyFEamOkPmo6UmBbwslnoE0TDOqvBi5JQTY64Gr7MbRdgowkaF-Ag-gu_rNk0vxbGxdjLApx5NKIVnxcZ2XwesFUJH1ye6toiJ4mjbobGGhHlDnQQpTx6LNBzB-36irPsax2iLIz38-MyefYHd6eX5mTo7vfj1CV5QCbkxRMkBbLfLW_sZ2VFrDrvZ_wBBBw4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudocapacitance+multiporous+vanadyl+phosphate%2Fgraphene+thin+film+electrode+for+high+performance+electrochemical+capacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Hu%2C+Bingbing&rft.au=Xu%2C+Chuanlan&rft.au=Yu%2C+Danmei&rft.au=Chen%2C+Changguo&rft.date=2021-05-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=590&rft.spage=341&rft_id=info:doi/10.1016%2Fj.jcis.2021.01.042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |