Pseudocapacitance multiporous vanadyl phosphate/graphene thin film electrode for high performance electrochemical capacitors

[Display omitted] •MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal resistance.•The dual strategy design enable accelerate ion diffusion and electron transfer.•The surface pseudocapacitive process is predominant i...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 590; pp. 341 - 351
Main Authors Hu, Bingbing, Xu, Chuanlan, Yu, Danmei, Chen, Changguo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal resistance.•The dual strategy design enable accelerate ion diffusion and electron transfer.•The surface pseudocapacitive process is predominant in the total capacitance. Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g−1 at 1 A g−1 as well as a remarkable rate capability of 552 F g−1 at 5 A g−1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg−1 at power density of 249.9 W kg−1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.
AbstractList Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g-1 at 1 A g-1 as well as a remarkable rate capability of 552 F g-1 at 5 A g-1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg-1 at power density of 249.9 W kg-1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g-1 at 1 A g-1 as well as a remarkable rate capability of 552 F g-1 at 5 A g-1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg-1 at power density of 249.9 W kg-1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.
[Display omitted] •MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal resistance.•The dual strategy design enable accelerate ion diffusion and electron transfer.•The surface pseudocapacitive process is predominant in the total capacitance. Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO4@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO4@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g−1 at 1 A g−1 as well as a remarkable rate capability of 552 F g−1 at 5 A g−1, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO4@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg−1 at power density of 249.9 W kg−1. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.
Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO₄@rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO₄@rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g⁻¹ at 1 A g⁻¹ as well as a remarkable rate capability of 552 F g⁻¹ at 5 A g⁻¹, and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO₄@rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg⁻¹ at power density of 249.9 W kg⁻¹. This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.
Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize pseudocapacitive material of vanadyl phosphate, herein, multiporous vanadyl phosphate/graphene (denoted as MP-VOPO @rGO) is fabricated for the first time with phytic acid as a phosphorus source by extremely simple sol-gel and drop coating methods, and used as the free binder thin film electrode of supercapacitors. The smart combination of honeycomb-like architecture and graphene incorporation results in more active sites and low internal resistance, significantly improving energy storage performance. The effect of introducting polystyrene (denoted as PS) template and rGO on the performance of the nanocomposite is systematically analyzed by comparing the performance of the corresponding thin film electrodes. The MP-VOPO @rGO thin film electrode delivers superior pseudocapacitive performance of 672 F g at 1 A g as well as a remarkable rate capability of 552 F g at 5 A g , and it presents a remarkable longterm cycling stability, with a capacitance retention of 83.5% after 5000 cycles. Very interestingly, the results of surface capacitance contribution dominance clearly demonstrates its rapid capacitive response. In addition, based on MP-VOPO @rGO thin film as positive and negative electrodes, the corresponding assembled symmetric supercapacitors exihibits outstanding energy density of 26.3 Wh kg at power density of 249.9 W kg . This investigation can not only provide a versatile strategy to design other thin film electrode materials but also open up a new insight into the development of polyanion phosphate composites for next-generation high performance energy storage systems.
Author Xu, Chuanlan
Chen, Changguo
Hu, Bingbing
Yu, Danmei
Author_xml – sequence: 1
  givenname: Bingbing
  orcidid: 0000-0003-0185-3905
  surname: Hu
  fullname: Hu, Bingbing
  email: hubingbing@cqjtu.edu.cn
  organization: College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
– sequence: 2
  givenname: Chuanlan
  surname: Xu
  fullname: Xu, Chuanlan
  organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
– sequence: 3
  givenname: Danmei
  surname: Yu
  fullname: Yu, Danmei
  email: yudanmei-1@163.com
  organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
– sequence: 4
  givenname: Changguo
  surname: Chen
  fullname: Chen, Changguo
  email: cgchen@cqu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33549893$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G31D7iQLN3MbT4nCbiRoq1Q0IWuQyZzppPLzGRMZgqF_ngz3qsLFxUCCZznPUnOc4HOpjgBQm8p2VNC66vD_uBD3jPC6J6UJdgLtKPEyEpRws_QjpRKZZRR5-gi5wMhlEppXqFzzqUw2vAdevqWYW2jd7PzYXGTBzyuwxLmmOKa8YObXPs44LmPee7dAlf3yc09TICXPky4C8OIYQC_pNgC7mLCfbjv8QypnMff_U5l38MYvBvw6a6Y8mv0snNDhjen_RL9-Pzp-_Vtdff15sv1x7vKc22WqvVGMN80uhVd7RxIzbmG2ijXcSGZVtKbRtSSsIbKRive1E5DwZzoRNMxfoneH_vOKf5cIS92DNnDMLgJyi8tk0www4Ui_0eFVoJpo1RB353QtRmhtXMKo0uP9s9wC8COgE8x5wTdX4QSuxm0B7sZtJtBS8oS21v1P6HNyxLitCQXhuejH45RKLN8CJBs9gGKgjakosC2MTwX_wXJg7mk
CitedBy_id crossref_primary_10_1002_celc_202100833
crossref_primary_10_1007_s12598_023_02439_1
crossref_primary_10_1039_D4CP02433H
crossref_primary_10_1002_celc_202100169
crossref_primary_10_1016_j_ceramint_2023_12_177
crossref_primary_10_3390_nano11061420
crossref_primary_10_1016_j_mser_2025_100932
crossref_primary_10_1021_acsaenm_2c00198
crossref_primary_10_1016_j_rechem_2021_100205
crossref_primary_10_1016_j_cej_2024_157533
crossref_primary_10_1016_j_ceramint_2022_05_304
crossref_primary_10_3390_ma14081955
crossref_primary_10_1016_j_jcis_2022_03_092
crossref_primary_10_1016_j_sna_2022_113715
crossref_primary_10_1021_acsami_2c14159
crossref_primary_10_1016_j_apsusc_2022_155328
crossref_primary_10_1021_acsaem_2c02324
Cites_doi 10.1038/s41586-019-1682-5
10.1016/j.matlet.2018.10.009
10.1016/j.nanoen.2018.07.052
10.1039/C4TA05769D
10.1038/s41578-019-0142-z
10.1002/celc.201901680
10.1149/2.0341816jes
10.1007/s11581-014-1317-7
10.1016/j.cej.2019.123534
10.1039/C7TA03445H
10.1016/j.cej.2018.02.032
10.1002/adfm.201903588
10.1016/j.jallcom.2019.152135
10.1039/D0GC00905A
10.1021/acs.chemmater.5b04605
10.1039/C9NR09319B
10.1039/C4CC03781B
10.1021/acs.chemrev.9b00466
10.1002/adma.201501622
10.1039/C9TA12192G
10.1002/anie.201915666
10.1038/s41560-018-0108-1
10.1016/j.nanoen.2019.104010
10.1021/acsnano.9b05727
10.1039/D0CE00344A
10.1021/acssuschemeng.9b03026
10.1002/chem.201905706
10.1039/C7NR08909K
10.1039/C8CC02386G
10.1007/s40820-019-0316-7
10.1016/j.jpowsour.2017.01.119
10.1016/j.jcis.2017.01.018
10.1016/j.ensm.2020.03.003
10.1038/ncomms3431
10.1016/j.ensm.2019.09.038
10.1021/acsami.0c05458
10.1126/science.aao3403
10.1016/j.electacta.2015.08.007
10.1039/C8TA10422K
10.1021/acs.nanolett.5b04610
10.1021/acssuschemeng.9b03568
10.1007/s40820-020-00451-z
10.1016/j.jcis.2020.09.045
10.1016/j.ensm.2020.01.017
10.1007/s40820-019-0280-2
10.1016/j.jcis.2020.08.128
10.1149/1.1837571
10.1038/srep13696
10.1039/C9CC06791D
10.1016/j.jallcom.2017.10.221
10.1016/j.jcis.2020.04.072
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.01.042
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 351
ExternalDocumentID 33549893
10_1016_j_jcis_2021_01_042
S0021979721000461
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-dc942cbb8d4f6aae58338e697af3452875c9b46502b15b873b6a8ee58a4f4bf23
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 22:53:08 EDT 2025
Fri Jul 11 07:31:04 EDT 2025
Wed Feb 19 02:29:08 EST 2025
Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 01:19:01 EDT 2025
Fri Feb 23 02:45:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitor
Vanadyl phosphate
Thin film
Porous
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-dc942cbb8d4f6aae58338e697af3452875c9b46502b15b873b6a8ee58a4f4bf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0185-3905
PMID 33549893
PQID 2487428977
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2524293470
proquest_miscellaneous_2487428977
pubmed_primary_33549893
crossref_primary_10_1016_j_jcis_2021_01_042
crossref_citationtrail_10_1016_j_jcis_2021_01_042
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_01_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Siu, Seymour, Britto, Zhang, Rana, Feng, Omenya, Zhou, Chernova, Zhou, Grey, Piper, Whittingham (b0150) 2018; 54
Jing, Song, Li, Zhang, Liu, Dong, Dong, Zhao, Yao, Zhang (b0135) 2020; 8
Xu, Chen, Hu, Xiang, Cen, Hu, Liu, Liu, Yu, Chen (b0145) 2020; 22
Choi, Ashby, Butts, DeBlock, Wei, Lau, Dunn (b0045) 2019; 5
Choi, Baek, Lee, Lee (b0215) 2020; 12
Zhu, Peng, Chen, Yu (b0170) 2016; 16
Mei, Kaneti, Pramanik, Takei, Dag, Sugahara, Yamauchi (b0075) 2018; 52
Wang, Zhang, Zheng, Jiang, Dong, Liu, Meng (b0235) 2020; 574
Li, Feng, Jing, Chen, Liu, Zhang, Zhou (b0240) 2019; 55
Hu, Xu, Aslam, Cen, Hu, Li, Liu, Guo, Yu, Chen (b0050) 2020; 389
Chen, Zhou, Zhu, Kang, Ji, Zhang, Wang, Peng, Guo, Lu, Chen, Feng, Hou (b0105) 2018; 10
Mishra, Krishnaih, Kim, Kushwaha, Jin (b0255) 2019; 236
Luo, Liu, Hu, Li, Liu (b0110) 2014; 21
Li, Cen, Xiang, Aslam, Hu, Li, Tang, Yu, Liu, Chen (b0195) 2019; 7
Li, Xu, Aslam, Chen, Mao (b0230) 2020; 27
Lyu, Seong, Kim, Zhang, Jin, Kim, Jeon, Kang, Piao (b0130) 2019; 11
Haris, Atiq, Abbas, Mahmood, Ramay, Naseem (b0200) 2018; 732
Hu, Xiang, Cen, Li, Liu, Yu, Chen (b0185) 2018; 165
Poochai, Sriprachuabwong, Sodtipinta, Lohitkarn, Pasakon, Primpray, Maeboonruan, Lomas, Wisitsoraat, Tuantranont (b0040) 2021; 583
Wang, Zhang, Zhang, Shi, Zeng, Zhang, Liu, Li, Liu, Duan (b0165) 2017; 5
Wei, Li, Peng, Zhou, Ou, Yang, Zhang, Xiao (b0225) 2018; 341
Cano, Banham, Ye, Hintennach, Lu, Fowler, Chen (b0010) 2018; 3
Song, Zhang, Varyambath, Kim (b0115) 2019; 13
Song, Zhang, Varyambath, Kim, Kim (b0220) 2020; 22
Xue, Gao, Hu, Cao, Zhou, Wang, Lu (b0140) 2019; 11
Wu, Lu, Peng, Xu, Peng, Huang, Yu, Xie (b0070) 2013; 4
Vijayakumar, Bharathi Sankar, Sri Rohita, Rao, Karthik (b0035) 2019; 7
Harper, Sommerville, Kendrick, Driscoll, Slater, Stolkin, Walton, Christensen, Heidrich, Lambert, Abbott, Ryder, Gaines, Anderson (b0025) 2019; 575
Chen, Qiu, Cheng (b0030) 2020; 120
Lv, Pan, Song, Liu, Liu (b0015) 2020; 12
Chen, Zhou, Kang, Ji, Zhu, Zhang, Chen, Chen, Feng, Hou (b0085) 2017; 344
Zhang, Han, Zheng, Zhang, Shen, Ming, Yuan, Li (b0175) 2014; 50
Wang, Chen, Wang, Ji, Feng, Wang, Liu, Hu, Fei, Gan, Huang (b0090) 2020; 25
Liu, Liu, Wang, Liu, Li (b0005) 2020; 28
Shi, Jia, Wu, Zhang, Liu, Sun (b0080) 2020; 26
Lu, Cong, Liu, Liu, Mauger, Julien, Sun, Xie (b0190) 2020; 812
Samir, Ahmed, Ramadan, Allam (b0210) 2019; 7
Liu, Xin, Yang, Shi (b0020) 2021; 583
Ma, Chang, Zhang, Chen (b0125) 2015; 27
Padhi, Nanjundaswamy, Goodenough (b0055) 1997; 144
Chang, Mei, Zhao, Huang, Zhou, Cheng (b0250) 2019; 29
Song, Deng, Qin, Feng, Guo, Sun, Liu (b0060) 2019; 65
He, Kan, Manthiram (b0160) 2016; 28
Hu, Cen, Xu, Xiang, Aslam, Liu, Li, Liu, Yu, Chen (b0095) 2020; 12
Ruiyi, Zaijun, Junkang (b0120) 2017; 493
Lan, Yao, He, Song, Tang (b0065) 2020; 59
He, Yang, Bai, Zhang, Kang, Lei, Liu (b0100) 2015; 178
Hu, Guo, Xu, Cen, Hu, Li, Yang, Liu, Yu, Chen (b0155) 2019; 6
Qian, Xu, Zhou, Yang, Liu, Shen, Liang, Yan (b0245) 2015; 3
Shen, Zhang, Chen, Liu, Zhang, Han, Chen, Long, Luque, Li (b0180) 2018; 359
Lee, Lee, Lee, Ha, Lee, Son (b0205) 2015; 5
Samir (10.1016/j.jcis.2021.01.042_b0210) 2019; 7
Mei (10.1016/j.jcis.2021.01.042_b0075) 2018; 52
Shi (10.1016/j.jcis.2021.01.042_b0080) 2020; 26
Lee (10.1016/j.jcis.2021.01.042_b0205) 2015; 5
Liu (10.1016/j.jcis.2021.01.042_b0020) 2021; 583
Lv (10.1016/j.jcis.2021.01.042_b0015) 2020; 12
Hu (10.1016/j.jcis.2021.01.042_b0050) 2020; 389
Choi (10.1016/j.jcis.2021.01.042_b0045) 2019; 5
Song (10.1016/j.jcis.2021.01.042_b0115) 2019; 13
Li (10.1016/j.jcis.2021.01.042_b0240) 2019; 55
Chen (10.1016/j.jcis.2021.01.042_b0105) 2018; 10
He (10.1016/j.jcis.2021.01.042_b0160) 2016; 28
Wang (10.1016/j.jcis.2021.01.042_b0235) 2020; 574
Harper (10.1016/j.jcis.2021.01.042_b0025) 2019; 575
Chang (10.1016/j.jcis.2021.01.042_b0250) 2019; 29
Ma (10.1016/j.jcis.2021.01.042_b0125) 2015; 27
Song (10.1016/j.jcis.2021.01.042_b0220) 2020; 22
Wang (10.1016/j.jcis.2021.01.042_b0090) 2020; 25
Hu (10.1016/j.jcis.2021.01.042_b0095) 2020; 12
Cano (10.1016/j.jcis.2021.01.042_b0010) 2018; 3
Haris (10.1016/j.jcis.2021.01.042_b0200) 2018; 732
Liu (10.1016/j.jcis.2021.01.042_b0005) 2020; 28
Luo (10.1016/j.jcis.2021.01.042_b0110) 2014; 21
Song (10.1016/j.jcis.2021.01.042_b0060) 2019; 65
Vijayakumar (10.1016/j.jcis.2021.01.042_b0035) 2019; 7
Hu (10.1016/j.jcis.2021.01.042_b0185) 2018; 165
Lyu (10.1016/j.jcis.2021.01.042_b0130) 2019; 11
Padhi (10.1016/j.jcis.2021.01.042_b0055) 1997; 144
Jing (10.1016/j.jcis.2021.01.042_b0135) 2020; 8
Qian (10.1016/j.jcis.2021.01.042_b0245) 2015; 3
Chen (10.1016/j.jcis.2021.01.042_b0085) 2017; 344
Shen (10.1016/j.jcis.2021.01.042_b0180) 2018; 359
Li (10.1016/j.jcis.2021.01.042_b0195) 2019; 7
Lan (10.1016/j.jcis.2021.01.042_b0065) 2020; 59
Xu (10.1016/j.jcis.2021.01.042_b0145) 2020; 22
Xue (10.1016/j.jcis.2021.01.042_b0140) 2019; 11
Hu (10.1016/j.jcis.2021.01.042_b0155) 2019; 6
Zhang (10.1016/j.jcis.2021.01.042_b0175) 2014; 50
Mishra (10.1016/j.jcis.2021.01.042_b0255) 2019; 236
Choi (10.1016/j.jcis.2021.01.042_b0215) 2020; 12
Siu (10.1016/j.jcis.2021.01.042_b0150) 2018; 54
Zhu (10.1016/j.jcis.2021.01.042_b0170) 2016; 16
Chen (10.1016/j.jcis.2021.01.042_b0030) 2020; 120
Wu (10.1016/j.jcis.2021.01.042_b0070) 2013; 4
Lu (10.1016/j.jcis.2021.01.042_b0190) 2020; 812
Wei (10.1016/j.jcis.2021.01.042_b0225) 2018; 341
He (10.1016/j.jcis.2021.01.042_b0100) 2015; 178
Li (10.1016/j.jcis.2021.01.042_b0230) 2020; 27
Ruiyi (10.1016/j.jcis.2021.01.042_b0120) 2017; 493
Wang (10.1016/j.jcis.2021.01.042_b0165) 2017; 5
Poochai (10.1016/j.jcis.2021.01.042_b0040) 2021; 583
References_xml – volume: 25
  start-page: 426
  year: 2020
  end-page: 435
  ident: b0090
  article-title: A high-performance flexible aqueous Al ion rechargeable battery with long cycle life
  publication-title: Energy Storage Mater.
– volume: 65
  year: 2019
  ident: b0060
  article-title: A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor
  publication-title: Nano Energy
– volume: 26
  start-page: 8190
  year: 2020
  end-page: 8204
  ident: b0080
  article-title: The development of vanadyl phosphate cathode materials for energy storage systems: a review
  publication-title: Chemistry
– volume: 359
  start-page: 206
  year: 2018
  end-page: 210
  ident: b0180
  article-title: Ordered macro-microporous metal-organic framework single crystals
  publication-title: Science
– volume: 6
  start-page: 5845
  year: 2019
  end-page: 5855
  ident: b0155
  article-title: Rational construction of V
  publication-title: ChemElectroChem
– volume: 732
  start-page: 518
  year: 2018
  end-page: 523
  ident: b0200
  article-title: Acetylene black coated V
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 2431
  year: 2013
  ident: b0070
  article-title: Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors
  publication-title: Nat. Commun.
– volume: 178
  start-page: 312
  year: 2015
  end-page: 320
  ident: b0100
  article-title: Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance
  publication-title: Electrochim. Acta
– volume: 583
  start-page: 288
  year: 2021
  end-page: 298
  ident: b0020
  article-title: 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor
  publication-title: J. Colloid Interface Sci.
– volume: 28
  start-page: 122
  year: 2020
  end-page: 145
  ident: b0005
  article-title: Transition metal based battery-type electrodes in hybrid supercapacitors: a review
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 2
  year: 2020
  end-page: 22
  ident: b0015
  article-title: A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors
  publication-title: Nano-Micro Letters
– volume: 493
  start-page: 24
  year: 2017
  end-page: 31
  ident: b0120
  article-title: Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 3572
  year: 2020
  end-page: 3583
  ident: b0220
  article-title: Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency
  publication-title: Green Chem.
– volume: 12
  start-page: 3763
  year: 2020
  end-page: 3776
  ident: b0095
  article-title: Hierarchical NiMoO
  publication-title: Nanoscale
– volume: 29
  start-page: 1903588
  year: 2019
  ident: b0250
  article-title: 3D Structural strengthening urchin-like Cu(OH)
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1658
  year: 2019
  end-page: 1668
  ident: b0195
  article-title: Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 812
  year: 2020
  ident: b0190
  article-title: Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO
  publication-title: J. Alloys Compd.
– volume: 165
  start-page: A3738
  year: 2018
  end-page: A3747
  ident: b0185
  article-title: In situ constructing flexible V
  publication-title: J. Electrochem. Soc.
– volume: 389
  year: 2020
  ident: b0050
  article-title: La-doped V
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 742
  year: 2016
  end-page: 747
  ident: b0170
  article-title: Intercalation pseudocapacitance in ultrathin VOPO
  publication-title: Nano Lett.
– volume: 8
  start-page: 1697
  year: 2020
  end-page: 1708
  ident: b0135
  article-title: Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 9255
  year: 2020
  end-page: 9262
  ident: b0065
  article-title: Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 54
  start-page: 7802
  year: 2018
  end-page: 7805
  ident: b0150
  article-title: Enabling multi-electron reaction of epsilon-VOPO
  publication-title: Chem. Commun. (Camb)
– volume: 12
  start-page: 24817
  year: 2020
  end-page: 24826
  ident: b0215
  article-title: Hierarchically designed cathodes composed of vanadium hexacyanoferrate@copper hexacyanoferrate with enhanced cycling stability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 583
  start-page: 734
  year: 2021
  end-page: 745
  ident: b0040
  article-title: Alpha-MnO
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 4228
  year: 2020
  end-page: 4237
  ident: b0145
  article-title: Porous nickel electrodes with controlled texture for hydrogen evolution reaction and sodium borohydride electrooxidation
  publication-title: CrystEngComm
– volume: 10
  start-page: 3709
  year: 2018
  end-page: 3719
  ident: b0105
  article-title: A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires
  publication-title: Nanoscale
– volume: 3
  start-page: 279
  year: 2018
  end-page: 289
  ident: b0010
  article-title: Batteries and fuel cells for emerging electric vehicle markets
  publication-title: Nat. Energy
– volume: 120
  start-page: 2811
  year: 2020
  end-page: 2878
  ident: b0030
  article-title: Carbon-based fibers for advanced electrochemical energy storage devices
  publication-title: Chem. Rev.
– volume: 5
  start-page: 13696
  year: 2015
  ident: b0205
  article-title: Ice-templated self-assembly of VOPO
  publication-title: Sci. Rep.
– volume: 341
  start-page: 618
  year: 2018
  end-page: 627
  ident: b0225
  article-title: Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 13471
  year: 2019
  end-page: 13480
  ident: b0210
  article-title: Electrospun mesoporous Mn–V–O@C nanofibers for high-performance asymmetric supercapacitor devices with high stability
  publication-title: ACS Sustainable Chem. Eng.
– volume: 27
  start-page: 5296
  year: 2015
  end-page: 5308
  ident: b0125
  article-title: Graphene-based materials for lithium-ion hybrid supercapacitors
  publication-title: Adv. Mater.
– volume: 236
  start-page: 167
  year: 2019
  end-page: 170
  ident: b0255
  article-title: Binder-free, scalable hierarchical MoS
  publication-title: Mater. Lett.
– volume: 144
  start-page: 1188
  year: 1997
  end-page: 1194
  ident: b0055
  article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 11753
  year: 2019
  end-page: 11769
  ident: b0115
  article-title: Guided assembly of well-defined hierarchical nanoporous polymers by lewis acid-base interactions
  publication-title: ACS Nano
– volume: 27
  start-page: 51
  year: 2020
  end-page: 60
  ident: b0230
  article-title: Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 682
  year: 2016
  end-page: 688
  ident: b0160
  article-title: A 3.4 V layered VOPO4 cathode for Na-Ion batteries
  publication-title: Chem. Mater.
– volume: 344
  start-page: 185
  year: 2017
  end-page: 194
  ident: b0085
  article-title: Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode
  publication-title: J. Power Sources
– volume: 11
  start-page: 165
  year: 2019
  end-page: 177
  ident: b0140
  article-title: Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor
  publication-title: Nano-Micro Lett.
– volume: 52
  start-page: 336
  year: 2018
  end-page: 344
  ident: b0075
  article-title: Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application
  publication-title: Nano Energy
– volume: 55
  start-page: 13773
  year: 2019
  end-page: 13776
  ident: b0240
  article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors
  publication-title: Chem. Commun. (Camb)
– volume: 11
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0130
  article-title: CNT/high mass loading MnO
  publication-title: Nano-Micro Lett.
– volume: 5
  start-page: 14801
  year: 2017
  end-page: 14810
  ident: b0165
  article-title: Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 11132
  year: 2014
  end-page: 11134
  ident: b0175
  article-title: VOPO
  publication-title: Chem. Commun. (Camb)
– volume: 7
  start-page: 17175
  year: 2019
  end-page: 17185
  ident: b0035
  article-title: Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 488
  year: 2015
  end-page: 493
  ident: b0245
  article-title: Interconnected three-dimensional V
  publication-title: J. Mater. Chem. A
– volume: 575
  start-page: 75
  year: 2019
  end-page: 86
  ident: b0025
  article-title: Recycling lithium-ion batteries from electric vehicles
  publication-title: Nature
– volume: 574
  start-page: 312
  year: 2020
  end-page: 323
  ident: b0235
  article-title: Fabrication of vanadium sulfide (VS
  publication-title: J Colloid Interface Sci.
– volume: 21
  start-page: 289
  year: 2014
  end-page: 294
  ident: b0110
  article-title: Effect of synthetic methods on electrochemical performances of VOPO
  publication-title: Ionics
– volume: 5
  start-page: 5
  year: 2019
  end-page: 19
  ident: b0045
  article-title: Achieving high energy density and high power density with pseudocapacitive materials
  publication-title: Nat. Rev. Mater.
– volume: 575
  start-page: 75
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0025
  article-title: Recycling lithium-ion batteries from electric vehicles
  publication-title: Nature
  doi: 10.1038/s41586-019-1682-5
– volume: 236
  start-page: 167
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0255
  article-title: Binder-free, scalable hierarchical MoS2 as electrode materials in symmetric supercapacitors for energy harvesting applications
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.10.009
– volume: 52
  start-page: 336
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0075
  article-title: Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.052
– volume: 3
  start-page: 488
  year: 2015
  ident: 10.1016/j.jcis.2021.01.042_b0245
  article-title: Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05769D
– volume: 5
  start-page: 5
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0045
  article-title: Achieving high energy density and high power density with pseudocapacitive materials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0142-z
– volume: 6
  start-page: 5845
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0155
  article-title: Rational construction of V2O5@rGO with enhanced pseudocapacitive storage for high-performance flexible energy storage device
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901680
– volume: 165
  start-page: A3738
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0185
  article-title: In situ constructing flexible V2O5@GO composite thin film electrode for superior electrochemical energy storage
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0341816jes
– volume: 21
  start-page: 289
  year: 2014
  ident: 10.1016/j.jcis.2021.01.042_b0110
  article-title: Effect of synthetic methods on electrochemical performances of VOPO4·2H2O supercapacitor
  publication-title: Ionics
  doi: 10.1007/s11581-014-1317-7
– volume: 389
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0050
  article-title: La-doped V2O5·nH2O@OAB and flexible Fe2O3@rGO as binder-free thin film electrodes for asymmetric supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123534
– volume: 5
  start-page: 14801
  year: 2017
  ident: 10.1016/j.jcis.2021.01.042_b0165
  article-title: Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03445H
– volume: 341
  start-page: 618
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0225
  article-title: Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.032
– volume: 29
  start-page: 1903588
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0250
  article-title: 3D Structural strengthening urchin-like Cu(OH)2-based symmetric supercapacitors with adjustable capacitance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903588
– volume: 812
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0190
  article-title: Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO4/rGO electrode
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152135
– volume: 22
  start-page: 3572
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0220
  article-title: Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency
  publication-title: Green Chem.
  doi: 10.1039/D0GC00905A
– volume: 28
  start-page: 682
  year: 2016
  ident: 10.1016/j.jcis.2021.01.042_b0160
  article-title: A 3.4 V layered VOPO4 cathode for Na-Ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04605
– volume: 12
  start-page: 3763
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0095
  article-title: Hierarchical NiMoO4@Co3V2O8 hybrid nanorod/nanosphere clusters as advanced electrodes for high-performance electrochemical energy storage
  publication-title: Nanoscale
  doi: 10.1039/C9NR09319B
– volume: 50
  start-page: 11132
  year: 2014
  ident: 10.1016/j.jcis.2021.01.042_b0175
  article-title: VOPO4 nanosheets as anode materials for lithium-ion batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C4CC03781B
– volume: 120
  start-page: 2811
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0030
  article-title: Carbon-based fibers for advanced electrochemical energy storage devices
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00466
– volume: 27
  start-page: 5296
  year: 2015
  ident: 10.1016/j.jcis.2021.01.042_b0125
  article-title: Graphene-based materials for lithium-ion hybrid supercapacitors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501622
– volume: 8
  start-page: 1697
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0135
  article-title: Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12192G
– volume: 59
  start-page: 9255
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0065
  article-title: Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201915666
– volume: 3
  start-page: 279
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0010
  article-title: Batteries and fuel cells for emerging electric vehicle markets
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 65
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0060
  article-title: A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104010
– volume: 13
  start-page: 11753
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0115
  article-title: Guided assembly of well-defined hierarchical nanoporous polymers by lewis acid-base interactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05727
– volume: 22
  start-page: 4228
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0145
  article-title: Porous nickel electrodes with controlled texture for hydrogen evolution reaction and sodium borohydride electrooxidation
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00344A
– volume: 7
  start-page: 13471
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0210
  article-title: Electrospun mesoporous Mn–V–O@C nanofibers for high-performance asymmetric supercapacitor devices with high stability
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03026
– volume: 26
  start-page: 8190
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0080
  article-title: The development of vanadyl phosphate cathode materials for energy storage systems: a review
  publication-title: Chemistry
  doi: 10.1002/chem.201905706
– volume: 10
  start-page: 3709
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0105
  article-title: A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires
  publication-title: Nanoscale
  doi: 10.1039/C7NR08909K
– volume: 54
  start-page: 7802
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0150
  article-title: Enabling multi-electron reaction of epsilon-VOPO4 to reach theoretical capacity for lithium-ion batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C8CC02386G
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0130
  article-title: CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0316-7
– volume: 344
  start-page: 185
  year: 2017
  ident: 10.1016/j.jcis.2021.01.042_b0085
  article-title: Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.119
– volume: 493
  start-page: 24
  year: 2017
  ident: 10.1016/j.jcis.2021.01.042_b0120
  article-title: Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.01.018
– volume: 28
  start-page: 122
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0005
  article-title: Transition metal based battery-type electrodes in hybrid supercapacitors: a review
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.03.003
– volume: 4
  start-page: 2431
  year: 2013
  ident: 10.1016/j.jcis.2021.01.042_b0070
  article-title: Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3431
– volume: 25
  start-page: 426
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0090
  article-title: A high-performance flexible aqueous Al ion rechargeable battery with long cycle life
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.09.038
– volume: 12
  start-page: 24817
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0215
  article-title: Hierarchically designed cathodes composed of vanadium hexacyanoferrate@copper hexacyanoferrate with enhanced cycling stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05458
– volume: 359
  start-page: 206
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0180
  article-title: Ordered macro-microporous metal-organic framework single crystals
  publication-title: Science
  doi: 10.1126/science.aao3403
– volume: 178
  start-page: 312
  year: 2015
  ident: 10.1016/j.jcis.2021.01.042_b0100
  article-title: Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.08.007
– volume: 7
  start-page: 1658
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0195
  article-title: Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10422K
– volume: 16
  start-page: 742
  year: 2016
  ident: 10.1016/j.jcis.2021.01.042_b0170
  article-title: Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: toward high-rate alkali-ion-based electrochemical energy storage
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04610
– volume: 7
  start-page: 17175
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0035
  article-title: Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03568
– volume: 12
  start-page: 2
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0015
  article-title: A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-020-00451-z
– volume: 583
  start-page: 734
  year: 2021
  ident: 10.1016/j.jcis.2021.01.042_b0040
  article-title: Alpha-MnO2 nanofibers/nitrogen and sulfur-co-doped reduced graphene oxide for 4.5V quasi-solid state supercapacitors using ionic liquid-based polymer electrolyte
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.09.045
– volume: 27
  start-page: 51
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0230
  article-title: Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.017
– volume: 11
  start-page: 165
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0140
  article-title: Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0280-2
– volume: 583
  start-page: 288
  year: 2021
  ident: 10.1016/j.jcis.2021.01.042_b0020
  article-title: 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.128
– volume: 144
  start-page: 1188
  year: 1997
  ident: 10.1016/j.jcis.2021.01.042_b0055
  article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837571
– volume: 5
  start-page: 13696
  year: 2015
  ident: 10.1016/j.jcis.2021.01.042_b0205
  article-title: Ice-templated self-assembly of VOPO4-graphene nanocomposites for vertically porous 3D supercapacitor electrodes
  publication-title: Sci. Rep.
  doi: 10.1038/srep13696
– volume: 55
  start-page: 13773
  year: 2019
  ident: 10.1016/j.jcis.2021.01.042_b0240
  article-title: Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C9CC06791D
– volume: 732
  start-page: 518
  year: 2018
  ident: 10.1016/j.jcis.2021.01.042_b0200
  article-title: Acetylene black coated V2O5 nanocomposite with stable cyclability for lithium-ion batteries cathode
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.10.221
– volume: 574
  start-page: 312
  year: 2020
  ident: 10.1016/j.jcis.2021.01.042_b0235
  article-title: Fabrication of vanadium sulfide (VS4) wrapped with carbonaceous materials as an enhanced electrode for symmetric supercapacitors
  publication-title: J Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.072
SSID ssj0011559
Score 2.3698423
Snippet [Display omitted] •MP-VOPO4@rGO binder-free thin film electrode is first successfully synthesized.•The MP-VOPO4@rGO has more active sites and low internal...
Supercapacitors are being considered as promising electricity storage devices with green sustainable energy conversion. To efficiently develop and optimize...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 341
SubjectTerms anions
capacitance
electricity
electrochemical capacitors
electrochemistry
electrodes
energy conversion
energy density
films (materials)
graphene
nanocomposites
phosphates
phosphorus
phytic acid
polystyrenes
Porous
renewable energy sources
Supercapacitor
Thin film
vanadyl ions
Vanadyl phosphate
Title Pseudocapacitance multiporous vanadyl phosphate/graphene thin film electrode for high performance electrochemical capacitors
URI https://dx.doi.org/10.1016/j.jcis.2021.01.042
https://www.ncbi.nlm.nih.gov/pubmed/33549893
https://www.proquest.com/docview/2487428977
https://www.proquest.com/docview/2524293470
Volume 590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFH6U7rDuMLqsW7NuQYXdhhdblmX7WMJKtrHSQwu9CcmWiEvqmMQ9DEp_-96z5XQ7NIeBL7ZlLPQ9S9-z3vsewGfjEGUb5oEuUxMI58JAOykCndlYCKoh1_2H_HUh59fix01yswezIReGwir93N_P6d1s7a9M_WhOm6qiHF_82lJSn-lSILsMdpGSlX993IZ5RLTt1od5RAG19okzfYzXbVGRZDePOulOwZ9bnJ4jn90idH4Irz17ZGd9B9_Anq1H8HI2FG0bwau_9AXfwsPlxt6XuFqhY1y1hC_rAwhXa3T4GdVTLn8vWbNYbZoFks5pJ1-Nsx9rF1XNXLW8Y75OTmkZ0ltG6saseUo2GG4XXneA-Xet1psjuD7_djWbB77cQlAga2mDssgFL4zJSuGk1pbysTIr81S7WCToWSVFbgQyOm6ixGRpbCQiis20cMI4Hr-D_XpV22NgidPacc1tKkNhZKozJD5aahLAy2KpxxAN46wKr0VOJTGWagg6u1WEjSJsVIiH4GP4sn2m6ZU4drZOBvjUP_akcKnY-dzpgLVC6Gj3RNcWMVEcXTv01ZAv72iTIOPJY5GGY3jfG8q2r3GMrjiyww__2bMTOKAzilyIko-w367v7SckRK2ZdBY_gRdn33_OL_4APjIMng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hONAeUEu_tqXUlXqr0k0cx0mOaAVaWkA9gMTNshNbG7TNRrvhgFTx25lJnG05sAeknGJbsfz88SaeeQPwzThE2YZ5oMvUBMK5MNBOikBnNhaCcsh1_yHPL-T0Svy8Tq63YDLEwpBbpd_7-z292639m7EfzXFTVRTji6stJfWZLgQSTaAdgcuX0hj8uF_7eUR079b7eUQBVfeRM72T101RkWY3jzrtTsGfOp2eYp_dKXTyCvY8fWRHfQ9fw5at92F3MmRt24eX_wkMvoG_v1f2tsTjCi3jqiWAWe9BuFiixc8ooXJ5N2fNbLFqZsg6x51-NW5_rJ1VNXPV_A_ziXJKy5DfMpI3Zs2_aIOhuPDCA8x_a7FcvYWrk-PLyTTw-RaCAmlLG5RFLnhhTFYKJ7W2FJCVWZmn2sUiQdMqKXIjkNJxEyUmS2MjEVKspoUTxvH4HWzXi9p-AJY4rR3X3KYyFEamOkPmo6UmBbwslnoE0TDOqvBi5JQTY64Gr7MbRdgowkaF-Ag-gu_rNk0vxbGxdjLApx5NKIVnxcZ2XwesFUJH1ye6toiJ4mjbobGGhHlDnQQpTx6LNBzB-36irPsax2iLIz38-MyefYHd6eX5mTo7vfj1CV5QCbkxRMkBbLfLW_sZ2VFrDrvZ_wBBBw4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudocapacitance+multiporous+vanadyl+phosphate%2Fgraphene+thin+film+electrode+for+high+performance+electrochemical+capacitors&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Hu%2C+Bingbing&rft.au=Xu%2C+Chuanlan&rft.au=Yu%2C+Danmei&rft.au=Chen%2C+Changguo&rft.date=2021-05-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=590&rft.spage=341&rft_id=info:doi/10.1016%2Fj.jcis.2021.01.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon