Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia
Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are...
Saved in:
Published in | Development (Cambridge) Vol. 148; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
15.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates. |
---|---|
AbstractList | Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates.Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates. Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates. |
Author | Liu, Xingyong Wei, Xueyan Wang, Deshou Qi, Shuangshuang Xiao, Hesheng Dai, Shengfei Zhou, Xin Lu, Baoyue Li, Yibing Li, Minghui |
Author_xml | – sequence: 1 givenname: Shengfei orcidid: 0000-0003-4397-6997 surname: Dai fullname: Dai, Shengfei organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 2 givenname: Shuangshuang orcidid: 0000-0002-2225-6934 surname: Qi fullname: Qi, Shuangshuang organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 3 givenname: Xueyan orcidid: 0000-0002-6656-4832 surname: Wei fullname: Wei, Xueyan organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 4 givenname: Xingyong orcidid: 0000-0003-0507-6525 surname: Liu fullname: Liu, Xingyong organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 5 givenname: Yibing orcidid: 0000-0002-2342-6616 surname: Li fullname: Li, Yibing organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 6 givenname: Xin orcidid: 0000-0001-8861-7037 surname: Zhou fullname: Zhou, Xin organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 7 givenname: Hesheng orcidid: 0000-0002-8773-7421 surname: Xiao fullname: Xiao, Hesheng organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 8 givenname: Baoyue orcidid: 0000-0001-8845-5808 surname: Lu fullname: Lu, Baoyue organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 9 givenname: Deshou orcidid: 0000-0002-4967-524X surname: Wang fullname: Wang, Deshou organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China – sequence: 10 givenname: Minghui orcidid: 0000-0002-0880-2783 surname: Li fullname: Li, Minghui organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33741713$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtLAzEUhYNU7EM3_gDJUoRpk8lMkyylaBUKbnQdbic3GplHnaRi_70pbTfi5tzF-c6Be8Zk0HYtEnLN2ZTnRT6z-D3lWgvFzsiIF1Jmmud6QEZMlyxLDh-ScQifjDExl_KCDIWQBZdcjAgssW9q3yIN-LOFmjqISH2gFmNykmHpekfjB1JoI7x3rQ_RVxSq6LuWdo7apo88mZa67qcWs73m1Lc0-ho2Hi7JuYM64NXxTsjb48Pr4ilbvSyfF_errBJKx8zOpUCEUq21KLVGVxWyYFyhAwEly5No4QrNHVqrACTMxdxWMoe1Uhy4mJDbQ--m7762GKJpfKiwrqHFbhtMXjJRFKrMVUJvjuh23aA1m9430O_MaZYEsANQ9V0IPTpT-Qj7j2MPvjacmf3yJi1vDsunyN2fyKn1H_gXjdWEDg |
CitedBy_id | crossref_primary_10_1016_j_aquaculture_2024_742070 crossref_primary_10_3389_fgene_2021_796211 crossref_primary_10_1016_j_aquaculture_2023_739381 crossref_primary_10_3390_genes15091238 crossref_primary_10_3390_ijms24032468 crossref_primary_10_1016_j_marpolbul_2024_117209 crossref_primary_10_3390_ijms25031740 crossref_primary_10_1371_journal_pgen_1010288 crossref_primary_10_1016_j_aquaculture_2022_739130 crossref_primary_10_1016_j_ygcen_2021_113893 crossref_primary_10_1016_j_aquaculture_2024_740974 crossref_primary_10_1371_journal_pgen_1011210 crossref_primary_10_1016_j_cbd_2023_101148 crossref_primary_10_1038_s41598_022_17726_7 crossref_primary_10_1093_genetics_iyab237 crossref_primary_10_1016_j_ecoenv_2023_115654 crossref_primary_10_1016_j_aquaculture_2021_737147 crossref_primary_10_1111_raq_12838 crossref_primary_10_1016_j_jsbmb_2023_106310 crossref_primary_10_1016_j_jsbmb_2022_106219 crossref_primary_10_1016_j_aquaculture_2022_739023 crossref_primary_10_1097_SCS_0000000000009801 crossref_primary_10_1038_s41467_025_55899_7 crossref_primary_10_1098_rsob_230257 crossref_primary_10_1016_j_ygcen_2023_114395 crossref_primary_10_3389_fmars_2022_962534 crossref_primary_10_1016_j_ydbio_2024_08_006 crossref_primary_10_1016_j_aqrep_2024_102079 crossref_primary_10_3389_fcell_2024_1362228 crossref_primary_10_1016_j_cbd_2024_101200 crossref_primary_10_3390_fishes8030129 crossref_primary_10_1016_j_watbs_2022_100008 crossref_primary_10_3389_fcell_2022_914570 crossref_primary_10_1016_j_aquaculture_2021_737732 crossref_primary_10_1016_j_aquaculture_2022_738664 crossref_primary_10_1093_eep_dvad009 crossref_primary_10_1186_s13293_024_00643_x crossref_primary_10_1007_s11427_023_2670_5 crossref_primary_10_1016_j_aquaculture_2023_740279 crossref_primary_10_1038_s42003_024_06853_8 crossref_primary_10_3389_fmars_2022_897004 crossref_primary_10_3390_genes14030612 crossref_primary_10_1038_s41598_023_40914_y crossref_primary_10_1007_s10695_022_01150_9 crossref_primary_10_3389_fcell_2022_944776 crossref_primary_10_1016_j_aaf_2023_07_002 crossref_primary_10_3390_cells12222631 crossref_primary_10_1016_j_aqrep_2021_100802 crossref_primary_10_1016_j_ijbiomac_2022_06_098 crossref_primary_10_1016_j_cbpb_2023_110831 crossref_primary_10_1007_s11427_021_2075_x crossref_primary_10_1016_j_ydbio_2024_09_013 crossref_primary_10_3389_fgene_2024_1459427 crossref_primary_10_1159_000526008 crossref_primary_10_1016_j_aqrep_2022_101085 crossref_primary_10_1016_j_aqrep_2022_101243 |
Cites_doi | 10.1530/REP-10-0075 10.1038/346240a0 10.1210/en.2017-00127 10.1016/j.celrep.2019.02.069 10.1210/en.2013-1451 10.1016/j.devcel.2010.09.010 10.1159/000447611 10.1677/JME-09-0011 10.1016/j.aquaculture.2014.05.035 10.1016/j.ydbio.2016.12.008 10.1038/hdy.2013.19 10.1534/genetics.117.300274 10.1073/pnas.0905431106 10.1016/j.mce.2017.07.013 10.1126/science.aaa2657 10.1016/j.ygcen.2019.03.012 10.1159/000450927 10.1016/j.cub.2013.12.039 10.1101/gad.834100 10.1007/s10577-011-9264-x 10.1038/nrg3161 10.1073/pnas.1918556117 10.1371/journal.pgen.1005678 10.1016/j.cub.2015.01.034 10.1371/journal.pone.0063604 10.1006/meth.2001.1262 10.1073/pnas.1018392109 10.4103/1008-682x.150037 10.1016/j.cell.2009.11.021 10.1038/nature08298 10.1210/en.2009-0999 10.1095/biolreprod.114.121418 10.1016/j.ygcen.2009.03.002 10.1210/en.2017-00156 10.1534/genetics.116.199133 10.1016/S0022-2836(03)00524-2 10.1126/science.1145626 10.1534/genetics.114.163667 10.1006/gcen.1996.0075 10.1210/me.2006-0248 10.1095/biolreprod.108.072314 10.1007/s00018-019-03439-0 10.1186/1471-2199-8-58 10.1016/j.ygcen.2013.08.016 10.1038/nature751 10.1007/s10695-006-0033-2 10.1016/j.cub.2011.07.026 10.1016/j.devcel.2014.04.017 10.1126/science.1125691 10.1002/jez.a.20027 10.1530/JOE-19-0438 10.1242/dev.190942 10.1016/j.cbpb.2019.110324 10.1210/en.2013-1959 10.1242/dev.182758 10.1371/journal.pgen.1006293 10.1002/mrd.22642 10.1038/nrg.2017.60 10.1016/j.ydbio.2018.10.019 10.1159/000223076 10.1016/S0925-4773(00)00464-0 10.1016/j.bbrc.2005.03.066 10.1038/351117a0 10.1038/nature10239 10.1002/dvg.22382 10.1038/srep37357 10.1071/RD20171 10.1073/pnas.182314699 10.1095/biolreprod.107.064246 10.1095/biolreprod.115.138271 10.1016/j.celrep.2018.06.111 10.1016/j.gene.2018.11.016 |
ContentType | Journal Article |
Copyright | 2021. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2021. Published by The Company of Biologists Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1242/dev.199380 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | 33741713 10_1242_dev_199380 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW NPM 7X8 |
ID | FETCH-LOGICAL-c389t-d673eea58b93599efc474018efa3a5023a593f491fedd8aa7a636dc72ab881a13 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Jul 10 23:39:10 EDT 2025 Thu Apr 03 07:06:48 EDT 2025 Tue Jul 01 00:45:17 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | foxl3/foxl2 dmrt1 Single or double mutation Germline sex determination Mutual transcriptional repression |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2021. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-d673eea58b93599efc474018efa3a5023a593f491fedd8aa7a636dc72ab881a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2225-6934 0000-0002-2342-6616 0000-0001-8861-7037 0000-0003-4397-6997 0000-0003-0507-6525 0000-0001-8845-5808 0000-0002-6656-4832 0000-0002-0880-2783 0000-0002-8773-7421 0000-0002-4967-524X |
OpenAccessLink | https://journals.biologists.com/dev/article-pdf/148/8/dev199380/2024504/dev199380.pdf |
PMID | 33741713 |
PQID | 2503448528 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2503448528 pubmed_primary_33741713 crossref_citationtrail_10_1242_dev_199380 crossref_primary_10_1242_dev_199380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Apr-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-Apr-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2021 |
References | Crews (2021042815444087100_DEV199380C10) 1996; 102 Nishimura (2021042815444087100_DEV199380C46) 2015; 349 Bowles (2021042815444087100_DEV199380C6) 2018; 24 Wei (2021042815444087100_DEV199380C66) 2019; 687 Boulanger (2021042815444087100_DEV199380C3) 2014; 24 Matson (2021042815444087100_DEV199380C38) 2010; 19 Sun (2021042815444087100_DEV199380C55) 2014; 155 Matson (2021042815444087100_DEV199380C37) 2012; 13 Crespo (2021042815444087100_DEV199380C9) 2013; 194 Yang (2021042815444087100_DEV199380C68) 2017; 205 Guiguen (2021042815444087100_DEV199380C13) 2010; 165 Li (2021042815444087100_DEV199380C32) 2020; 23 Tang (2021042815444087100_DEV199380C58) 2017; 158 Wang (2021042815444087100_DEV199380C62) 2007; 21 Kikuchi (2021042815444087100_DEV199380C21) 2019; 445 Masuyama (2021042815444087100_DEV199380C36) 2012; 20 Ijiri (2021042815444087100_DEV199380C18) 2008; 78 Lau (2021042815444087100_DEV199380C27) 2016; 6 Webster (2021042815444087100_DEV199380C65) 2017; 422 Matson (2021042815444087100_DEV199380C39) 2011; 476 Wang (2021042815444087100_DEV199380C63) 2010; 151 Geraldo (2021042815444087100_DEV199380C11) 2013; 111 Bowles (2021042815444087100_DEV199380C4) 2010; 139 Minkina (2021042815444087100_DEV199380C41) 2014; 29 Bowles (2021042815444087100_DEV199380C5) 2006; 312 Matsuda (2021042815444087100_DEV199380C40) 2002; 417 Tao (2021042815444087100_DEV199380C59) 2013; 8 Wang (2021042815444087100_DEV199380C61) 2005; 31 Koopman (2021042815444087100_DEV199380C25) 1991; 351 Li (2021042815444087100_DEV199380C30) 2014; 197 Wang (2021042815444087100_DEV199380C64) 2019; 237 Zhang (2021042815444087100_DEV199380C70) 2016; 12 Zheng (2021042815444087100_DEV199380C72) 2020; 244 Raghuveer (2021042815444087100_DEV199380C48) 2009; 42 Li (2021042815444087100_DEV199380C31) 2015; 11 Chew (2021042815444087100_DEV199380C8) 2016; 10 Nanda (2021042815444087100_DEV199380C44) 2002; 99 Hattori (2021042815444087100_DEV199380C15) 2012; 109 Jiang (2021042815444087100_DEV199380C20) 2016; 83 Lei (2021042815444087100_DEV199380C28) 2009; 81 Huang (2021042815444087100_DEV199380C17) 2020; 32 Uhlenhaut (2021042815444087100_DEV199380C60) 2009; 139 Sinclair (2021042815444087100_DEV199380C51) 1990; 346 Gomez-Ferreria (2021042815444087100_DEV199380C12) 2003; 329 Jeng (2021042815444087100_DEV199380C19) 2019; 279 Kobayashi (2021042815444087100_DEV199380C24) 2000; 99 Krentz (2021042815444087100_DEV199380C26) 2009; 106 Zhang (2021042815444087100_DEV199380C69) 2014; 91 Okutsu (2021042815444087100_DEV199380C47) 2007; 317 Guo (2021042815444087100_DEV199380C14) 2005; 330 Ayers (2021042815444087100_DEV199380C1) 2013; 51 Raymond (2021042815444087100_DEV199380C49) 2000; 14 Murphy (2021042815444087100_DEV199380C42) 2007; 8 Zhang (2021042815444087100_DEV199380C71) 2017; 158 Livak (2021042815444087100_DEV199380C35) 2001; 25 Lindeman (2021042815444087100_DEV199380C34) 2015; 25 Nishimura (2021042815444087100_DEV199380C45) 2016; 95 Kobayashi (2021042815444087100_DEV199380C23) 2009; 3 Li (2021042815444087100_DEV199380C29) 2013; 154 Spiller (2021042815444087100_DEV199380C53) 2015; 17 Kikuchi (2021042815444087100_DEV199380C22) 2020; 117 Nakamoto (2021042815444087100_DEV199380C43) 2018; 460 Sun (2021042815444087100_DEV199380C56) 2014; 433 Wu (2021042815444087100_DEV199380C67) 2020; 147 Lin (2021042815444087100_DEV199380C33) 2017; 207 Suzuki (2021042815444087100_DEV199380C57) 2004; 301 Smith (2021042815444087100_DEV199380C52) 2009; 461 Bertho (2021042815444087100_DEV199380C2) 2016; 10 Herpin (2021042815444087100_DEV199380C16) 2011; 21 Capel (2021042815444087100_DEV199380C7) 2017; 18 Stévant (2021042815444087100_DEV199380C54) 2019; 26 Romano (2021042815444087100_DEV199380C50) 2020; 147 |
References_xml | – volume: 139 start-page: 943 year: 2010 ident: 2021042815444087100_DEV199380C4 article-title: Sex determination in mammalian germ cells: extrinsic versus intrinsic factors publication-title: Reproduction doi: 10.1530/REP-10-0075 – volume: 346 start-page: 240 year: 1990 ident: 2021042815444087100_DEV199380C51 article-title: A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif publication-title: Nature doi: 10.1038/346240a0 – volume: 158 start-page: 2634 year: 2017 ident: 2021042815444087100_DEV199380C71 article-title: Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile Tilapia publication-title: Endocrinology doi: 10.1210/en.2017-00127 – volume: 26 start-page: 3272 year: 2019 ident: 2021042815444087100_DEV199380C54 article-title: Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.069 – volume: 154 start-page: 4814 year: 2013 ident: 2021042815444087100_DEV199380C29 article-title: Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs publication-title: Endocrinology doi: 10.1210/en.2013-1451 – volume: 19 start-page: 612 year: 2010 ident: 2021042815444087100_DEV199380C38 article-title: The mammalian Doublesex Homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.09.010 – volume: 10 start-page: 111 year: 2016 ident: 2021042815444087100_DEV199380C2 article-title: Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation publication-title: Sex. Dev. doi: 10.1159/000447611 – volume: 42 start-page: 437 year: 2009 ident: 2021042815444087100_DEV199380C48 article-title: Identification of multiple dmrt1s in catfish: localization, dimorphic expression pattern, changes during testicular cycle and after methyltestosterone treatment publication-title: J. Mol. Endocrinol. doi: 10.1677/JME-09-0011 – volume: 433 start-page: 19 year: 2014 ident: 2021042815444087100_DEV199380C56 article-title: Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2014.05.035 – volume: 422 start-page: 33 year: 2017 ident: 2021042815444087100_DEV199380C65 article-title: Dmrt1 is necessary for male sexual development in zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2016.12.008 – volume: 111 start-page: 57 year: 2013 ident: 2021042815444087100_DEV199380C11 article-title: The discovery of Foxl2 paralogs in chondrichthyan, coelacanth and tetrapod genomes reveals an ancient duplication in vertebrates publication-title: Heredity doi: 10.1038/hdy.2013.19 – volume: 207 start-page: 1007 year: 2017 ident: 2021042815444087100_DEV199380C33 article-title: Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish publication-title: Genetics doi: 10.1534/genetics.117.300274 – volume: 106 start-page: 22323 year: 2009 ident: 2021042815444087100_DEV199380C26 article-title: The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905431106 – volume: 460 start-page: 104 year: 2018 ident: 2021042815444087100_DEV199380C43 article-title: Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2017.07.013 – volume: 349 start-page: 328 year: 2015 ident: 2021042815444087100_DEV199380C46 article-title: foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka publication-title: Science doi: 10.1126/science.aaa2657 – volume: 279 start-page: 154 year: 2019 ident: 2021042815444087100_DEV199380C19 article-title: Dmrt1 (doublesex and mab-3-related transcription factor 1) expression during gonadal development and spermatogenesis in the Japanese eel publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2019.03.012 – volume: 10 start-page: 301 year: 2016 ident: 2021042815444087100_DEV199380C8 article-title: Inducing sex reversal in marsupial mammals publication-title: Sex. Dev. doi: 10.1159/000450927 – volume: 24 start-page: 404 year: 2014 ident: 2021042815444087100_DEV199380C3 article-title: FOXL2 is a female sex-determining gene in the goat publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.12.039 – volume: 14 start-page: 2587 year: 2000 ident: 2021042815444087100_DEV199380C49 article-title: Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation publication-title: Genes Dev. doi: 10.1101/gad.834100 – volume: 20 start-page: 163 year: 2012 ident: 2021042815444087100_DEV199380C36 article-title: Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka publication-title: Chromosome Res. doi: 10.1007/s10577-011-9264-x – volume: 13 start-page: 163 year: 2012 ident: 2021042815444087100_DEV199380C37 article-title: Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3161 – volume: 117 start-page: 12174 year: 2020 ident: 2021042815444087100_DEV199380C22 article-title: foxl3, a sexual switch in germ cells, initiates two independent molecular pathways for commitment to oogenesis in medaka publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1918556117 – volume: 11 start-page: e1005678 year: 2015 ident: 2021042815444087100_DEV199380C31 article-title: A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005678 – volume: 25 start-page: 764 year: 2015 ident: 2021042815444087100_DEV199380C34 article-title: Sexual cell-fate reprogramming in the ovary by DMRT1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.01.034 – volume: 8 start-page: e63604 year: 2013 ident: 2021042815444087100_DEV199380C59 article-title: Characterization of gonadal transcriptomes from Nile Tilapia (Oreochromis niloticus) reveals differentially expressed genes publication-title: PLoS ONE doi: 10.1371/journal.pone.0063604 – volume: 25 start-page: 402 year: 2001 ident: 2021042815444087100_DEV199380C35 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 109 start-page: 2955 year: 2012 ident: 2021042815444087100_DEV199380C15 article-title: A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1018392109 – volume: 17 start-page: 427 year: 2015 ident: 2021042815444087100_DEV199380C53 article-title: Sex determination in mammalian germ cells publication-title: Asian J. Androl. doi: 10.4103/1008-682x.150037 – volume: 139 start-page: 1130 year: 2009 ident: 2021042815444087100_DEV199380C60 article-title: Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation publication-title: Cell doi: 10.1016/j.cell.2009.11.021 – volume: 461 start-page: 267 year: 2009 ident: 2021042815444087100_DEV199380C52 article-title: The avian Z-linked gene DMRT1 is required for male sex determination in the chicken publication-title: Nature doi: 10.1038/nature08298 – volume: 151 start-page: 1331 year: 2010 ident: 2021042815444087100_DEV199380C63 article-title: Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in Tilapia publication-title: Endocrinology doi: 10.1210/en.2009-0999 – volume: 91 start-page: 136 year: 2014 ident: 2021042815444087100_DEV199380C69 article-title: Isolation of doublesex- and Mab-3-related transcription factor 6 and its involvement in spermatogenesis in Tilapia publication-title: Biol. Reprod. doi: 10.1095/biolreprod.114.121418 – volume: 165 start-page: 352 year: 2010 ident: 2021042815444087100_DEV199380C13 article-title: Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2009.03.002 – volume: 158 start-page: 3042 year: 2017 ident: 2021042815444087100_DEV199380C58 article-title: New insights into the role of estrogens in male fertility based on findings in aromatase-deficient Zebrafish publication-title: Endocrinology doi: 10.1210/en.2017-00156 – volume: 205 start-page: 1551 year: 2017 ident: 2021042815444087100_DEV199380C68 article-title: Sequential, divergent, and cooperative requirements of Foxl2a and Foxl2b in ovary development and maintenance of zebrafish publication-title: Genetics doi: 10.1534/genetics.116.199133 – volume: 329 start-page: 631 year: 2003 ident: 2021042815444087100_DEV199380C12 article-title: Functional domains of FOXJ2 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00524-2 – volume: 317 start-page: 1517 year: 2007 ident: 2021042815444087100_DEV199380C47 article-title: Production of trout offspring from triploid salmon parents publication-title: Science doi: 10.1126/science.1145626 – volume: 197 start-page: 591 year: 2014 ident: 2021042815444087100_DEV199380C30 article-title: Efficient and heritable gene targeting in tilapia by CRISPR/Cas9 publication-title: Genetics doi: 10.1534/genetics.114.163667 – volume: 102 start-page: 317 year: 1996 ident: 2021042815444087100_DEV199380C10 article-title: The relative effectiveness of estrone, estradiol-17β, and estriol in sex reversal in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination publication-title: Gen. Comp. Endocrinol. doi: 10.1006/gcen.1996.0075 – volume: 21 start-page: 712 year: 2007 ident: 2021042815444087100_DEV199380C62 article-title: Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor 1 publication-title: Mol. Endocrinol. doi: 10.1210/me.2006-0248 – volume: 81 start-page: 118 year: 2009 ident: 2021042815444087100_DEV199380C28 article-title: Distinct transcriptional mechanisms direct expression of the rat Dmrt1 promoter in sertoli cells and germ cells of transgenic mice publication-title: Biol. Reprod. doi: 10.1095/biolreprod.108.072314 – volume: 23 start-page: 4921 year: 2020 ident: 2021042815444087100_DEV199380C32 article-title: Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03439-0 – volume: 8 start-page: 58 year: 2007 ident: 2021042815444087100_DEV199380C42 article-title: Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA publication-title: BMC Mol. Biol. doi: 10.1186/1471-2199-8-58 – volume: 194 start-page: 81 year: 2013 ident: 2021042815444087100_DEV199380C9 article-title: foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts publication-title: Gen. Comp. Endocrinol. doi: 10.1016/j.ygcen.2013.08.016 – volume: 417 start-page: 559 year: 2002 ident: 2021042815444087100_DEV199380C40 article-title: DMY is a Y-specific DM-domain gene required for male development in the medaka fish publication-title: Nature doi: 10.1038/nature751 – volume: 31 start-page: 255 year: 2005 ident: 2021042815444087100_DEV199380C61 article-title: Molecular cloning, gene expression and characterization of the third estrogen receptor of the Nile tilapia, Oreochromis niloticus publication-title: Fish Physiol. Biochem. doi: 10.1007/s10695-006-0033-2 – volume: 21 start-page: R656 year: 2011 ident: 2021042815444087100_DEV199380C16 article-title: Sex Determination: Switch and Suppress publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.07.026 – volume: 29 start-page: 511 year: 2014 ident: 2021042815444087100_DEV199380C41 article-title: DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.04.017 – volume: 312 start-page: 596 year: 2006 ident: 2021042815444087100_DEV199380C5 article-title: Retinoid signaling determines germ cell fate in mice publication-title: Science doi: 10.1126/science.1125691 – volume: 301 start-page: 266 year: 2004 ident: 2021042815444087100_DEV199380C57 article-title: Expression of aromatase mRNA and effects of aromatase inhibitor during ovarian development in the medaka, Oryzias latipes publication-title: J. Exp. Zool. A Comp. Exp. Biol. doi: 10.1002/jez.a.20027 – volume: 244 start-page: 487 year: 2020 ident: 2021042815444087100_DEV199380C72 article-title: Loss of Cyp11c1 causes delayed spermatogenesis due to the absence of 11-ketotestosterone publication-title: J. Endocrinol. doi: 10.1530/JOE-19-0438 – volume: 147 start-page: dev190942 year: 2020 ident: 2021042815444087100_DEV199380C50 article-title: Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b publication-title: Development doi: 10.1242/dev.190942 – volume: 237 start-page: 110324 year: 2019 ident: 2021042815444087100_DEV199380C64 article-title: Genome-wide identification, evolution of ATF/CREB family and their expression in Nile tilapia publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2019.110324 – volume: 155 start-page: 1476 year: 2014 ident: 2021042815444087100_DEV199380C55 article-title: Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile Tilapia publication-title: Endocrinology doi: 10.1210/en.2013-1959 – volume: 147 start-page: dev182758 year: 2020 ident: 2021042815444087100_DEV199380C67 article-title: Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish - a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis publication-title: Development doi: 10.1242/dev.182758 – volume: 12 start-page: e1006293 year: 2016 ident: 2021042815444087100_DEV199380C70 article-title: DMRT1 is required for mouse spermatogonial stem cell maintenance and replenishment publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006293 – volume: 83 start-page: 497 year: 2016 ident: 2021042815444087100_DEV199380C20 article-title: gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.22642 – volume: 18 start-page: 675 year: 2017 ident: 2021042815444087100_DEV199380C7 article-title: Vertebrate sex determination: evolutionary plasticity of a fundamental switch publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2017.60 – volume: 445 start-page: 80 year: 2019 ident: 2021042815444087100_DEV199380C21 article-title: Novel components of germline sex determination acting downstream of foxl3 in medaka publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2018.10.019 – volume: 3 start-page: 108 year: 2009 ident: 2021042815444087100_DEV199380C23 article-title: Molecular aspects of gonadal differentiation in a teleost fish, the Nile tilapia publication-title: Sex Dev. doi: 10.1159/000223076 – volume: 99 start-page: 139 year: 2000 ident: 2021042815444087100_DEV199380C24 article-title: Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus publication-title: Mech. Dev. doi: 10.1016/S0925-4773(00)00464-0 – volume: 330 start-page: 950 year: 2005 ident: 2021042815444087100_DEV199380C14 article-title: Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.03.066 – volume: 351 start-page: 117 year: 1991 ident: 2021042815444087100_DEV199380C25 article-title: Male development of chromosomally female mice transgenic for Sry publication-title: Nature doi: 10.1038/351117a0 – volume: 476 start-page: 101 year: 2011 ident: 2021042815444087100_DEV199380C39 article-title: DMRT1 prevents female reprogramming in the postnatal mammalian testis publication-title: Nature doi: 10.1038/nature10239 – volume: 51 start-page: 325 year: 2013 ident: 2021042815444087100_DEV199380C1 article-title: The molecular genetics of avian sex determination and its manipulation publication-title: Genesis doi: 10.1002/dvg.22382 – volume: 6 start-page: 37357 year: 2016 ident: 2021042815444087100_DEV199380C27 article-title: Knockout of Zebrafish Ovarian Aromatase Gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation publication-title: Sci. Rep. doi: 10.1038/srep37357 – volume: 32 start-page: 1271 year: 2020 ident: 2021042815444087100_DEV199380C17 article-title: Establishment of a stem Leydig cell line capable of 11-ketotestosterone production publication-title: Reprod. Fertil. Dev. doi: 10.1071/RD20171 – volume: 99 start-page: 11778 year: 2002 ident: 2021042815444087100_DEV199380C44 article-title: A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.182314699 – volume: 78 start-page: 333 year: 2008 ident: 2021042815444087100_DEV199380C18 article-title: Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus publication-title: Biol. Reprod. doi: 10.1095/biolreprod.107.064246 – volume: 95 start-page: 30 year: 2016 ident: 2021042815444087100_DEV199380C45 article-title: The mechanism of germline sex determination in vertebrates publication-title: Biol. Reprod. doi: 10.1095/biolreprod.115.138271 – volume: 24 start-page: 1330 year: 2018 ident: 2021042815444087100_DEV199380C6 article-title: Retinoic acid antagonizes testis development in mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.06.111 – volume: 687 start-page: 109 year: 2019 ident: 2021042815444087100_DEV199380C66 article-title: Dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus) publication-title: Gene doi: 10.1016/j.gene.2018.11.016 |
SSID | ssj0003677 |
Score | 2.5723903 |
Snippet | Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
Title | Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33741713 https://www.proquest.com/docview/2503448528 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagCMQLggJluWQEL6gKjWMncR4RVwGVF1ppxUvk-GgjlQR1E8Ty6xkfOQqLVHjxbiZxEmU-jWc8F0LPCprGVUaqKNfSRCxRJiq4hENGYkEzCsaczUY--JTtH7EPy3Q5uWJcdklXvZA_N-aV_A9XgQZ8tVmy_8DZ8aZAgP_AXxiBwzBeiMfvQKw6NXHlCifvGlAcbYdyFWJcgnZ5Yl0E1vvUuKrMu6E9OKiJ6utZR5z_wLQ_Tm1xBfubuODH2ua5ibnyOgswcs7fId1rtpvw2ne3_nyim2Oj63FbNVB70Ryv3Dh5hNypZa_Xs-igundEWFbXbbg27EwkxDpZfG7muMUY20AWjx3tBSyzLmMS3muQwIzPoMY3SnZQJeAjKP3d5ldS3_3pfPns35a1MdjQmjkwu4S5pZ97GV1JwKpwFvj7j-PCTTPXqHN87VDNFubuTc89r7_8xShxysnhTXQjWBX4pYfILXRJN9voqu8zut5G1w5CBAUQv7SOeBuJAT3Yowdb9OB6hSf04GqNAT14jh7s0YNbgx164KTCDj17Dju4bnDAzh109PbN4av9KDTciCTorV2kspxqLVJe2XztQhvJbMNGro2gIgXtTqQFNawgRivFhchFRjMl80RUnBNB6F201bSNvoewBjuWSZbFmhQsSWRhYqnSVObEsDhXeoGeD5-xlKEavW2Kclr-ya4Fejpe-83XYNl41ZOBGyWISOv3Eo1u-1UJWj5ljKcJX6Adz6bxPpSCVMoJvX-hZzxA1yegP0Rb3VmvH4FS2lWPHZR-AVLcjN4 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Germline+sexual+fate+is+determined+by+the+antagonistic+action+of+dmrt1+and+foxl3%2Ffoxl2+in+tilapia&rft.jtitle=Development+%28Cambridge%29&rft.au=Dai%2C+Shengfei&rft.au=Qi%2C+Shuangshuang&rft.au=Wei%2C+Xueyan&rft.au=Liu%2C+Xingyong&rft.date=2021-04-15&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=148&rft.issue=8&rft_id=info:doi/10.1242%2Fdev.199380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_199380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |