MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos
Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (ME...
Saved in:
Published in | IEEE transactions on image processing Vol. 30; pp. 3956 - 3969 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 1941-0042 |
DOI | 10.1109/TIP.2021.3064258 |
Cover
Loading…
Abstract | Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) 2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset. |
---|---|
AbstractList | Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME)2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset. Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset. Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME)2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset.Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME)2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset. |
Author | Fu, Xiaolan Li, Jingting Wang, Su-Jing He, Ying |
Author_xml | – sequence: 1 givenname: Su-Jing orcidid: 0000-0002-8774-6328 surname: Wang fullname: Wang, Su-Jing email: wangsujing@psych.ac.cn organization: Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Ying orcidid: 0000-0002-7098-7598 surname: He fullname: He, Ying organization: Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Jingting orcidid: 0000-0001-8742-8488 surname: Li fullname: Li, Jingting organization: Key Laboratory of Behavior Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Xiaolan orcidid: 0000-0002-6944-1037 surname: Fu fullname: Fu, Xiaolan organization: Department of Psychology, University of Chinese Academy of Sciences, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33788686$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9v2yAYhtHUaf2x3SdVqpB26cXZB9gGequitI2UdJPS7Wph-_NE65gMcLf-9yVN1kMPO30IngfE-x6Tg8ENSMhnBhPGQH-9m3-fcOBsIqDMeaHekSOmc5YB5PwgraGQmWS5PiTHIdwDsLxg5QdyKIRUqlTlEbHL2eoW4wW9pFM3PLp-jNYNpqe3OPqXEf84_0A75-lq42K0wy-6HPtos1VjeqRL23iXzf5uPIaQVDofIvpH0wdqB7pwCf9pW3ThI3nfpV38tJ8n5MfV7G56ky2-Xc-nl4usEUrHrGWd7kpVlzWXrNWGaWgLblRrZKFVUSIztUDOJei8aWUDdZvXCAVIITpMZyfkfHfvxrvfI4ZYrW1osO_NgG4MFU-o5FprSOiXN-i9G336_Quluea50ok621Njvca22ni7Nv6p-hdiAmAHpCRC8Ni9IgyqbU9V6qna9lTte0pK-UZpbDTb6KM3tv-feLoTLSK-vqOF5gKEeAZzNp5n |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_neucom_2023_126439 crossref_primary_10_1016_j_patrec_2022_09_010 crossref_primary_10_1016_j_jvcir_2025_104436 crossref_primary_10_1016_j_neucom_2023_126998 crossref_primary_10_1016_j_image_2022_116875 crossref_primary_10_1016_j_asoc_2023_110035 crossref_primary_10_1016_j_compbiomed_2021_104698 crossref_primary_10_1016_j_neucom_2025_129676 crossref_primary_10_1007_s10462_025_11159_0 crossref_primary_10_1109_ACCESS_2025_3530114 crossref_primary_10_1016_j_patrec_2022_12_001 crossref_primary_10_1007_s42235_021_0068_1 crossref_primary_10_3390_electronics12020434 crossref_primary_10_1109_TAFFC_2023_3266808 crossref_primary_10_1007_s11042_023_15626_0 crossref_primary_10_1007_s10489_023_05052_y crossref_primary_10_1016_j_compbiomed_2021_104582 crossref_primary_10_1016_j_patrec_2022_11_001 crossref_primary_10_1109_TIP_2024_3472502 crossref_primary_10_1016_j_enconman_2021_114484 crossref_primary_10_1109_TAFFC_2023_3340016 crossref_primary_10_1007_s00366_021_01542_0 crossref_primary_10_1007_s11063_022_11123_x crossref_primary_10_1007_s00366_021_01464_x crossref_primary_10_1016_j_cmpb_2023_107923 crossref_primary_10_1364_OE_555406 crossref_primary_10_2478_caim_2024_0016 crossref_primary_10_1038_s41598_021_99840_6 crossref_primary_10_1109_JPROC_2023_3275192 crossref_primary_10_1007_s11042_023_17313_6 crossref_primary_10_1007_s42235_021_00114_8 crossref_primary_10_3390_mi14030634 crossref_primary_10_1007_s41870_023_01662_4 crossref_primary_10_1016_j_neucom_2021_10_074 crossref_primary_10_2478_amns_2024_1393 crossref_primary_10_1007_s11063_025_11727_z crossref_primary_10_1109_ACCESS_2021_3108447 crossref_primary_10_1109_ACCESS_2021_3079204 crossref_primary_10_1109_ACCESS_2022_3214808 crossref_primary_10_1109_TCSVT_2024_3402728 crossref_primary_10_1007_s10489_022_03553_w crossref_primary_10_1109_TCSVT_2024_3433415 crossref_primary_10_1016_j_patrec_2022_09_008 crossref_primary_10_1109_ACCESS_2021_3120542 crossref_primary_10_1016_j_ins_2023_119831 crossref_primary_10_1016_j_neucom_2023_03_055 crossref_primary_10_1007_s00530_023_01076_z crossref_primary_10_3389_fnins_2022_903448 crossref_primary_10_1109_ACCESS_2021_3077616 crossref_primary_10_1109_TPAMI_2022_3174895 crossref_primary_10_1109_TIP_2023_3345177 crossref_primary_10_1007_s00530_023_01145_3 |
Cites_doi | 10.1007/s11263-013-0620-5 10.1109/ICCV.2011.6126401 10.1109/CVPR.2016.293 10.1007/s11031-009-9129-1 10.1049/ic.2009.0244 10.1186/1472-6920-9-47 10.1109/TAFFC.2020.3023821 10.1162/neco.1997.9.8.1735 10.1007/s10979-008-9166-4 10.1007/978-81-322-1934-7_11 10.1016/j.neucom.2016.12.034 10.1109/ICCV.2015.169 10.1109/TPAMI.2016.2577031 10.1109/ICCV.2017.617 10.1093/acprof:oso/9780195327939.003.0008 10.1109/ACCESS.2018.2879485 10.1371/journal.pone.0124674 10.1109/TAFFC.2017.2654440 10.1109/WACV.2018.00014 10.1016/j.cviu.2015.12.006 10.1109/CVPR.2017.155 10.1109/CVPR.2017.502 10.1109/ICPR.2014.303 10.1007/s11063-013-9288-7 10.1080/00332747.1969.11023575 10.1109/TAFFC.2017.2667642 10.1016/j.neucom.2018.05.107 10.1109/TNNLS.2018.2876865 10.1109/TIP.2019.2922108 10.1109/FG.2018.00101 10.1016/j.image.2017.11.006 10.1109/WACV.2009.5403044 10.1109/CVPR.2014.81 10.1109/FG.2019.8756626 10.1109/ICIP.2018.8451376 10.1111/1467-9280.00147 10.1109/ICSP.2016.7878004 10.1109/CVPR.2018.00124 10.1109/ICCV.2019.00719 10.1109/TAFFC.2015.2485205 10.1007/978-1-4684-6045-2_14 10.1109/ICIP.2018.8451065 10.3390/s17122913 10.1109/ICCVW.2015.10 10.1196/annals.1280.010 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2021.3064258 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 3969 |
ExternalDocumentID | 33788686 10_1109_TIP_2021_3064258 9392303 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U19B2032; 61772511; 62061136001 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2020M680738 funderid: 10.13039/501100002858 – fundername: National Key Research and Development Project grantid: 2018AAA0100205 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c389t-d1f9f68b6b271d9a190d52a8da759856e1ab3e227094cd7c0bd4be050733feab3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Thu Jul 10 18:30:20 EDT 2025 Mon Jun 30 10:14:40 EDT 2025 Wed Feb 19 02:28:01 EST 2025 Tue Jul 01 02:03:25 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Wed Aug 27 02:44:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-d1f9f68b6b271d9a190d52a8da759856e1ab3e227094cd7c0bd4be050733feab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6944-1037 0000-0002-7098-7598 0000-0001-8742-8488 0000-0002-8774-6328 |
OpenAccessLink | http://ir.psych.ac.cn/handle/311026/38736 |
PMID | 33788686 |
PQID | 2509292489 |
PQPubID | 85429 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TIP_2021_3064258 crossref_citationtrail_10_1109_TIP_2021_3064258 proquest_miscellaneous_2507729990 proquest_journals_2509292489 ieee_primary_9392303 pubmed_primary_33788686 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref59 ref15 ref58 ref14 ref53 ref52 ref55 glorot (ref61) 2011; 15 ref54 ref16 frank (ref11) 2009 ref19 ref18 liong (ref21) 2016 ref51 ref50 lang (ref62) 1990 yu (ref63) 2016 ref48 ref47 ref44 ekman (ref10) 2002 ref49 ref8 ref7 ref9 ref4 pan (ref46) 2020 ref3 wu (ref12) 2011 ref6 ref5 yap (ref40) 2020 see (ref41) 2019 ref34 ref36 ref30 ref32 he (ref43) 2020 ref2 ref1 ref39 ref38 zhang (ref31) 2020 patel (ref27) 2015 wang (ref17) 2014 ref24 ref23 ref26 ref25 ref64 ref20 verburg (ref45) 2019 ref22 ref65 ref28 lu (ref33) 2017; 25 husák (ref37) 2017 ref29 tran (ref35) 2017 buch (ref57) 2017 ref60 li (ref42) 2020 |
References_xml | – ident: ref49 doi: 10.1007/s11263-013-0620-5 – ident: ref18 doi: 10.1109/ICCV.2011.6126401 – year: 2017 ident: ref57 article-title: End-to-end, single-stream temporal action detection in untrimmed videos publication-title: Proc Brit Mach Vis Conf – ident: ref58 doi: 10.1109/CVPR.2016.293 – start-page: 325 year: 2014 ident: ref17 article-title: Micro-expression recognition using robust principal component analysis and local spatiotemporal directional features publication-title: Proc Eur Conf Comput Vis – start-page: 245 year: 2020 ident: ref31 article-title: Spatio-temporal fusion for macro-and micro-expression spotting in long video sequences publication-title: Proc 15th IEEE Int Conf Autom Face Gesture Recognit (FG) – ident: ref7 doi: 10.1007/s11031-009-9129-1 – start-page: 178 year: 1990 ident: ref62 article-title: Dimensionality reduction and prior knowledge in E-set recognition publication-title: Proc Adv Neural Inf Process Syst – ident: ref13 doi: 10.1049/ic.2009.0244 – volume: 25 start-page: 87 year: 2017 ident: ref33 article-title: Micro-expression detection using integral projections publication-title: J WSCG – ident: ref5 doi: 10.1186/1472-6920-9-47 – ident: ref38 doi: 10.1109/TAFFC.2020.3023821 – start-page: 542 year: 2017 ident: ref35 article-title: Sliding window based micro-expression spotting: A benchmark publication-title: Proc Int Conf Adv Concepts Intell Vis Syst – ident: ref59 doi: 10.1162/neco.1997.9.8.1735 – ident: ref8 doi: 10.1007/s10979-008-9166-4 – ident: ref6 doi: 10.1007/978-81-322-1934-7_11 – ident: ref29 doi: 10.1016/j.neucom.2016.12.034 – start-page: 1 year: 2019 ident: ref45 article-title: Micro-expression detection in long videos using optical flow and recurrent neural networks publication-title: Proc 14th IEEE Int Conf Autom Face Gesture Recognit (FG) – start-page: 742 year: 2020 ident: ref43 article-title: Spotting macro-and micro-expression intervals in long video sequences publication-title: Proc 15th IEEE Int Conf Autom Face Gesture Recognit (FG) – start-page: 234 year: 2020 ident: ref42 article-title: MEGC2020-The third facial micro-expression grand challenge publication-title: Proc 15th IEEE Int Conf Autom Face Gesture Recognit (FG) – ident: ref50 doi: 10.1109/ICCV.2015.169 – ident: ref51 doi: 10.1109/TPAMI.2016.2577031 – start-page: 1 year: 2016 ident: ref63 article-title: Multi-scale context aggregation by dilated convolutions publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref55 doi: 10.1109/ICCV.2017.617 – ident: ref4 doi: 10.1093/acprof:oso/9780195327939.003.0008 – volume: 15 start-page: 315 year: 2011 ident: ref61 article-title: Deep sparse rectifier neural networks publication-title: Proc Int Conf Artif Intell Statist – ident: ref24 doi: 10.1109/ACCESS.2018.2879485 – start-page: 343 year: 2020 ident: ref46 article-title: Local bilinear convolutional neural network for spotting macro- and micro-expression intervals in long video sequences publication-title: Proc 15th IEEE Int Conf Autom Face Gesture Recognit (FG) – ident: ref20 doi: 10.1371/journal.pone.0124674 – start-page: 1 year: 2019 ident: ref41 article-title: MEGC 2019-The second facial micro-expressions grand challenge publication-title: Proc 14th IEEE Int Conf Autom Face Gesture Recognit (FG) – ident: ref39 doi: 10.1109/TAFFC.2017.2654440 – ident: ref32 doi: 10.1109/WACV.2018.00014 – ident: ref34 doi: 10.1016/j.cviu.2015.12.006 – ident: ref54 doi: 10.1109/CVPR.2017.155 – ident: ref64 doi: 10.1109/CVPR.2017.502 – ident: ref65 doi: 10.1109/ICPR.2014.303 – ident: ref16 doi: 10.1007/s11063-013-9288-7 – ident: ref2 doi: 10.1080/00332747.1969.11023575 – ident: ref25 doi: 10.1109/TAFFC.2017.2667642 – ident: ref60 doi: 10.1016/j.neucom.2018.05.107 – ident: ref47 doi: 10.1109/TNNLS.2018.2876865 – ident: ref53 doi: 10.1109/TIP.2019.2922108 – ident: ref26 doi: 10.1109/FG.2018.00101 – start-page: 1 year: 2009 ident: ref11 article-title: I see how you feel: Training laypeople and professionals to recognize fleeting emotions publication-title: Proc Annu Meeting Int Commun Assoc – ident: ref22 doi: 10.1016/j.image.2017.11.006 – ident: ref14 doi: 10.1109/WACV.2009.5403044 – ident: ref48 doi: 10.1109/CVPR.2014.81 – start-page: 369 year: 2015 ident: ref27 article-title: Spatiotemporal integration of optical flow vectors for micro-expression detection publication-title: Proc Int Conf Adv Concepts Intell Vis Syst – ident: ref44 doi: 10.1109/FG.2019.8756626 – ident: ref23 doi: 10.1109/ICIP.2018.8451376 – ident: ref9 doi: 10.1111/1467-9280.00147 – ident: ref28 doi: 10.1109/ICSP.2016.7878004 – ident: ref56 doi: 10.1109/CVPR.2018.00124 – ident: ref52 doi: 10.1109/ICCV.2019.00719 – ident: ref15 doi: 10.1109/TAFFC.2015.2485205 – ident: ref1 doi: 10.1007/978-1-4684-6045-2_14 – year: 2002 ident: ref10 publication-title: Microexpression training tool (METT) – start-page: 152 year: 2011 ident: ref12 article-title: The machine knows what you are hiding: An automatic micro-expression recognition system publication-title: Proc Int Conf Affect Comput Intell Interact – start-page: 345 year: 2016 ident: ref21 article-title: Automatic micro-expression recognition from long video using a single spotted apex publication-title: Proc Asian Conf Comput Vis – year: 2017 ident: ref37 article-title: Spotting facial micro-expressions' in the wild publication-title: Proc 22nd Comput Vis Winter Workshop – ident: ref30 doi: 10.1109/ICIP.2018.8451065 – ident: ref36 doi: 10.3390/s17122913 – ident: ref19 doi: 10.1109/ICCVW.2015.10 – start-page: 194 year: 2020 ident: ref40 article-title: SAMM long videos: A spontaneous facial Micro- and macro-expressions dataset publication-title: Proc 15th IEEE Int Conf Autom Face Gesture Recognit (FG) – ident: ref3 doi: 10.1196/annals.1280.010 |
SSID | ssj0014516 |
Score | 2.577297 |
Snippet | Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN)... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3956 |
SubjectTerms | Artificial neural networks Clips Convolution Convolutional neural network Convolutional neural networks Datasets deep learning detection Feature extraction Intervals long videos Measurement micro-expression spotting Modules Neural networks Performance evaluation Regression analysis Spatiotemporal phenomena Two dimensional displays Video Videos |
Title | MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos |
URI | https://ieeexplore.ieee.org/document/9392303 https://www.ncbi.nlm.nih.gov/pubmed/33788686 https://www.proquest.com/docview/2509292489 https://www.proquest.com/docview/2507729990 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-sT_ahWm1r_GILvgjuXT43Wd8OOTmlJ8Jp8S3sV-BoScTLifjXO7vZCyJt6VMSdrPZ8JtlfrMzOwNwjBqRi0hIapOF0ZSJiqKdpanUoSl0hArQnUqbXrPJXXp1n92vwWl_FsYY44LPzMDeOl--btTSbpUNOSrzxKb2_ICGW3dWq_cY2IKzzrOZ5TRH2r9ySYZ8eHt5g4ZgHA0c27bF3d-oIFdT5e_00qmZi02YribYRZf8GixbOVAv73I3_u8fbMEnzzfJqBOQz7Bm6m3Y9NyT-JW92IaPbxIT7sB8Op5dm_aMjMh5Uz958cRxbC4Pd3HB4wQZL5k9NC52mrizvHSGoBsytXF-dPzsw2xr4nYeUaoXZF6THw12_znXpll8gbuL8e35hPqiDFQht2mpjipesUIyGeeRRpx5qLNYFFrkGS8yZhD4xMRxjnaj0rkKpU6lCTNbHLIy2PYV1uumNrtAYqW4qLgQWaiQlQl8SBRnPFKJZqmSAQxXOJXKZyy3hTN-l85yCXmJyJYW2dIjG8BJ_8ZDl63jH313LD59Pw9NAAcrUSj9cl6UyBORRsZpwQP43jfjQrTeFVGbZun6WEsFtXsA3zoR6sdObNZ-VrC9P39zHzbszLqdnQNYbx-X5hC5TiuPnJC_AvIq-eA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9KfVAfrLZaU1tdwRfBvcvnJutbKVeuejmEu0rfwn4FDiUpXk6Kf72zm71QpJY-JWE3mw2_WeY3O7MzAB9QI3IRCUltsjCaMlFTtLM0lTo0hY5QAbpTaeWcTS_TL1fZ1Q58Gs7CGGNc8JkZ2Vvny9et2titsjFHZZ7Y1J6PUO9nUX9aa_AZ2JKzzreZ5TRH4r91SoZ8vLz4hqZgHI0c37bl3W8pIVdV5f8E0yma8z0ot1Ps40t-jDadHKk__2RvfOg_PIdnnnGS015EXsCOafZhz7NP4tf2eh-e3kpNeACrcrKYm-4zOSVnbfPbCyiOY7N5uIsLHyfIecniunXR08Sd5qULhN2Q0kb60cmND7RtiNt7RLlek1VDZi12_77Spl2_hMvzyfJsSn1ZBqqQ3XRURzWvWSGZjPNII9I81FksCi3yjBcZMwh9YuI4R8tR6VyFUqfShJktD1kbbHsFu03bmNdAYqW4qLkQWaiQlwl8SBRnPFKJZqmSAYy3OFXK5yy3pTN-Vs52CXmFyFYW2cojG8DH4Y3rPl_HPX0PLD5DPw9NAMdbUaj8gl5XyBSRSMZpwQN4PzTjUrT-FdGYduP6WFsF9XsAh70IDWMnNm8_K9jR3d98B4-ny3JWzS7mX9_AEzvLfp_nGHa7Xxtzgsynk2-dwP8FHXf9KQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MESNet%3A+A+Convolutional+Neural+Network+for+Spotting+Multi-Scale+Micro-Expression+Intervals+in+Long+Videos&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Su-Jing&rft.au=He%2C+Ying&rft.au=Li%2C+Jingting&rft.au=Fu%2C+Xiaolan&rft.date=2021&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=30&rft.spage=3956&rft.epage=3969&rft_id=info:doi/10.1109%2FTIP.2021.3064258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2021_3064258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |