Revisiting neural information, computing and linking capacity
Neural information theory represents a fundamental method to model dynamic relations in biological systems. However, the notion of information, its representation, its content and how it is processed are the subject of fierce debates. Since the limiting capacity of neuronal links strongly depends on...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 20; no. 7; pp. 12380 - 12403 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural information theory represents a fundamental method to model dynamic relations in biological systems. However, the notion of information, its representation, its content and how it is processed are the subject of fierce debates. Since the limiting capacity of neuronal links strongly depends on how neurons are hypothesized to work, their operating modes are revisited by analyzing the differences between the results of the communication models published during the past seven decades and those of the recently developed generalization of the classical information theory. It is pointed out that the operating mode of neurons is in resemblance with an appropriate combination of the formerly hypothesized analog and digital working modes; furthermore that not only the notion of neural information and its processing must be reinterpreted. Given that the transmission channel is passive in Shannon's model, the active role of the transfer channels (the axons) may introduce further transmission limits in addition to the limits concluded from the information theory. The time-aware operating model enables us to explain why (depending on the researcher's point of view) the operation can be considered either purely analog or purely digital. |
---|---|
AbstractList | Neural information theory represents a fundamental method to model dynamic relations in biological systems. However, the notion of information, its representation, its content and how it is processed are the subject of fierce debates. Since the limiting capacity of neuronal links strongly depends on how neurons are hypothesized to work, their operating modes are revisited by analyzing the differences between the results of the communication models published during the past seven decades and those of the recently developed generalization of the classical information theory. It is pointed out that the operating mode of neurons is in resemblance with an appropriate combination of the formerly hypothesized analog and digital working modes; furthermore that not only the notion of neural information and its processing must be reinterpreted. Given that the transmission channel is passive in Shannon's model, the active role of the transfer channels (the axons) may introduce further transmission limits in addition to the limits concluded from the information theory. The time-aware operating model enables us to explain why (depending on the researcher's point of view) the operation can be considered either purely analog or purely digital. Neural information theory represents a fundamental method to model dynamic relations in biological systems. However, the notion of information, its representation, its content and how it is processed are the subject of fierce debates. Since the limiting capacity of neuronal links strongly depends on how neurons are hypothesized to work, their operating modes are revisited by analyzing the differences between the results of the communication models published during the past seven decades and those of the recently developed generalization of the classical information theory. It is pointed out that the operating mode of neurons is in resemblance with an appropriate combination of the formerly hypothesized analog and digital working modes; furthermore that not only the notion of neural information and its processing must be reinterpreted. Given that the transmission channel is passive in Shannon's model, the active role of the transfer channels (the axons) may introduce further transmission limits in addition to the limits concluded from the information theory. The time-aware operating model enables us to explain why (depending on the researcher's point of view) the operation can be considered either purely analog or purely digital.Neural information theory represents a fundamental method to model dynamic relations in biological systems. However, the notion of information, its representation, its content and how it is processed are the subject of fierce debates. Since the limiting capacity of neuronal links strongly depends on how neurons are hypothesized to work, their operating modes are revisited by analyzing the differences between the results of the communication models published during the past seven decades and those of the recently developed generalization of the classical information theory. It is pointed out that the operating mode of neurons is in resemblance with an appropriate combination of the formerly hypothesized analog and digital working modes; furthermore that not only the notion of neural information and its processing must be reinterpreted. Given that the transmission channel is passive in Shannon's model, the active role of the transfer channels (the axons) may introduce further transmission limits in addition to the limits concluded from the information theory. The time-aware operating model enables us to explain why (depending on the researcher's point of view) the operation can be considered either purely analog or purely digital. |
Author | Végh, János Berki, Ádám József |
Author_xml | – sequence: 1 givenname: János surname: Végh fullname: Végh, János organization: Kalimános BT, 4028 Debrecen, Hungary – sequence: 2 givenname: Ádám József surname: Berki fullname: Berki, Ádám József organization: Department of Neurology, Semmelweis University, 1085 Budapest, Hungary, János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37501447$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkc1LAzEQxYNUrK2evEuPglaTTXaTHDyI-FEQBNFzmM3OluhuUpNdof-9W1vF0zxmfrxh5k3IyAePhJwwesk1F1dtiZcZzXiesz1yyIYyp5Sp0T89JpOU3inlgnNxQMZc5pQJIQ_J9Qt-ueQ655czj32EZuZ8HWILnQv-YmZDu-p_puCrWeP8x0ZbWIF13fqI7NfQJDze1Sl5u797vX2cPz0_LG5vnuaWK93NLVqkSlurbCU15bKwpc7KQQlR5JohVpVUqArQ5XAHFFBJpkFJWTPLLedTstj6VgHezSq6FuLaBHDmpxHi0kDsnG3Q8ELkNasp1yIXTBcAcjDiGWCmslzmg9fZ1msVw2ePqTOtSxabBjyGPplMCUF1Rpkc0NMd2pctVn-Lf983AOdbwMaQUsT6D2HUbMIxQzhmFw7_Bipxf20 |
Cites_doi | 10.1038/d41586-020-03462-3 10.3389/fncom.2014.00049 10.1002/j.1538-7305.1948.tb01338.x 10.1038/s41586-021-04362-w 10.1038/s42256-021-00345-8 10.3390/sym13050821 10.1017/S0140525X19000049 10.1371/journal.pcbi.1000025 10.3390/e23060779 10.1007/s10827-010-0262-3 10.1016/j.neuron.2006.03.016 10.1016/j.physrep.2006.12.004 10.3390/informatics8040071 10.1016/S0006-3495(67)86623-2 10.1093/oso/9780195104912.001.0001 10.1038/s42254-020-0208-2 10.1016/S0959-4388(00)00237-3 10.1201/b14859 10.3389/fncom.2017.00049 10.1073/pnas.2008173118 10.1145/1498765.1498785 10.1126/science.275.5307.1805 10.1007/BF02478259 10.1038/236 10.1162/089976698300017052 10.1038/nbt1004-1315 10.1088/0954-898X/12/4/303 10.1109/85.238389 10.1152/jn.00079.2015 10.1016/j.bpj.2015.11.019 10.1109/TIT.1956.1056774 10.1007/BF02477711 10.1371/journal.pone.0003786 10.3389/fncel.2017.00236 10.1109/TIT.2009.2037089 10.1073/pnas.1705704114 10.1103/PhysRevLett.80.197 10.3390/e24081086 10.1007/BF00348403 10.1371/journal.pcbi.1003439 10.34257/GJCSTAVOL20IS1PG13 10.1007/978-1-4684-8190-7 10.1088/0954-898X/12/3/301 10.4249/scholarpedia.1410 10.1038/9173 10.1109/MAHC.1989.10028 10.1007/s11227-020-03210-4 10.1007/BF02478291 10.1007/s10441-022-09450-6 10.1007/s00521-021-06456-y 10.1162/089976600300015259 10.1007/s00422-011-0451-9 10.1038/14731 10.3389/fnins.2018.00291 10.1038/s42256-022-00592-3 10.1098/rspb.1983.0051 10.1017/CBO9780511921889 10.1145/1281700.1281704 10.1201/9780429500442 10.1186/s40708-019-0097-2 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.3934/mbe.2023551 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 12403 |
ExternalDocumentID | oai_doaj_org_article_3645f1f039454196aa7a8732ae282575 37501447 10_3934_mbe_2023551 |
Genre | Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c389t-cece089cc8cd790376cb92b903446591eedd78e86a9b235a6ad719a877f1c3c33 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 01:26:50 EDT 2025 Fri Jul 11 01:32:45 EDT 2025 Wed Feb 19 02:23:04 EST 2025 Tue Jul 01 02:58:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | neural bandwidth neuron operating mode information content neural information neural communication information theory limiting information capacity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-cece089cc8cd790376cb92b903446591eedd78e86a9b235a6ad719a877f1c3c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/3645f1f039454196aa7a8732ae282575 |
PMID | 37501447 |
PQID | 2844092017 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3645f1f039454196aa7a8732ae282575 proquest_miscellaneous_2844092017 pubmed_primary_37501447 crossref_primary_10_3934_mbe_2023551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2023551-21 key-10.3934/mbe.2023551-65 key-10.3934/mbe.2023551-20 key-10.3934/mbe.2023551-64 key-10.3934/mbe.2023551-63 key-10.3934/mbe.2023551-62 key-10.3934/mbe.2023551-61 key-10.3934/mbe.2023551-60 key-10.3934/mbe.2023551-19 key-10.3934/mbe.2023551-18 key-10.3934/mbe.2023551-17 key-10.3934/mbe.2023551-16 key-10.3934/mbe.2023551-15 key-10.3934/mbe.2023551-59 key-10.3934/mbe.2023551-14 key-10.3934/mbe.2023551-58 key-10.3934/mbe.2023551-13 key-10.3934/mbe.2023551-57 key-10.3934/mbe.2023551-12 key-10.3934/mbe.2023551-56 key-10.3934/mbe.2023551-11 key-10.3934/mbe.2023551-55 key-10.3934/mbe.2023551-32 key-10.3934/mbe.2023551-76 key-10.3934/mbe.2023551-31 key-10.3934/mbe.2023551-75 key-10.3934/mbe.2023551-30 key-10.3934/mbe.2023551-74 key-10.3934/mbe.2023551-73 key-10.3934/mbe.2023551-72 key-10.3934/mbe.2023551-71 key-10.3934/mbe.2023551-70 key-10.3934/mbe.2023551-29 key-10.3934/mbe.2023551-28 key-10.3934/mbe.2023551-27 key-10.3934/mbe.2023551-26 key-10.3934/mbe.2023551-25 key-10.3934/mbe.2023551-69 key-10.3934/mbe.2023551-24 key-10.3934/mbe.2023551-68 key-10.3934/mbe.2023551-23 key-10.3934/mbe.2023551-67 key-10.3934/mbe.2023551-22 key-10.3934/mbe.2023551-66 key-10.3934/mbe.2023551-43 key-10.3934/mbe.2023551-42 key-10.3934/mbe.2023551-41 key-10.3934/mbe.2023551-40 key-10.3934/mbe.2023551-9 key-10.3934/mbe.2023551-8 key-10.3934/mbe.2023551-1 key-10.3934/mbe.2023551-39 key-10.3934/mbe.2023551-3 key-10.3934/mbe.2023551-38 key-10.3934/mbe.2023551-2 key-10.3934/mbe.2023551-37 key-10.3934/mbe.2023551-5 key-10.3934/mbe.2023551-36 key-10.3934/mbe.2023551-4 key-10.3934/mbe.2023551-35 key-10.3934/mbe.2023551-7 key-10.3934/mbe.2023551-34 key-10.3934/mbe.2023551-6 key-10.3934/mbe.2023551-33 key-10.3934/mbe.2023551-77 key-10.3934/mbe.2023551-10 key-10.3934/mbe.2023551-54 key-10.3934/mbe.2023551-53 key-10.3934/mbe.2023551-52 key-10.3934/mbe.2023551-51 key-10.3934/mbe.2023551-50 key-10.3934/mbe.2023551-49 key-10.3934/mbe.2023551-48 key-10.3934/mbe.2023551-47 key-10.3934/mbe.2023551-46 key-10.3934/mbe.2023551-45 key-10.3934/mbe.2023551-44 |
References_xml | – ident: key-10.3934/mbe.2023551-60 doi: 10.1038/d41586-020-03462-3 – ident: key-10.3934/mbe.2023551-23 doi: 10.3389/fncom.2014.00049 – ident: key-10.3934/mbe.2023551-75 – ident: key-10.3934/mbe.2023551-5 – ident: key-10.3934/mbe.2023551-3 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: key-10.3934/mbe.2023551-76 doi: 10.1038/s41586-021-04362-w – ident: key-10.3934/mbe.2023551-46 – ident: key-10.3934/mbe.2023551-28 doi: 10.1038/s42256-021-00345-8 – ident: key-10.3934/mbe.2023551-69 – ident: key-10.3934/mbe.2023551-54 doi: 10.3390/sym13050821 – ident: key-10.3934/mbe.2023551-62 – ident: key-10.3934/mbe.2023551-27 – ident: key-10.3934/mbe.2023551-32 doi: 10.1017/S0140525X19000049 – ident: key-10.3934/mbe.2023551-48 doi: 10.1371/journal.pcbi.1000025 – ident: key-10.3934/mbe.2023551-30 doi: 10.3390/e23060779 – ident: key-10.3934/mbe.2023551-58 doi: 10.1007/s10827-010-0262-3 – ident: key-10.3934/mbe.2023551-49 doi: 10.1016/j.neuron.2006.03.016 – ident: key-10.3934/mbe.2023551-59 doi: 10.1016/j.physrep.2006.12.004 – ident: key-10.3934/mbe.2023551-11 doi: 10.3390/informatics8040071 – ident: key-10.3934/mbe.2023551-50 doi: 10.1016/S0006-3495(67)86623-2 – ident: key-10.3934/mbe.2023551-18 doi: 10.1093/oso/9780195104912.001.0001 – ident: key-10.3934/mbe.2023551-77 doi: 10.1038/s42254-020-0208-2 – ident: key-10.3934/mbe.2023551-14 – ident: key-10.3934/mbe.2023551-40 doi: 10.1016/S0959-4388(00)00237-3 – ident: key-10.3934/mbe.2023551-47 doi: 10.1201/b14859 – ident: key-10.3934/mbe.2023551-67 doi: 10.3389/fncom.2017.00049 – ident: key-10.3934/mbe.2023551-63 doi: 10.1073/pnas.2008173118 – ident: key-10.3934/mbe.2023551-66 doi: 10.1145/1498765.1498785 – ident: key-10.3934/mbe.2023551-70 doi: 10.1126/science.275.5307.1805 – ident: key-10.3934/mbe.2023551-1 doi: 10.1007/BF02478259 – ident: key-10.3934/mbe.2023551-53 doi: 10.1038/236 – ident: key-10.3934/mbe.2023551-45 – ident: key-10.3934/mbe.2023551-52 doi: 10.1162/089976698300017052 – ident: key-10.3934/mbe.2023551-39 doi: 10.1038/nbt1004-1315 – ident: key-10.3934/mbe.2023551-7 – ident: key-10.3934/mbe.2023551-13 – ident: key-10.3934/mbe.2023551-38 – ident: key-10.3934/mbe.2023551-17 – ident: key-10.3934/mbe.2023551-34 – ident: key-10.3934/mbe.2023551-61 doi: 10.1088/0954-898X/12/4/303 – ident: key-10.3934/mbe.2023551-20 doi: 10.1109/85.238389 – ident: key-10.3934/mbe.2023551-68 doi: 10.1152/jn.00079.2015 – ident: key-10.3934/mbe.2023551-16 doi: 10.1016/j.bpj.2015.11.019 – ident: key-10.3934/mbe.2023551-6 doi: 10.1109/TIT.1956.1056774 – ident: key-10.3934/mbe.2023551-43 doi: 10.1007/BF02477711 – ident: key-10.3934/mbe.2023551-56 doi: 10.1371/journal.pone.0003786 – ident: key-10.3934/mbe.2023551-35 doi: 10.3389/fncel.2017.00236 – ident: key-10.3934/mbe.2023551-42 doi: 10.1109/TIT.2009.2037089 – ident: key-10.3934/mbe.2023551-44 – ident: key-10.3934/mbe.2023551-64 – ident: key-10.3934/mbe.2023551-19 doi: 10.1073/pnas.1705704114 – ident: key-10.3934/mbe.2023551-51 doi: 10.1103/PhysRevLett.80.197 – ident: key-10.3934/mbe.2023551-4 doi: 10.3390/e24081086 – ident: key-10.3934/mbe.2023551-15 doi: 10.1007/BF00348403 – ident: key-10.3934/mbe.2023551-71 doi: 10.1371/journal.pcbi.1003439 – ident: key-10.3934/mbe.2023551-10 doi: 10.34257/GJCSTAVOL20IS1PG13 – ident: key-10.3934/mbe.2023551-22 doi: 10.1007/978-1-4684-8190-7 – ident: key-10.3934/mbe.2023551-41 doi: 10.1088/0954-898X/12/3/301 – ident: key-10.3934/mbe.2023551-37 doi: 10.4249/scholarpedia.1410 – ident: key-10.3934/mbe.2023551-55 doi: 10.1038/9173 – ident: key-10.3934/mbe.2023551-24 doi: 10.1109/MAHC.1989.10028 – ident: key-10.3934/mbe.2023551-65 doi: 10.1007/s11227-020-03210-4 – ident: key-10.3934/mbe.2023551-2 doi: 10.1007/BF02478291 – ident: key-10.3934/mbe.2023551-12 doi: 10.1007/s10441-022-09450-6 – ident: key-10.3934/mbe.2023551-26 – ident: key-10.3934/mbe.2023551-74 doi: 10.1007/s00521-021-06456-y – ident: key-10.3934/mbe.2023551-33 doi: 10.1162/089976600300015259 – ident: key-10.3934/mbe.2023551-8 doi: 10.1007/s00422-011-0451-9 – ident: key-10.3934/mbe.2023551-31 doi: 10.1038/14731 – ident: key-10.3934/mbe.2023551-72 doi: 10.3389/fnins.2018.00291 – ident: key-10.3934/mbe.2023551-9 – ident: key-10.3934/mbe.2023551-57 doi: 10.1038/s42256-022-00592-3 – ident: key-10.3934/mbe.2023551-21 doi: 10.1098/rspb.1983.0051 – ident: key-10.3934/mbe.2023551-36 doi: 10.1017/CBO9780511921889 – ident: key-10.3934/mbe.2023551-25 doi: 10.1145/1281700.1281704 – ident: key-10.3934/mbe.2023551-29 doi: 10.1201/9780429500442 – ident: key-10.3934/mbe.2023551-73 doi: 10.1186/s40708-019-0097-2 |
SSID | ssj0034334 |
Score | 2.2872229 |
Snippet | Neural information theory represents a fundamental method to model dynamic relations in biological systems. However, the notion of information, its... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 12380 |
SubjectTerms | Axons - physiology information content Information Theory limiting information capacity Models, Neurological neural bandwidth neural communication neural information neuron operating mode Neurons - physiology |
Title | Revisiting neural information, computing and linking capacity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37501447 https://www.proquest.com/docview/2844092017 https://doaj.org/article/3645f1f039454196aa7a8732ae282575 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxDfhS0HqSNQ4dux4YABEVTEwICp1sy6Os5EiaIf-e-7stIIBsbAmUWK_s_yeY987xoZQNW2BtJsBqvVM1irPQKmSkt2lA6RY48MB2Wc1mcqnWTn7VuqLzoRFe-AI3Ii2yVre5sLIUuJwAdBQaVGAp6xLHdxLkfPWi6k4BwsphIzZeMIIOXqryRGzQG7lP_gn2PT_ri0Dx4z32G4vDtO72Kh9tuW7A7Ydy0WuDtntS0gFp4PKKflQ4qO97ymhe5O6UKGB7kLXpH1VhNQhHTrU2kdsOn58fZhkffmDzKGKWGTOO59XxrnKNdrkOBO42hS1IZM-VRqO7NboylcKTI1dAwWN5gbB0S13wglxzAbdvPOnLOXOC2UwEEpqqTigKOH4JqibXABGKmHDNSj2PbpcWFwdEHYWsbM9dgm7J8A2j5A1dbiAAbN9wOxfAUvY9Rpui0OZ9ieg8_Plp0WmxNUmKhKdsJMYh82nhKYNUKnP_qMJ52yHehT_pFywweJj6S9RWyzqqzCMvgBqOchr |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+neural+information%2C+computing+and+linking+capacity&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=V%C3%A9gh%2C+J%C3%A1nos&rft.au=Berki%2C+%C3%81d%C3%A1m+J%C3%B3zsef&rft.date=2023-01-01&rft.issn=1551-0018&rft.volume=20&rft.issue=7&rft.spage=12380&rft.epage=12403&rft_id=info:doi/10.3934%2Fmbe.2023551&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2023551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |