Hierarchical micro- and mesoporous ZIF-8 with core–shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization
[Display omitted] Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of en...
Saved in:
Published in | Journal of colloid and interface science Vol. 610; pp. 709 - 718 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core–shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose. |
---|---|
AbstractList | Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose. Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core–shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO₄·7H₂O) as a soft template for enzyme immobilization. The ZnSO₄·7H₂O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose. Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO ·7H O) as a soft template for enzyme immobilization. The ZnSO ·7H O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose. [Display omitted] Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core–shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose. |
Author | Cui, Jiandong Du, Yingjie Zhong, Le Jia, Shiru Hu, Hongtong Feng, Yuxiao Kuang, Geling |
Author_xml | – sequence: 1 givenname: Yuxiao surname: Feng fullname: Feng, Yuxiao – sequence: 2 givenname: Yingjie surname: Du fullname: Du, Yingjie email: yingjiedu@tust.edu.cn – sequence: 3 givenname: Geling surname: Kuang fullname: Kuang, Geling – sequence: 4 givenname: Le surname: Zhong fullname: Zhong, Le – sequence: 5 givenname: Hongtong surname: Hu fullname: Hu, Hongtong – sequence: 6 givenname: Shiru surname: Jia fullname: Jia, Shiru – sequence: 7 givenname: Jiandong surname: Cui fullname: Cui, Jiandong email: cjd007cn@163.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34863543$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9qFTEUxoNU7G31BVxIlm7mNplM5g-4kWJtodCNbtyEzMkZby6ZyZhklHblO4gv6JOY6a0uXBThQCDn9x34vu-EHE1-QkJecrbljNdn--0ebNyWrORbnqcUT8iGs04WDWfiiGxY3hRd0zXH5CTGPWOcS9k9I8eiamshK7EhPy8tBh1gZ0E7OloIvqB6MnTE6Gcf_BLpp6uLoqXfbNpR8AF_ff8Rd-gcjcuMIaawQFoCRrpEO33OiHPemvUaJr1SbtApr3Wk0Q-JJhxnd_8z-EBxursdkdpx9L119k4n66fn5OmgXcQXD-8p-Xjx7sP5ZXF98_7q_O11AaLtUgGdqUTL-66WRmZLw9DVdQUAQ4fYGKwbZBWC1KVktcB2MJXhfa9zeNBI4OKUvD7cnYP_smBMarQRsjc9YXauylrUbdmylv0HyhrBBJfr1VcP6NKPaNQc7KjDrfqTegbKA5DTjjHg8BfhTK3Vqr1aq1VrtYrnKVdR-48IbLpPKwVt3ePSNwcp5iy_5sJVBIsToLEBISnj7WPy32cKw10 |
CitedBy_id | crossref_primary_10_1038_s41467_023_42649_w crossref_primary_10_1016_j_bej_2023_109161 crossref_primary_10_1016_j_inoche_2024_112172 crossref_primary_10_1016_j_mcat_2022_112570 crossref_primary_10_1016_j_micromeso_2024_113351 crossref_primary_10_1016_j_nxnano_2024_100068 crossref_primary_10_1016_j_ijbiomac_2023_127817 crossref_primary_10_1016_j_engmic_2024_100176 crossref_primary_10_1021_acsomega_2c00357 crossref_primary_10_1016_j_cej_2024_151580 crossref_primary_10_1016_j_procbio_2023_09_004 crossref_primary_10_1186_s13036_024_00440_5 crossref_primary_10_1016_j_ijbiomac_2024_138984 crossref_primary_10_1016_S1872_2067_24_60020_3 crossref_primary_10_1016_j_procbio_2023_09_006 crossref_primary_10_1016_j_mtchem_2022_101259 crossref_primary_10_1016_j_indcrop_2023_117693 crossref_primary_10_1039_D4TB02682A crossref_primary_10_1016_j_jhazmat_2023_130986 crossref_primary_10_1016_j_microc_2024_110384 crossref_primary_10_1016_j_mtchem_2022_100922 crossref_primary_10_1016_j_trechm_2023_03_007 crossref_primary_10_1016_j_envres_2022_113411 crossref_primary_10_1016_j_bioorg_2024_107673 crossref_primary_10_1007_s11274_024_04125_5 crossref_primary_10_1007_s12551_023_01146_6 crossref_primary_10_1007_s11244_023_01785_9 crossref_primary_10_1016_j_ijbiomac_2023_125729 crossref_primary_10_1021_acsami_3c07088 crossref_primary_10_1016_j_cej_2024_158972 crossref_primary_10_1007_s40242_024_4140_3 crossref_primary_10_1016_j_procbio_2022_10_019 crossref_primary_10_1016_j_procbio_2022_08_002 crossref_primary_10_1016_j_ijbiomac_2024_130381 crossref_primary_10_1016_j_colsurfb_2022_112585 crossref_primary_10_1016_j_biortech_2024_131072 crossref_primary_10_3390_pr11102937 crossref_primary_10_1007_s12010_023_04772_8 crossref_primary_10_1007_s11244_022_01657_8 crossref_primary_10_1016_j_seppur_2023_124278 crossref_primary_10_1016_j_cej_2024_153802 crossref_primary_10_1016_j_mtbio_2023_100678 crossref_primary_10_1021_acsami_2c21383 crossref_primary_10_1016_j_micromeso_2023_112762 crossref_primary_10_3390_catal14030180 crossref_primary_10_1016_j_lwt_2024_116221 crossref_primary_10_1016_j_procbio_2023_11_028 crossref_primary_10_1080_10826068_2022_2142799 crossref_primary_10_1080_07388551_2023_2189548 crossref_primary_10_1016_j_mtchem_2022_101326 crossref_primary_10_1021_acsanm_4c03885 crossref_primary_10_3390_su15097511 crossref_primary_10_1016_j_bej_2023_109104 crossref_primary_10_1021_acssuschemeng_2c03740 crossref_primary_10_1016_j_bcab_2024_103451 crossref_primary_10_1007_s12010_023_04607_6 crossref_primary_10_1016_j_eti_2023_103085 crossref_primary_10_1016_j_reactfunctpolym_2023_105695 crossref_primary_10_1080_10826068_2023_2209884 crossref_primary_10_1016_j_ijbiomac_2024_132075 crossref_primary_10_1021_acs_inorgchem_4c02082 crossref_primary_10_1016_j_arabjc_2023_104770 crossref_primary_10_1016_j_jcis_2023_04_068 crossref_primary_10_1016_j_jcis_2024_11_019 crossref_primary_10_1016_j_jcis_2022_07_034 crossref_primary_10_1021_acsami_3c16971 crossref_primary_10_1007_s10853_023_08416_4 crossref_primary_10_1016_j_eurpolymj_2024_112930 crossref_primary_10_1039_D4NJ03303E crossref_primary_10_1016_j_bcab_2024_103027 crossref_primary_10_1016_j_ijbiomac_2023_128418 crossref_primary_10_1016_j_procbio_2022_11_022 crossref_primary_10_1016_j_scp_2024_101757 crossref_primary_10_3390_molecules29071467 crossref_primary_10_1016_j_molstruc_2022_134824 crossref_primary_10_1021_acsanm_3c00632 crossref_primary_10_1039_D3RE00067B crossref_primary_10_1016_j_jwpe_2023_103597 crossref_primary_10_1016_j_fuel_2022_126400 crossref_primary_10_1016_j_bej_2022_108677 crossref_primary_10_1016_j_colsurfb_2024_114344 crossref_primary_10_1002_cjce_24735 crossref_primary_10_1016_j_rineng_2025_104442 crossref_primary_10_1016_j_enzmictec_2024_110579 crossref_primary_10_1021_acs_chemrev_2c00879 crossref_primary_10_3389_fbioe_2023_1256181 crossref_primary_10_1016_j_biortech_2024_131175 crossref_primary_10_1016_j_jbiotec_2023_06_003 crossref_primary_10_1016_j_ijbiomac_2022_11_126 crossref_primary_10_1016_j_gresc_2024_09_005 |
Cites_doi | 10.1016/j.jcis.2021.06.017 10.1016/j.ccr.2021.214032 10.1021/acs.analchem.0c04074 10.1021/acs.iecr.9b04391 10.1016/j.bios.2016.09.013 10.1016/j.jhazmat.2020.122765 10.1016/j.foodhyd.2017.08.005 10.1021/acsami.1c02443 10.1016/j.jhazmat.2021.126480 10.1093/nsr/nwz170 10.1016/j.jmrt.2018.12.001 10.1021/acs.jafc.9b04385 10.1039/C5NR04994F 10.1016/j.biomaterials.2011.05.055 10.1021/acsanm.9b01736 10.1002/smll.201902927 10.1039/C8CS00085A 10.1007/s00018-013-1341-1 10.1038/35051736 10.1039/c3cs35506c 10.1021/acs.nanolett.0c02265 10.1002/anie.201506391 10.1016/j.nantod.2019.100834 10.1021/acsami.1c09100 10.1016/j.jclepro.2021.128163 10.1016/j.carbpol.2021.117963 10.1016/j.biotechadv.2018.01.014 10.1016/j.ccr.2016.05.007 10.1021/acssuschemeng.0c08300 10.1016/j.ijbiomac.2020.01.240 10.1038/nature11117 10.1039/C7NR06019J 10.1016/j.jcis.2018.08.052 10.1016/j.jcis.2021.01.078 10.1039/C6DT04582K 10.1021/acscatal.1c02017 10.1021/acssuschemeng.1c03775 10.1002/smll.202007586 10.3390/catal10050499 10.1126/sciadv.aax5785 10.1021/acscatal.8b04921 10.1016/j.biotechadv.2021.107821 10.1039/D0CY00819B 10.1016/j.biotechadv.2020.107584 10.1021/acs.analchem.7b02075 10.1002/adsc.201900439 10.1021/acs.chemrev.0c01029 10.1016/j.ccr.2019.213149 10.1016/j.jcat.2015.07.029 10.1039/c3cs35511j 10.1021/acsami.1c09052 10.1039/D0SC04513F 10.1021/ic00078a033 10.1016/j.msec.2020.111511 10.1021/acsami.8b03118 10.1021/acsami.8b00072 10.1016/j.cclet.2020.12.041 10.1016/j.bpj.2019.11.011 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.11.123 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 718 |
ExternalDocumentID | 34863543 10_1016_j_jcis_2021_11_123 S002197972102035X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c389t-c9d4381b965d5486ff9664cccf9ee7de67e04ec5a25063e8fd4d1bba016c75c13 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 02:19:07 EDT 2025 Fri Jul 11 09:36:19 EDT 2025 Wed Feb 19 02:28:12 EST 2025 Tue Jul 01 01:19:14 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Fri Feb 23 02:39:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soft template Enzyme immobilization MOFs Hierarchical porous structure |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-c9d4381b965d5486ff9664cccf9ee7de67e04ec5a25063e8fd4d1bba016c75c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34863543 |
PQID | 2607303151 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636828080 proquest_miscellaneous_2607303151 pubmed_primary_34863543 crossref_primary_10_1016_j_jcis_2021_11_123 crossref_citationtrail_10_1016_j_jcis_2021_11_123 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_11_123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kempahanumakkagari, Kumar, Samaddar, Kumar, Ramakrishnappa, Kim (b0105) 2018; 36 Su, Tian, Price, Xu, Qian, Liu (b0160) 2020; 31 Hu, Bai, Hou, Wang, Wang, Cao, Chan, Sun, Li, Ge, Ren (b0180) 2020; 6 Arana-Pena, Carballares, Morellon-Sterlling, Berenguer-Murcia, Alcantara, Rodrigues, Fernandez-Lafuente (b0190) 2021; 51 Zaidi, Hassan, Islam, Ahmad (b0220) 2014; 71 Feng, Hu, Wang, Du, Zhong, Zhang, Jiang, Jia, Cui (b0030) 2021; 590 Hsu, Chang, Wang, Lam, Wei, Chen, Chen, Chou, Shieh (b0100) 2021; 13 Kabtamu, Wu, Li (b0170) 2020; 397 Chang, He, Li, Cui (b0065) 2021; 316 Hwang, Lee (b0185) 2019; 9 Kornecki, Carballares, Tardioli, Rodrigues, Berenguer-Murcia, Alcántara, Fernandez-Lafuente (b0205) 2020; 10 Mehta, Bhardwaj, Bhardwaj, Kim, Deep (b0120) 2016; 322 Liu, Xu, Han, Wu, Xu, Meng, Zhang (b0290) 2017; 46 Nadar, Vaidya, Rathod (b0110) 2020; 149 Wu, Xiong, Liu, Zong, Lou (b0175) 2021; 17 Salem, Jabalera, Puentes-Pardo, Vilchez-Garcia, Sayari, Hmida-Sayari, Jimenez-Lopez, Perduca (b0040) 2021; 9 Hou, Wang, Ding, Jiang, Li, Zhu, Pan, Zhu, Liu (b0245) 2015; 7 Morshed, Behary, Guan, Nierstrasz (b0045) 2021; 9 Benucci, Liburdi, Cacciotti, Lombardelli, Zappino, Nanni, Esti (b0080) 2018; 74 Xia, Zhong, Li, Jiang (b0250) 2019; 533 Shokri, Seidi, Karami, Li, Saeb, Xiao (b0060) 2021; 262 Valikhani, Bolivar, Pelletier (b0225) 2021; 11 Cen, Liu, Xue, Zheng (b0085) 2019; 361 Xie, Zhao, Chen, Liu, Evans, Yang (b0155) 2011; 32 Kim, Yang, Yun, Ghasemian, Koo, Lee, Cho, Kim (b0135) 2015; 54 Feng, Wang, Lv, Yan, Zhou (b0150) 2020; 7 Liu, Shen, Baimanov, Wang, Xiao, Liu, Li, Gao, Zhao, Chen (b0200) 2019; 11 Ahmad, Shanahan, Rizaldo, Kissel, Stone (b0195) 2020; 10 Neira, Herr (b0265) 2017; 89 Shao, Yao, Liu, Tang (b0255) 1993; 32 Schmid, Dordick, Hauer, Kiener, Wubbolts, Witholt (b0005) 2001; 409 Zhu, Zhuang, Chen, Wang, Villacorta Hernandez, Wu, Yang, Liu, Zhu, Ying, Zhu (b0235) 2018; 10 Manickam, Kaushik, Karunakaran, Bhansali (b0215) 2017; 87 Huang, Jiao, Xu, Fang, Wang, Cai, Yan, Gu, Zhu (b0055) 2021; 13 Liu, Du, Gao, Zhou, He, Ma, Liu, Huang, Jiang (b0275) 2020; 59 Liu, Qi, Wang, Su, He (b0145) 2017; 9 DiCosimo, McAuliffe, Poulose, Bohlmann (b0015) 2013; 42 Liese, Hilterhaus (b0020) 2013; 42 Ademakinwa (b0050) 2021; 419 Sánchez-Morán, Weltz, Schwartz, Kaar (b0035) 2021; 13 Lancaster, Abdallah, Banta, Wheeldon (b0270) 2018; 47 Liang, Wied, Carraro, Sumby, Nidetzky, Tsung, Falcaro, Doonan (b0090) 2021; 121 Yushkova, Nazarova, Matyuhina, Noskova, Shavronskaya, Vinogradov, Skvortsova, Krivoshapkina (b0025) 2019; 67 Chen, Lo, Huang, Si, Liao, Lin, Williams, Sun, Lin, An, Sun, Ma, Yang, Chou, Shieh, Tsung (b0260) 2020; 20 Liang, Wu, Xiong, Zong, Lou (b0125) 2020; 406 Bornscheuer, Huisman, Kazlauskas, Lutz, Moore, Robins (b0010) 2012; 485 Lin, Du, Wang, Wang, Song (b0280) 2021; 118 Zhang, Tu, Lu, Peng, Hou, Wang (b0130) 2021; 443 Zhong, Feng, Hu, Xu, Wang, Du, Cui, Jia (b0095) 2021; 602 Zezzi do Valle Gomes, Nabavi Zadeh, Palmqvist, Åkerman (b0075) 2019; 2 Cheng, Svec, Lv, Tan (b0165) 2019; 15 Singh, Ahmed, Fakim, Qutub, Alahmed, El Tall, Shekhah, Eddaoudi, Khashab (b0230) 2020; 11 Bilal, Adeel, Rasheed, Iqbal (b0115) 2019; 8 Rodrigues, Berenguer-Murcia, Carballares, Morellon-Sterling, Fernandez-Lafuente (b0070) 2021; 52 Ji, Yi, Zhang, Zhang, Gui, Gao, Zeng, Wang, Xia, Fu (b0240) 2020; 92 Chea, Deredge, Jones (b0210) 2020; 118 Sun, Li, Yang, Xiao, Zeng, Gong, Wang, Tan, Li (b0285) 2021; 32 Huang, Shen, Wang, Shi, Li, Cao (b0140) 2015; 330 Rodrigues (10.1016/j.jcis.2021.11.123_b0070) 2021; 52 Sánchez-Morán (10.1016/j.jcis.2021.11.123_b0035) 2021; 13 Liese (10.1016/j.jcis.2021.11.123_b0020) 2013; 42 Zaidi (10.1016/j.jcis.2021.11.123_b0220) 2014; 71 Liang (10.1016/j.jcis.2021.11.123_b0125) 2020; 406 Ahmad (10.1016/j.jcis.2021.11.123_b0195) 2020; 10 Morshed (10.1016/j.jcis.2021.11.123_b0045) 2021; 9 Chen (10.1016/j.jcis.2021.11.123_b0260) 2020; 20 Kim (10.1016/j.jcis.2021.11.123_b0135) 2015; 54 Ademakinwa (10.1016/j.jcis.2021.11.123_b0050) 2021; 419 Cheng (10.1016/j.jcis.2021.11.123_b0165) 2019; 15 Manickam (10.1016/j.jcis.2021.11.123_b0215) 2017; 87 Ji (10.1016/j.jcis.2021.11.123_b0240) 2020; 92 Su (10.1016/j.jcis.2021.11.123_b0160) 2020; 31 Schmid (10.1016/j.jcis.2021.11.123_b0005) 2001; 409 Zezzi do Valle Gomes (10.1016/j.jcis.2021.11.123_b0075) 2019; 2 Salem (10.1016/j.jcis.2021.11.123_b0040) 2021; 9 Chang (10.1016/j.jcis.2021.11.123_b0065) 2021; 316 Huang (10.1016/j.jcis.2021.11.123_b0140) 2015; 330 DiCosimo (10.1016/j.jcis.2021.11.123_b0015) 2013; 42 Benucci (10.1016/j.jcis.2021.11.123_b0080) 2018; 74 Zhong (10.1016/j.jcis.2021.11.123_b0095) 2021; 602 Nadar (10.1016/j.jcis.2021.11.123_b0110) 2020; 149 Huang (10.1016/j.jcis.2021.11.123_b0055) 2021; 13 Valikhani (10.1016/j.jcis.2021.11.123_b0225) 2021; 11 Xia (10.1016/j.jcis.2021.11.123_b0250) 2019; 533 Mehta (10.1016/j.jcis.2021.11.123_b0120) 2016; 322 Cen (10.1016/j.jcis.2021.11.123_b0085) 2019; 361 Hsu (10.1016/j.jcis.2021.11.123_b0100) 2021; 13 Liang (10.1016/j.jcis.2021.11.123_b0090) 2021; 121 Lin (10.1016/j.jcis.2021.11.123_b0280) 2021; 118 Liu (10.1016/j.jcis.2021.11.123_b0145) 2017; 9 Kabtamu (10.1016/j.jcis.2021.11.123_b0170) 2020; 397 Hu (10.1016/j.jcis.2021.11.123_b0180) 2020; 6 Yushkova (10.1016/j.jcis.2021.11.123_b0025) 2019; 67 Liu (10.1016/j.jcis.2021.11.123_b0290) 2017; 46 Kempahanumakkagari (10.1016/j.jcis.2021.11.123_b0105) 2018; 36 Chea (10.1016/j.jcis.2021.11.123_b0210) 2020; 118 Feng (10.1016/j.jcis.2021.11.123_b0030) 2021; 590 Hou (10.1016/j.jcis.2021.11.123_b0245) 2015; 7 Neira (10.1016/j.jcis.2021.11.123_b0265) 2017; 89 Wu (10.1016/j.jcis.2021.11.123_b0175) 2021; 17 Shao (10.1016/j.jcis.2021.11.123_b0255) 1993; 32 Zhang (10.1016/j.jcis.2021.11.123_b0130) 2021; 443 Liu (10.1016/j.jcis.2021.11.123_b0275) 2020; 59 Singh (10.1016/j.jcis.2021.11.123_b0230) 2020; 11 Lancaster (10.1016/j.jcis.2021.11.123_b0270) 2018; 47 Bornscheuer (10.1016/j.jcis.2021.11.123_b0010) 2012; 485 Arana-Pena (10.1016/j.jcis.2021.11.123_b0190) 2021; 51 Feng (10.1016/j.jcis.2021.11.123_b0150) 2020; 7 Xie (10.1016/j.jcis.2021.11.123_b0155) 2011; 32 Sun (10.1016/j.jcis.2021.11.123_b0285) 2021; 32 Liu (10.1016/j.jcis.2021.11.123_b0200) 2019; 11 Hwang (10.1016/j.jcis.2021.11.123_b0185) 2019; 9 Shokri (10.1016/j.jcis.2021.11.123_b0060) 2021; 262 Zhu (10.1016/j.jcis.2021.11.123_b0235) 2018; 10 Bilal (10.1016/j.jcis.2021.11.123_b0115) 2019; 8 Kornecki (10.1016/j.jcis.2021.11.123_b0205) 2020; 10 |
References_xml | – volume: 361 start-page: 5500 year: 2019 end-page: 5515 ident: b0085 article-title: Immobilization of enzymes in/on membranes and their applications publication-title: Adv. Synth. Catal. – volume: 87 start-page: 654 year: 2017 end-page: 668 ident: b0215 article-title: Recent advances in cytochrome c biosensing technologies publication-title: Biosens. Bioelectron. – volume: 443 start-page: 214032 year: 2021 ident: b0130 article-title: Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective publication-title: Coordin. Chem. Rev. – volume: 9 start-page: 4402 year: 2019 end-page: 4425 ident: b0185 article-title: Multienzymatic cascade reactions via enzyme complex by immobilization publication-title: Acs. Catal. – volume: 11 start-page: 2647 year: 2019 end-page: 2654 ident: b0200 article-title: Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection publication-title: Acs. Appl. Mater. Inter. – volume: 32 start-page: 6112 year: 1993 end-page: 6114 ident: b0255 article-title: Proton NMR studies of pyridine binding to cytochrome c publication-title: Inorg. Chem. – volume: 397 year: 2020 ident: b0170 article-title: Hierarchically porous metal-organic frameworks: Synthesis strategies, structure(s), and emerging applications in decontamination publication-title: J. Hazard. Mater. – volume: 10 start-page: 16066 year: 2018 end-page: 16076 ident: b0235 article-title: Nano-biocatalysts of Cyt c@ZIF-8/GO composites with high recyclability via a de novo approach publication-title: Acs. Appl. Mater. Inter. – volume: 67 start-page: 11553 year: 2019 end-page: 11567 ident: b0025 article-title: Application of immobilized enzymes in food industry publication-title: J. Agr. Food. Chem. – volume: 121 start-page: 1077 year: 2021 end-page: 1129 ident: b0090 article-title: Metal-organic framework-based enzyme biocomposites publication-title: Chem. Rev. – volume: 36 start-page: 467 year: 2018 end-page: 481 ident: b0105 article-title: Biomolecule-embedded metal-organic frameworks as an innovative sensing platform publication-title: Biotechnol. Adv. – volume: 32 start-page: 1780 year: 2021 end-page: 1784 ident: b0285 article-title: Self-assembled all-inclusive organic-inorganic nanoparticles enable cascade reaction for the detection of glucose publication-title: Chinese. Chem. Lett. – volume: 7 start-page: 18770 year: 2015 end-page: 18779 ident: b0245 article-title: Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor publication-title: Nanoscale – volume: 92 start-page: 15655 year: 2020 end-page: 15662 ident: b0240 article-title: Nanoscale hierarchically micro- and mesoporous metal-organic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation publication-title: Anal. Chem. – volume: 602 start-page: 426 year: 2021 end-page: 436 ident: b0095 article-title: Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production publication-title: J. Colloid. Interf. Sci. – volume: 533 start-page: 1 year: 2019 end-page: 8 ident: b0250 article-title: Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects publication-title: J. Colloid. Interf. Sci. – volume: 330 start-page: 452 year: 2015 end-page: 457 ident: b0140 article-title: Hierarchically micro- and mesoporous metal–organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis publication-title: J. Catal. – volume: 10 start-page: 499 year: 2020 ident: b0195 article-title: Co-immobilization of an enzyme system on a metal-organic framework to produce a more effective biocatalyst publication-title: Catalysts – volume: 406 start-page: 213149 year: 2020 ident: b0125 article-title: Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review publication-title: Coordin. Chem. Rev. – volume: 13 start-page: 33383 year: 2021 end-page: 33391 ident: b0055 article-title: Immobilizing enzymes on noble metal hydrogel nanozymes with synergistically enhanced peroxidase activity for ultrasensitive immunoassays by cascade signal amplification publication-title: Acs. Appl. Mater. Inter. – volume: 7 start-page: 1743 year: 2020 end-page: 1758 ident: b0150 article-title: Hierarchically porous metal–organic frameworks: synthetic strategies and applications publication-title: Natl. Sci. Rev. – volume: 485 start-page: 185 year: 2012 end-page: 194 ident: b0010 article-title: Engineering the third wave of biocatalysis publication-title: Nature – volume: 74 start-page: 124 year: 2018 end-page: 131 ident: b0080 article-title: Chitosan/clay nanocomposite films as supports for enzyme immobilization: An innovative green approach for winemaking applications publication-title: Food. Hydrocolloid. – volume: 46 start-page: 2114 year: 2017 end-page: 2121 ident: b0290 article-title: Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8) publication-title: Dalton. T. – volume: 42 start-page: 6236 year: 2013 ident: b0020 article-title: Evaluation of immobilized enzymes for industrial applications publication-title: Chem. Soc. Rev. – volume: 2 start-page: 7245 year: 2019 end-page: 7254 ident: b0075 article-title: Spatial distribution of enzymes immobilized in mesoporous silicas for biocatalysis publication-title: Acs. Appl. Nano. Mater. – volume: 9 start-page: 4054 year: 2021 end-page: 4063 ident: b0040 article-title: Enzyme storage and recycling: Nanoassemblies of α-amylase and xylanase immobilized on biomimetic magnetic nanoparticles publication-title: ACS. Sustain. Chem. Eng. – volume: 8 start-page: 2359 year: 2019 end-page: 2371 ident: b0115 article-title: Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects publication-title: J. Mater. Res. Technol. – volume: 322 start-page: 30 year: 2016 end-page: 40 ident: b0120 article-title: Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates publication-title: Coordin. Chem. Rev. – volume: 47 start-page: 5177 year: 2018 end-page: 5186 ident: b0270 article-title: Engineering enzyme microenvironments for enhanced biocatalysis publication-title: Chem. Soc. Rev. – volume: 316 year: 2021 ident: b0065 article-title: Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture publication-title: J. Clean. Prod. – volume: 51 year: 2021 ident: b0190 article-title: Enzyme co-immobilization: Always the biocatalyst designers' choice...or not? publication-title: Biotechnol. Adv. – volume: 590 start-page: 436 year: 2021 end-page: 445 ident: b0030 article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization publication-title: J. Colloid. Interf. Sci. – volume: 149 start-page: 861 year: 2020 end-page: 876 ident: b0110 article-title: Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization publication-title: Int. J. Biol. Macromol. – volume: 10 start-page: 5740 year: 2020 end-page: 5771 ident: b0205 article-title: Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions publication-title: Catal. Scl. Technol. – volume: 13 start-page: 26694 year: 2021 end-page: 26703 ident: b0035 article-title: Understanding design rules for optimizing the interface between immobilized enzymes and random copolymer brushes publication-title: Acs. Appl. Mater. Inter. – volume: 20 start-page: 6630 year: 2020 end-page: 6635 ident: b0260 article-title: Probing Interactions between Metal-Organic Frameworks and Freestanding Enzymes in a Hollow Structure publication-title: Nano. Lett. – volume: 15 year: 2019 ident: b0165 article-title: Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction publication-title: Small – volume: 11 start-page: 9418 year: 2021 end-page: 9434 ident: b0225 article-title: An overview of cytochrome p450 immobilization strategies for drug metabolism studies, biosensing, and biocatalytic applications: Challenges and opportunities publication-title: Acs. Catal. – volume: 17 start-page: 2007586 year: 2021 ident: b0175 article-title: A versatile competitive coordination strategy for tailoring bioactive zeolitic imidazolate framework composites publication-title: Small – volume: 9 start-page: 8879 year: 2021 end-page: 8894 ident: b0045 article-title: Immobilizing redox enzyme on amino functional group-integrated tailor-made polyester textile: High loading, stability, and application in a bio-fenton system publication-title: ACS. Sustain. Chem. Eng. – volume: 32 start-page: 6588 year: 2011 end-page: 6594 ident: b0155 article-title: Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor publication-title: Biomaterials – volume: 31 year: 2020 ident: b0160 article-title: Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis publication-title: Nano Today. – volume: 9 start-page: 17561 year: 2017 end-page: 17570 ident: b0145 article-title: A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks publication-title: Nanoscale – volume: 71 start-page: 229 year: 2014 end-page: 255 ident: b0220 article-title: The role of key residues in structure, function, and stability of cytochrome-c publication-title: Cell. Mol. Life. Sci. – volume: 59 start-page: 42 year: 2020 end-page: 51 ident: b0275 article-title: Compartmentalization of biocatalysts by immobilizing bienzyme in hollow ZIF-8 for colorimetric detection of glucose and phenol publication-title: Ind. Eng. Chem. Res. – volume: 118 start-page: 128 year: 2020 end-page: 137 ident: b0210 article-title: Insights on the conformational ensemble of Cyt C reveal a compact state during peroxidase activity publication-title: Biophys. J. – volume: 11 start-page: 11280 year: 2020 end-page: 11284 ident: b0230 article-title: In situ assembled ZIF superstructures via an emulsion-free soft-templating approach publication-title: Chem. Sci. – volume: 118 start-page: 111511 year: 2021 ident: b0280 article-title: Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. – volume: 52 year: 2021 ident: b0070 article-title: Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies publication-title: Biotechnol. Adv. – volume: 6 start-page: eaax5785 year: 2020 ident: b0180 article-title: Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis publication-title: Sci. Adv. – volume: 419 year: 2021 ident: b0050 article-title: A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: Characterization, application in bisphenol a removal and phytotoxicity evaluation publication-title: J. Hazard. Mater. – volume: 42 start-page: 6437 year: 2013 ident: b0015 article-title: Industrial use of immobilized enzymes publication-title: Chem. Soc. Rev. – volume: 262 year: 2021 ident: b0060 article-title: Laccase immobilization onto natural polysaccharides for biosensing and biodegradation publication-title: Carbohyd. Polym. – volume: 13 start-page: 52014 year: 2021 end-page: 52022 ident: b0100 article-title: Rapid fabrication of biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild water-based approach publication-title: ACS Appl. Mater. Interfaces – volume: 409 start-page: 258 year: 2001 end-page: 268 ident: b0005 article-title: Industrial biocatalysis today and tomorrow publication-title: Nature – volume: 89 start-page: 10311 year: 2017 end-page: 10320 ident: b0265 article-title: Kinetic analysis of enzymes immobilized in porous film arrays publication-title: Anal. Chem. – volume: 54 start-page: 13273 year: 2015 end-page: 13278 ident: b0135 article-title: Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs publication-title: Angew. Chem. Int. Ed. Engl. – volume: 602 start-page: 426 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0095 article-title: Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2021.06.017 – volume: 443 start-page: 214032 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0130 article-title: Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2021.214032 – volume: 92 start-page: 15655 issue: 23 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0240 article-title: Nanoscale hierarchically micro- and mesoporous metal-organic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04074 – volume: 59 start-page: 42 issue: 1 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0275 article-title: Compartmentalization of biocatalysts by immobilizing bienzyme in hollow ZIF-8 for colorimetric detection of glucose and phenol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b04391 – volume: 87 start-page: 654 year: 2017 ident: 10.1016/j.jcis.2021.11.123_b0215 article-title: Recent advances in cytochrome c biosensing technologies publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.09.013 – volume: 397 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0170 article-title: Hierarchically porous metal-organic frameworks: Synthesis strategies, structure(s), and emerging applications in decontamination publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122765 – volume: 74 start-page: 124 year: 2018 ident: 10.1016/j.jcis.2021.11.123_b0080 article-title: Chitosan/clay nanocomposite films as supports for enzyme immobilization: An innovative green approach for winemaking applications publication-title: Food. Hydrocolloid. doi: 10.1016/j.foodhyd.2017.08.005 – volume: 13 start-page: 26694 issue: 23 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0035 article-title: Understanding design rules for optimizing the interface between immobilized enzymes and random copolymer brushes publication-title: Acs. Appl. Mater. Inter. doi: 10.1021/acsami.1c02443 – volume: 419 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0050 article-title: A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: Characterization, application in bisphenol a removal and phytotoxicity evaluation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126480 – volume: 7 start-page: 1743 issue: 11 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0150 article-title: Hierarchically porous metal–organic frameworks: synthetic strategies and applications publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz170 – volume: 8 start-page: 2359 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0115 article-title: Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2018.12.001 – volume: 67 start-page: 11553 issue: 42 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0025 article-title: Application of immobilized enzymes in food industry publication-title: J. Agr. Food. Chem. doi: 10.1021/acs.jafc.9b04385 – volume: 7 start-page: 18770 year: 2015 ident: 10.1016/j.jcis.2021.11.123_b0245 article-title: Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor publication-title: Nanoscale doi: 10.1039/C5NR04994F – volume: 32 start-page: 6588 issue: 27 year: 2011 ident: 10.1016/j.jcis.2021.11.123_b0155 article-title: Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.055 – volume: 2 start-page: 7245 issue: 11 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0075 article-title: Spatial distribution of enzymes immobilized in mesoporous silicas for biocatalysis publication-title: Acs. Appl. Nano. Mater. doi: 10.1021/acsanm.9b01736 – volume: 15 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0165 article-title: Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction publication-title: Small doi: 10.1002/smll.201902927 – volume: 47 start-page: 5177 issue: 14 year: 2018 ident: 10.1016/j.jcis.2021.11.123_b0270 article-title: Engineering enzyme microenvironments for enhanced biocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00085A – volume: 71 start-page: 229 issue: 2 year: 2014 ident: 10.1016/j.jcis.2021.11.123_b0220 article-title: The role of key residues in structure, function, and stability of cytochrome-c publication-title: Cell. Mol. Life. Sci. doi: 10.1007/s00018-013-1341-1 – volume: 409 start-page: 258 issue: 6817 year: 2001 ident: 10.1016/j.jcis.2021.11.123_b0005 article-title: Industrial biocatalysis today and tomorrow publication-title: Nature doi: 10.1038/35051736 – volume: 42 start-page: 6437 issue: 15 year: 2013 ident: 10.1016/j.jcis.2021.11.123_b0015 article-title: Industrial use of immobilized enzymes publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35506c – volume: 20 start-page: 6630 issue: 9 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0260 article-title: Probing Interactions between Metal-Organic Frameworks and Freestanding Enzymes in a Hollow Structure publication-title: Nano. Lett. doi: 10.1021/acs.nanolett.0c02265 – volume: 54 start-page: 13273 issue: 45 year: 2015 ident: 10.1016/j.jcis.2021.11.123_b0135 article-title: Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201506391 – volume: 31 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0160 article-title: Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis publication-title: Nano Today. doi: 10.1016/j.nantod.2019.100834 – volume: 13 start-page: 33383 issue: 28 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0055 article-title: Immobilizing enzymes on noble metal hydrogel nanozymes with synergistically enhanced peroxidase activity for ultrasensitive immunoassays by cascade signal amplification publication-title: Acs. Appl. Mater. Inter. doi: 10.1021/acsami.1c09100 – volume: 316 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0065 article-title: Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128163 – volume: 262 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0060 article-title: Laccase immobilization onto natural polysaccharides for biosensing and biodegradation publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2021.117963 – volume: 36 start-page: 467 issue: 2 year: 2018 ident: 10.1016/j.jcis.2021.11.123_b0105 article-title: Biomolecule-embedded metal-organic frameworks as an innovative sensing platform publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.01.014 – volume: 322 start-page: 30 year: 2016 ident: 10.1016/j.jcis.2021.11.123_b0120 article-title: Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2016.05.007 – volume: 9 start-page: 4054 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0040 article-title: Enzyme storage and recycling: Nanoassemblies of α-amylase and xylanase immobilized on biomimetic magnetic nanoparticles publication-title: ACS. Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c08300 – volume: 149 start-page: 861 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0110 article-title: Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.01.240 – volume: 485 start-page: 185 issue: 7397 year: 2012 ident: 10.1016/j.jcis.2021.11.123_b0010 article-title: Engineering the third wave of biocatalysis publication-title: Nature doi: 10.1038/nature11117 – volume: 9 start-page: 17561 issue: 44 year: 2017 ident: 10.1016/j.jcis.2021.11.123_b0145 article-title: A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks publication-title: Nanoscale doi: 10.1039/C7NR06019J – volume: 533 start-page: 1 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0250 article-title: Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2018.08.052 – volume: 590 start-page: 436 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0030 article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2021.01.078 – volume: 46 start-page: 2114 issue: 7 year: 2017 ident: 10.1016/j.jcis.2021.11.123_b0290 article-title: Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8) publication-title: Dalton. T. doi: 10.1039/C6DT04582K – volume: 11 start-page: 9418 issue: 15 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0225 article-title: An overview of cytochrome p450 immobilization strategies for drug metabolism studies, biosensing, and biocatalytic applications: Challenges and opportunities publication-title: Acs. Catal. doi: 10.1021/acscatal.1c02017 – volume: 9 start-page: 8879 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0045 article-title: Immobilizing redox enzyme on amino functional group-integrated tailor-made polyester textile: High loading, stability, and application in a bio-fenton system publication-title: ACS. Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c03775 – volume: 17 start-page: 2007586 issue: 20 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0175 article-title: A versatile competitive coordination strategy for tailoring bioactive zeolitic imidazolate framework composites publication-title: Small doi: 10.1002/smll.202007586 – volume: 10 start-page: 499 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0195 article-title: Co-immobilization of an enzyme system on a metal-organic framework to produce a more effective biocatalyst publication-title: Catalysts doi: 10.3390/catal10050499 – volume: 6 start-page: eaax5785 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0180 article-title: Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis publication-title: Sci. Adv. doi: 10.1126/sciadv.aax5785 – volume: 9 start-page: 4402 issue: 5 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0185 article-title: Multienzymatic cascade reactions via enzyme complex by immobilization publication-title: Acs. Catal. doi: 10.1021/acscatal.8b04921 – volume: 52 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0070 article-title: Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107821 – volume: 10 start-page: 5740 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0205 article-title: Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions publication-title: Catal. Scl. Technol. doi: 10.1039/D0CY00819B – volume: 51 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0190 article-title: Enzyme co-immobilization: Always the biocatalyst designers' choice...or not? publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107584 – volume: 89 start-page: 10311 issue: 19 year: 2017 ident: 10.1016/j.jcis.2021.11.123_b0265 article-title: Kinetic analysis of enzymes immobilized in porous film arrays publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02075 – volume: 361 start-page: 5500 issue: 24 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0085 article-title: Immobilization of enzymes in/on membranes and their applications publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900439 – volume: 121 start-page: 1077 issue: 3 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0090 article-title: Metal-organic framework-based enzyme biocomposites publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01029 – volume: 406 start-page: 213149 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0125 article-title: Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2019.213149 – volume: 330 start-page: 452 year: 2015 ident: 10.1016/j.jcis.2021.11.123_b0140 article-title: Hierarchically micro- and mesoporous metal–organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2015.07.029 – volume: 42 start-page: 6236 issue: 15 year: 2013 ident: 10.1016/j.jcis.2021.11.123_b0020 article-title: Evaluation of immobilized enzymes for industrial applications publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35511j – volume: 13 start-page: 52014 issue: 44 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0100 article-title: Rapid fabrication of biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild water-based approach publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09052 – volume: 11 start-page: 11280 issue: 41 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0230 article-title: In situ assembled ZIF superstructures via an emulsion-free soft-templating approach publication-title: Chem. Sci. doi: 10.1039/D0SC04513F – volume: 32 start-page: 6112 issue: 26 year: 1993 ident: 10.1016/j.jcis.2021.11.123_b0255 article-title: Proton NMR studies of pyridine binding to cytochrome c publication-title: Inorg. Chem. doi: 10.1021/ic00078a033 – volume: 118 start-page: 111511 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0280 article-title: Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl. doi: 10.1016/j.msec.2020.111511 – volume: 11 start-page: 2647 issue: 3 year: 2019 ident: 10.1016/j.jcis.2021.11.123_b0200 article-title: Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection publication-title: Acs. Appl. Mater. Inter. doi: 10.1021/acsami.8b03118 – volume: 10 start-page: 16066 issue: 18 year: 2018 ident: 10.1016/j.jcis.2021.11.123_b0235 article-title: Nano-biocatalysts of Cyt c@ZIF-8/GO composites with high recyclability via a de novo approach publication-title: Acs. Appl. Mater. Inter. doi: 10.1021/acsami.8b00072 – volume: 32 start-page: 1780 issue: 5 year: 2021 ident: 10.1016/j.jcis.2021.11.123_b0285 article-title: Self-assembled all-inclusive organic-inorganic nanoparticles enable cascade reaction for the detection of glucose publication-title: Chinese. Chem. Lett. doi: 10.1016/j.cclet.2020.12.041 – volume: 118 start-page: 128 issue: 1 year: 2020 ident: 10.1016/j.jcis.2021.11.123_b0210 article-title: Insights on the conformational ensemble of Cyt C reveal a compact state during peroxidase activity publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.11.011 |
SSID | ssj0011559 |
Score | 2.6266198 |
Snippet | [Display omitted]
Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing... Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the... Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 709 |
SubjectTerms | cytochrome c Enzyme immobilization Enzymes, Immobilized glucose Hierarchical porous structure immobilized enzymes Metal-Organic Frameworks methanol MOFs Porosity porous media Soft template Sulfates surface area Zeolites zinc sulfate |
Title | Hierarchical micro- and mesoporous ZIF-8 with core–shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization |
URI | https://dx.doi.org/10.1016/j.jcis.2021.11.123 https://www.ncbi.nlm.nih.gov/pubmed/34863543 https://www.proquest.com/docview/2607303151 https://www.proquest.com/docview/2636828080 |
Volume | 610 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V7QE4ICiPBkplJG7Ibby2d7PHKqJKQfREpYiL5SfaKtlE2vYAB8R_QPzB_pLO7COCQ3PganlXlmc8_sb-5jPAu-i8SOPM8cxPSo4BT3A7Vp5nLkvRueQnic47Pl_ks0v1ca7nOzAdamGIVtnH_i6mt9G6bznpZ_NkXVVU44urrSD1GbpN03OqYFcFefnxzw3NQ9C1W0fzEJx694UzHcfrylck2Z0JjBzHIpP3bU73gc92Ezp7Ao979MhOuwE-hZ1Y78OD6fBo2z48-ktf8Bn8mVVUX9w-d7JgS-LecWbrwJaxWSHwxqyffT1H_2R0HMtI0fL21--GuKGsuVkTMiR12RtMyRkR5L8xcptVFehvEWE79lokQqvMNqzBiM5I6mrRtiAaZrH-8X0ZWYXOTiTcruTzOVyeffgynfH-HQbuEc5cc18GEgJzZa4DJjh5SpgjKe99KmMsQsyLOFbRa4twKpdxkoIKwjmLc-wL7YV8Abv1qo4HwFSI4-C0klZhaiIxk1doExuUdtKmMo1ADAYwvhcpp7cyFmZgo10ZMpoho2H2YtBoI3i_-WbdSXRs7a0Hu5p_HM3gHrL1u7eDExi0KV2r2DqinQxmhBgmJUKnbX1kjrktwvMRvOw8aDNWiVMqcUpe_efIXsPDjGoyiGSoD2EXPSO-QaR07Y7apXAEe6fnn2YXd2MzF54 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigcKiiv8DQSN-Q2Xtub7BFFVCm0PbVSxMXyE22VbCJte4AD4j-g_sH-ks7sI4JDc-C68q4sz3j8fetvZgA-ROdFGmaOZ35ccAx4gtuh8jxzWYrOJT9O9L_j5DSfnqsvMz3bgkmfC0Oyyi72tzG9idbdk4NuNQ9WZUk5vrjbRlR9hm7T9Owe3Fe4famNwf6vtc5D0L1bq_MQnIZ3mTOtyOvCl1SzOxMYOvZFJu86ne5Cn80pdPgIdjv4yD61M3wMW7Hag51J37VtDx7-VWDwCVxPS0owbvqdzNmCxHec2SqwRayXiLyR9rNvR-igjP7HMippefP7T03iUFZfrQgaUnnZK-TkjBTy3xn5zbIM9LWIuB1HzRPBVWZrVmNIZ1Trat48QTjMYvXzxyKyEr2dVLhtzudTOD_8fDaZ8q4RA_eIZy65LwJVAnNFrgMynDwlJEnKe5-KGEch5qM4VNFri3gql3GcggrCOYtr7EfaC_kMtqtlFV8AUyEOg9NKWoXcRCKVV2gTG5R20qYiDUD0BjC-q1JOzTLmppejXRgymiGjIX0xaLQBfFy_s2prdGwcrXu7mn88zeAhsvG9970TGLQp3avYKqKdDFJCjJMSsdOmMTJHcov4fADPWw9az1Xikkpckpf_ObN3sDM9Ozk2x0enX1_Bg4wSNEhxqF_DNnpJfIOw6dK9bbbFLZfPGSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+micro-+and+mesoporous+ZIF-8+with+core%E2%80%93shell+superstructures+using+colloidal+metal+sulfates+as+soft+templates+for+enzyme+immobilization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Feng%2C+Yuxiao&rft.au=Du%2C+Yingjie&rft.au=Kuang%2C+Geling&rft.au=Zhong%2C+Le&rft.date=2022-03-15&rft.issn=0021-9797&rft.volume=610&rft.spage=709&rft.epage=718&rft_id=info:doi/10.1016%2Fj.jcis.2021.11.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2021_11_123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |