Hierarchical micro- and mesoporous ZIF-8 with core–shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization

[Display omitted] Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of en...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 610; pp. 709 - 718
Main Authors Feng, Yuxiao, Du, Yingjie, Kuang, Geling, Zhong, Le, Hu, Hongtong, Jia, Shiru, Cui, Jiandong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core–shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
AbstractList Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core–shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO₄·7H₂O) as a soft template for enzyme immobilization. The ZnSO₄·7H₂O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO ·7H O) as a soft template for enzyme immobilization. The ZnSO ·7H O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
[Display omitted] Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core–shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.
Author Cui, Jiandong
Du, Yingjie
Zhong, Le
Jia, Shiru
Hu, Hongtong
Feng, Yuxiao
Kuang, Geling
Author_xml – sequence: 1
  givenname: Yuxiao
  surname: Feng
  fullname: Feng, Yuxiao
– sequence: 2
  givenname: Yingjie
  surname: Du
  fullname: Du, Yingjie
  email: yingjiedu@tust.edu.cn
– sequence: 3
  givenname: Geling
  surname: Kuang
  fullname: Kuang, Geling
– sequence: 4
  givenname: Le
  surname: Zhong
  fullname: Zhong, Le
– sequence: 5
  givenname: Hongtong
  surname: Hu
  fullname: Hu, Hongtong
– sequence: 6
  givenname: Shiru
  surname: Jia
  fullname: Jia, Shiru
– sequence: 7
  givenname: Jiandong
  surname: Cui
  fullname: Cui, Jiandong
  email: cjd007cn@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34863543$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9qFTEUxoNU7G31BVxIlm7mNplM5g-4kWJtodCNbtyEzMkZby6ZyZhklHblO4gv6JOY6a0uXBThQCDn9x34vu-EHE1-QkJecrbljNdn--0ebNyWrORbnqcUT8iGs04WDWfiiGxY3hRd0zXH5CTGPWOcS9k9I8eiamshK7EhPy8tBh1gZ0E7OloIvqB6MnTE6Gcf_BLpp6uLoqXfbNpR8AF_ff8Rd-gcjcuMIaawQFoCRrpEO33OiHPemvUaJr1SbtApr3Wk0Q-JJhxnd_8z-EBxursdkdpx9L119k4n66fn5OmgXcQXD-8p-Xjx7sP5ZXF98_7q_O11AaLtUgGdqUTL-66WRmZLw9DVdQUAQ4fYGKwbZBWC1KVktcB2MJXhfa9zeNBI4OKUvD7cnYP_smBMarQRsjc9YXauylrUbdmylv0HyhrBBJfr1VcP6NKPaNQc7KjDrfqTegbKA5DTjjHg8BfhTK3Vqr1aq1VrtYrnKVdR-48IbLpPKwVt3ePSNwcp5iy_5sJVBIsToLEBISnj7WPy32cKw10
CitedBy_id crossref_primary_10_1038_s41467_023_42649_w
crossref_primary_10_1016_j_bej_2023_109161
crossref_primary_10_1016_j_inoche_2024_112172
crossref_primary_10_1016_j_mcat_2022_112570
crossref_primary_10_1016_j_micromeso_2024_113351
crossref_primary_10_1016_j_nxnano_2024_100068
crossref_primary_10_1016_j_ijbiomac_2023_127817
crossref_primary_10_1016_j_engmic_2024_100176
crossref_primary_10_1021_acsomega_2c00357
crossref_primary_10_1016_j_cej_2024_151580
crossref_primary_10_1016_j_procbio_2023_09_004
crossref_primary_10_1186_s13036_024_00440_5
crossref_primary_10_1016_j_ijbiomac_2024_138984
crossref_primary_10_1016_S1872_2067_24_60020_3
crossref_primary_10_1016_j_procbio_2023_09_006
crossref_primary_10_1016_j_mtchem_2022_101259
crossref_primary_10_1016_j_indcrop_2023_117693
crossref_primary_10_1039_D4TB02682A
crossref_primary_10_1016_j_jhazmat_2023_130986
crossref_primary_10_1016_j_microc_2024_110384
crossref_primary_10_1016_j_mtchem_2022_100922
crossref_primary_10_1016_j_trechm_2023_03_007
crossref_primary_10_1016_j_envres_2022_113411
crossref_primary_10_1016_j_bioorg_2024_107673
crossref_primary_10_1007_s11274_024_04125_5
crossref_primary_10_1007_s12551_023_01146_6
crossref_primary_10_1007_s11244_023_01785_9
crossref_primary_10_1016_j_ijbiomac_2023_125729
crossref_primary_10_1021_acsami_3c07088
crossref_primary_10_1016_j_cej_2024_158972
crossref_primary_10_1007_s40242_024_4140_3
crossref_primary_10_1016_j_procbio_2022_10_019
crossref_primary_10_1016_j_procbio_2022_08_002
crossref_primary_10_1016_j_ijbiomac_2024_130381
crossref_primary_10_1016_j_colsurfb_2022_112585
crossref_primary_10_1016_j_biortech_2024_131072
crossref_primary_10_3390_pr11102937
crossref_primary_10_1007_s12010_023_04772_8
crossref_primary_10_1007_s11244_022_01657_8
crossref_primary_10_1016_j_seppur_2023_124278
crossref_primary_10_1016_j_cej_2024_153802
crossref_primary_10_1016_j_mtbio_2023_100678
crossref_primary_10_1021_acsami_2c21383
crossref_primary_10_1016_j_micromeso_2023_112762
crossref_primary_10_3390_catal14030180
crossref_primary_10_1016_j_lwt_2024_116221
crossref_primary_10_1016_j_procbio_2023_11_028
crossref_primary_10_1080_10826068_2022_2142799
crossref_primary_10_1080_07388551_2023_2189548
crossref_primary_10_1016_j_mtchem_2022_101326
crossref_primary_10_1021_acsanm_4c03885
crossref_primary_10_3390_su15097511
crossref_primary_10_1016_j_bej_2023_109104
crossref_primary_10_1021_acssuschemeng_2c03740
crossref_primary_10_1016_j_bcab_2024_103451
crossref_primary_10_1007_s12010_023_04607_6
crossref_primary_10_1016_j_eti_2023_103085
crossref_primary_10_1016_j_reactfunctpolym_2023_105695
crossref_primary_10_1080_10826068_2023_2209884
crossref_primary_10_1016_j_ijbiomac_2024_132075
crossref_primary_10_1021_acs_inorgchem_4c02082
crossref_primary_10_1016_j_arabjc_2023_104770
crossref_primary_10_1016_j_jcis_2023_04_068
crossref_primary_10_1016_j_jcis_2024_11_019
crossref_primary_10_1016_j_jcis_2022_07_034
crossref_primary_10_1021_acsami_3c16971
crossref_primary_10_1007_s10853_023_08416_4
crossref_primary_10_1016_j_eurpolymj_2024_112930
crossref_primary_10_1039_D4NJ03303E
crossref_primary_10_1016_j_bcab_2024_103027
crossref_primary_10_1016_j_ijbiomac_2023_128418
crossref_primary_10_1016_j_procbio_2022_11_022
crossref_primary_10_1016_j_scp_2024_101757
crossref_primary_10_3390_molecules29071467
crossref_primary_10_1016_j_molstruc_2022_134824
crossref_primary_10_1021_acsanm_3c00632
crossref_primary_10_1039_D3RE00067B
crossref_primary_10_1016_j_jwpe_2023_103597
crossref_primary_10_1016_j_fuel_2022_126400
crossref_primary_10_1016_j_bej_2022_108677
crossref_primary_10_1016_j_colsurfb_2024_114344
crossref_primary_10_1002_cjce_24735
crossref_primary_10_1016_j_rineng_2025_104442
crossref_primary_10_1016_j_enzmictec_2024_110579
crossref_primary_10_1021_acs_chemrev_2c00879
crossref_primary_10_3389_fbioe_2023_1256181
crossref_primary_10_1016_j_biortech_2024_131175
crossref_primary_10_1016_j_jbiotec_2023_06_003
crossref_primary_10_1016_j_ijbiomac_2022_11_126
crossref_primary_10_1016_j_gresc_2024_09_005
Cites_doi 10.1016/j.jcis.2021.06.017
10.1016/j.ccr.2021.214032
10.1021/acs.analchem.0c04074
10.1021/acs.iecr.9b04391
10.1016/j.bios.2016.09.013
10.1016/j.jhazmat.2020.122765
10.1016/j.foodhyd.2017.08.005
10.1021/acsami.1c02443
10.1016/j.jhazmat.2021.126480
10.1093/nsr/nwz170
10.1016/j.jmrt.2018.12.001
10.1021/acs.jafc.9b04385
10.1039/C5NR04994F
10.1016/j.biomaterials.2011.05.055
10.1021/acsanm.9b01736
10.1002/smll.201902927
10.1039/C8CS00085A
10.1007/s00018-013-1341-1
10.1038/35051736
10.1039/c3cs35506c
10.1021/acs.nanolett.0c02265
10.1002/anie.201506391
10.1016/j.nantod.2019.100834
10.1021/acsami.1c09100
10.1016/j.jclepro.2021.128163
10.1016/j.carbpol.2021.117963
10.1016/j.biotechadv.2018.01.014
10.1016/j.ccr.2016.05.007
10.1021/acssuschemeng.0c08300
10.1016/j.ijbiomac.2020.01.240
10.1038/nature11117
10.1039/C7NR06019J
10.1016/j.jcis.2018.08.052
10.1016/j.jcis.2021.01.078
10.1039/C6DT04582K
10.1021/acscatal.1c02017
10.1021/acssuschemeng.1c03775
10.1002/smll.202007586
10.3390/catal10050499
10.1126/sciadv.aax5785
10.1021/acscatal.8b04921
10.1016/j.biotechadv.2021.107821
10.1039/D0CY00819B
10.1016/j.biotechadv.2020.107584
10.1021/acs.analchem.7b02075
10.1002/adsc.201900439
10.1021/acs.chemrev.0c01029
10.1016/j.ccr.2019.213149
10.1016/j.jcat.2015.07.029
10.1039/c3cs35511j
10.1021/acsami.1c09052
10.1039/D0SC04513F
10.1021/ic00078a033
10.1016/j.msec.2020.111511
10.1021/acsami.8b03118
10.1021/acsami.8b00072
10.1016/j.cclet.2020.12.041
10.1016/j.bpj.2019.11.011
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.11.123
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 718
ExternalDocumentID 34863543
10_1016_j_jcis_2021_11_123
S002197972102035X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c389t-c9d4381b965d5486ff9664cccf9ee7de67e04ec5a25063e8fd4d1bba016c75c13
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 02:19:07 EDT 2025
Fri Jul 11 09:36:19 EDT 2025
Wed Feb 19 02:28:12 EST 2025
Tue Jul 01 01:19:14 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soft template
Enzyme immobilization
MOFs
Hierarchical porous structure
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-c9d4381b965d5486ff9664cccf9ee7de67e04ec5a25063e8fd4d1bba016c75c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34863543
PQID 2607303151
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2636828080
proquest_miscellaneous_2607303151
pubmed_primary_34863543
crossref_primary_10_1016_j_jcis_2021_11_123
crossref_citationtrail_10_1016_j_jcis_2021_11_123
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_11_123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kempahanumakkagari, Kumar, Samaddar, Kumar, Ramakrishnappa, Kim (b0105) 2018; 36
Su, Tian, Price, Xu, Qian, Liu (b0160) 2020; 31
Hu, Bai, Hou, Wang, Wang, Cao, Chan, Sun, Li, Ge, Ren (b0180) 2020; 6
Arana-Pena, Carballares, Morellon-Sterlling, Berenguer-Murcia, Alcantara, Rodrigues, Fernandez-Lafuente (b0190) 2021; 51
Zaidi, Hassan, Islam, Ahmad (b0220) 2014; 71
Feng, Hu, Wang, Du, Zhong, Zhang, Jiang, Jia, Cui (b0030) 2021; 590
Hsu, Chang, Wang, Lam, Wei, Chen, Chen, Chou, Shieh (b0100) 2021; 13
Kabtamu, Wu, Li (b0170) 2020; 397
Chang, He, Li, Cui (b0065) 2021; 316
Hwang, Lee (b0185) 2019; 9
Kornecki, Carballares, Tardioli, Rodrigues, Berenguer-Murcia, Alcántara, Fernandez-Lafuente (b0205) 2020; 10
Mehta, Bhardwaj, Bhardwaj, Kim, Deep (b0120) 2016; 322
Liu, Xu, Han, Wu, Xu, Meng, Zhang (b0290) 2017; 46
Nadar, Vaidya, Rathod (b0110) 2020; 149
Wu, Xiong, Liu, Zong, Lou (b0175) 2021; 17
Salem, Jabalera, Puentes-Pardo, Vilchez-Garcia, Sayari, Hmida-Sayari, Jimenez-Lopez, Perduca (b0040) 2021; 9
Hou, Wang, Ding, Jiang, Li, Zhu, Pan, Zhu, Liu (b0245) 2015; 7
Morshed, Behary, Guan, Nierstrasz (b0045) 2021; 9
Benucci, Liburdi, Cacciotti, Lombardelli, Zappino, Nanni, Esti (b0080) 2018; 74
Xia, Zhong, Li, Jiang (b0250) 2019; 533
Shokri, Seidi, Karami, Li, Saeb, Xiao (b0060) 2021; 262
Valikhani, Bolivar, Pelletier (b0225) 2021; 11
Cen, Liu, Xue, Zheng (b0085) 2019; 361
Xie, Zhao, Chen, Liu, Evans, Yang (b0155) 2011; 32
Kim, Yang, Yun, Ghasemian, Koo, Lee, Cho, Kim (b0135) 2015; 54
Feng, Wang, Lv, Yan, Zhou (b0150) 2020; 7
Liu, Shen, Baimanov, Wang, Xiao, Liu, Li, Gao, Zhao, Chen (b0200) 2019; 11
Ahmad, Shanahan, Rizaldo, Kissel, Stone (b0195) 2020; 10
Neira, Herr (b0265) 2017; 89
Shao, Yao, Liu, Tang (b0255) 1993; 32
Schmid, Dordick, Hauer, Kiener, Wubbolts, Witholt (b0005) 2001; 409
Zhu, Zhuang, Chen, Wang, Villacorta Hernandez, Wu, Yang, Liu, Zhu, Ying, Zhu (b0235) 2018; 10
Manickam, Kaushik, Karunakaran, Bhansali (b0215) 2017; 87
Huang, Jiao, Xu, Fang, Wang, Cai, Yan, Gu, Zhu (b0055) 2021; 13
Liu, Du, Gao, Zhou, He, Ma, Liu, Huang, Jiang (b0275) 2020; 59
Liu, Qi, Wang, Su, He (b0145) 2017; 9
DiCosimo, McAuliffe, Poulose, Bohlmann (b0015) 2013; 42
Liese, Hilterhaus (b0020) 2013; 42
Ademakinwa (b0050) 2021; 419
Sánchez-Morán, Weltz, Schwartz, Kaar (b0035) 2021; 13
Lancaster, Abdallah, Banta, Wheeldon (b0270) 2018; 47
Liang, Wied, Carraro, Sumby, Nidetzky, Tsung, Falcaro, Doonan (b0090) 2021; 121
Yushkova, Nazarova, Matyuhina, Noskova, Shavronskaya, Vinogradov, Skvortsova, Krivoshapkina (b0025) 2019; 67
Chen, Lo, Huang, Si, Liao, Lin, Williams, Sun, Lin, An, Sun, Ma, Yang, Chou, Shieh, Tsung (b0260) 2020; 20
Liang, Wu, Xiong, Zong, Lou (b0125) 2020; 406
Bornscheuer, Huisman, Kazlauskas, Lutz, Moore, Robins (b0010) 2012; 485
Lin, Du, Wang, Wang, Song (b0280) 2021; 118
Zhang, Tu, Lu, Peng, Hou, Wang (b0130) 2021; 443
Zhong, Feng, Hu, Xu, Wang, Du, Cui, Jia (b0095) 2021; 602
Zezzi do Valle Gomes, Nabavi Zadeh, Palmqvist, Åkerman (b0075) 2019; 2
Cheng, Svec, Lv, Tan (b0165) 2019; 15
Singh, Ahmed, Fakim, Qutub, Alahmed, El Tall, Shekhah, Eddaoudi, Khashab (b0230) 2020; 11
Bilal, Adeel, Rasheed, Iqbal (b0115) 2019; 8
Rodrigues, Berenguer-Murcia, Carballares, Morellon-Sterling, Fernandez-Lafuente (b0070) 2021; 52
Ji, Yi, Zhang, Zhang, Gui, Gao, Zeng, Wang, Xia, Fu (b0240) 2020; 92
Chea, Deredge, Jones (b0210) 2020; 118
Sun, Li, Yang, Xiao, Zeng, Gong, Wang, Tan, Li (b0285) 2021; 32
Huang, Shen, Wang, Shi, Li, Cao (b0140) 2015; 330
Rodrigues (10.1016/j.jcis.2021.11.123_b0070) 2021; 52
Sánchez-Morán (10.1016/j.jcis.2021.11.123_b0035) 2021; 13
Liese (10.1016/j.jcis.2021.11.123_b0020) 2013; 42
Zaidi (10.1016/j.jcis.2021.11.123_b0220) 2014; 71
Liang (10.1016/j.jcis.2021.11.123_b0125) 2020; 406
Ahmad (10.1016/j.jcis.2021.11.123_b0195) 2020; 10
Morshed (10.1016/j.jcis.2021.11.123_b0045) 2021; 9
Chen (10.1016/j.jcis.2021.11.123_b0260) 2020; 20
Kim (10.1016/j.jcis.2021.11.123_b0135) 2015; 54
Ademakinwa (10.1016/j.jcis.2021.11.123_b0050) 2021; 419
Cheng (10.1016/j.jcis.2021.11.123_b0165) 2019; 15
Manickam (10.1016/j.jcis.2021.11.123_b0215) 2017; 87
Ji (10.1016/j.jcis.2021.11.123_b0240) 2020; 92
Su (10.1016/j.jcis.2021.11.123_b0160) 2020; 31
Schmid (10.1016/j.jcis.2021.11.123_b0005) 2001; 409
Zezzi do Valle Gomes (10.1016/j.jcis.2021.11.123_b0075) 2019; 2
Salem (10.1016/j.jcis.2021.11.123_b0040) 2021; 9
Chang (10.1016/j.jcis.2021.11.123_b0065) 2021; 316
Huang (10.1016/j.jcis.2021.11.123_b0140) 2015; 330
DiCosimo (10.1016/j.jcis.2021.11.123_b0015) 2013; 42
Benucci (10.1016/j.jcis.2021.11.123_b0080) 2018; 74
Zhong (10.1016/j.jcis.2021.11.123_b0095) 2021; 602
Nadar (10.1016/j.jcis.2021.11.123_b0110) 2020; 149
Huang (10.1016/j.jcis.2021.11.123_b0055) 2021; 13
Valikhani (10.1016/j.jcis.2021.11.123_b0225) 2021; 11
Xia (10.1016/j.jcis.2021.11.123_b0250) 2019; 533
Mehta (10.1016/j.jcis.2021.11.123_b0120) 2016; 322
Cen (10.1016/j.jcis.2021.11.123_b0085) 2019; 361
Hsu (10.1016/j.jcis.2021.11.123_b0100) 2021; 13
Liang (10.1016/j.jcis.2021.11.123_b0090) 2021; 121
Lin (10.1016/j.jcis.2021.11.123_b0280) 2021; 118
Liu (10.1016/j.jcis.2021.11.123_b0145) 2017; 9
Kabtamu (10.1016/j.jcis.2021.11.123_b0170) 2020; 397
Hu (10.1016/j.jcis.2021.11.123_b0180) 2020; 6
Yushkova (10.1016/j.jcis.2021.11.123_b0025) 2019; 67
Liu (10.1016/j.jcis.2021.11.123_b0290) 2017; 46
Kempahanumakkagari (10.1016/j.jcis.2021.11.123_b0105) 2018; 36
Chea (10.1016/j.jcis.2021.11.123_b0210) 2020; 118
Feng (10.1016/j.jcis.2021.11.123_b0030) 2021; 590
Hou (10.1016/j.jcis.2021.11.123_b0245) 2015; 7
Neira (10.1016/j.jcis.2021.11.123_b0265) 2017; 89
Wu (10.1016/j.jcis.2021.11.123_b0175) 2021; 17
Shao (10.1016/j.jcis.2021.11.123_b0255) 1993; 32
Zhang (10.1016/j.jcis.2021.11.123_b0130) 2021; 443
Liu (10.1016/j.jcis.2021.11.123_b0275) 2020; 59
Singh (10.1016/j.jcis.2021.11.123_b0230) 2020; 11
Lancaster (10.1016/j.jcis.2021.11.123_b0270) 2018; 47
Bornscheuer (10.1016/j.jcis.2021.11.123_b0010) 2012; 485
Arana-Pena (10.1016/j.jcis.2021.11.123_b0190) 2021; 51
Feng (10.1016/j.jcis.2021.11.123_b0150) 2020; 7
Xie (10.1016/j.jcis.2021.11.123_b0155) 2011; 32
Sun (10.1016/j.jcis.2021.11.123_b0285) 2021; 32
Liu (10.1016/j.jcis.2021.11.123_b0200) 2019; 11
Hwang (10.1016/j.jcis.2021.11.123_b0185) 2019; 9
Shokri (10.1016/j.jcis.2021.11.123_b0060) 2021; 262
Zhu (10.1016/j.jcis.2021.11.123_b0235) 2018; 10
Bilal (10.1016/j.jcis.2021.11.123_b0115) 2019; 8
Kornecki (10.1016/j.jcis.2021.11.123_b0205) 2020; 10
References_xml – volume: 361
  start-page: 5500
  year: 2019
  end-page: 5515
  ident: b0085
  article-title: Immobilization of enzymes in/on membranes and their applications
  publication-title: Adv. Synth. Catal.
– volume: 87
  start-page: 654
  year: 2017
  end-page: 668
  ident: b0215
  article-title: Recent advances in cytochrome c biosensing technologies
  publication-title: Biosens. Bioelectron.
– volume: 443
  start-page: 214032
  year: 2021
  ident: b0130
  article-title: Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective
  publication-title: Coordin. Chem. Rev.
– volume: 9
  start-page: 4402
  year: 2019
  end-page: 4425
  ident: b0185
  article-title: Multienzymatic cascade reactions via enzyme complex by immobilization
  publication-title: Acs. Catal.
– volume: 11
  start-page: 2647
  year: 2019
  end-page: 2654
  ident: b0200
  article-title: Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection
  publication-title: Acs. Appl. Mater. Inter.
– volume: 32
  start-page: 6112
  year: 1993
  end-page: 6114
  ident: b0255
  article-title: Proton NMR studies of pyridine binding to cytochrome c
  publication-title: Inorg. Chem.
– volume: 397
  year: 2020
  ident: b0170
  article-title: Hierarchically porous metal-organic frameworks: Synthesis strategies, structure(s), and emerging applications in decontamination
  publication-title: J. Hazard. Mater.
– volume: 10
  start-page: 16066
  year: 2018
  end-page: 16076
  ident: b0235
  article-title: Nano-biocatalysts of Cyt c@ZIF-8/GO composites with high recyclability via a de novo approach
  publication-title: Acs. Appl. Mater. Inter.
– volume: 67
  start-page: 11553
  year: 2019
  end-page: 11567
  ident: b0025
  article-title: Application of immobilized enzymes in food industry
  publication-title: J. Agr. Food. Chem.
– volume: 121
  start-page: 1077
  year: 2021
  end-page: 1129
  ident: b0090
  article-title: Metal-organic framework-based enzyme biocomposites
  publication-title: Chem. Rev.
– volume: 36
  start-page: 467
  year: 2018
  end-page: 481
  ident: b0105
  article-title: Biomolecule-embedded metal-organic frameworks as an innovative sensing platform
  publication-title: Biotechnol. Adv.
– volume: 32
  start-page: 1780
  year: 2021
  end-page: 1784
  ident: b0285
  article-title: Self-assembled all-inclusive organic-inorganic nanoparticles enable cascade reaction for the detection of glucose
  publication-title: Chinese. Chem. Lett.
– volume: 7
  start-page: 18770
  year: 2015
  end-page: 18779
  ident: b0245
  article-title: Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor
  publication-title: Nanoscale
– volume: 92
  start-page: 15655
  year: 2020
  end-page: 15662
  ident: b0240
  article-title: Nanoscale hierarchically micro- and mesoporous metal-organic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation
  publication-title: Anal. Chem.
– volume: 602
  start-page: 426
  year: 2021
  end-page: 436
  ident: b0095
  article-title: Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production
  publication-title: J. Colloid. Interf. Sci.
– volume: 533
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0250
  article-title: Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects
  publication-title: J. Colloid. Interf. Sci.
– volume: 330
  start-page: 452
  year: 2015
  end-page: 457
  ident: b0140
  article-title: Hierarchically micro- and mesoporous metal–organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis
  publication-title: J. Catal.
– volume: 10
  start-page: 499
  year: 2020
  ident: b0195
  article-title: Co-immobilization of an enzyme system on a metal-organic framework to produce a more effective biocatalyst
  publication-title: Catalysts
– volume: 406
  start-page: 213149
  year: 2020
  ident: b0125
  article-title: Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review
  publication-title: Coordin. Chem. Rev.
– volume: 13
  start-page: 33383
  year: 2021
  end-page: 33391
  ident: b0055
  article-title: Immobilizing enzymes on noble metal hydrogel nanozymes with synergistically enhanced peroxidase activity for ultrasensitive immunoassays by cascade signal amplification
  publication-title: Acs. Appl. Mater. Inter.
– volume: 7
  start-page: 1743
  year: 2020
  end-page: 1758
  ident: b0150
  article-title: Hierarchically porous metal–organic frameworks: synthetic strategies and applications
  publication-title: Natl. Sci. Rev.
– volume: 485
  start-page: 185
  year: 2012
  end-page: 194
  ident: b0010
  article-title: Engineering the third wave of biocatalysis
  publication-title: Nature
– volume: 74
  start-page: 124
  year: 2018
  end-page: 131
  ident: b0080
  article-title: Chitosan/clay nanocomposite films as supports for enzyme immobilization: An innovative green approach for winemaking applications
  publication-title: Food. Hydrocolloid.
– volume: 46
  start-page: 2114
  year: 2017
  end-page: 2121
  ident: b0290
  article-title: Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8)
  publication-title: Dalton. T.
– volume: 42
  start-page: 6236
  year: 2013
  ident: b0020
  article-title: Evaluation of immobilized enzymes for industrial applications
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 7245
  year: 2019
  end-page: 7254
  ident: b0075
  article-title: Spatial distribution of enzymes immobilized in mesoporous silicas for biocatalysis
  publication-title: Acs. Appl. Nano. Mater.
– volume: 9
  start-page: 4054
  year: 2021
  end-page: 4063
  ident: b0040
  article-title: Enzyme storage and recycling: Nanoassemblies of α-amylase and xylanase immobilized on biomimetic magnetic nanoparticles
  publication-title: ACS. Sustain. Chem. Eng.
– volume: 8
  start-page: 2359
  year: 2019
  end-page: 2371
  ident: b0115
  article-title: Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects
  publication-title: J. Mater. Res. Technol.
– volume: 322
  start-page: 30
  year: 2016
  end-page: 40
  ident: b0120
  article-title: Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates
  publication-title: Coordin. Chem. Rev.
– volume: 47
  start-page: 5177
  year: 2018
  end-page: 5186
  ident: b0270
  article-title: Engineering enzyme microenvironments for enhanced biocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 316
  year: 2021
  ident: b0065
  article-title: Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture
  publication-title: J. Clean. Prod.
– volume: 51
  year: 2021
  ident: b0190
  article-title: Enzyme co-immobilization: Always the biocatalyst designers' choice...or not?
  publication-title: Biotechnol. Adv.
– volume: 590
  start-page: 436
  year: 2021
  end-page: 445
  ident: b0030
  article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization
  publication-title: J. Colloid. Interf. Sci.
– volume: 149
  start-page: 861
  year: 2020
  end-page: 876
  ident: b0110
  article-title: Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization
  publication-title: Int. J. Biol. Macromol.
– volume: 10
  start-page: 5740
  year: 2020
  end-page: 5771
  ident: b0205
  article-title: Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions
  publication-title: Catal. Scl. Technol.
– volume: 13
  start-page: 26694
  year: 2021
  end-page: 26703
  ident: b0035
  article-title: Understanding design rules for optimizing the interface between immobilized enzymes and random copolymer brushes
  publication-title: Acs. Appl. Mater. Inter.
– volume: 20
  start-page: 6630
  year: 2020
  end-page: 6635
  ident: b0260
  article-title: Probing Interactions between Metal-Organic Frameworks and Freestanding Enzymes in a Hollow Structure
  publication-title: Nano. Lett.
– volume: 15
  year: 2019
  ident: b0165
  article-title: Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction
  publication-title: Small
– volume: 11
  start-page: 9418
  year: 2021
  end-page: 9434
  ident: b0225
  article-title: An overview of cytochrome p450 immobilization strategies for drug metabolism studies, biosensing, and biocatalytic applications: Challenges and opportunities
  publication-title: Acs. Catal.
– volume: 17
  start-page: 2007586
  year: 2021
  ident: b0175
  article-title: A versatile competitive coordination strategy for tailoring bioactive zeolitic imidazolate framework composites
  publication-title: Small
– volume: 9
  start-page: 8879
  year: 2021
  end-page: 8894
  ident: b0045
  article-title: Immobilizing redox enzyme on amino functional group-integrated tailor-made polyester textile: High loading, stability, and application in a bio-fenton system
  publication-title: ACS. Sustain. Chem. Eng.
– volume: 32
  start-page: 6588
  year: 2011
  end-page: 6594
  ident: b0155
  article-title: Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor
  publication-title: Biomaterials
– volume: 31
  year: 2020
  ident: b0160
  article-title: Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis
  publication-title: Nano Today.
– volume: 9
  start-page: 17561
  year: 2017
  end-page: 17570
  ident: b0145
  article-title: A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks
  publication-title: Nanoscale
– volume: 71
  start-page: 229
  year: 2014
  end-page: 255
  ident: b0220
  article-title: The role of key residues in structure, function, and stability of cytochrome-c
  publication-title: Cell. Mol. Life. Sci.
– volume: 59
  start-page: 42
  year: 2020
  end-page: 51
  ident: b0275
  article-title: Compartmentalization of biocatalysts by immobilizing bienzyme in hollow ZIF-8 for colorimetric detection of glucose and phenol
  publication-title: Ind. Eng. Chem. Res.
– volume: 118
  start-page: 128
  year: 2020
  end-page: 137
  ident: b0210
  article-title: Insights on the conformational ensemble of Cyt C reveal a compact state during peroxidase activity
  publication-title: Biophys. J.
– volume: 11
  start-page: 11280
  year: 2020
  end-page: 11284
  ident: b0230
  article-title: In situ assembled ZIF superstructures via an emulsion-free soft-templating approach
  publication-title: Chem. Sci.
– volume: 118
  start-page: 111511
  year: 2021
  ident: b0280
  article-title: Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
– volume: 52
  year: 2021
  ident: b0070
  article-title: Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies
  publication-title: Biotechnol. Adv.
– volume: 6
  start-page: eaax5785
  year: 2020
  ident: b0180
  article-title: Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis
  publication-title: Sci. Adv.
– volume: 419
  year: 2021
  ident: b0050
  article-title: A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: Characterization, application in bisphenol a removal and phytotoxicity evaluation
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 6437
  year: 2013
  ident: b0015
  article-title: Industrial use of immobilized enzymes
  publication-title: Chem. Soc. Rev.
– volume: 262
  year: 2021
  ident: b0060
  article-title: Laccase immobilization onto natural polysaccharides for biosensing and biodegradation
  publication-title: Carbohyd. Polym.
– volume: 13
  start-page: 52014
  year: 2021
  end-page: 52022
  ident: b0100
  article-title: Rapid fabrication of biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild water-based approach
  publication-title: ACS Appl. Mater. Interfaces
– volume: 409
  start-page: 258
  year: 2001
  end-page: 268
  ident: b0005
  article-title: Industrial biocatalysis today and tomorrow
  publication-title: Nature
– volume: 89
  start-page: 10311
  year: 2017
  end-page: 10320
  ident: b0265
  article-title: Kinetic analysis of enzymes immobilized in porous film arrays
  publication-title: Anal. Chem.
– volume: 54
  start-page: 13273
  year: 2015
  end-page: 13278
  ident: b0135
  article-title: Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 602
  start-page: 426
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0095
  article-title: Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2021.06.017
– volume: 443
  start-page: 214032
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0130
  article-title: Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective
  publication-title: Coordin. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214032
– volume: 92
  start-page: 15655
  issue: 23
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0240
  article-title: Nanoscale hierarchically micro- and mesoporous metal-organic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04074
– volume: 59
  start-page: 42
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0275
  article-title: Compartmentalization of biocatalysts by immobilizing bienzyme in hollow ZIF-8 for colorimetric detection of glucose and phenol
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b04391
– volume: 87
  start-page: 654
  year: 2017
  ident: 10.1016/j.jcis.2021.11.123_b0215
  article-title: Recent advances in cytochrome c biosensing technologies
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.09.013
– volume: 397
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0170
  article-title: Hierarchically porous metal-organic frameworks: Synthesis strategies, structure(s), and emerging applications in decontamination
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122765
– volume: 74
  start-page: 124
  year: 2018
  ident: 10.1016/j.jcis.2021.11.123_b0080
  article-title: Chitosan/clay nanocomposite films as supports for enzyme immobilization: An innovative green approach for winemaking applications
  publication-title: Food. Hydrocolloid.
  doi: 10.1016/j.foodhyd.2017.08.005
– volume: 13
  start-page: 26694
  issue: 23
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0035
  article-title: Understanding design rules for optimizing the interface between immobilized enzymes and random copolymer brushes
  publication-title: Acs. Appl. Mater. Inter.
  doi: 10.1021/acsami.1c02443
– volume: 419
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0050
  article-title: A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: Characterization, application in bisphenol a removal and phytotoxicity evaluation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126480
– volume: 7
  start-page: 1743
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0150
  article-title: Hierarchically porous metal–organic frameworks: synthetic strategies and applications
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz170
– volume: 8
  start-page: 2359
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0115
  article-title: Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2018.12.001
– volume: 67
  start-page: 11553
  issue: 42
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0025
  article-title: Application of immobilized enzymes in food industry
  publication-title: J. Agr. Food. Chem.
  doi: 10.1021/acs.jafc.9b04385
– volume: 7
  start-page: 18770
  year: 2015
  ident: 10.1016/j.jcis.2021.11.123_b0245
  article-title: Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor
  publication-title: Nanoscale
  doi: 10.1039/C5NR04994F
– volume: 32
  start-page: 6588
  issue: 27
  year: 2011
  ident: 10.1016/j.jcis.2021.11.123_b0155
  article-title: Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.055
– volume: 2
  start-page: 7245
  issue: 11
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0075
  article-title: Spatial distribution of enzymes immobilized in mesoporous silicas for biocatalysis
  publication-title: Acs. Appl. Nano. Mater.
  doi: 10.1021/acsanm.9b01736
– volume: 15
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0165
  article-title: Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction
  publication-title: Small
  doi: 10.1002/smll.201902927
– volume: 47
  start-page: 5177
  issue: 14
  year: 2018
  ident: 10.1016/j.jcis.2021.11.123_b0270
  article-title: Engineering enzyme microenvironments for enhanced biocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00085A
– volume: 71
  start-page: 229
  issue: 2
  year: 2014
  ident: 10.1016/j.jcis.2021.11.123_b0220
  article-title: The role of key residues in structure, function, and stability of cytochrome-c
  publication-title: Cell. Mol. Life. Sci.
  doi: 10.1007/s00018-013-1341-1
– volume: 409
  start-page: 258
  issue: 6817
  year: 2001
  ident: 10.1016/j.jcis.2021.11.123_b0005
  article-title: Industrial biocatalysis today and tomorrow
  publication-title: Nature
  doi: 10.1038/35051736
– volume: 42
  start-page: 6437
  issue: 15
  year: 2013
  ident: 10.1016/j.jcis.2021.11.123_b0015
  article-title: Industrial use of immobilized enzymes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35506c
– volume: 20
  start-page: 6630
  issue: 9
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0260
  article-title: Probing Interactions between Metal-Organic Frameworks and Freestanding Enzymes in a Hollow Structure
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.0c02265
– volume: 54
  start-page: 13273
  issue: 45
  year: 2015
  ident: 10.1016/j.jcis.2021.11.123_b0135
  article-title: Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201506391
– volume: 31
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0160
  article-title: Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis
  publication-title: Nano Today.
  doi: 10.1016/j.nantod.2019.100834
– volume: 13
  start-page: 33383
  issue: 28
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0055
  article-title: Immobilizing enzymes on noble metal hydrogel nanozymes with synergistically enhanced peroxidase activity for ultrasensitive immunoassays by cascade signal amplification
  publication-title: Acs. Appl. Mater. Inter.
  doi: 10.1021/acsami.1c09100
– volume: 316
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0065
  article-title: Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128163
– volume: 262
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0060
  article-title: Laccase immobilization onto natural polysaccharides for biosensing and biodegradation
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2021.117963
– volume: 36
  start-page: 467
  issue: 2
  year: 2018
  ident: 10.1016/j.jcis.2021.11.123_b0105
  article-title: Biomolecule-embedded metal-organic frameworks as an innovative sensing platform
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.01.014
– volume: 322
  start-page: 30
  year: 2016
  ident: 10.1016/j.jcis.2021.11.123_b0120
  article-title: Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates
  publication-title: Coordin. Chem. Rev.
  doi: 10.1016/j.ccr.2016.05.007
– volume: 9
  start-page: 4054
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0040
  article-title: Enzyme storage and recycling: Nanoassemblies of α-amylase and xylanase immobilized on biomimetic magnetic nanoparticles
  publication-title: ACS. Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08300
– volume: 149
  start-page: 861
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0110
  article-title: Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.01.240
– volume: 485
  start-page: 185
  issue: 7397
  year: 2012
  ident: 10.1016/j.jcis.2021.11.123_b0010
  article-title: Engineering the third wave of biocatalysis
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 9
  start-page: 17561
  issue: 44
  year: 2017
  ident: 10.1016/j.jcis.2021.11.123_b0145
  article-title: A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks
  publication-title: Nanoscale
  doi: 10.1039/C7NR06019J
– volume: 533
  start-page: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0250
  article-title: Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2018.08.052
– volume: 590
  start-page: 436
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0030
  article-title: Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2021.01.078
– volume: 46
  start-page: 2114
  issue: 7
  year: 2017
  ident: 10.1016/j.jcis.2021.11.123_b0290
  article-title: Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8)
  publication-title: Dalton. T.
  doi: 10.1039/C6DT04582K
– volume: 11
  start-page: 9418
  issue: 15
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0225
  article-title: An overview of cytochrome p450 immobilization strategies for drug metabolism studies, biosensing, and biocatalytic applications: Challenges and opportunities
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.1c02017
– volume: 9
  start-page: 8879
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0045
  article-title: Immobilizing redox enzyme on amino functional group-integrated tailor-made polyester textile: High loading, stability, and application in a bio-fenton system
  publication-title: ACS. Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c03775
– volume: 17
  start-page: 2007586
  issue: 20
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0175
  article-title: A versatile competitive coordination strategy for tailoring bioactive zeolitic imidazolate framework composites
  publication-title: Small
  doi: 10.1002/smll.202007586
– volume: 10
  start-page: 499
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0195
  article-title: Co-immobilization of an enzyme system on a metal-organic framework to produce a more effective biocatalyst
  publication-title: Catalysts
  doi: 10.3390/catal10050499
– volume: 6
  start-page: eaax5785
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0180
  article-title: Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5785
– volume: 9
  start-page: 4402
  issue: 5
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0185
  article-title: Multienzymatic cascade reactions via enzyme complex by immobilization
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.8b04921
– volume: 52
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0070
  article-title: Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107821
– volume: 10
  start-page: 5740
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0205
  article-title: Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions
  publication-title: Catal. Scl. Technol.
  doi: 10.1039/D0CY00819B
– volume: 51
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0190
  article-title: Enzyme co-immobilization: Always the biocatalyst designers' choice...or not?
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2020.107584
– volume: 89
  start-page: 10311
  issue: 19
  year: 2017
  ident: 10.1016/j.jcis.2021.11.123_b0265
  article-title: Kinetic analysis of enzymes immobilized in porous film arrays
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02075
– volume: 361
  start-page: 5500
  issue: 24
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0085
  article-title: Immobilization of enzymes in/on membranes and their applications
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900439
– volume: 121
  start-page: 1077
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0090
  article-title: Metal-organic framework-based enzyme biocomposites
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01029
– volume: 406
  start-page: 213149
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0125
  article-title: Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review
  publication-title: Coordin. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213149
– volume: 330
  start-page: 452
  year: 2015
  ident: 10.1016/j.jcis.2021.11.123_b0140
  article-title: Hierarchically micro- and mesoporous metal–organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.07.029
– volume: 42
  start-page: 6236
  issue: 15
  year: 2013
  ident: 10.1016/j.jcis.2021.11.123_b0020
  article-title: Evaluation of immobilized enzymes for industrial applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35511j
– volume: 13
  start-page: 52014
  issue: 44
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0100
  article-title: Rapid fabrication of biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild water-based approach
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09052
– volume: 11
  start-page: 11280
  issue: 41
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0230
  article-title: In situ assembled ZIF superstructures via an emulsion-free soft-templating approach
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC04513F
– volume: 32
  start-page: 6112
  issue: 26
  year: 1993
  ident: 10.1016/j.jcis.2021.11.123_b0255
  article-title: Proton NMR studies of pyridine binding to cytochrome c
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00078a033
– volume: 118
  start-page: 111511
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0280
  article-title: Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose
  publication-title: Mater. Sci. Eng. C. Mater. Biol. Appl.
  doi: 10.1016/j.msec.2020.111511
– volume: 11
  start-page: 2647
  issue: 3
  year: 2019
  ident: 10.1016/j.jcis.2021.11.123_b0200
  article-title: Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection
  publication-title: Acs. Appl. Mater. Inter.
  doi: 10.1021/acsami.8b03118
– volume: 10
  start-page: 16066
  issue: 18
  year: 2018
  ident: 10.1016/j.jcis.2021.11.123_b0235
  article-title: Nano-biocatalysts of Cyt c@ZIF-8/GO composites with high recyclability via a de novo approach
  publication-title: Acs. Appl. Mater. Inter.
  doi: 10.1021/acsami.8b00072
– volume: 32
  start-page: 1780
  issue: 5
  year: 2021
  ident: 10.1016/j.jcis.2021.11.123_b0285
  article-title: Self-assembled all-inclusive organic-inorganic nanoparticles enable cascade reaction for the detection of glucose
  publication-title: Chinese. Chem. Lett.
  doi: 10.1016/j.cclet.2020.12.041
– volume: 118
  start-page: 128
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2021.11.123_b0210
  article-title: Insights on the conformational ensemble of Cyt C reveal a compact state during peroxidase activity
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.11.011
SSID ssj0011559
Score 2.6266198
Snippet [Display omitted] Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing...
Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the...
Metal–organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 709
SubjectTerms cytochrome c
Enzyme immobilization
Enzymes, Immobilized
glucose
Hierarchical porous structure
immobilized enzymes
Metal-Organic Frameworks
methanol
MOFs
Porosity
porous media
Soft template
Sulfates
surface area
Zeolites
zinc sulfate
Title Hierarchical micro- and mesoporous ZIF-8 with core–shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization
URI https://dx.doi.org/10.1016/j.jcis.2021.11.123
https://www.ncbi.nlm.nih.gov/pubmed/34863543
https://www.proquest.com/docview/2607303151
https://www.proquest.com/docview/2636828080
Volume 610
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V7QE4ICiPBkplJG7Ibby2d7PHKqJKQfREpYiL5SfaKtlE2vYAB8R_QPzB_pLO7COCQ3PganlXlmc8_sb-5jPAu-i8SOPM8cxPSo4BT3A7Vp5nLkvRueQnic47Pl_ks0v1ca7nOzAdamGIVtnH_i6mt9G6bznpZ_NkXVVU44urrSD1GbpN03OqYFcFefnxzw3NQ9C1W0fzEJx694UzHcfrylck2Z0JjBzHIpP3bU73gc92Ezp7Ao979MhOuwE-hZ1Y78OD6fBo2z48-ktf8Bn8mVVUX9w-d7JgS-LecWbrwJaxWSHwxqyffT1H_2R0HMtI0fL21--GuKGsuVkTMiR12RtMyRkR5L8xcptVFehvEWE79lokQqvMNqzBiM5I6mrRtiAaZrH-8X0ZWYXOTiTcruTzOVyeffgynfH-HQbuEc5cc18GEgJzZa4DJjh5SpgjKe99KmMsQsyLOFbRa4twKpdxkoIKwjmLc-wL7YV8Abv1qo4HwFSI4-C0klZhaiIxk1doExuUdtKmMo1ADAYwvhcpp7cyFmZgo10ZMpoho2H2YtBoI3i_-WbdSXRs7a0Hu5p_HM3gHrL1u7eDExi0KV2r2DqinQxmhBgmJUKnbX1kjrktwvMRvOw8aDNWiVMqcUpe_efIXsPDjGoyiGSoD2EXPSO-QaR07Y7apXAEe6fnn2YXd2MzF54
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigcKiiv8DQSN-Q2Xtub7BFFVCm0PbVSxMXyE22VbCJte4AD4j-g_sH-ks7sI4JDc-C68q4sz3j8fetvZgA-ROdFGmaOZ35ccAx4gtuh8jxzWYrOJT9O9L_j5DSfnqsvMz3bgkmfC0Oyyi72tzG9idbdk4NuNQ9WZUk5vrjbRlR9hm7T9Owe3Fe4famNwf6vtc5D0L1bq_MQnIZ3mTOtyOvCl1SzOxMYOvZFJu86ne5Cn80pdPgIdjv4yD61M3wMW7Hag51J37VtDx7-VWDwCVxPS0owbvqdzNmCxHec2SqwRayXiLyR9rNvR-igjP7HMippefP7T03iUFZfrQgaUnnZK-TkjBTy3xn5zbIM9LWIuB1HzRPBVWZrVmNIZ1Trat48QTjMYvXzxyKyEr2dVLhtzudTOD_8fDaZ8q4RA_eIZy65LwJVAnNFrgMynDwlJEnKe5-KGEch5qM4VNFri3gql3GcggrCOYtr7EfaC_kMtqtlFV8AUyEOg9NKWoXcRCKVV2gTG5R20qYiDUD0BjC-q1JOzTLmppejXRgymiGjIX0xaLQBfFy_s2prdGwcrXu7mn88zeAhsvG9970TGLQp3avYKqKdDFJCjJMSsdOmMTJHcov4fADPWw9az1Xikkpckpf_ObN3sDM9Ozk2x0enX1_Bg4wSNEhxqF_DNnpJfIOw6dK9bbbFLZfPGSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+micro-+and+mesoporous+ZIF-8+with+core%E2%80%93shell+superstructures+using+colloidal+metal+sulfates+as+soft+templates+for+enzyme+immobilization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Feng%2C+Yuxiao&rft.au=Du%2C+Yingjie&rft.au=Kuang%2C+Geling&rft.au=Zhong%2C+Le&rft.date=2022-03-15&rft.issn=0021-9797&rft.volume=610&rft.spage=709&rft.epage=718&rft_id=info:doi/10.1016%2Fj.jcis.2021.11.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2021_11_123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon